後性代数

查



### 目錄

| 期中複習資料               |      |
|----------------------|------|
| <b>我代期中複</b> 習       | 2    |
| <b>裁代機考題</b>         | 14   |
| <b>我代徽考模擬題</b>       | 25   |
| 期末複習資料               |      |
| 汽02幾代習題課題目           | 39   |
| 3套幾代樣題               | 42   |
| 2001.1 幾何與代數(1)期末真題  | 48   |
| 2002.12              | 51   |
| 2003.12              | 53   |
| 2005.1               | 55   |
| 2007.1代数典幾何真題.       | 57   |
| 2008.1代数典裁何真题.       | 60   |
| 2008.1 幾何與代數 (1) 真題. | 62   |
| 2009.1               | .64  |
| 2010.1 幾何與代數 (1) 真題  | 66   |
| 2012.1後性代數 (1) 真題.   | . 68 |
| 我何與代數(1)考試樣題一.       | 70   |
| 我何與代數(1)考試樣題二.       | 72   |
| 汽车工程系學習部             |      |

榮譽出品

6. 
$$\begin{vmatrix} 3 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & -3 & 0 \end{vmatrix} = \begin{vmatrix} 2A & A \\ 0 & -B \end{vmatrix} = A$$

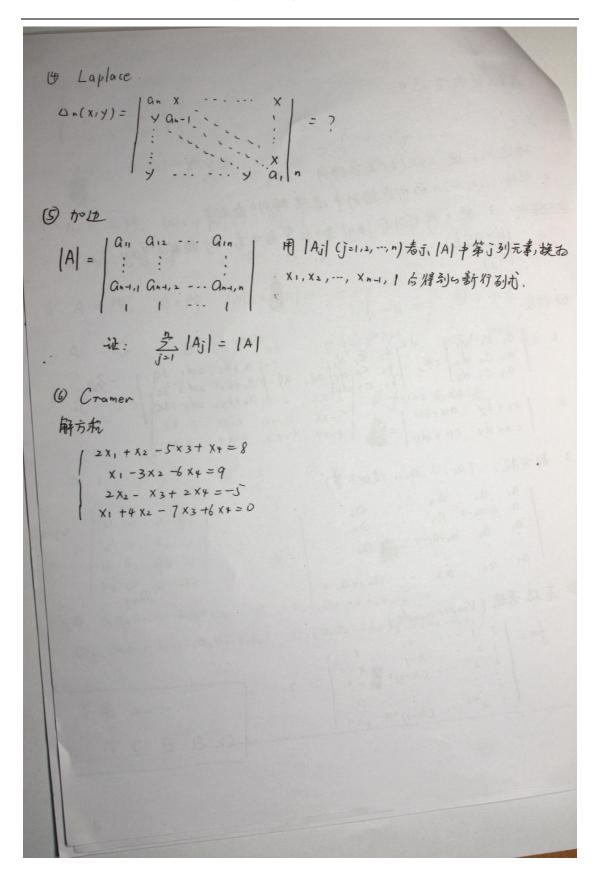
7. A, B 3 PM,  $|A| = + |B| = 2$ . PM  $\begin{vmatrix} 2A & A \\ 0 & -B \end{vmatrix} = A$ 

A.  $-4$  B.  $4$  C.  $16$  D.  $-16$ 

8. A m PM,  $|B|$   $|A| = 4$   $|B| = 6$ .  $|C| = \begin{pmatrix} 2A & A \\ -B & 0 \end{pmatrix}$ . PM  $|C|$ 

A.  $-\alpha b$ . B.  $|C|$   $|A|$   $|A$ 

```
再来几道典型题目:
  四定义. 第5 4=3
    ·确定 K,1 使 24K611 是奇排列
    2. 证明:1,2,...,n的所有排列中 夸偶排列个数相等.
②一块块 3. 把 n 所 行列书 | aij | 每个位置的元素 aij 换成 bitaij, b≠0,
 回收换
     1. \begin{vmatrix} G_1 & C_1 & O_1 \\ A_2 & C_2 & O_2 \\ A_3 & C_3 & O_3 \end{vmatrix} = 4, \quad \begin{vmatrix} b_1 & C_1 & O_1 \\ b_2 & C_2 & O_2 \\ b_3 & C_3 & O_3 \end{vmatrix} = 1. \quad R) \begin{vmatrix} a_1 + b_1 & 2 O_1 & 3 C_1 \\ a_2 + b_2 & 2 O_2 & 3 C_2 \\ a_3 + b_3 & 2 O_3 & 3 C_3 \end{vmatrix} = ?
    2. | ax + by au + bv | =?
    3. 解方程: (a,,..., an-1 彼此不等)
     ③ 范德蒙德 (Vandermonde)
              \int_{0}^{\infty} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & (h-1)^{2} & X^{2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 2^{h-1} & \cdots & (h-1)^{h-1} & X^{h-1} \end{bmatrix} = ?
```



```
I 失巨 B车
1. Q = (1,2,3), B=(1, \frac{1}{2},\frac{1}{3}), A = \alpha^T \beta \text{. A) A" = ---
   A. 3" A B. 3" A C. 3" A D. 3A
2. A= (101) n>2, n ∈ Z A) An-2An-1=
  A. \begin{pmatrix} 0 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} B. \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} C. \begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 1 & 2 \end{pmatrix} D \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}
3. A ∈ Mn. $(A+A) 是对物件. N)
 A. =(A-AT) 是对称阵× B. =(AT-AT) 是对称阵
 c. =(A-AT) 是反对称阵 D =(AT-AT) 是反对称阵
t. A & Mn A2-24-21=0. (A) (A+1) =-
  A.31-A B. 31+A C. A-37 D. 2A+7
A-7
5. A あり野非等异例(A*)*=」。
 A. [A] 1-1 A B. |A| 1+1 A C. |A| 1-2 A D. |A| 1+2 A.
 6. A n所 3色.
 A. |A^*| = |A|^{n-1} 13. |A^*| = |A| C. |A^*| = |A|^n D. |A^*| = |A^-|
 7. A, B & Mn. AB = 0. R).

A. A = 0 on B = 0x B. A+B × 0
                                                  答案 1-7.
                                                  CBCACAC
 C. |A|=0 or |B|=0 D. |A|+ |B|=0.
                                                                          3.
```

8. A. B ∈ Mn 
$$C = \begin{pmatrix} A & O \\ O & B \end{pmatrix} \end{pmatrix} \otimes C^* = \frac{1}{4}$$

A.  $\begin{cases} |A|A^* \\ |B|B^* \end{cases}$ 

B.  $\begin{cases} |B|B^* \\ |A|A^* \end{cases}$ 

C.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

D.  $\begin{cases} |B|A^* \\ |A|B^* \end{cases}$ 

B.  $\begin{cases} |B|B^* \\ |A|A^* \end{cases}$ 

C.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

C.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

B.  $\begin{cases} |A|B^* \\ |A|A^* \end{cases}$ 

B.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

C.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

B.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

C.  $\begin{cases} |A|B^* \\ |B|A^* \end{cases}$ 

D.  $\begin{cases} |A|B^* \\ |A|B^* |A|B$ 

```
A. I+J

B. I-J

C. I-2J

D. 2I-J
13. A,B,C & Mn ABC = Z. Ry
A. ACB=1 B. CBA=1 C.BAC=1 D. BCA=1
14. A, B, A+B, A+B-' n的方面. 则(A+B+)---
A. A-1+B-1 B. A+13 C. A(A+B)-1B D. (A+B)
15. A.B 同阶3卷:____
A. AB = BA. B. 3P S.+ P-AP = B
C. JC st CTAC=B D. JP.Q s.t PAQ=B
16. Am所子逆. Dn的 3.5. Bamxn所 Canxm阶
   M = \begin{pmatrix} A & 13 \\ C & 12 \end{pmatrix} \qquad \boxed{R} \qquad M^{-1} = - \qquad (M \vec{S} \vec{E})
 A. \begin{pmatrix} A & B \end{pmatrix} \qquad B. \begin{pmatrix} A & B \end{pmatrix} \qquad B. \begin{pmatrix} A & B \end{pmatrix}
C = \begin{pmatrix} 1 & -B(D-CA^{T}B)^{-1} \\ 0 & 1 \end{pmatrix} D \begin{pmatrix} A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1} - A^{-1}B(D-CA^{-1}B)^{-1} \\ -(D-CA^{-1}B)^{-1}CA^{-1} & (D-CA^{-1}B)^{-1} \end{pmatrix}
 答案 12-16
   13 D C D D
```

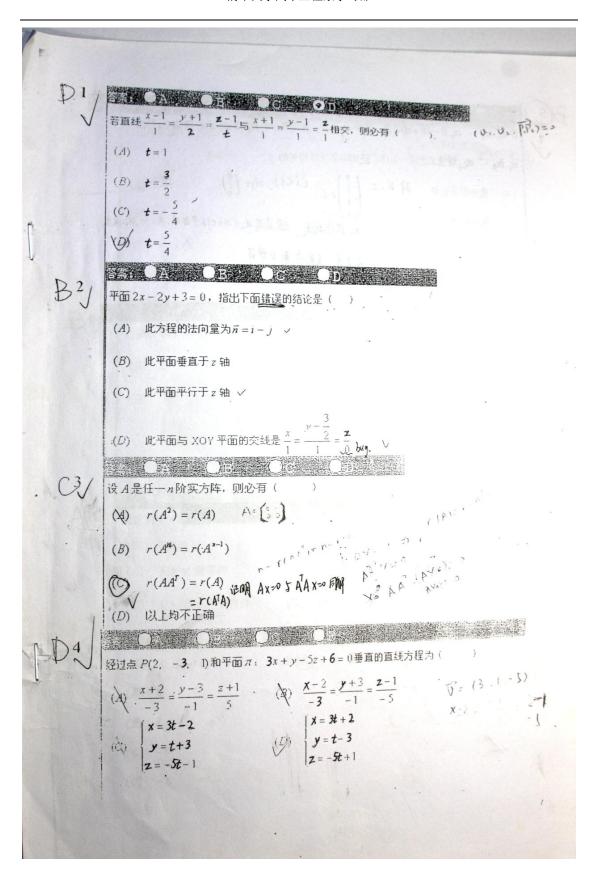
```
计算 & 证明:
  の运算
  1 \cdot \left(\begin{array}{ccc} 1 & 2 & -1 \\ -1 & -2 & -1 \end{array}\right) - \left(\begin{array}{ccc} 3 & 2 & 1 \\ -3 & 2 & -3 \end{array}\right) + \left(\begin{array}{ccc} 1 & 2 & -1 \\ -1 & 0 & 3 \end{array}\right) = ?
  2. 举一个例子, 母说明矩阵乘法无交换律、
 e) AT
  A^T) T = A
          (A+B)^T = A^T + B^T
          · (aA) T = aAT.
            (AB)T = BTAT
            # (A-1)T = (AT)-1
(3) tr(A)
   it: tr(aA+bB) = a tr A + b tr B.
          tr(AB) = tr(BA)
4 A-!
    il: AA* = A*A
         (a A )* = a 17 A*
            (A^{r})^{*} = (A^{*})^{r}
           (A^*)^* = |A|^{n-2}A.
         (AB)^* = B^*A^*
ab - cd = 1, \begin{pmatrix} a & d \\ c & b \end{pmatrix}^{-1} = ?
A = \frac{1}{2} \begin{pmatrix} 0 & 0 & 2 \\ 1 & 3 & 0 \\ 2 & 5 & 0 \end{pmatrix}, A^{-1} = ?
```

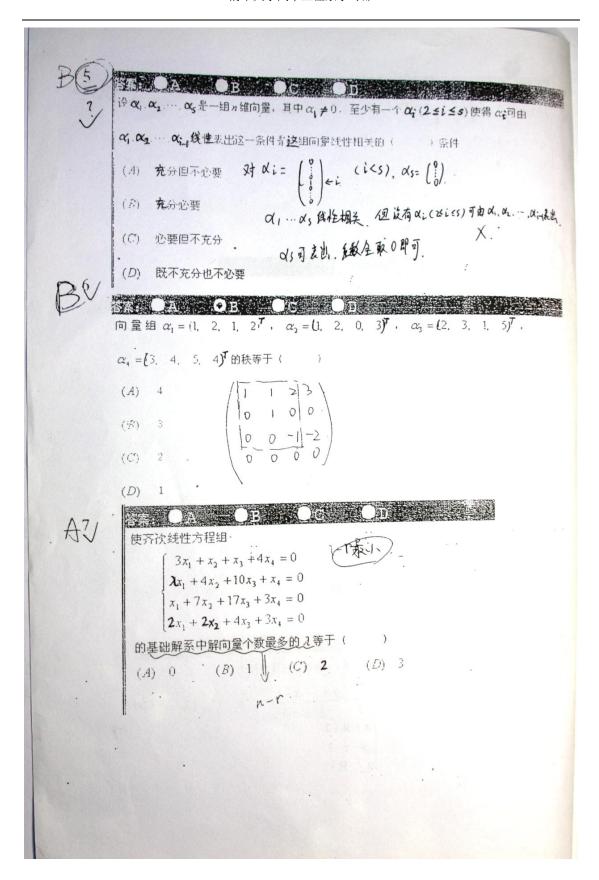
```
4. d,= (1,-1,2,4), (2=10,3,1,2), (3=(3,0,7,14) (4=(1,-2,2,0)
  Xs=(2,1,5,10),则该白量组的极大线版无关组显。
  A. d. d. d. B d.d. d. Cd.d. as D d.d. a4 ds
5. 若向量组 α,β,γ线性无关; α,β,δ线恒相关,则_
 A. α必 3电β, r, δ线性表示, B. β必不为电力, r, δ线性表示.
 C. 6必可由の, B, Y 冤忆表示。 D. 6少不可由の, BY 级性表示,
6. 设β J + d, -.. dm-1, dm线性表面, 不能 ● 由 [] d, -.. dm-1 线胀表也,
il (I) d, d, ... dmy, B. A)
 A. 从不舒重(7) 然性表出,也不舒重(17)线线表生,
 13 ・ 不等 - - - , 旭る -
 D. 设 n维列向量 a,... am (Man)线性无关,则n维列向量组
B.,..., Bm线性无关的充分必要条件____.
 A. di... dm 引生 B, -- Bm 线性表型,
 B. B. -.. Bm 3+ d1-.. xm -...
 C. X1-.. Xm 与 B, -.. Bm 等价
 D. A=( x, ... xm) 与 B=( f, ..., fm) 等/11.
8. 设M=(AO), 例.
 A. r(M) > r(A)+r(B) B. r(M) < r(A)+r(B)
 C. r(M) = r(A) + r(B) O. r(M) = r(A) + r(B).
 答案 4-8
   BCBDA
```

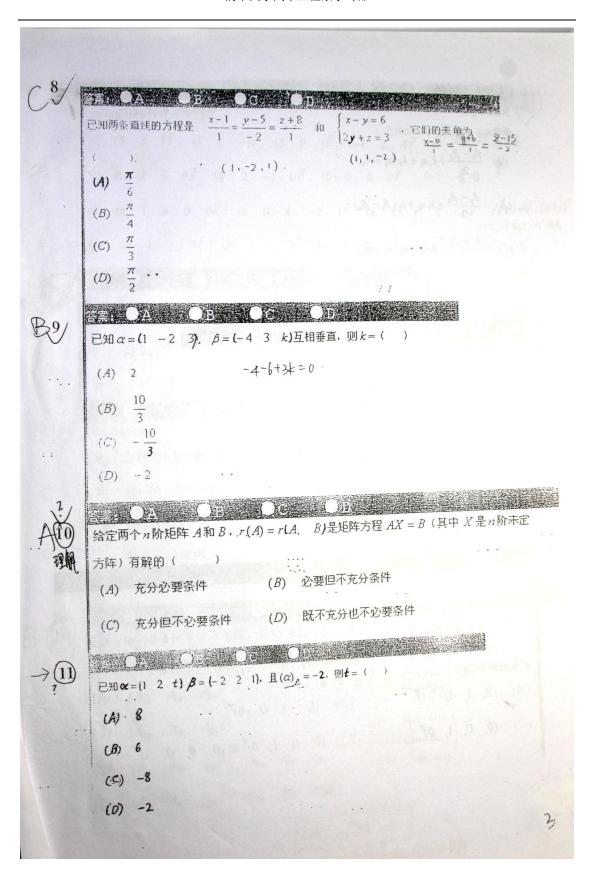
 $M = \begin{pmatrix} A & O \\ C & B \end{pmatrix}$ , 且 A 是 B 逆 的,例. A. n(M) > r(A)+r(B) 13. r(M) = r(A) + r(B) C. N(M) < n(A) + n(B) 1). N(4) < m(A) + n(B) 10. AEMn. DI\_ A. ra) < r(ATA) B.ra) > r(ATA) c.ra)=r(ATA) O. 都不对. 「 Amxn. かみ」=m<n, Im to m 的事注的、即 A. A的好意m个列向量必线性无关 B. A 胜言一个m所于打不等于零 (产供A) C. 芳矩阵 B 满足 BA=0,则 B=2(B)=0 列变採十行变换。 D. A通过初等厅变换,必可能为(Im. v) m形形 12.  $A = \begin{pmatrix} 1 & 2 & 2 & 0 \\ -1 & -2 & 4 & t \\ 0 & t & 3 & 0 \end{pmatrix}$  我为 2. 则 t = - / 答案. 9-14 A.3 B.2 C.1 D.D. | BCCDDD 13. A E Mmxn, M A X= 5 有解 => A. A的软(A的引数 B. A·鞍(A的行数 C. A的列向量组线附无关(即A是列满段)。 D. A6 折向量组线附天关( 行满秩), 14. ( a 1 1 ) ( X1 ) = ( 1 ) 有无穷多解则 a= \_\_. A.1 B.-1 C.2.0-2. 6.

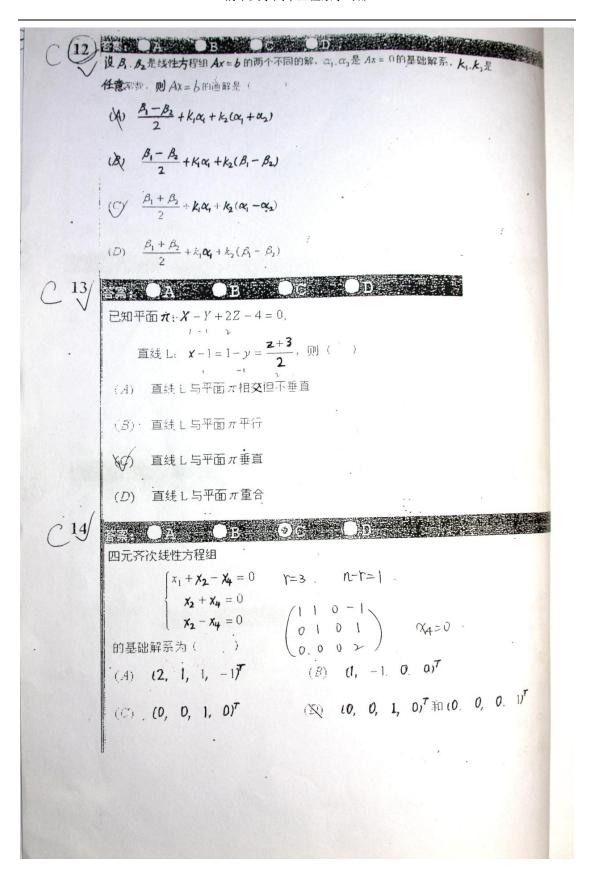
```
15. d, d, d, d, 是 回元非齐次 Ax=b 15 3个解. 个(A)=3, <del>d,=(1,-2</del>,
  d_1 = (1, 2, 3, 4)^T, d_2 + d_3 = (0, 1, 2, 3)^T, C表示任意学数,则

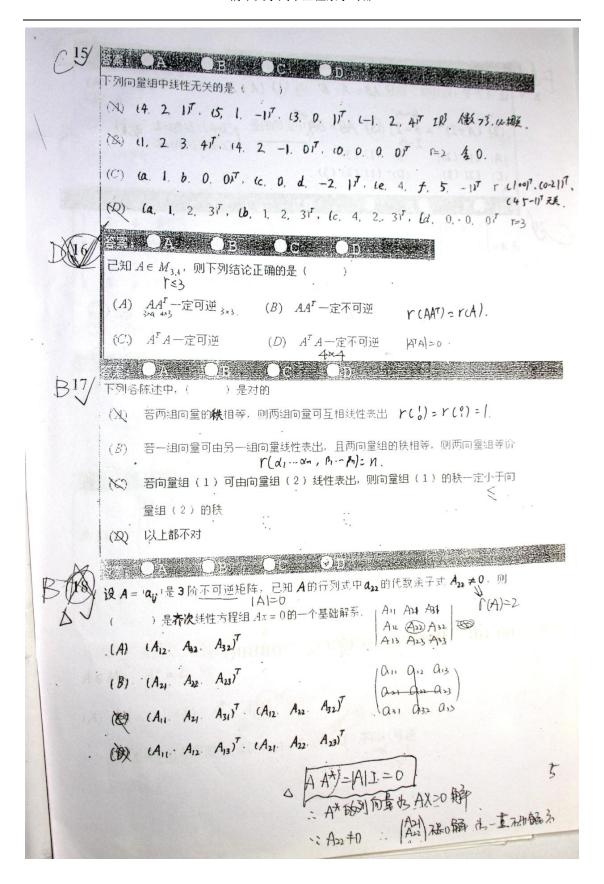
2d_1 - d_2 - d_3
  Ax当m编章
 A \cdot \begin{pmatrix} \frac{1}{2} \\ \frac{3}{4} \end{pmatrix} + c \begin{pmatrix} \frac{3}{3} \\ \frac{4}{5} \end{pmatrix}, \quad B \cdot \begin{pmatrix} \frac{1}{2} \\ \frac{3}{3} \\ \frac{4}{5} \end{pmatrix} + c \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{4} \end{pmatrix} + c \begin{pmatrix} \frac{3}{4} \\ \frac{5}{6} \end{pmatrix}
 16. 当 A= _ 財, 以=(1,0,2) , d=(0,1,-1) 对是 Ax=Om解
A \cdot (-2, 1, 1) B \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & \times 1 \end{pmatrix} C \cdot \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix} D \begin{pmatrix} 0 & 1 & -1 \\ 4 & -2 & -2 \end{pmatrix}
17. 设 Ax=6 有 m个方程, n个未知量 (m+n)则
   A. 若 Ax=> 反在零解. 则 Ax => 有惟一解
    3. 一、 有非零解 - 、 无穷多解。
C. 芳 Ax 当 有无穷多解,则Ax=0 从有零解
可有非零解
  8. 设 A, A2 € Mn, B, ERn. (A10)(X1)=(B1)有解的
   A. AIXI=Bi 有解 B. AIXI=O有解 C. /AI/+O.
    答案 15-18
     AADA
                                             - 2 X / 20 2
                                               X 2 = 2
                                                35
```

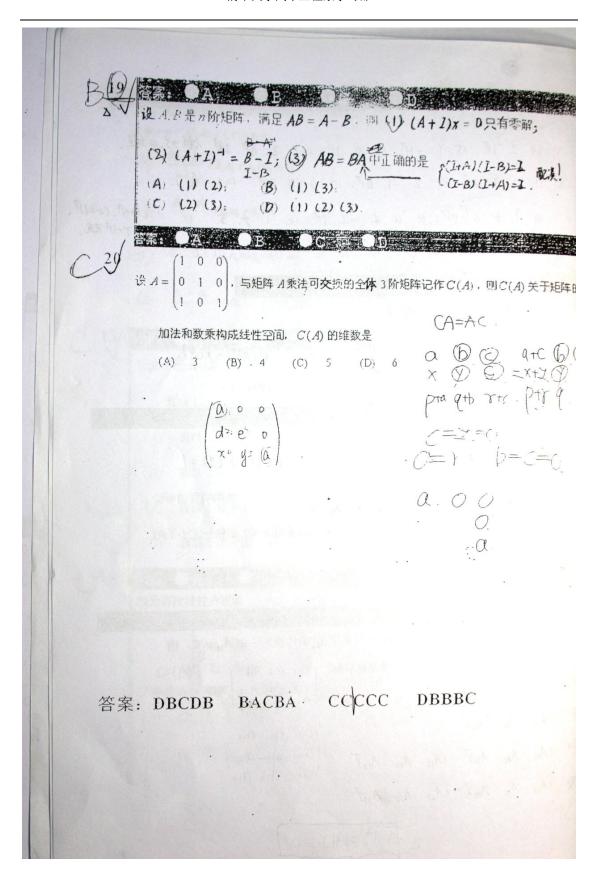


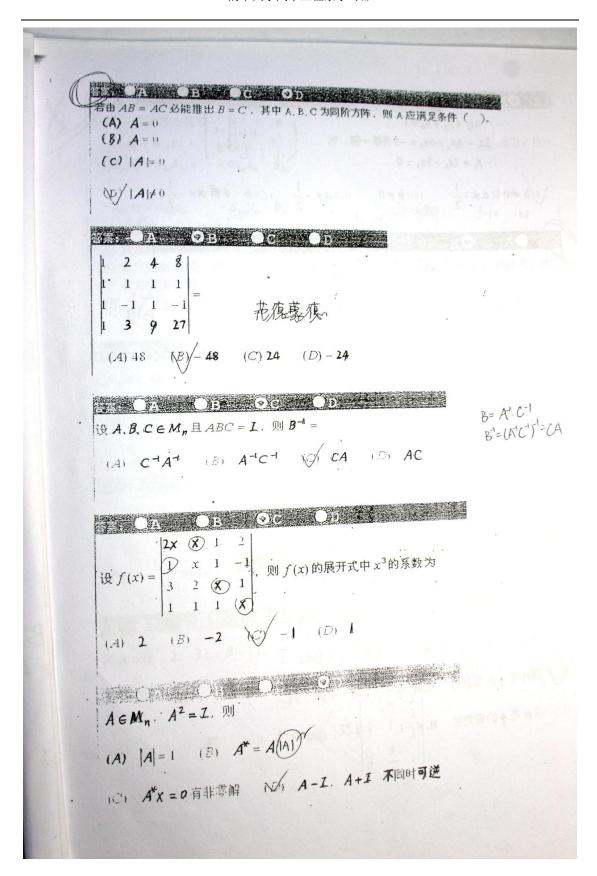


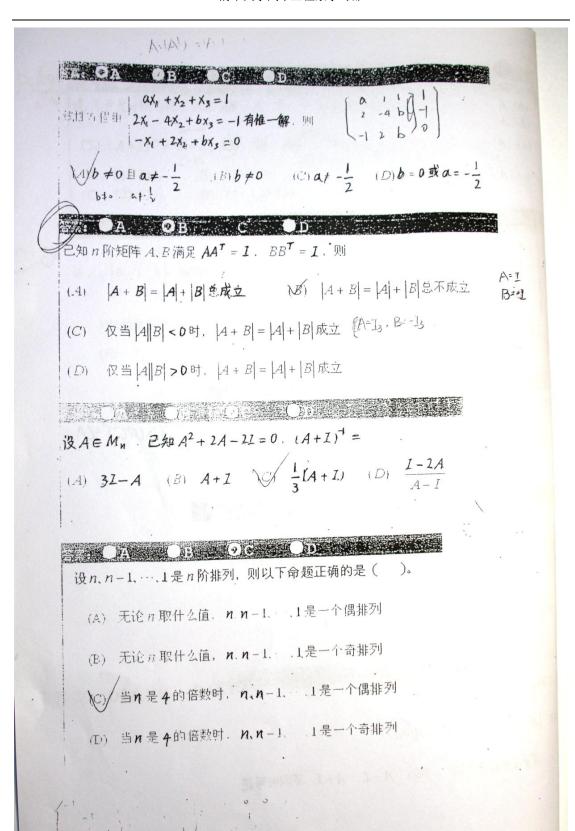




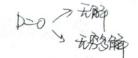








$$\begin{vmatrix} a_{11}X_1 + a_{12}X_2 + & + a_{1n}X_n = b_1 \\ a_{21}X_1 + a_{22}X_2 + & + a_{2n}X_n = b_2 \\ a_{n1}X_1 + a_{n2}X_2 + & + a_{nn}X_n = b_n \end{vmatrix}$$



- (B) 若方程组无解,则系数行列式 **D**=0
- (C) 若方程组有解,则或者有唯一解,或者有无穷多解 /
- D ≠ 0 是方程组有唯一解的充分必要条件 图 V

### ER DA CE OC

### $\begin{vmatrix} \dot{a}_1 + 2\dot{b}_1 & \dot{b}_1 + 2c_1 & c_1 + 2a_1 \end{vmatrix}$ 己知 $a_2$ $b_2$ $c_2 = a$ ,则 $a_2 + 2b_2$ $b_2 + 2c_2$ $c_2 + 2a_2 =$ $\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_3 + 2b_3 & b_3 + 2c_3 & c_3 + 2a_3 \end{vmatrix}$ (A) 3a (B) 5a. (C) 8a (D) 9a

$$\mathbb{Q} \alpha = \mathbf{u}. \quad \mathbf{2}. \quad \mathbf{3}), \quad \beta = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}, \quad \nabla A = \alpha^T \beta. \quad \mathbb{M} A^n = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

(A) 1 (B) 
$$3^{n}$$
 (C) 1  $\sqrt{3^{n-1}}$  2 1  $\frac{1}{2}$   $\frac{1}{3}$  3  $\frac{3}{2}$  1

### BR. OA OE OE OD

设 A 是 5 阶万阵、则方阵()是对称矩阵。

- $(A) A A^{7}$
- (B) CAC<sup>7</sup>. C是任意 n 所 万阵

(D) (A4<sup>T</sup>)B, B是 n 阶对称矩阵

(C) 0, 0, a-b, c-d (D) 0, 0, -a-b-c-d

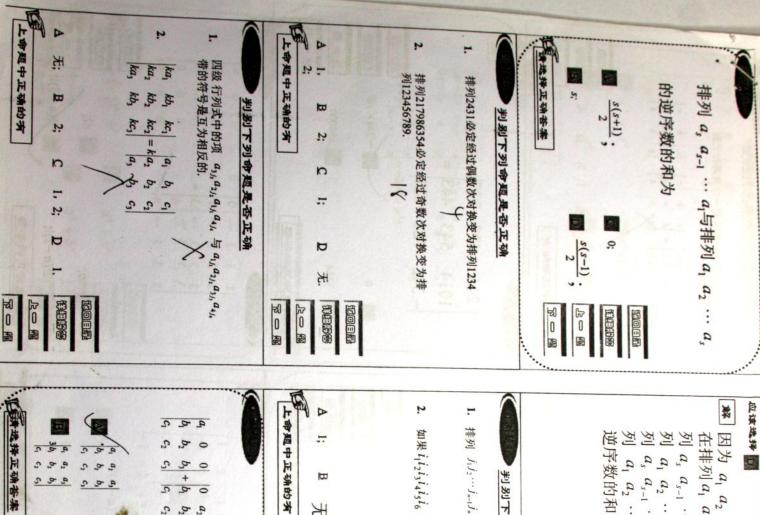
### 

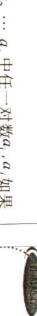
设力是6阶行列式,则()为力中带有正号的项。

- (A)  $a_{16}a_{25}a_{34}a_{43}a_{52}a_{61} \leftarrow = 15$
- (B) a11a23a36a45a54a62 77
- (C) / a13a25a32a46a54a61 = = 9.

12 a12a26a35a44a51a63 Tzlo

| ,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 设 $A=I-\alpha\alpha^T$ ,其中 $\alpha$ 是 $\eta-I$ 的矩阵,且 $\alpha^T\alpha=I$ ,则以下命题成立的是( )。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | (A) A=1 (B) A=0 (C) A为可逆矩阵 (D) A是不可逆矩阵 (A)=ローロップ (T) - スター)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -(   | $A \in M_3 \perp  A  = \frac{1}{3},  \text{Im}  (3A)^{-1} - (3A)^*  = ().$ $ (2A)^{-1} - (2A)^{-1} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 音: OA OB OC OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 设 $A$ . $B$ 为 $n$ 阶可逆矩阵,且 $\epsilon AB$ $\epsilon^2 = Z$ ,则以下选项中错误的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $\mathcal{A} \qquad \mathcal{B}^{-1} := \mathcal{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $(B)  \mathbf{B}^{-1}A^{-1} = A\mathbf{B} \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (C) $(BA)^2 = I \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | $(D)  A^{-1} = BAB \qquad .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| f    | <b>01</b> 03 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <b>设 A 为 2 阶矩阵</b> ,则以下选项中错误的是<br>(A) 若对任意 2 阶矩阵 B. AB = 0 成立、则必有 A = 0 V · A B = 1 AB = 0 の AB = 0 |
| ı    | (A) 若对任意 $2$ 阿尼年 $B$ . $A$ 是 $A$ $A$ — $A$ $A$ —             |
|      | (A) 若对任意 2 阶矩阵 B. AB = ( )成立,则必有 A = ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( )         |
|      | TA VERT D M MD - 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | (C) 若对任意 2 所知年 6, 0 7,6    大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 1) X=(1.0) X1.1.1: (0.1)(a).(1) = (1.d).(1) = d=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1000 | 7 X={()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





逆序数的和为  $C_s^2 = \frac{s(s-1)}{2}$ . 因为  $a_1$   $a_2$  ···  $a_s$  中任一对数 $a_1$  , $a_2$  如果 列  $a_s$   $a_{s-1}$  ···  $a_1$  中构成逆序, 在排列 $a_1$  $a_2$ 列 a, a, -1 ··· a, 中构成顺序, 列  $a_1 a_2 \cdots a_s$  中构成逆序,  $a_1 \ a_2 \cdots a_s$ … a, 中构成顺序, 则在排 与排列 as as-1 ··· a 所以排 则在排 如果在排



塔三回班

判别下列命题是否正确

如果 $i_1i_2i_3i_4i_5i_6$  是奇排列,那么 $i_1i_6i_2i_4i_5i_3$  是偶排列。

BECOR! E CONTRACTOR

A

B

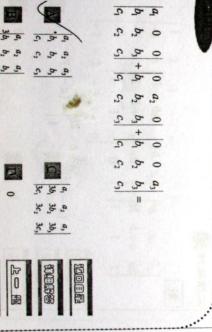
无

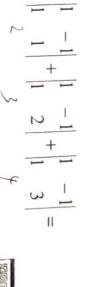
0

2;

D

是0墨 20 0 图





0

U.

第0图

M 0 M

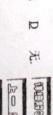
判别下列命题是否正确

北西西班牙正确答案

1. 431413433442 是五级行列式中的一项且带有"一"

91123456789 排列217986354必定经过奇数次对换变为排

2 -2: D 7.



上命题中正确的有 0

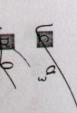


2a+ba+b3a + 2b + ca+b+c11

a

a

6



abc

Ja+p+c)

图〇图

: 直接选择正确答案





在一个邮行列式中等于等的元素个数比是一个还是

如果, 水≠0 则行列式

判别下列命题是否正确

上申题中正确的有

上命题中正确的有

0

- 11

. [[新选择正确答案

- 界选择正确答案

az

5 -2

# 

**加州北非江南谷縣** 

1284

## 舜

应该选择 图

- $b^2 | (a-b)^2$ a+b 2b
- $= (a-b)^{2} \begin{vmatrix} a+b & 2b \\ 1 & 1 \end{vmatrix} = (a-b)^{3}$

华正研答案

(d-b)3

(a-b)

题 0 图 0 四

**元** 0 選

WE E OUR

国外选择正确答案

2!(n-1)!;

n;

 $-(a-b)^3$ 

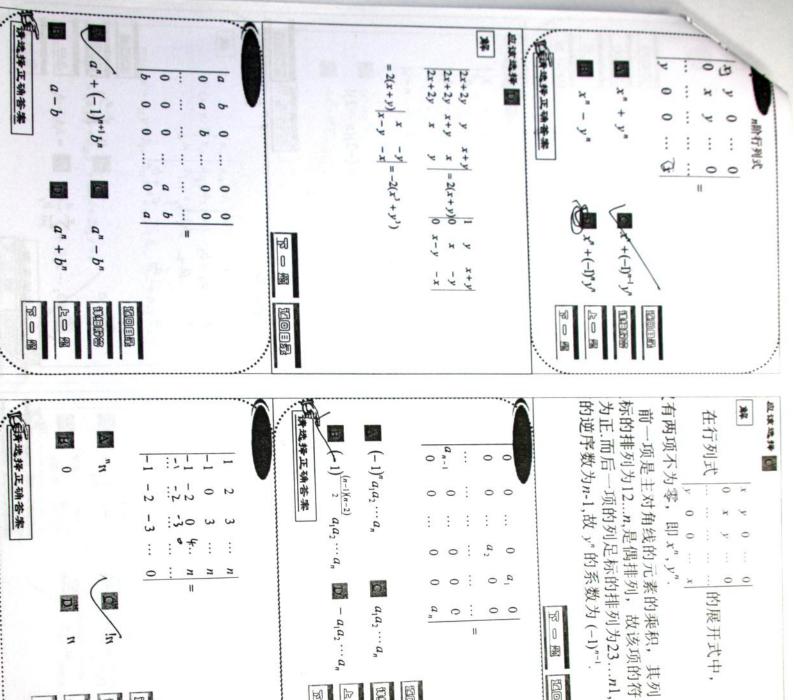
 $(a-b)^2$ 

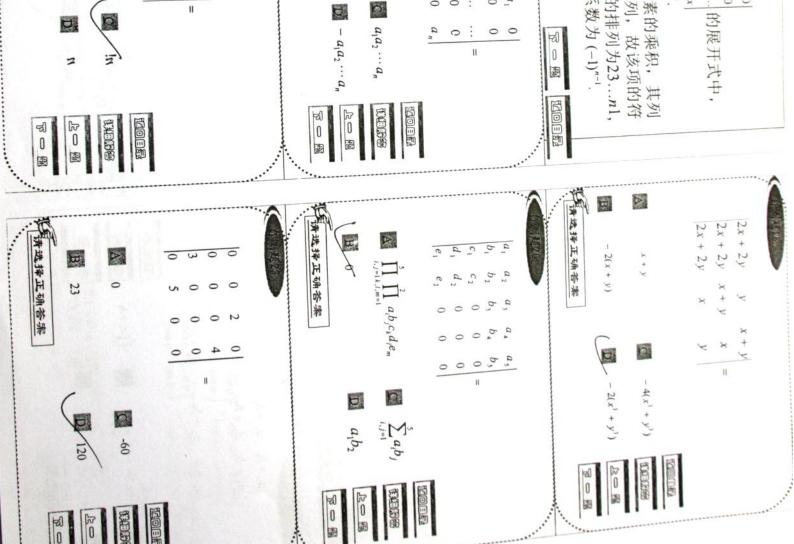
- 如果行為式 d=0 那么它一定有两行元素 对应成为50g. 判别下列的现是否正确

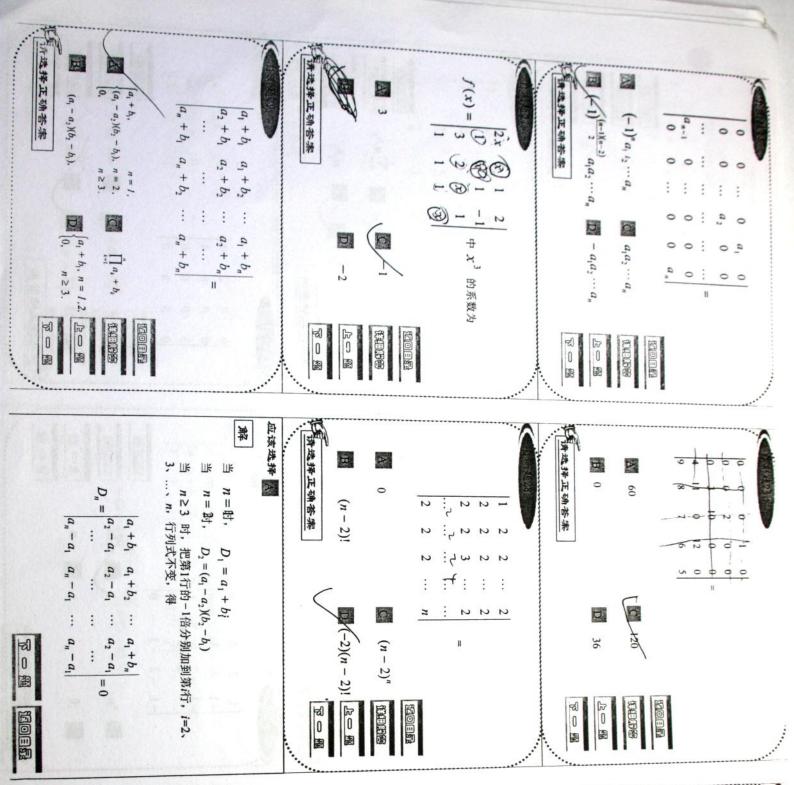
+ 00 - 0

- B n D
- 上帝题中正确的有
- 246 1014 427 721 543 327 443 = 621
- -342
- -294×10<sup>5</sup>
- 654000

- 1 3/(n-3)!; R- M n!;







= -2

=(-2)(n-2)!

7-

n-2

180 题

应该选择

解

· 请选择正确答案

24

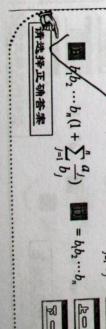
100 图

36

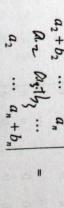
经回回过 BEETE

0

0



$$a_1 + b_1$$
  $a_2$   $\cdots$   $a_n$   $a_n + b_n$   $\cdots$   $a_n$ 



$$(1 + \sum_{j=1}^{n} \frac{a_j}{b_j})$$
$$= b_j b_2 \cdots b_n$$









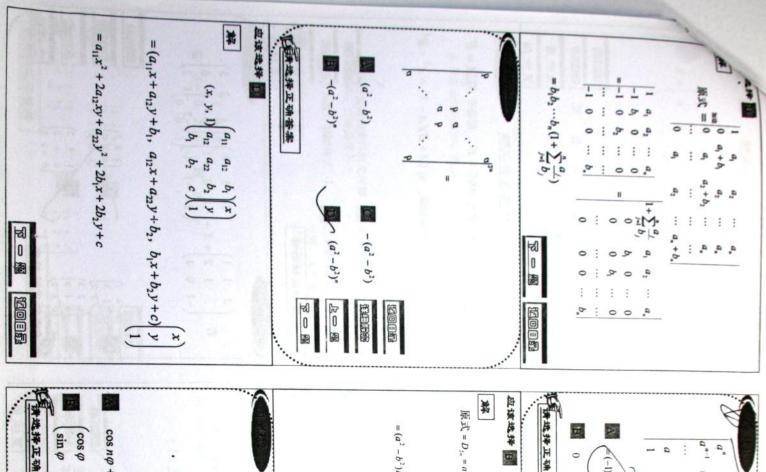


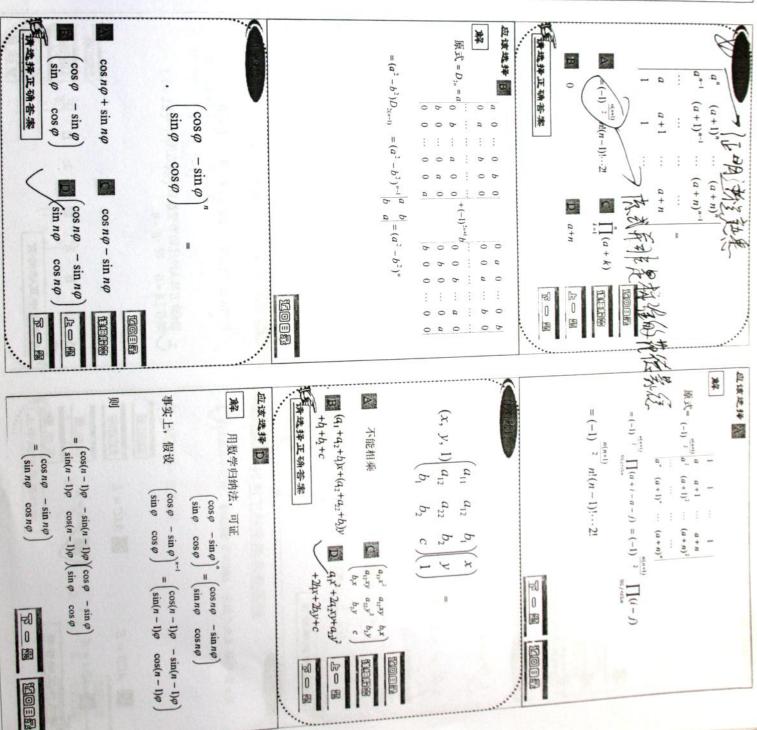


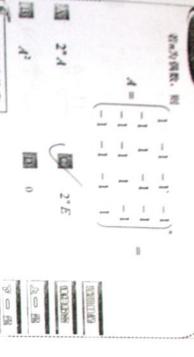


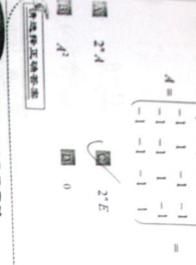












# 判别下列即照是否正确

1. 45 (A+B)2 = A2+2AB+B2. [1]

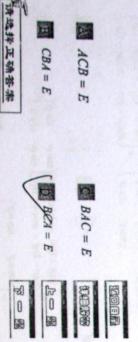
AB = BA

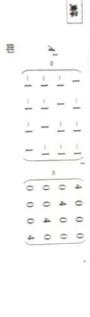
$$X^{*} = A \cdot ||| A = E :$$

上命题中正确的有



设n阶矩阵 A.B.C满足 ABC = E 则必有





$$A^2 = 2^2 E$$

$$A^n = A^{2k} = (A^2)^k = (2^2 E)^k = 2^{2k} E = 2^n E$$



# 判别下列帝题是否正确

$$1. \sqrt{A} = 0. \text{ (ii) } A = 0 :$$

2. 
$$(A + E) = A^2 + 2A + E$$

B

2;

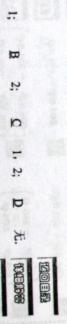
# **國** 〇名

# **多** 0 翻

# 判别下列命题是否正确

$$X$$
. 数均A,B为阶方阵,则必有  $|A+B| = |A| + |B|$ 

2. 设场所方降 
$$A$$
 给过初等变换后所得方阵记为 $B$ ,  
则  $A$   $A$   $B$   $B$   $B$   $B$ 



上命题中正确的有

# 100 图

図の図

### X AC = BC MA = B

 $A^2 = E$ , ||||| A = E ||||| A = -E||

上中超中正确的有 B -

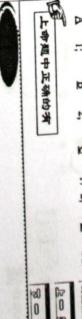
**BOTTON** \$ 0 S 0 20

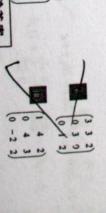
# 判别下列帝题是否正确

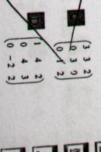
1- 6 n 阶矩阵 A, B, C 满足 ABC = E ,则必有 BCA = E

 $\Delta$  段 A,B 是两个 n 阶矩阵,则  $(A+B)(A-B)=A^2-L$ 

上命题中正确的有 2 n 1, 2; D BETER 30







$$X = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -3 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 3 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 4 & 2 \\ 0 & 4 & 3 \\ 0 & -2 & 2 \end{pmatrix}$$

1000

M-001-0

= E O A = 1

20個

A

 $AB = 0 \Leftrightarrow A = 0 \Leftrightarrow B = 0 \Leftrightarrow A$ 

8000 

2.若为反对称矩阵,则Ak

1. 对按库

(A,E) 施行若干次初等行变换,当 A 变光 相应地变为  $A^{-1}$ 

判别下列命题是否正确

2 | 设 A 是 n 阶矩阵, k

是一个数,则 kA = k A .

TO E

必为反对称矩阵

并选择正确答案















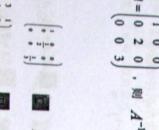












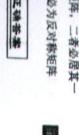
 $(A+2E)^{-1}(A^2-4E)$ 

湮











上命题中正确的有

Δ

B

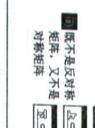
5

ĸ

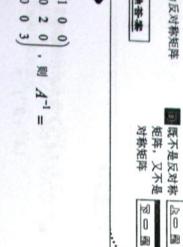
SECTOR.

1. 请选择正确答案







































0 0



## 

## 图 0 图





A



上命题中正确的有





1. 以 A, B 是 n 斯 方 阵 . 且 E + AB 可 逆 . 则 E + BA 也可 逆 . 出 .(E + BA) ' = E - B(E + AB) ' A  $\mathbb{H}$   $B_1, B_2$   $\bowtie \text{pring}$ ,  $\mathbb{M}$   $A^{-1} = \begin{pmatrix} 0 & B_2^{-1} \\ B_1^{-1} & 0 \end{pmatrix}$ 

判别下列命题是否正确

若4.8均为n阶方阵,则下列结论正确的是(

(FINERS

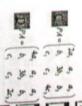
上帝是中正确的女

₩ O ₩

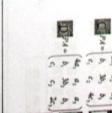




PA = 2h, 3h;













. AA或B不可逆,则AB必不可逆。

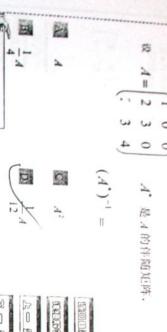
2. 可煙矩阵一定是方阵

经三回路

2 D 光 RO B SCIECT STEETS

0

80 B



















































 $\begin{pmatrix} b \\ d \end{pmatrix}$ , ad - bc = 1,  $|y| A^{-1} =$ 

4. 设人, B均为n阶方阵,则必有(A+B)"=A"+B"

2.设A.,B为同阶可逆阵,则存在可逆阵P,Q使 PAQ=B









TODE TO



2,

D

大

BELLET 10 S **8** 0





上命题中正确的有



# 判别下列帝题是否正确

设A.B为 n 阶方阵,那么, $(A+B)^2 = A^2 + 2AB + B^2$ 

以下结论正确的是

 $| \partial_t A$  为 n 阶 方 阵,且  $A^2 = 0$ ,那 么 A = 0.





岩方阵4的行列式

















选择正确答案

老d为对称矩阵, AP也是对称矩阵





5. 设A是n阶可逆矩阵, A\*是A的伴随矩阵, 则( )

若4.8均为1阶方阵,则必有



AB = BA

是 图

版 O 棚

请选择正确答案

|A+B|=|A|+|B|

AB = BA

是的形式

















/ 设A, B, C, D为n 阶方阵,那么.

矩阵A 可逆的充要条件是 A 可以表示或若干个初等矩阵的乘积.

見别下列命题是否正确

2

0

1, 2;

D

无

0 Kg

Halon EDECT .

D

M 0 M

上命题中正确的有

若 A,B,A+B,A-1+B-均为n阶可逆矩阵

$$(A^{-1} + B^{-1})^{-1} =$$







A+B





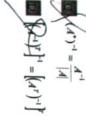


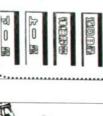




若A是m阶可逆矩阵,下列各式正确的是











- - AB = CB, 三A = C

对矩阵(4)施行若干 次初等变换,当A变 // 相应地/变为A·1



W

(-1)<sup>n-1</sup> A

图 0 名

· 10 图

- A.

(-1)" A

0 5

1000

N3/64.48

向量组(1,1,0),(3,0,-9),(1,2,3),(1,-1,-6)的积是

若向量(2,3,-1,0,1)与(-4,-6,2,a,-2)线性相关,则a的取值













传选择正确答案



计选择正确答案

/a = 0;

 $a \neq 0$ ;

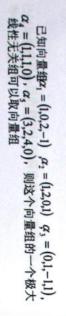
**BEOOK** 

超回回题

a > 0;

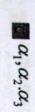


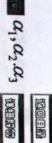
日安北接正确答照

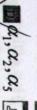


设向量组(a+1,2,-6),(1,a,-3),(1,1,a-4)线性无关,则a的取











讲选择正确答案

a=1

a=0





 $a \neq 0$  $|a \neq 1|$ 是印画部 经三回型 图 0 名 图 0 图

设4是n阶可逆矩阵,则(-4)。等于( )

设A是n阶可逆矩阵,则



向量组(2,-1,3,0),(0,3,-2,1),(6,0,7,1),(1,1,1,1) 的秩是



ç



2;



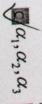




已知问量组  $\alpha_1 = (1,0,2)$ ,  $\alpha_2 = (2,0,-3)$ ,  $\alpha_3 = (1,2,1)$ ,  $\alpha_4 = (0,0,-7)$ , 则数域  $\rho$ 上的任何一个三维向量 $\beta = (a,b,c)$ 都可表为下列向组中的一个的线性组合,这个向量组为

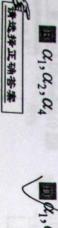


请选择正确答案

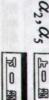


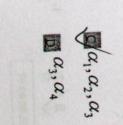


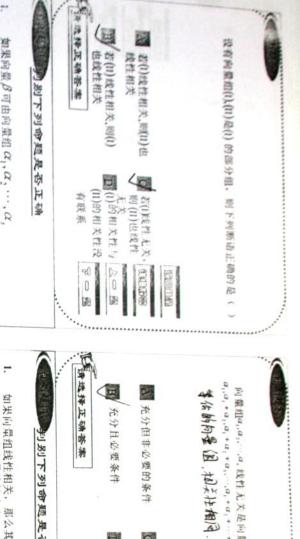












- 唯一线性表出,则众,,众,…,众,线性无关 如果向量 $\beta$ 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ <
- 加量向量组1与向量组11的秩相等,那么

上命题中正确的有 B 12 n : 2 D Ŧ, 0 2 BECENT 是0個

6

;

# **划别下列命题是否正确**

- 如果向量组线性相关,那么其中每一个向量 都能由其余向量线性表出.
- 1,0 如果 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 可由 $\beta_1,\beta_2,\cdots,\beta_r$  线性表出. 且s>t, 那么 $\alpha_1,\alpha_2,\cdots,\alpha_s$  线性相关. \

上命题中正确的有 < m 2 n : 12 D 1 器 0 路 **BECOR** 20個

A

12

0

1,

a,,a,+a,,a,+a;+a,,...,a,+a;+...+a,线性无关的() 向量组4,44,...,4,线性无关是向量组 必要但非分 既不充分也 不必要条件 BEEFE 20

# 判别下列命题是否正确

10 O

**产安战华江岛布张** 

- 如果向量组线性相关,那么其中每一个向量 都能由其余向量线性表出. (%) (%)
- 如果 $\alpha_1,\alpha_2$ …, $\alpha_s$ 可由 $\beta_1,\beta_2$ …, $\beta_s$  线性表出、 出s>t,那么 $\alpha_1,\alpha_2$ …, $\alpha_s$  线性相关.

2



A

B

A

B

# 判别下列命题是否正确

- :  $战\alpha_1,\alpha_2\cdots,\alpha_s$  是线性空间V中S个n维 向量,且 n>s,那么  $\alpha_1, \alpha_2 \cdots$ ,**众**续性无
- 如果  $L(\alpha_1,\alpha_2) = L(\beta_1,\beta_2,\beta_3)$ , 那么向量组  $\{\alpha_1,\alpha_2\}$ 与向量组  $\{\beta_1,\beta_2,\beta_3\}$ 等价.  $\bigvee$

2 D 光 RELIONS. 國口別 图 〇名

计选择正确答案

上命题中正确的有

a,,a,,...,a, 线性无关,则 r与 S 的关系为 若向量组4,4,2,…,4,可由向量组月,月,…,月,线性表出



r<s

SECTO SE



1 r>S



# 判别下列命题是否正确

- 如果向量 $\beta$ 可由向量组 $\alpha_1,\alpha_2\cdots,\alpha_s$ 唯一线性表出,则 $lpha_1,lpha_2\cdots,lpha_s$ 线性无关。
- 2. 如量向量组1与向量组11的秩相等,那么

上命题中正确的有 2 0 ; 2 D H.

SECTION 1 20個 20日

REDOR!

如果向量组(1)可由向量组(11)线性表出,那么

(1)的秩≥(11)的秩

(1) 的秩 < (11) 的秩

(I)的秩 > (II)

(1)的秩=(11) 哥巴斯里

20個 10 D

如果每一个 n 维向量都可由向量组  $\alpha_1,\alpha_2,\cdots,\alpha_n$  线性表出,基向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 

如果向量组(1)与向量组(11)等价,那么

线性相关

相关性不定

新选择正明各案



是单位向量



(I)的秩<(II)的秩

(I)的秩 = (II)的秩

(II)的秩<(II)的秩 低温图图

(11)不一定能由

面(1)的向量个数 30 8

多于(II)的线性 窗 四 疆

(1) 线性表出

D以上都错

图 0 名 图 0 图

**新安田寺田寺市** 

设有矩阵  $A = (a_{ij})_{s\times n}, B = (b_{ij})_{s\times n}$ 

62

没有向量组  $\alpha_1,\alpha_2,\cdots,\alpha_s$  (I)  $\beta_1,\beta_2,\cdots,\beta_s$  (II) $\alpha_1,\alpha_2,\cdots,\alpha_s$ β,β,···,β(III) · 它们的秩分别为 τ.τ.τ.,则

**秩(C)= 秩(A)+ 秩(B)** 



图 〇名 BECOR

经三回型

100 M

10 種 10 M

济选择正确答案

max(1,1) 51+1251

n 1, ≤1, ≤1,

 $\max(r_1, r_2) \le r_3 \le r_1 + r_2$   $\max(r_1, r_2) \ge r_3 \ge r_1 + r_2$ 

多色面質

海地棒正确答案

秩(c)≥秩(A)=秩(B)

D 秩(C)> 秩(A)+ 秩(B)

ヤルン=M.

设A是 n阶矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r,则

已知向量组  $\alpha_1 = (a_1, a_2, a_3), \alpha_2 = (b_1, b_2, b_3)$  则这个向量组 等价于向量组

r= Y(4) 3 Y(41) 2 Y(4) + r(4-h=



r < r

计选择正确各案

 $\begin{cases} \beta_1 = (a_1, 2a_2, 3a_3) \\ \beta_2 = (-b_1, -b_2, -b_3) \end{cases}$ 

 $\beta_2 = (-b_1, -2b_2, -3b_3)$  $\beta_1 = (a_1, 2a_2, 3a_3)$  $\beta_2 = (0,0,0)$ 

100個

图 0 图

请选择正确答案

 $\beta_1 = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$   $\beta_2 = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$ 

 $\int \beta_1 = (2a_1, 2a_2, 2a_3)$ 

局部可用

超回回题



最低低

r与r<sub>1</sub>的关系依C



A



下列向量组有几个是线性相关组

1.  $\alpha_1 = (1, -2, 3)$ ,  $\alpha_2 = (0, 2, -5)$ ,  $\alpha_3 = (-1, 0, 2)$ 

2.  $\alpha_1 = (2, 1, -1, -1), \alpha_2 = (0, 3, -2, 0), \alpha_3 = (2, 4, -3, -1)$ 3.  $\alpha_1 = (1, 2, 3), \alpha_2 = (3, 2, 1), \alpha_3 = (1, 3, 1)$ 

上命题中正确的有 **→** B) 2个; 0 34; D

图O型





中海安華正頭格察 11 (1) 线性相关

设有一组 维向量  $\alpha_1,\alpha_2,\cdots,\alpha_r$ , 使得任一 n维向量  $\beta$ 都可由这个向量组线性表出,则( )



C s < n

福司回路





诗选择正确答案



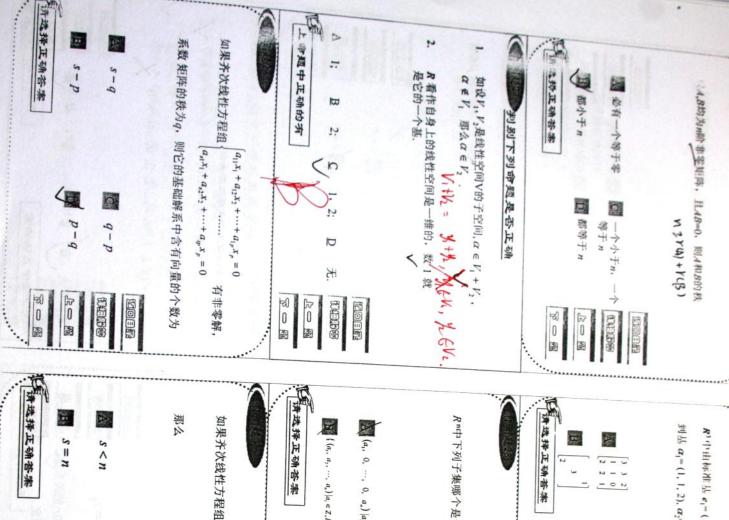










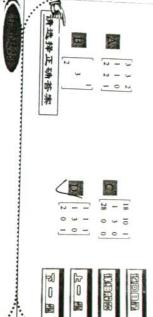




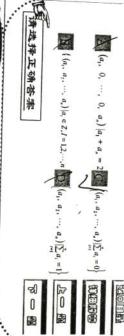
旗

 $(\alpha_1,\alpha_2,\alpha_3)=(e_1,e_2,e_3)$ 

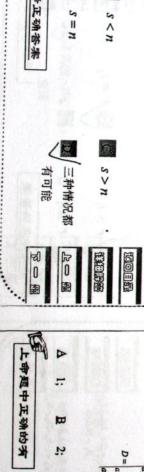
所求过渡矩阵为 $C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 \end{bmatrix}$ 



Rn中下列子集哪个是子空间:



 $(a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n = 0)$  $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$ 有非零解,





成 0 题





k = -2

- S

- M

k=2



- 1. 若线性方程组(I)经方程组的初等变换变为方程组(II)则(I)与(II)是同解方程组、
- 2. 含有n个未知量n+1个方程组

 $a_{11} + x_1 + a_{12}x_2 + \cdots + a_{in}x_n = b_1, i = 1, 2,$  的线性方程组如果有解,那么行列式。  $a_{11} = a_{12} = a_{13} = a_{14} = a_{15}$ 

D=

4 1, 2; D

::

B

2;

无 1000

0 23 BB



 $-x_i - 4x_i = b_i$ -2x, +3x, =b, 有解的充要条件为b,+b,+b,+b,=0

线性方程组的两个解向量的和还是这个线性方程组的解

4(x+x) 279

4行都加到末行。得 0

由此可见,

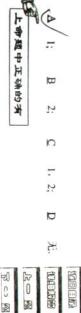
方程组有

解的充要条件为系数矩阵A的秩=A的秩=3,亦即 $b_1+b_2+b_3+b_4=0$ 

1. 证明: 方程组的增广矩阵为4 =

华第1、

和



# 判别下列命题是否正确

n元齐次线性方程组,如果系数矩阵的秩为1~2,那么它的 任意两个非零解就是它的一个基础解系.,111, 1212 YE X15(0,0,0)

2 n元齐次线性方程组,如果系数矩阵的秩为 r. 那么它的 w.d.·W 任意n-r个线性无关的非零解就是它的一个基础解系.

若齐次线性方程组

养决线性方程组如果有非零解,那么方程的个数小于未知量的个数.\

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$ 

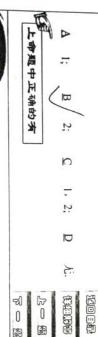
未知量的个数多

判别下列命题是否正确

100 圈

于方程的个数,则它有非零解.

 $a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n = 0$ 



一十多题中川强忠省

(m

2;

;

D

# 判别下列命题是否正确

是不全为零的任意数据IL、私是从各交数。 06年的发掘IL、私是从各交数。 (n元线性方程组ACB有无穷多个解的充要条件是秩(A)= 如果向量 $\alpha_1, \alpha_2$ 是一个齐次线性方程组的基础解系,那么这个齐次线性方程组的全部解为 $k_1\alpha_1+k_2\alpha_2$ ,其中 $k_1,k_2$ 

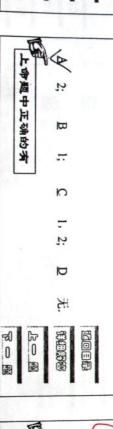
2/齐次线性方程组,如果有基础解系,那么一个基础解系 一中解的个数与自由未知量的个数相等。

秩 (A) < n

齐次线性方程组,如果有非零解,那么系数矩阵的秩与自

判别下列命题是否正确

由未知量的个数相等.



上命题中正确的农

2

5

-

2

D

经三回型

20個

200



# 判别下列命题是否正确

1. 齐次线性方程组 $\begin{cases} a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0 \\ b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 = 0 \end{cases}$ 无关的解是它的一个基础解系. 的任意两个线性

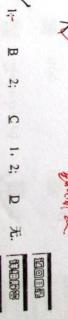
齐次线性方程组,如果有一个基础解系, 多个基础解系 那么它有无穷



# 判别下列命题是否正确

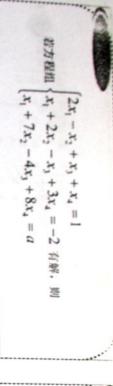
1. 如果向量 $\alpha_1, \alpha_2$ 是n元线性方程组Ax = B的两个解向量,  $\Delta = \frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2$  也是这个方程组的一个解向量。

如果非齐次的线性方程组 Ax=B 有解,那么一定存在组解向量,使每个解向量都可由这一组解向量线性表示。



器 〇名 图 0 图

上命题中正确的有









下选择正确答案

₩ k=-2

n

 $k \neq -2$ 

k = 0

如果线性方程组 $\left\{x_1+kx_2+x_3=k\right.$  无解。那么

 $kx_1 + x_2 + x_3 = 1$ 

 $[x_1 + x_2 + kx_3 = k^2]$ 

中选择正确答案

k = 1







a=7,b为任何数















$$\begin{cases} x_1 - x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + ax_3 = 2 \end{cases}$$
 有 无穷多个解的充要条件是  $\begin{cases} -x_1 + 2x_2 + x_3 = b \end{cases}$ 

若线性方程组 $\left\{x_1 + kx_2 + x_3 = k$ 有唯一解,则

 $k_1 x_1 + x_2 + x_3 = 1$ 

 $\left(x_1 + x_2 + kx_3 = k^2\right)$ 















10 m







 $a \neq 7, b = -1$ 





**设建设存正确答案** 







 $k \neq 1$   $\emptyset$   $k \neq -2$ 









#### 汽 02 几代习题课题目 2010.12.22

设 A 是 n 阶实对称矩阵, λ<sub>1</sub>, λ<sub>2.....</sub>λ<sub>n</sub>是 A 的特征值 X<sub>1</sub>,X<sub>2.....</sub>X<sub>n</sub>是 A 对应于 λ<sub>1</sub>, λ<sub>2.....</sub>λ<sub>n</sub>的 n 个两两正交的单位特征向量, X<sub>i</sub>均为列向量(i=1,2,3...n)试证明 A 可以表示为

 $A = \lambda_1 X_1 X_1^T + \lambda_2 X_2 X_2^T + \dots + \lambda_n X_n X_n^T$ 

- 2、 设 A,B 都是实对称矩阵,试证明:存在正交矩阵 T,使  $T^1AT=B$  的充要条件是: A 与 B 有相同的特征多项式。
- 3、 设 A 为 3 阶方阵,且已知 A-I,A+I,A-2I,均不可逆,试问 A 是否相似于对角矩阵?理由?
- **4、** 求证:  $\delta \in L(V)$ ,  $\delta$  可对角化的充分条件是  $\delta$  有 n 个两两不等的特征值。
- 5、 若在 V 上复数域上的线性空间, $\delta$ 、 $\sigma$  都是 V 的线性变换,且  $\delta$   $\sigma$  =  $\sigma$   $\delta$  ,求证  $\delta$  、 $\sigma$  一定有公共的特征向量。

8、设 A 是 n 阶矩阵,若存在正整数 k 使线性方程组  $A^kX=0$ 

有解向量  $\alpha$  且  $A^{k-1}\alpha \neq 0$ , 证明: 向量组  $\alpha$  ,  $A\alpha$  ...... $A^{k-1}\alpha$  是 线性无关的。

9、设线性方程组 AX=b 有 n 个未知量, m 个方程。则此方程组()

A、r=m 时,有解 B、r=n 时,有唯一解

C、m=n 时,有唯一解 D、r < n 时,有无穷多个解

**10**、设 A 为 n 阶方阵, $|A| \neq 0$ ,A<sup>\*</sup>为 A 的伴随矩阵,E 为 n 阶方阵,若 A 有特征值  $\lambda$  ,则  $(A^*)$  <sup>2</sup>+E 必有特征值 。

11、二次型和内积的表达式可以说是惊人的相似,他们有什么联系吗? (这不是一道题,是某个好奇的同学的问题)

12、设 R<sup>3</sup> 是欧几里得空间, a = (a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>)<sup>T</sup>,

β=(β<sub>1</sub>, β<sub>2</sub>, β<sub>3</sub>)<sup>T</sup>, 内积规定为 (α, β)=α<sub>1</sub>β<sub>1</sub>+2α<sub>2</sub>β<sub>2</sub>+α<sub>3</sub>β<sub>3</sub>, ε<sub>1</sub>= (2, -1, 0) <sup>T</sup>, ε<sub>2</sub>=(0,0,-1)<sup>T</sup>, ε<sub>3</sub>=(0,0,1) <sup>T</sup> 是 R<sup>3</sup> 的一组基,求 R<sup>3</sup> 关于 ε<sub>1</sub>, ε<sub>2</sub>, ε<sub>3</sub>的度量矩阵。

13、设α<sub>1</sub>, α<sub>2</sub>, α<sub>3......</sub> α<sub>n</sub>是欧几里得空间的 n 个向量, 行列式 G(α<sub>1</sub>, α<sub>2......</sub> α<sub>n</sub>)=

14、设  $W_1$ ,  $W_2$  是欧几里得空间的两个子空间,证明  $(W_1+W_2)^{\perp}=W_1^{\perp}\cap W_2^{\perp}, (W_1\cap W_2)^{T}=W_1^{\perp}+W_2^{\perp}$ 

15、设 α<sub>1</sub>, α<sub>2</sub>, α<sub>3</sub>, α<sub>m</sub>和β<sub>1</sub>, β<sub>2</sub>,.....β<sub>m</sub>是 n 维欧几里得空间的两个向量组,试证明存在一个正交变换 δ,使得 δ (α<sub>i</sub>) = β<sub>i</sub>, i=1, 2, 3.....m 的充要条件是 (α<sub>i</sub>, α<sub>j</sub>) = (β<sub>i</sub>, β<sub>i</sub>); i, j=1,2,3.....m

16.设WI,Wz是线性空间V的两个非平凡3空间证明习及EV.sta中Wi且及年W2

7设A∈Mmxn, rA)=r, 证明3B∈Mnxn 且でB=n-r S.t. AB=0

18一个正交阵中每个元素均为或者或一子则该正交阵是几阶的?

19欧氏空间中又1···· 2k线性相类()[(2k,2k)-··· (2k,2k)]=((2k,2k)-··· (2k,2k)

- 20 0线性変換 5(a)=Aa (A=(a,,az…an)) 那么 Imの与L (a,,az…an), kerの与K(A)有什么关系?

### 几何与代数(1)考试样题三

一、填空题 (共计 48 分)

1. 
$$\begin{vmatrix} 2 & 4 & 3 & 0 & -1 \\ 0 & 4 & 3 & 0 & 0 \\ 10 & 20 & 15 & 2 & 4 \\ 0 & 1 & 0 & 0 & 0 \\ 2 & 4 & -1 & 0 & 0 \end{vmatrix} = \underline{\qquad}.$$

2. 己知 
$$A = \begin{vmatrix} 1 & -1 & 1 & -1 \\ -1 & 2 & 1 & -1 \\ -1 & -3 & 1 & 1 \\ 1 & 0 & -3 & 1 \end{vmatrix}$$
 ,则 $r(A) =$ \_\_\_\_\_\_.

3. 设
$$A = \begin{pmatrix} a & a & 1 \\ a & 1 & a \\ 1 & a & a \end{pmatrix}$$
, 则当 a 满足条件\_\_\_\_\_\_时, A 可逆,当 a=\_\_\_\_时,  $r(A)=2$ .

4.  $A \in M_3$ 且是实对称矩阵,已知 A 的特征值为  $λ_1=λ_2=1$ ,  $λ_3=-1$ , 又对应于λ=1 的特征向量为  $ξ_1=(2,1,2)^T$ ,  $ξ_2=(1,2,-2)^T$ , 则对应于λ=-1 的特征向量为\_\_\_\_\_\_.

5. 
$$\mathbb{Z}_{7} \times X \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \mathbb{N} \times \mathbb{Z}_{7} = \underline{\qquad}$$

6. 齐次线性方程组 
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ 2x_1 - x_2 + x_3 - 3x_4 = 0 \end{cases}$$
 的基础解系是 
$$x_1 + x_3 - x_4 = 0$$

7. 已知平面过直线 
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z+1}{1}$$
 和  $\frac{x}{2} = \frac{y-1}{0} = \frac{z+2}{1}$ , 则平面的法向量是

- 8. 已知四元方程组 AX=b 系数矩阵 A 的秩等于 2,X<sub>0</sub>=(1,0,1,0)<sup>T</sup> 是 AX=0 的解,又 X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, 是 AX=b 的三个解. 已知 X<sub>1</sub>+X<sub>2</sub>-X<sub>3</sub>=(1,-1,-1,1)<sup>T</sup>, X<sub>1</sub>-X<sub>3</sub>=(1,1,0,0)<sup>T</sup>,则 AX=b 的通解是\_\_\_\_\_\_.
- 9. 在三维空间中, 方程 4x²+9y²=z 代表\_\_\_\_\_\_面,用一组平行于 0xy 坐标面的平面去截时,得到一组\_\_\_\_\_\_曲线.
- 10. 已知三个平面 x=3y-z, y=az+3x, z=-x+ay, 交于一条直线, 则 a=\_\_\_\_.

- 11. 已知 A 是三阶方阵, 且 A = 2, 则 | A 1 A " = \_\_\_\_\_
- 12. 巴知 A 是三阶方阵, 其特征值分别为 1,-2,3, 则 A 的行列式中元素的代数余子式 A<sub>11</sub>+A<sub>22</sub>+A<sub>33</sub>=\_\_\_\_\_
- 13. 若 A 可逆且可对角化,则 A\*是否可对角化\_\_\_\_\_\_\_ 理由是\_

#### 二、计算与证明题(共计52分)

- 1. 求点 M(4,3,10) 关于直线  $\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5}$  的对称点的坐标. (10)
- 2. 已知矩阵 A 是三阶实对称阵,它的特征值分别是 1,1,2, 且属于 2 的特征向量是 (1,0,1,)<sup>T</sup>, 永A. (10)
- 3. 设已知  $R^3$ 的一组基为  $\epsilon_1 = (1,2,0)^T$ ,  $\epsilon_2 = (1,-1,2)^T$ ,  $\epsilon_3 = (0,1,-1)^T$ , 矩阵

$$P = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
, 若 P 为基 ε<sub>1</sub>, ε<sub>2</sub>, ε<sub>3</sub> 到基 η<sub>1</sub>, η<sub>2</sub>, η<sub>3</sub> 的过渡矩阵,

- (1). 求基 71,72,73.
- (2). 设σ是 R3 上的一个线性变换, 已知 σ 在基η, η, η, η 下的矩阵是

$$B = \begin{pmatrix} 2 & 3 & 12 \\ 0 & 0 & 2 \\ 0 & -1 & -3 \end{pmatrix}$$
, 试求  $\sigma$  到基  $\epsilon_1, \epsilon_2, \epsilon_3$  下的矩阵 A.

- (3). 若  $\alpha$  在基 $\epsilon_1$ ,  $\epsilon_2$ ,  $\epsilon_3$  下的坐标是  $X=\{2,1,0\}^T$ , 试求  $\sigma(\alpha)$  在基 $\eta_1$ ,  $\eta_2$   $\eta_3$  下 的坐标。 (15分)
- 4. 设向量 $\alpha_1$ ,  $\alpha_2$   $\alpha_3$  线性无关 ,非零向量  $\beta$  与  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  都正交, 证明 $\alpha_4$ ,  $\alpha_3$ ,  $\alpha_4$ ,  $\beta$ 线性 无关. [8分]
  - 5. 设 A 是 mxn 矩阵, 试针对各种 A, 讨论是否存在 nxm 矩阵 B, 使得 AB=I.

[本题可自由发挥, 但请按以下格式答题:

命题:

证明:

举例:

可以用多个命题来叙述,可以讨论存在的条件,或者讨论存在的唯一性问题等.] [9分]

# 几何与代数(1)考试样题四

一、填空 [1-11 题, 每空 3 分, 共计 36 分]

1. 设 
$$\alpha = i + 2j - 2k$$
,  $\beta = 3i - j$ , 则  $\alpha \times \beta =$ \_\_\_\_\_\_

2. 四元线性方程组

$$\begin{cases} x_2 - 2x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_4 = 0 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

的基础解系是

3. 
$$\begin{vmatrix} 2 & 4 & 3 & 0 & -1 \\ 0 & -2 & 0 & 0 & 0 \\ 10 & 20 & 15 & 2 & 4 \\ 0 & 4 & 3 & 0 & 0 \\ 2 & 4 & -1 & 0 & 0 \end{vmatrix} = \underline{\qquad}.$$

4. 已知
$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 2 & 1 & -1 \\ -1 & -3 & 1 & 1 \\ 1 & 0 & -3 & 1 \end{pmatrix}$$
, 则  $A$  的列空间的维数为\_\_\_\_\_\_.

7. 过点 
$$\{1, -2, 0\}$$
 与直线  $\begin{cases} x+y-2z+1=0 \\ 2x+y-3z-1=0 \end{cases}$  平行的直线的标准方程是

8. 设  $A \in M_3$  是实对称矩阵,已知 A 的特征值是  $\lambda_1 = -1$ ,  $\lambda_2 = \lambda_3 = 2$ , 对应  $\lambda_1 = -1$  的特征 向量为  $\xi_1 = (2, -2, -1)^T$ ,则对应于特征值  $\lambda = 2$  的任意一个特征向量

9. 已知 
$$B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 2 & 2 & 2 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, 其特征值为 1,-2,3,又  $B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ ,则 A

的行列式中元素的代数余子式 A21+A22+A23=\_\_\_\_\_.

10. 已知向量  $X = (1, k, 1)^T$  是矩阵  $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$  的逆矩阵  $A^{-1}$  的一个特征向量,

则常数 k=\_\_\_\_\_X 所对应的 A-1 的特征值=\_\_\_\_

- 11. 设 A 是 3 阶方阵, 已知 X<sub>1</sub>, X<sub>2</sub> 是 A 的两个线性无关的特征值向量, 则 aX<sub>1</sub>+X<sub>2</sub> 是 A 的特征向量的条件是
- 二、计算题 (12-17题, 共计64分)
  - 12. 求过点 (1,-2,0)及点(2,2,3) 且与平面 x+y+z=1 垂直的平面方程. (10分)
  - 13. 已知  $R^3$  的两组基分别是  $\epsilon_1 = (1,0,0)^T$ ,  $\epsilon_2 = (1,1,1)^T$ ,  $\epsilon_3 = (1,0,1)^T$ ,  $\eta_1 = (2,5,-1)^T$ ,  $\eta_2 = (2,1,2)^T$ ,  $\eta_3 = (7,13,0)^T$ , 设  $R^3$  的线性变换  $\sigma$  使得  $\sigma$

在基 
$$\eta_1$$
,  $\eta_2$ ,  $\eta_3$  下的矩阵是  $B = \begin{pmatrix} 2 & 3 & 12 \\ 0 & 0 & 2 \\ 0 & -1 & -3 \end{pmatrix}$ ,

- (1) 试求 σ 在基ε1,ε2,ε3 下的矩阵;
- (2) 若 $\gamma = (2, 0, -1)^T$ , 求 $\sigma(\gamma)$ 在基 $\epsilon_1, \epsilon_2, \epsilon_3$  下的坐标. (15分)
- 14. 设  $A = \begin{pmatrix} 1 & k & 2 \\ -1 & -1 & -1 \\ 1 & -k & 0 \end{pmatrix}$ , 问 k 取何值时, A 可对角化? 当 A 可对角化时, 求矩

阵 P 及对角阵 D, 使得 P-1AP=D.

(15分)

- 15. 设  $\xi_1,\xi_2$  是线性方程组 AX=b 的导出组的基础解系,  $\eta_1,\eta_2$  是 AX=b 的两个相异的特解, 试证明 i=1, 或 2 时,  $\xi_1,\xi_2,\eta_1$  线性无关, 而 $\xi_1,\xi_2,\eta_1,\eta_2$  线性相关. (8分)
- e. 设 A 是一个 n 阶方阵,  $r(A^*)$ ≤ n-1, 证明存在一个 n 阶矩阵  $B \neq 0$ , 使得 AB=0. (8 分)

f. 已知四元线性方程组 
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2 \text{ 的五个解,它们是} \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3 \end{cases}$$

$$X_{1}=\{1,1,1,0\}^{T}, X_{2}=\{2,2,1,0\}^{T}, X_{3}=\{0,0,1,0\}^{T}, X_{4}=\{3,1,2,0\}^{T}, X_{5}=\{0,1,1,1\}^{T},$$
 试求方程组的一般解, 并写出该方程组. (8 分)

一 填空题

$$1 B = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 31 & -19 & 3 & -4 \\ -23 & 14 & -2 & 3 \end{pmatrix}, \text{ for } B^{-1} = \underline{\hspace{1cm}}$$

3 A,B 是 3 阶方阵,将 A 的第一行的 (-2) 倍加到第三行得矩阵  $A_1$ ,将 B 的第一列乘以

(-2) 得矩阵 
$$B_1$$
, 己知  $A_1B_1=\begin{pmatrix} 0 & 3 & 1 \\ 2 & 5 & 7 \\ 4 & 8 & 6 \end{pmatrix}$ ,则  $AB=$  \_\_\_\_\_

4 
$$A \in M_n(R)$$
, 己知  $A = \begin{pmatrix} 2 & 2 & \cdots & 2 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}$ ,  $a_i \neq a_j, \forall 1 \leq i, j \leq n, i \neq j$ ,  $n$  维行

向量 $\vec{\beta} = \frac{1}{2}(1,1,\dots,1)$ 。且n维行向量 $\vec{x}$ 满足 $\vec{x}A = \vec{\beta}$ ,则 $\vec{x} =$ \_\_\_\_\_\_

二 已知平面
$$\pi: x_1 + 2x_2 - ax_3 = 0$$
与直线 $l: \begin{cases} x_1 + 2x_2 + x_3 = 2 \\ 2x_1 + ax_2 + 2x_3 = 1 \end{cases}$ 平行,求:

- (1) a的值
- (2) 直线1在平面π上的正交投影1'

三 己知 
$$A = \begin{pmatrix} 0 & c_1 & & & \\ & 0 & c_2 & & \\ & & \ddots & \ddots & \\ & & & 0 & c_{n-1} \\ c_n & & & 0 \end{pmatrix}, \quad c_i \in R \;, \; 1 \leq i \leq n \;, \; 求$$

(1) det(E-A)

(2) 
$$\det(E + A + A^2 + \dots + A^{n-1})$$

四 矩阵  $A=(\overrightarrow{\alpha_1} \quad \overrightarrow{\alpha_2} \quad \overrightarrow{\alpha_3})$  为三阶实对称矩阵,  $\lambda_1=2, \lambda_2=-2$  是它的两个特征值,且  $\overrightarrow{\alpha_1}-\overrightarrow{\alpha_2}+\overrightarrow{\alpha_3}=(1,-1,1)^T$ 。矩阵  $B=A^5-4A^3+E$ 。

- (1)证明:  $\lambda_3 = 1$  也是 A 的特征值,对应的特征向量  $\overline{\beta}$  为  $(1,-1,1)^T$
- (2) 证明:  $\beta$  也是 B 的特征向量,并求 B 的所有特征值和特征向量
- (3) 求矩阵 B和B\*

五  $A,B,P \in M_n(R)$ , A,B可逆。证明:

$$r(A - P^T B^{-1} P) = r(B - P A^{-1} P^T)$$

六

- (1) A∈M<sub>n</sub>(C), ∃m∈N\*, 使得r(A<sup>m</sup>)=r(A<sup>m+1</sup>),
   证明: ∀k≥1, 均有r(A<sup>m</sup>)=r(A<sup>m+k</sup>)
  - (2)  $A \in M_{m \times n}$ , m < n, r(A) = m, 证明:

$$r(E_n - A^T A) - r(E_m - AA^T) \ge n - m$$

考试课程 儿何与代数(1) 2001年 1月 8日

| A | 卷 | 班号 | 学号 | 姓名 | 成绩 |
|---|---|----|----|----|----|
| A | 位 | 班号 | 学号 | 姓名 | 成绩 |

填空 (1-11 题, 每空 3 分, 共计 36 分)

1. 
$$\begin{vmatrix} 2 & 4 & 3 & 0 & -1 \\ 0 & -2 & 0 & 0 & 0 \\ 10 & 20 & 15 & 2 & 4 \\ 0 & 4 & 3 & 0 & 0 \\ 2 & 4 & -1 & 0 & 0 \end{vmatrix} = \underline{\qquad}$$

4. 四元线性方程组

$$\begin{cases} x_2 - 2x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_4 = 0 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

的基础解系是

5. 三维线性空间的基 $\eta_1 = (1, -1, 1)^T, \eta_2 = (1, 0, 2)^T, \eta_3 = (0, 1, 2)^T$ 到 基 $\varepsilon_1 = (1, -1, 0)^T, \varepsilon_2 = (1, 2, 1)^T, \varepsilon_3 = (1, 0, -1)^T$ 的过渡矩阵

P = \_\_\_\_\_\_

| 6. 设 $A\in M_3$ 是实对称矩阵,已知 $A$ 的特征值是 $\lambda_1=-1,\lambda_2=\lambda_3=2$ ,对应 $\lambda_1=-1$ 的特                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 征向量为 $\xi_1 = (2, -2, -1)^T$ ,则对应于特征值 $\lambda = 2$ 的任意一个特征向量                                                                                                                                                                                            |
| ъ                                                                                                                                                                                                                                                        |
| 7. 过点 $(1, -2, 0)$ 与直线 $\begin{cases} x+y-2z+1=0 \\ 2x+y-3z-1=0 \end{cases}$ 平行的直线的标准方程是                                                                                                                                                                 |
| 8. 在三维空间中,方程 $\begin{cases} 4x^2 + 9y^2 = z \\ 6y + z = 1 \end{cases}$ 代表 曲线。                                                                                                                                                                            |
| 9. 已知 $B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 2 & 2 & 2 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ , 其特征值为 1, -2, 3, 又 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ , 则 |
| $A$ 的行列式中元素的代数余子式 $A_{21}+A_{22}+A_{23}=$                                                                                                                                                                                                                |
| 10. 已知向量 $X = \begin{pmatrix} 1 & k & 1 \end{pmatrix}^T$ 是矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ 的逆矩阵 $A^{-1}$ 的一个特征向量、 则                                                                                           |
| 常数 $k = $ $X$ 所对应的 $A^{-1}$ 的特征值 =                                                                                                                                                                                                                       |
| 11. 设 $A$ 是 $3$ 阶方阵,已知 $X_1, X_2$ 是 $A$ 的两个线性无关的特征向量,则 $aX_1+X_2$ 是 $A$ 的                                                                                                                                                                                |
| 特征向量的条件是                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |

#### 计算题 (12-17 题, 共计 64 分)

12. 已知 $R^3$ 的两组基分别是 $\varepsilon_1 = (1, 0, 0)^T, \varepsilon_2 = (1, 1, 1)^T, \varepsilon_3 = (1, 0, 1)^T,$ 

 $\eta_1 = (2, 5, -1)^T, \eta_2 = (2, 1, 2)^T, \eta_3 = (7, 13, 0)^T$ , 设  $R^3$  的线性变换  $\sigma$  使得

$$\sigma$$
 在基 $\eta_1, \eta_2, \eta_3$  下的矩阵是  $B = \begin{pmatrix} 2 & 3 & 12 \\ 0 & 0 & 2 \\ 0 & -1 & -3 \end{pmatrix}$ 

(1) 试求 $\sigma$  在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵:

(2) 若
$$\gamma = (2, 0, -1)^T$$
, 求 $\sigma(\gamma)$  在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$  下的坐标. (15分)

13. 求过点 (1,-2,0)及点 (2,2,3) 且与平面 x+y+z=1 垂直的平面方程。 (10分)

14. 设 
$$A = \begin{pmatrix} 1 & k & 2 \\ -1 & -1 & -1 \\ 1 & -k & 0 \end{pmatrix}$$
, 何  $k$  取何值时,  $A$  可对角化? 当  $A$  可对角化时, 求可逆矩

阵P及对角阵D,使得 $P^{-1}AP=D$ . (15分)

- 15. 设 $\xi_1, \xi_2$  是线性方程组 AX = b 的导出组的基础解系, $\eta_1, \eta_2$  是 AX = b 的两个相异的特解, 试证明 i = 1, 或 2 时, $\xi_1, \xi_2, \eta_i$  线性无关,而 $\xi_1, \xi_2, \eta_1, \eta_2$  线性相关。(8 分)
- 16. 设A是一个n阶方阵, $r(A^*) \le n-1$ ,证明存在一个n阶矩阵 $B \ne 0$ ,使得AB = 0。 (8分)

17. 已知四元线性方程组 
$$\begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3+a_{14}x_4=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+a_{24}x_4=b_2 & 的五个解,它们是 \\ a_{31}x_1+a_{32}x_2+a_{33}x_3+a_{34}x_4=b_3 \end{cases}$$

$$X_1 = (1, 1, 1, 0)^T, X_2 = (2, 2, 1, 0)^T, X_3 = (0, 0, 1, 0)^T, X_4 = (3, 1, 2, 0)^T,$$

$$X_s = (0, 1, 1, 1)^T$$
, 试求方程组的一般解, 并写出该方程组. (8分)

考试课程 代数与几何(1) 2002年12月30日

A卷

- 一. 填空题 (每空 4 分, 共计 32 分)
- 1.  $i \mathfrak{D} \alpha_1 = (1, 1, 2, -1)^T$ ,  $\alpha_2 = (2, 4, 6, 2)^T$ ,  $\alpha_3 = (2, 6, t, 6)^T$ .

已知 $\alpha_1, \alpha_2$ 是向量组 $\alpha_1, \alpha_2, \alpha_3$ 的一个极人线性无关组。则t =\_\_\_\_

- 3. 设四元齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3.  $\eta_1, \eta_2, \eta_3$  是 Ax = b 的 3 个解, 已知 $\eta_1 + \eta_2 = (1, 1, 0, 2)^T$ ,  $\eta_2 + \eta_3 = (1, 0, 1, 3)^T$ . 则Ax = b的通解是
- 4. 设 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$ . 则A的四个特征值为
- 5.  $i \otimes A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix}, \quad B = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{vmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & -2 & -4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$

A,B,C中与D相似的矩阵为 ,与D相合(合同)的矩阵为

\_\_\_\_\_ 时, 二次曲面  $x^2 + (\lambda + 2)y^2 + \lambda z^2 + 2xy = 5$  是一个椭球面.

7. 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix}$$
. 已知 $\alpha = \begin{pmatrix} t, & 1, & 1 \end{pmatrix}^T$  是矩阵  $A$  的特征向量,则 $t =$ \_\_\_\_\_.

二. 计算题 (8 题 10 分, 9 题 12 分, 10, 11 每题 15 分, 共计 52 分)

8. 设 
$$A = \begin{pmatrix} -1 & 1 & & \\ 0 & 2 & & \\ & & 1 & 1 \\ & & 2 & 1 \end{pmatrix}$$
, 满足  $BA = A + B$ , 求矩阵  $B - I$ .

9. 向量  $\alpha$  在  $R^3$  的一组基  $\alpha_1 = \begin{pmatrix} 1, & -2, & 1 \end{pmatrix}^T$ ,  $\alpha_2 = \begin{pmatrix} 1, & 2, & -1 \end{pmatrix}^T$ ,

 $\alpha_3 = (0, 1, -2)^T$  下的坐标是 $(1, 0, 2)^T$ , 试求 $\alpha$  在基 $\beta_1 = (1, 0, 1)^T$ ,

$$\beta_2 = (1, 1, -1)^T$$
,  $\beta_3 = (0, 1, 0)^T$  下的坐标.

10. 设方程组

$$\begin{cases} \lambda x_1 + \lambda x_2 + 2x_3 = 1\\ x_1 + (2\lambda - 1)x_2 + 2x_3 = 1\\ x_1 - 3x_2 - 2x_3 = 1 \end{cases}$$

え为何值时,方程组有无穷多解? 试求一般解.

- 11. 用正交线性替换化二次型  $f = 3x_1^2 + 3x_3^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3$  为标准形、写出正交矩阵及标准形、
- 三. 证明题 (每题 8 分, 共计 16 分)
- 12. 设A是实对称矩阵,A的特征值为 $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ ,试证明对任意 $X \ne 0$ ,

$$\lambda_1 \le \frac{X^T A X}{X^T X} \le \lambda_n$$
, 并讨论等号何时成立.

13. 设 $\eta_1$ ,  $\eta_2$ ,  $\eta_3$ 是n维向量, A是 $m \times n$ 矩阵, 已知A的秩为n-3, 齐次线性方程组Ax=0的每个解向量都可由 $\eta_1$ ,  $\eta_2$ ,  $\eta_3$ 线性表出, 试证明 $\eta_1$ ,  $\eta_2$ ,  $\eta_3$ 是Ax=0的一个基础解系.

A卷

考试课程 几何与代数(1) 2003 年 12 月 29 日

一. 填空题 (将答案填在空格内, 每空 4 分, 合计 40 分)

1. 
$$i \Re A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -2 & 0 \\ -2 & -3 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}, \quad [M](AB)^{-1} = \underline{\qquad}$$

- 2. 设 $\alpha = (2, 1, 1, 1)^T$ ,  $\beta = (1, 2, 0, 0)^T$ , 若 $A = \alpha \beta^T$ , B是一个秩为 3 的 4 阶方 阵. 则秩 $r(BA 2B) = _______$ .
- 3. 已知 3 阶非零矩阵 B 的每个列向量都是以下方程组的解

$$\begin{cases}
2x_1 + x_2 + kx_3 = 0 \\
x_1 - x_3 = 0 \\
x_1 - x_2 = 0 \\
5x_1 - x_2 + (k - 1) x_3 = 0
\end{cases}$$

- 6. 实二次型  $f(x_1,x_2,x_3) = x_1^2 + x_2^2 x_3^2 x_1x_3$  的正惯性指数为\_\_\_\_\_\_\_.

7. 当初等矩阵 
$$A = ______$$
,  $B = ______$  时,有  $A \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ 成立.

8. 在
$$M_2(R)$$
上,向量组 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ , $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ , $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 的秩=\_\_\_\_\_\_\_

- 二. 解答题 (第 9, 10 题各 15 分, 11 题 14 分, 12 题 8 分, 13 题 (1) 5 分 (2) 3 分, 合计 60 分)
- 9. 设  $A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & t & t \\ 1 & t & 0 & 1 \end{pmatrix}$ , t 为实数,  $b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ , 已知齐次线性方程组 Ax = 0 的解空间是 2 维
  - 的, 求线性方程组 Ax = b 的通解.
- 10. 设二次型  $f(x_1, x_2, x_3) = -x_1^2 x_2^2 x_3^2 4x_1x_2 4x_1x_3 + 4x_2x_3$ ,
  - (1) 求正交线性替换化二次型为标准型:
- (2) f=1为何种二次曲面?
- 11.  $R^3$ 上,设平面  $\pi$  在给定的直角坐标系中的方程是 x+y+z=0,点 P 的坐标是 (a,b,c),令  $\alpha=(a,b,c)^T$ ,
- (1) 求与点P关于平面 $\pi$ 对称的点Q的坐标;
- (2) 录 3 阶矩阵 A , 使得  $A\alpha = \beta$  , 其中  $\beta$  是 Q 点坐标的转置;
- (3) 设平面 $\pi$ , 的方程是x-y+z=1, 求平面 $\pi$ , 的方程, 使得 $\pi$ , 与 $\pi$ 2 关于平面 $\pi$ 对称.
- 12. 设 n 阶方阵 A 的 t 零 互 异特征值为  $\lambda_1, \lambda_2, \cdots, \lambda_s$  , 其对应的特征向量分别为  $\beta_1, \beta_2, \cdots, \beta_s$  , 又设齐次线性方程组 Ax = 0 的一个基础解系为  $\alpha_1, \alpha_2, \cdots, \alpha_t$  , 若  $1 \le t < s$  , 试问向量组  $\alpha_1, \alpha_2, \cdots, \alpha_t$  ,  $\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_t + \beta_t$  是否线性无关,证明你的结论.
- 13. 在n维线性空间V上,设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,向量组 $\beta_1,\beta_2,\cdots,\beta_t$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,其关系式为 $(\beta_1,\beta_2,\cdots,\beta_t)$ = $(\alpha_1,\alpha_2,\cdots,\alpha_s)A$ ,其中A是 $s \times t$ 矩阵,试证明:
- (1)  $\beta_1, \beta_2, \dots, \beta_t$ 线性无关的充分必要条件是矩阵 A 的秩 r(A) = t:
- (2)  $r(\beta_1,\beta_2,\cdots,\beta_t)=r(A)$ , 其中 $r(\beta_1,\beta_2,\cdots,\beta_t)$  是向量组 $\beta_1,\beta_2,\cdots,\beta_t$ 的秩.

**A** 卷 考试课程 几何与代数(1) 2005 年 1 月 6 日

\_\_\_\_ 系\_\_\_\_班 姓名\_\_\_\_\_ 学号

- 一. 填空题(将答案填在下面的空格内,每题 4 分,合计 32 分)
- 1. 设矩阵  $A=\begin{bmatrix}2&a&1\\\end{bmatrix}$  ,已知 B 为 3 阶非零矩阵,满足 AB=0 ,则矩阵 A 的

秩r(A) =\_\_\_\_

- 2. 设矩阵  $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$ , 则矩阵 AB 的全体特征值为\_\_\_\_\_\_\_.
- 3. 在  $R^3$ 中,已知从基  $\alpha_1, \alpha_2, \alpha_3$  到基  $\beta_1, \beta_2, \beta_3$  的过渡矩阵是  $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ ,则从基

- 4. 已知矩阵  $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$  与矩阵  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 3 \end{pmatrix}$  相似,则 A 的行列式  $|A| = _____$ .

  5. 在直角坐标系中,已知亚西
- 5. 在直角坐标系中,已知平面 $\pi$  过点(1,1,0),(0,0,1),(0,1,1),则与平面 $\pi$ 垂直

且过点(1,1,1)的直线的对称方程(标准方程)是

6. 设 4 元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3,  $\eta_1, \eta_2, \eta_3$  为 Ax = b 的 3 个解,已知 $\eta_1 + \eta_2 = (1, 1, 0, 2)^T$ , $\eta_2 + \eta_3 = (1, 0, 1, 3)^T$ ,则Ax = b的通解

7. 将 3 阶可逆矩阵 4 的第 1 列与第 3 列交换, 然后将所得矩阵的第 1 列的 - 2 倍

加到第 2 列,得到矩阵 B,则矩阵  $A^{-1}B=$ 

8.  $x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3 = 1$ 表示的二次曲面是

- 二. 计算题 (每题 18 分,合计 54 分)
- 9. 设 3 阶实对称矩阵 A 有 3 个特征值 3, 3, -3 ,已知属于特征值 -3 的特征向量为  $\alpha_1 = (1, -2, 1)^T$  ,求矩阵 A 及  $A^{-1}$  .
- 10. 设 $\alpha_1, \alpha_2, \alpha_3$ 是3维线性空间V的一个基, $\sigma$ 是V上的线性变换,已知  $\sigma(\alpha_1) = -\alpha_1 + 2\alpha_2 + 2\alpha_3$ , $\sigma(\alpha_2) = 2\alpha_1 \alpha_2 2\alpha_3$ , $\sigma(\alpha_3) = 2\alpha_1 2\alpha_2 \alpha_3$ ,
  - (1) 求线性变换 $\sigma$ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵;
  - (2) 设由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 $P = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ ,向量 $\gamma$ 在基

 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标是 $X=(0,-1,2)^T$ ,求 $\sigma(\gamma)$ 在基 $\beta_1,\beta_2,\beta_3$ 下的坐标.

设n元(n≥4)齐次线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + bx_4 + \dots + bx_n = 0 \\ bx_1 + ax_2 &= 0 \\ bx_1 &+ ax_3 &= 0 \\ -bx_1 &+ ax_4 + \dots + ax_n = 0 \end{cases}$$

其中 $b \neq 0$ . 试讨论a,b,n取何值时,方程组只有零解;取何值时,方程组有非零解? 在有非零解时,写出方程组的基础解系.

- 三. 证明题(第12题8分,第13题6分)
- 12. 设A是 $m \times n$ 矩阵, $\beta$ 是m维非零列向量,已知 $\beta$ 是非齐次线性方程组Ax = b的一个解, $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是导出组Ax = 0的基础解系,试证明
  - (1)  $\beta$ , $\beta$ + $\alpha$ <sub>1</sub>, $\beta$ + $\alpha$ <sub>2</sub>,…, $\beta$ + $\alpha$ <sub>r</sub>线性无关;
  - (2) Ax = b 的解集合的极大线性无关组含有r+1个向量.
- 13. 设A为任意n阶实反对称矩阵 (即 $A^T = -A$ ), 试证明 $I A^2$ 是正定矩阵.

### 清华大学本科生考试试题专用纸(A 卷)

考试课程 代数与几何 2007年1月11日

(请将所有题目的答案写在试卷上,并写清题号)

O MAINT MAINT OF IT 一(选择题, 每题4分) 1. 设 $A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 6 & x \\ 3 & 0 & -6 \end{pmatrix}$ , 三阶矩阵  $B \times 0$ , 且满足 AB = 0, 则 (人)

A. x = -8, r(B) = 1: B. x = -8, r(B) = 2:

B. 
$$x = -8$$
,  $r(B) = 2$ 

C. x = 8, r(B) = 1; D. x = 8, r(B) = 2.

D. 
$$x = 8$$
,  $r(B) = 2$ .

2. 设 $\bar{\alpha}_1$ =(0,2,1,1) $^T$ , $\bar{\alpha}_2$ =(-1,-1,-1,-1) $^T$ , $\bar{\alpha}_3$ =(1,-1,0,0) $^T$ , $\bar{\alpha}_4$ =(0,0,1,-1) $^T$ ,则极大线性无关

A.  $\bar{\alpha}_1, \bar{\alpha}_2$ ; B.  $\bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3, \bar{\alpha}_4$ ; C.  $\bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3$ ; D.  $\bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_4$ .

3. 己知  $\bar{\beta}_1$ ,  $\bar{\beta}$ , 是非齐次线性方程组  $A\bar{X}=\bar{b}$  的两个不同解。 $\{\bar{\alpha}_1,\bar{\alpha}_2\}$ 

$$A. \quad \frac{\overline{\beta}_1 - \overline{\beta}_2}{2} + k_1 \overline{\alpha}_1 + k_2 (\overline{\alpha}_1 + \overline{\alpha}_2); \quad B. \quad \frac{\overline{\beta}_1 + \overline{\beta}_2}{2} + k_1 \overline{\alpha}_1 + k_2 (\overline{\alpha}_1 - \overline{\alpha}_2);$$

C. 
$$\frac{\overline{\beta}_1 - \overline{\beta}_2}{2} + k_1 \overline{\alpha}_1 + k_2 (\overline{\beta}_1 + \overline{\beta}_2); \quad D. \quad \frac{\overline{\beta}_1 + \overline{\beta}_2}{2} + k_1 \overline{\alpha}_1 + k_2 (\overline{\beta}_1 - \overline{\beta}_2).$$

4. 设V(F) 是欧氏空间,则 $\sigma \in L(V(F),V(F))$  是正交变换的充要条件是 D A.  $\sigma$  保持V(F) 中任意两个向量的角度不变:

B. σ 在V(F)的任意一组正交基下的矩阵是正交矩阵:

C. σ把V(F)任意一组正交基变成一组正交基: - [ ]

D.  $\sigma$  把V(F) 中任意单位向量变成单位向量

一 著地表金殿田の事事に向き

的。1=6(x-)=6(x)=2,

二(填空題, 每題 4分).

1. 设 
$$D_4 = \begin{bmatrix} 3 & 1 & 3 & 2 \\ 3 & 3 & 1 & -1 \\ 3 & 0 & -1 & 2 \\ 3 & 1 & 2 & 2 \end{bmatrix}$$
 $M_{12} - M_{22} + M_{31} - M_{41} = 0$ 
 $-A_{13} - A_{14} - A_{15} - A_{1$ 

六(15分)设线性空间  $R[x]_n = \{a_0 + a_1 x + \dots + a_{n-1} x^{n-1} : 其中每个a_i \in \mathbb{D}_n\}, \ \sigma \in R[x]_n \bot$ 的 线性变换:  $\sigma(f)(x) = \frac{df}{dx}(x)$  (即函数f 的导数). 1 (8分) 求o的特征多项式. ( Mi ally 2 (7分) 证明σ不可对角化. 七 (15 分) 设 V 是一个 n 维欧氏空间, (,) 表示 V 的内积,  $\sigma \in L(V,V)$ 是对称变换,即对任意的 $\bar{\alpha}$ , $\bar{\beta} \in V$ ,都有 $(\sigma(\bar{\alpha}),\bar{\beta}) = (\bar{\alpha},\sigma(\bar{\beta}))$ . 1 (7分) 证明  $\sigma$ 在任意一组标准正交基下的矩阵都是实对称矩阵.  $(\sigma(\bar{\alpha}), \sigma(\bar{\alpha})) \leq M^2(\bar{\alpha}, \bar{\alpha}), 其中M = \max\{|\lambda_1|, |\lambda_2|, \cdots, |\lambda_n|\}.$ (60) 3)=(AZ,3)=AZ T 18.50 11 5 1 Ayx ZIAPI = XMA = A 172. 2=51 /=51 (AZJA=P (6151), Eg) = ag; ATATAN PAPEN A: INP ( &i, 615) - aij = xT PAP 1/AP-1 = 2 Prople. Minusing 1- UNOUND--- OVXX. ゴーガィーのが jie Wi (6(0),6(0))

## 清华大学本科生考试试题专用纸(A卷)

考试课程 代数与几何 2008 年 1月 8日

(请将所有题目的答案写在试卷上,并写清题号)

一(填空题,每题6分,共24分)

1. 
$$\[ \] B = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 31 & -19 & 3 & -4 \\ -23 & 14 & -2 & 3 \end{pmatrix}, \[ \] B^{-1} = \_. \]$$

- 2. 设 $A \in M_{4\times 4}(\mathbb{R})$ , 且 $A^* \neq 0$ ,  $\vec{\alpha}_1$ ,  $\vec{\alpha}_2$ ,  $\vec{\alpha}_3$ 是方程组 $A\vec{x} = \vec{b}$ 的三个解向量, 満足 $\vec{\alpha}_1 + \vec{\alpha}_2 = (1,1,0,2)^T$ ,  $\vec{\alpha}_2 + \vec{\alpha}_3 = (1,0,1,3)^T$ , 则  $A\vec{x} = \vec{b}$ 的通解为\_\_\_.
- 3. 设 A, B都是三阶矩阵. 将A的第一行的-2倍加到第三行得到三阶矩阵A,

将B的第一列乘以-2后得到三阶矩阵
$$B_1$$
,若 $A_1B_2$  =  $\begin{pmatrix} 0 & 3 & 1 \\ 2 & 5 & 7 \\ 4 & 8 & 6 \end{pmatrix}$ ,则 $AB =$ \_\_\_\_\_.

4. 设矩阵
$$A = \begin{pmatrix} 2 & 2 & \cdots & 2 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \cdots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}$$
, 且 $a_i \neq a_j (i \neq j)$ ,  $\vec{\beta} = \frac{1}{2}(1,1,\cdots,1)$ 

为n维行向量,试求n维行向量 $x = _$ 使得 $xA = \bar{\beta}$ .

二 (13分)

设 a为实数, 且平面  $\pi: x_1 + 2x_2 - ax_3 = 0$  与直线 $I: \begin{cases} x_1 + 2x_2 + x_3 = 2, \\ 2x_1 + ax_2 + 2x_3 = 1 \end{cases}$  平行.

- (1). 求a的值.
- (2). 求直线/在平面π上的正交投影.

第1页共2页

三(16分).

令矩阵
$$A = \begin{pmatrix} 0 & c_1 & & \\ & 0 & \ddots & \\ & & \ddots & c_{n-1} \\ c_n & & 0 \end{pmatrix}$$
,其中 $c_i(1 \le i \le n)$ 为实数.

(1). 求 det(E-A)的值. /失-C, C, C, C,

(2). 求  $\det(E + A + A^2 + \dots + A^{n-1})$ 的值.

#### 四 (25分)

设三阶实对称矩阵 $A = (\bar{\alpha}_1, \bar{\alpha}_2, \bar{\alpha}_3)$ 的三个列向量满足 $\bar{\alpha}_1 - \bar{\alpha}_2 + \bar{\alpha}_3 = (1, -1, 1)^T$ . 已知A有两个特征值 $\lambda_1 = 2, \lambda_2 = -2$ . 记 $B = A^3 - 4A^3 + E$ .

- (1). 证明 $\lambda_3$  = 1是 $\Lambda$ 的一个特征根,且对应的特征向量为 $\beta$ =(1, -1, 1) $^T$ .
- (2). 验证β=(1, -1, 1)<sup>T</sup>也是矩阵B的一个特征向量, 并求B的全部特征根和特征向量.
- (3). 求矩阵B及B<sup>k</sup>(k为正整数).

#### 五(10分)

设 $A, B, P \in M_n(F)$ ,且A, B可逆.证明: $r(A - P^T B^{-1} P) = r(B - P A^{-1} P^T).$ 

対 (12分)

(1).设 $A \in M_n(\mathbb{C})$ . 若 $r(A^m) = r(A^{m+1})$ 对某个正整数m成立.

证明:  $\forall k \geq 1$ ,  $f(A^m) = r(A^{m+k})$ .

(2).设 $A \in M_{m \times n}(\mathbb{R})$ ,且n > m, r(A) = m.

证明:  $r(E_n - A^T A) - r(E_m - AA^T) \ge n - m$ .

第2页共2页

考试课程 几何与代数(1)

2008年1月12日

A卷 精心 系学号 200 1602 姓名戴了

- 一. 填空题 (将答案填在横线上,每题 4 分,共计 32 分)
- 1. 设矩阵  $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ , 二阶矩阵 B 满足 AB = B 3I, 则 B 的行列式 |B| = 3.
- 3. 已知 $\alpha_4 = (2,0,5,10)^T$ 可以由向量组 $\alpha_1 = (1,-1,2,4)^T$ ,  $\alpha_2 = (0,2,1,2)^T$ ,  $\alpha_3 = (1,-1,2,1)^T$ 线性表示,表示式 $\alpha_4 = 2\alpha_1 + \alpha_2$
- 4. 三元实二次型  $f = x_1^2 + 2x_2^2 + 4x_3^2 2x_1x_2 + 2kx_1x_3$  当 k 满足 时 f 正定.
- 5. 设向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为 2,  $\beta_1 = \alpha_2 + \alpha_3 + \alpha_4$ ,  $\beta_2 = -\alpha_1 + \alpha_3 + \alpha_4$ ,  $\beta_3 = -\alpha_1 \alpha_2 + \alpha_4$ ,  $\beta_4 = -\alpha_1 \alpha_2 \alpha_3$ , 则向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 的秩为 2.
- 6. 已知三阶实对称矩阵 A 有三个不同的特征值  $\lambda_1, \lambda_2, \lambda_3$ ,属于它们的特征向量分别是  $\alpha_1, \alpha_2, \alpha_3$ ,已知  $\alpha_1 = (1, 1, -2)^T$ ,  $\alpha_1 = (1, 1, 1)^T$ , 则  $\alpha_3 = \frac{k(1, 1, 1)}{2}$  几十
- 7. 与矩阵  $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix}$  相似的对角矩阵是  $\begin{bmatrix} -1 & -2 & -3 \\ -2 & -3 & -3 \end{bmatrix}$

第1页/共2页

62 / 74

即右继经时门

- 二. 计算题 (每题 12分, 共计 48分)
- 9. 在直角坐标系下,光线从 A(2,1,2) 点射至镜面上的C(1,1,0) 点,设镜面方程是 x-y+z=0,试求反射光线所在的直线的对称(标准)方程.
- 10. 设  $\sigma$  是 3 维线性空间  $R^3$  上的线性变换,  $\sigma(x_1,x_2,x_3)^T = (2x_2+x_3,x_1-2x_2,2x_1)^T$ ,  $\alpha_1 = (0,0,1)^T$ ,  $\alpha_2 = (0,1,-1)^T$ ,  $\alpha_3 = (1,-1,0)^T$  是  $R^3$  的一个基,求线性变换  $\sigma$  在基  $\alpha_1,\alpha_2,\alpha_3$  下的矩阵.又设  $\alpha = (2,1,3)^T$ ,求  $\sigma(\alpha)$  在基  $\alpha_1,\alpha_2,\alpha_3$  下的坐标.
- 11. 已知  $A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ 4 & k & 1 \end{pmatrix}$ 与对角矩阵相似,(1)求参数 k : (2)求可逆矩阵 P 和对角矩阵 D ,

使得 $P^{-1}AP = D$ ,求 $A^{2008}$ .

- 12. 已知三元二次型  $f=x_1^2+\alpha x_2^2+x_3^2+2x_1x_2+2\alpha x_1x_3+2x_2x_3$ 的秩为 2, 其中 $\alpha$ 为实常数,求当  $x_1^2+x_2^2+x_3^2=1$  时,上述三元二次齐次函数 f 的值域.
- 三. 证明题 (13题12分,14题8分)
- 13. 已知  $\beta_1, \beta_2, \beta_3$  是非齐次线性方程组 Ax = b 的三个线性无关的解,
- (1) 证明其导出组 Ax = 0 至少有两个线性无关的解:
- (2) 若非齐次线性方程组为

$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1\\ 2x_1 + x_2 + 3x_3 - 3x_4 = -1\\ ax_1 + 2x_2 + bx_3 - 4x_4 = 0 \end{cases}$$

其中a,b为常数,已知它有三个线性无关的解,则方程组的系数矩阵A的秩是多少?证明你的结论。

(3) 试求出(2) 中方程组的三个线性无关的解.

征值.

A卷

# 清华大学本科生考试试题专用纸

考试课程 几何与代数 (1) 2009年1月7日

- 一. 填空题 (请将答案直接填在横线上,每题 5 分,合计 40 分)
- 1. 设  $R^4$ 的 3 维子空间 W 的两组基分别为  $\alpha_1 = (1,0,0,0)^T$ ,  $\alpha_2 = (0,0,0,1)^T$ ,  $\alpha_3 = (0,1,1,0)^T \not \Sigma \ \beta_1 = (2,1,1,0)^T, \quad \beta_2 = (0,1,1,2)^T, \quad \beta_3 = (1,3,3,1)^T, \quad \text{yl} \ \alpha_1,\alpha_2,\alpha_3 \ \text{yl}$

 $\beta_1,\beta_2,\beta_3$ 的过渡矩阵是\_\_\_\_\_

- 2. 设 $\alpha = (1,1,1)^T$ ,  $\beta = (1,2,3)^T$ , 矩阵  $A = \alpha \beta^T$ , A 的全部特征值为\_\_\_\_\_
- 3. 两条异面直线  $L_1: \frac{x-1}{2} = \frac{y+1}{-2} = \frac{z}{1}$ ,  $L_2: \begin{cases} x = -2 4t \\ y = 2 + t \end{cases}$  的距离是\_\_\_\_\_\_
- 4. 设 3 阶实对称方阵 A 的特征值 1 的特征向量为  $X_1 = (1, 0, 1)^T$  , 特征值 2 的特征 向量为 $X_2 = (1, 1, -1)^T$ ,则特征值 3 的特征向量为\_\_\_\_\_
- 5. 设 $\alpha$ ,  $\beta \in \mathbb{R}^n$ ,  $\alpha = (1,1,\dots,1)^T$ ,  $\beta = (2,2,\dots,2)^T$ , 则 $|E_n \alpha\beta^T| =$ \_\_\_\_\_
- 6. 设 $A^*$ 是n阶可逆方阵A的伴随矩阵,A的特征值是 $\lambda_1, \dots, \lambda_n$ ,则 $A^*$ 的特征值
- 7. 已知 A 相似于  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ , 则 A 的秩与 A 2E 的秩的和 r(A) + r(A 2E) =
- 8. 设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ , 试判断A = B是否相抵,相似,

你的结论是

第 1 页/共 2 页

- 9. 设A是3阶矩阵,已知 $\alpha$ 是A的属于特征值 $\lambda$ 的一个特征向量,B是与A相似的矩阵, 且 $B=P^{-1}AP$ ,则\_\_\_
- 10. 实二次型  $f(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2 2x_1x_3$  的规范形为
- 二. 解答题 (第11, 12, 13 题各 15 分, 14 题 7 分, 15 题 8 分, 合计 60 分)
- 11. 已知 $R^3$ 的两个基分别为 $\varepsilon_1 = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}^T$ ,  $\varepsilon_2 = \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}^T$ ,  $\varepsilon_3 = \begin{pmatrix} 0, & 1, & 0 \end{pmatrix}^T$  和  $\eta_1 = \begin{pmatrix} 1, & -1, & 0 \end{pmatrix}^T, \quad \eta_2 = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}^T, \quad \eta_3 = \begin{pmatrix} 0, & 0, & 1 \end{pmatrix}^T,$
- (1) 设 $\sigma$ 是 $R^3$ 上的线性变换,已知 $\sigma$ 在基 $\eta_1,\eta_2,\eta_3$ 下的矩阵为 $A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ , 求 $\sigma$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵.
- (2) 设 $\alpha = (1, -1, 1)^T$ , 求 $\sigma(\alpha)$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标.
- 12. 设三元二次型  $f(x_1, x_2, x_3) = x_1^2 + \frac{1}{2}x_2^2 + \alpha x_3^2 x_2 x_3$ 的秩为 2,
- (1) 求参数a:
- (2) 求正交矩阵Q,作正交替换X=QY,化二次型 $f(x_1,x_2,x_3)$ 为标准形;
- (3) 指出  $f(x_1, x_2, x_3) = 1$  表示何种二次曲面.
- 13. 设齐次线性方程组(n≥2)

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n = 0, \\ bx_1 + ax_2 = 0, \\ bx_1 + ax_3 = 0, \\ \dots \\ bx_1 + ax_n = 0, \end{cases}$$

其中 $b \neq 0$ . 试讨论a,b取何值时,该方程组只有零解: a,b取何值时,有非零解,并在有 非零解时,求方程组的通解.

- 14. 设 A 是 n 阶方阵,已知齐次线性方程组 Ax=0 的一个基础解系为  $\alpha_1,\alpha_2,\cdots,\alpha_r$ ,若  $\beta$  不 是方程组 Ax = 0 的一个解,试证明向量组  $\beta$  ,  $\alpha_1 + \beta$  ,  $\alpha_2 + \beta$  ,  $\cdots$  ,  $\alpha_t + \beta$  线性无关.
- 15. 设A是n阶可逆实矩阵, 试证明
  - (1) A<sup>T</sup> A 是正定矩阵;
  - (2) A 可分解为一个正交矩阵和一个正定矩阵的乘积,即 A=QS,其中 Q 是正交矩阵, S是正定矩阵.

第 2 页/共 2 页

考试课程

《几何与代数 1》期末考试 2010年1月13日

(A卷)

一、填空题 (每空5分,共40分)

1. 
$$\stackrel{\sim}{\bowtie} P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \not \bigcup P_1^4 A P_2^5 = \underline{\hspace{1cm}}$$

2. 设  $\mathbb{R}^3$  的两组基分别为  $B_1=\{\vec{\alpha},\vec{\alpha}_2,\vec{\alpha}_3\},\; B_2=\{\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3\},\;$ 其中

$$\vec{\alpha}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{\alpha}_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}, \vec{\alpha}_3 = \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{2} \end{bmatrix}, \vec{\beta}_1 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}, \vec{\beta}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \vec{\beta}_3 = \begin{bmatrix} -1 \\ -5 \\ 1 \end{bmatrix}.$$

则基  $B_1$  到基  $B_2$  的过渡矩阵为

; 若 7 在基 B1 下的坐标为

3. 设 3 阶方阵 A, B 满足 A\*BA = 2BA - 8E, 其中  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ , 则

B =

- 4. 设  $A = (a_{ij}) \in M_3(\mathbb{R})$ ,满足  $A_{ij} = a_{ij}$ ,其中  $A_{ij}$  为  $a_{ij}$  的代数余子式  $(1 \le i, j \le 3)$ ,即  $A^T = A^*$ ,并且  $a_{11} \ne 0$ . 则  $|A| = ______$

6. 
$$\det \begin{bmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{bmatrix} = ____(\text{H } a, b, c, d \ \text{表} \pi \text{$\sharp$} \text{$\sharp$} \text{$\sharp$}).$$

第1页/共2页

二、计算题 (第1 题 12 分, 第2 题 16 分, 共28 分)

1. 设 
$$A = \begin{bmatrix} 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 3 & 0 & 0 \\ 3 & 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \end{bmatrix} \in M_5(\mathbb{R})$$
,试求  $A^{-1}$ .

- 2. 设 4 阶实对称阵  $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ .
  - (1). 求 A 的所有特征值  $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ ;
  - (2). 求正交阵 Q, 使得  $Q^TAQ = diag(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ .
- 三、证明与解答题 (第1题14分,第2题12分,第3题6分,共32分)
  - 1. 设  $A\in M_{m\times n}(\mathbb{R}),\ m\leqslant n,,\ U=(\vec{u}_1,\cdots,\vec{u}_m)\in M_m(\mathbb{R}),\ V=(\vec{v}_1,\cdots,\vec{v}_n)\in M_n(\mathbb{R})$  为两个正交矩阵,且

$$U^T A V = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ & \ddots & \vdots & & \vdots \\ & & \lambda_m & 0 & \cdots & 0 \end{bmatrix}.$$

若  $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r > \lambda_{r+1} = \cdots = \lambda_m = 0$ . 证明:

- (1).  $\{\vec{v}_{r+1},\cdots,\vec{v}_n\}$  是齐次线性方程组  $A\vec{x}=\vec{0}$  的解空间 N(A) 的一组标准正交基;
- (2).  $\{\vec{u}_1,\cdots,\vec{u}_r\}$  是矩阵 A 的列空间 R(A) 的一组标准正交基.
- 2. 设 V(F) 为线性空间, $\dim V=l,\ \sigma\in L(V,V)$ ,且对某个  $\lambda\in F$ ,有  $(\sigma-\lambda I)^l=\theta$  (零变换),但  $(\sigma-\lambda I)^{l-1}\neq\theta$ .
  - (1). 证明  $\exists \vec{\alpha} \in V$ ,使得向量组  $\{\vec{\alpha}, (\sigma \lambda I)(\vec{\alpha}), \cdots, (\sigma \lambda I)^{l-1}(\vec{\alpha})\}$  为 V 的一组基:
    - (2). 求 σ 在上述基 ((1) 中所证) 下的矩阵表示;
    - (3). 证明 σ 不可对角化.
- 3. 设 V 为域 F 上 n 维线性空间, $\sigma \in L(V,V)$ ,且  $\sigma$  在某基下的矩阵表示为对角阵。  $\Diamond V$  为域 F 上 n 维线性空间, $\sigma \in L(V,V)$ ,且  $\sigma$  在  $\sigma \in L(V,V)$ ,  $\sigma \in L(V,V)$   $\sigma \in L(V,V)$   $\sigma \in L(V,V)$ 
  - (1).  $\sigma_i(V) = V_{\lambda_i}$ ,其中  $V_{\lambda_i}$  表示属于  $\lambda_i$  的特征子空间  $(1 \leq i \leq m)$ .
  - (2).  $\sigma = \lambda_1 \sigma_1 + \cdots + \lambda_m \sigma_m$ .

考试课程:线性代数(1) A 卷

2012年1月4日

孙志涛 汽车系: 汽辆班:汽川 姓名: 孙志涛号: 2011010710

- 一. 填空题(将答案填在下面的空格内,每题4分,合计32分)
- 1. n阶方阵A 满足 $(A+I)^m=0$ , 则|A|=(
- 2. 过点A(2,-1,4) 平行于向量 $\alpha_1=(1,-1,1),\alpha_2=(0,1,2)$  的平面方程是).
- 3. 向量 $\alpha_1 = (4,1,2), \alpha_2 = (6,2,9), \alpha_3 = (6,3,3)$  是否共面? ( ).
- 4. 矩阵  $\begin{pmatrix} 2 & 1 & 1 & -1 \\ 1 & 2 & 1 & 2 \\ 2 & 5 & 3 & 1 \end{pmatrix}$ 的列空间的维数为 ( )
- 5. 矩阵  $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ 的全部特征值为 ( ).
- $6.\begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$ 的QR-分解为( ).
- 7. 实二次型 $Q(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + x_3^2 4x_1x_3$ 的规范型为(

- )时, 三元实二次型 $x_1^2 + ax_1x_2 + x_2^2 + x_3^2$ 是正定二次型.
- 二. 计算和证明题.

 $x_1 + x_2 + x_3 + 4x_4 = 0$  $\lambda x_1 + 4x_2 + 10x_3 + x_4 = 0$ 9.(10分)确定参数λ, 使齐次线性方程组  $x_1 + 7x_2 + 17x_3 + 3x_4 = 0$  $2x_1 + 2x_2 + 4x_3 + 2x_4 = 0$ 解空间的维数最大,并在这种情况下求解这个线性方程组.

10.(15分) 我们用D表示次数小于n(n ≥ 3)的多项式(包括零多项式)所构 成的向量空间 $R_n[x]$ 上的微分变换. 证明

- (1) 对于任何正整数 $r, 1 \le r \le n$ , D有r维不变子空间. (2) 写出 $D^2$ 在 $R_n[x]$ 的某组基下的矩阵.
- (3)求  $ImD^2 \cap kerD^2$ .

11.(15分) 设
$$R^4$$
上的线性变换 $\sigma$ 在基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 下的矩阵为  $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 0 & -1 & 2 \\ 2 & 5 & 3 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}$ .

- (1). 求 $\sigma$ 在基 $\alpha_1$ ,  $\alpha_1 + \alpha_2$ ,  $\alpha_1 + \alpha_2 + \alpha_3$ ,  $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ 下的矩阵.
- (2). 设向量 $\gamma$  在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为(1,2,3,4). 求 $\sigma(\gamma)$ 在 基 $\alpha_1,\alpha_1+$  $\alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ 下的坐标.
  - 12. (10分) 确定分块矩阵  $\begin{pmatrix} I_m & B \\ 0 & -I_n \end{pmatrix}$  的特征值的几何重数和代数重数.
  - 13。(10分)设A, B, A + B均为可逆矩阵。证明 $A^{-1} + B^{-1}$ 也是可逆矩阵。

14. (8分) 一个 3×3 的矩阵如果满足: 每行元素的和、每列元素的和、每个 对角线上元素的和都相等,则称为一个幻方。这个共同的和称为幻方的幻数。

例如,矩阵 
$$\begin{pmatrix} 4 & 3 & 8 \\ 9 & 5 & 1 \\ 2 & 7 & 6 \end{pmatrix}$$
 就是一个幻方,其幻数为 15.

- (1) 证明: 所有幻方的集合对于普通矩阵加法和数量乘法构成 R 上的一个线 性空间。
  - (2) 找出此线性空间的一组基,并确定此线性空间的维数。

#### 几何与代数(1) 考试样题一

- 一. 填空题(将答案填在下面的空格内,每题 4分,合计 32分)
- 1. 设矩阵  $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & a & 1 \\ 3 & -1 & 1 \end{pmatrix}$ , 已知 B 为 3 阶 非零矩阵,满足 AB = 0,则矩阵 A 的

秩 r(A)= \_\_

- 2. 设矩阵  $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$ , 则矩阵 AB 的全体特征值为\_\_\_\_\_\_.
- 3. 在  $R^3$ 中,已知从基  $\alpha_1, \alpha_2, \alpha_3$  到基  $\beta_1, \beta_2, \beta_3$  的过渡矩阵是  $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ ,则从基

- $eta_1,eta_2,eta_3$ 到基 $a_1,a_2,a_3$ 的过渡矩阵是\_\_\_\_\_\_.

  4. 已知矩阵  $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$ 与矩阵  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则A的行列式 |A| =\_\_\_\_\_.
- 5. 在直角坐标系中,已知平面 $\pi$  过点(1,1,0),(0,0,1),(0,1,1),则与平面 $\pi$ 垂直

且过点(1,1,1)的直线的对称方程(标准方程)是

6. 设 4 元非齐次线性方程组 Ax = b 的系数矩阵 A 的秩为 3,  $\eta_1, \eta_2, \eta_3$  为 Ax = b 的 3 个解,已知 $\eta_1 + \eta_2 = (1, 1, 0, 2)^T$ , $\eta_2 + \eta_3 = (1, 0, 1, 3)^T$ ,则Ax = b的通解

为\_\_\_\_\_\_.
7. 将 3 阶可逆矩阵 A 的第 1 列与第 3 列交换,然后将所得矩阵的第 1 列的 - 2 倍

加到第 2 列,得到矩阵 B,则矩阵  $A^{-1}B=$ 

8.  $x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3 = 1$ 表示的二次曲面是\_\_\_\_\_\_

第1页/共2页

- 二. 计算题 (每题 18 分, 合计 54 分)
- 9. 设 3 阶实对称矩阵 A 有 3 个特征值 3, 3, -3 ,已知属于特征值 -3 的特征向量为  $\alpha_1 = (1, -2, 1)^T$  ,求矩阵 A 及  $A^{-1}$  .
- 10. 设 $\alpha_1, \alpha_2, \alpha_3$ 是3维线性空间V的一个基, $\sigma$ 是V上的线性变换,已知  $\sigma(\alpha_1) = -\alpha_1 + 2\alpha_2 + 2\alpha_3$ , $\sigma(\alpha_2) = 2\alpha_1 \alpha_2 2\alpha_3$ , $\sigma(\alpha_3) = 2\alpha_1 2\alpha_2 \alpha_3$ ,
  - (1) 求线性变换 $\sigma$ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵;
  - (2) 设由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 $P = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ , 向量 $\gamma$ 在基

 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标是  $X = (0, -1, 2)^T$ , 求  $\sigma(\gamma)$  在基  $\beta_1, \beta_2, \beta_3$ 下的坐标.

11. 设 n元(n≥4)齐次线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + bx_4 + \dots + bx_n = 0 \\ bx_1 + ax_2 = 0 \\ bx_1 + ax_3 = 0 \\ -bx_1 + ax_4 + \dots + ax_n = 0 \end{cases}$$

其中 $b \neq 0$ . 试讨论a,b,n取何值时,方程组只有零解;取何值时,方程组有非零解?在有非零解时,写出方程组的基础解系.

- 三. 证明题 (第12题8分, 第13题6分)
- 12. 设  $A \not\in m \times n$  矩阵, $\beta \not\in m$  维非零列向量,已知  $\beta \not\in m$  是非齐次线性方程组 Ax = b 的一个解, $\alpha_1, \alpha_2, \cdots, \alpha_r$  是导出组 Ax = 0 的基础解系,试证明
  - (1)  $\beta$ ,  $\beta$  +  $\alpha$ <sub>1</sub>,  $\beta$  +  $\alpha$ <sub>2</sub>, ···,  $\beta$  +  $\alpha$ <sub>n</sub> 线性无关;
  - (2) Ax = b 的解集合的极大线性无关组含有r+1个向量.
- 13. 设 A 为任意 n 阶实反对称矩阵 (即  $A^T = -A$ ), 试证明  $I A^2$  是正定矩阵.

第2页/共2页

#### 几何与代数(1)考试样题二

一. 填空题(将答案填在空格内. 每空4分,合计40分)

1.  $\begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 0 \\ 1 & 2 & 0 \end{pmatrix}^{-1} = \underline{\hspace{1cm}} .$ 

- 2. 设 A,B 都是 3 阶矩阵,满足 AB = 2A + B,已知行列式  $\left|A I\right|$  =1,则行列式  $\left|B 2I\right|$  = \_\_\_\_\_\_.
- 3. 设 A 是 3 阶矩阵,将 A 的第一行的 2 倍加到第三行,再将第二行和第三行对换,得到矩阵 B ,则  $BA^{-1}$  =
- 4. 过点(3, 2, 1)与直线 $\frac{x}{3} = \frac{y}{0} = z$ 平行且与平面x y + z + 1 = 0垂直的平面的方程为
- 5. 设 $R^3$ 上的向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,矩阵 $A=\begin{pmatrix} 1 & a & 2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$ ,当a=\_\_\_\_\_ 时,向量组 $A\alpha_1,A\alpha_2,A\alpha_3$ 线性相关.
- 7. 已知矩阵  $A = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 3 & -1 \\ -4 & 4 & a \end{pmatrix}$ 有特征值  $\lambda_1 = \lambda_2 = 1, \lambda_3 = 5$ ,则  $a = \underline{\hspace{1cm}}$  .
- 8. 设 $\alpha_1, \alpha_2, \alpha_3, \beta$ 是 $R^3$ 上的向量,其中 $\alpha_1, \alpha_2$ 线性无关,已知 $\beta = \alpha_1 \alpha_2 + \alpha_3$ ,且 $\beta = 2\alpha_1 + \alpha_2 \alpha_3$ , $A = (\alpha_1, \alpha_2, \alpha_3)$ ,则非齐次线性方程组 $Ax = \beta$ 的通解

是\_\_\_\_\_\_

9. 设 A 是 3 阶矩阵,已知  $\alpha$  是 A 的属于特征值  $\lambda$  的一个特征向量, B 是与 A 相似的矩阵,

且  $B = P^{-1}AP$ ,则\_\_\_\_\_\_\_是 B 的属于特征值  $\lambda$  的一个特征向量.

- 二. 解答题 (第11,12,13 题各15分,14 题7分,15 题8分,合计60分)
- 11. 已知  $R^3$  的两个基分别为  $\varepsilon_1 = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}^T$  ,  $\varepsilon_2 = \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}^T$  ,  $\varepsilon_3 = \begin{pmatrix} 0, & 1, & 0 \end{pmatrix}^T$  和  $\eta_1 = \begin{pmatrix} 1, & -1, & 0 \end{pmatrix}^T$  ,  $\eta_2 = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}^T$  ,  $\eta_3 = \begin{pmatrix} 0, & 0, & 1 \end{pmatrix}^T$  ,
- (1) 设 $\sigma$ 是 $R^3$ 上的线性变换,已知 $\sigma$ 在基 $\eta_1,\eta_2,\eta_3$ 下的矩阵为 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

求 $\sigma$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵.

- (2)设 $\alpha = (1, -1, 1)^T$ ,求 $\sigma(\alpha)$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标.
- 12. 设三元二次型  $f(x_1, x_2, x_3) = x_1^2 + \frac{1}{2}x_2^2 + ax_3^2 x_2x_3$ 的秩为 2,
- (1) 求参数 a:
- (2) 求正交矩阵Q, 作正交替换X = QY, 化二次型 $f(x_1, x_2, x_3)$ 为标准形;
- (3) 指出  $f(x_1, x_2, x_3) = 1$  表示何种二次曲面.
- 13. 设齐次线性方程组  $(n \ge 2)$

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n = 0, \\ bx_1 + ax_2 = 0, \\ bx_1 + ax_3 = 0, \\ \dots \\ bx_1 + ax_n = 0, \end{cases}$$

其中 $b \neq 0$ . 试讨论a,b取何值时,该方程组只有零解;a,b取何值时,有非零解,并在有非零解时,求方程组的通解.

- 14. 设 A 是 n 阶方阵,已知齐次线性方程组 Ax=0 的一个基础解系为  $\alpha_1,\alpha_2,\cdots,\alpha_t$ ,若  $\beta$  不 是方程组 Ax=0 的一个解,试证明向量组  $\beta$  ,  $\alpha_1+\beta,\alpha_2+\beta,\cdots,\alpha_t+\beta$  线性无关.
- 15. 设A是n阶可逆实矩阵, 试证明
  - (1)  $A^T A$  是正定矩阵:
  - (2) A可分解为一个正交矩阵和一个正定矩阵的乘积,即 A=QS,其中 Q 是正交矩阵, S 是正定矩阵.

第 2 页/共 2 页

