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1 HW 1 Due Sep 21

Problem 1.1 (Find Matrices). Recall that given a linear map f : Rn ! Rm, you can find its matrices as⇥
f(e1) . . . f(en)

⇤
. Find the matrices of the following linear maps, or show that they are not linear (by

providing a counter example). Also, are they injective? Surjective? Bijective?

1. f : R2 ! R2 is the projection map sending every vector to its projection on the line x + y = 0. (The
result of this projection is also a vector in R2.)

2. f : R2 ! R2 is the reflection map about the line x = y.

3. f : R2 ! R2 is the translation map sending every v to v + e1.

4. f : R2 ! R2 is the identity map, i.e., f(v) = v.

5. f : R2 ! R and f(


x
y

�
) =

p
x2 + y2.

6. f : R2 ! R and it sends each point v on the plane to its signed-distance to the line x + y = 0. Here
signed distance means that it is a positive distance if v is above the line x+ y = 0, and it is a negative
distance if it is below the line x+ y = 0.

7. f : R ! R2 and it sends each real number k to k


2
3

�
.

Problem 1.2 (Matrix-Vector Multiplication). 1. Let us define a magic matrix to be a 3 ⇥ 3 matrix
whose entries are 1, . . . , 9 in some order, such that in each row, each column, and each of the two
diagonals, the three entries add up to the same number. For example, a typical magic matrix is2

4
2 9 4
7 5 3
6 1 8

3

5. For an arbitrary magic matrix M , try to find all possible values of M

2

4
1
1
1

3

5.

2. Let us define a Sudoku matrix to be a 9 ⇥ 9 matrix such that each row is made of 1, . . . , 9, and
each column is made of 1, . . . , 9, and each of the nine 3⇥ 3 “submatrix” is also made of 1, . . . , 9. For
example, a typical Sudoku matrix is

2

6666666666664

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

3

7777777777775

.

For an arbitrary Sudoku matrix M , try to find all possible values of M

2

64
1
...
1

3

75.

y

x

2



Problem 1.3. Look at this clock. There are twelve arrow vectors here. Assume tha that they are all unit
vectors on the xy-plane.

1. Find the sum of all twelve vectors.

2. Find the sum of all vectors except the 2 o’clock vector.

3. Fix the end points of all vectors, but move the starting points of all vectors to the 6 o’clock location,

i.e., the 12 o’clock vector is now


0
2

�
, and the 3 o’clock vector is now


1
1

�
, and so on. Now find the

sum of all twelve vectors.

Problem 1.4. Write the following vector b as the result of a matrix multiplying a vector.

1. b = 2


1
1

�
+ 4


0
1

�
+ 5


1
0

�
.

2. b = 5

2

66664

1
2
3
4
5

3

77775
+ 4

2

66664

5
4
3
2
1

3

77775
.

3. b =

2

664

2b+ a+ c
c� b

a+ b+ c
a+ b

3

775, where a, b, c are constants.

4. b = f

0

BBBB@

2

66664

1
2
3
4
5

3

77775

1

CCCCA
, where f : R5 ! R5 is a linear map such that f(ek) = ke6�k, k = 1, . . . , 5.

5. KSuppose we know the following rule of the weathers. If it rains one day, then the next day has 0.8
chance of raining. If it does not rain one day, then the next day has 0.3 chance of raining. Suppose

today has 0.5 chance of raining, let b =


p

1� p

�
where p is the chance of raining tomorrow.

Problem 1.5 (Basic geometric concepts in n-dimensional space). Consider the space Rn and any non-zero
a, b 2 Rn with a 6= kb. (In this class, non-zero means a, b 6= 0, i.e., the coordinates cannot ALL be zero.
But some coordinates are allowed to be zero.) Think of a, b as two distinct points in an n-dimensional space.
Note that the “arrow vector” starting from a and ending in b would exactly have coordinates b� a.

A line through a, b could be defined like this: we start at a, and we move in the arrow direction b � a
by an arbitrary amount, and we get a line. So it is the set {a+ t(b� a) : t 2 R}.

1. Show that the line through a, b is exactly the set {sa+ tb : s, t 2 R and s+ t = 1}.

2. KShow that for any p on the line through a, b, then there is a unique pair s, t such that p = sa+ tb
and s + t = 1. (Hint: Suppose sa + tb = s0a + t0b, and show that s = s0, t = t0. Here the fact that
a 6= kb is VERY important.)

3. Show that the line segment connecting a, b is exactly the set {sa+ tb : s, t 2 R and s+ t = 1 and 0 
s, t  1}. (So insides of a line segment are the “weighted averages” of the two end points.)

4. Give a similar definition of a plane through three points a, b, c in Rn.
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5. Give a similar definition of a triangle with vertices a, b, c in Rn. (Here I want a subset of Rn whose
elements are points inside the triangle, including the edges of the triangule.)

6. (Read Only) In a similar way you can define k-dimensional a�ne subspaces of Rn. The word “a�ne”
simply means “flat”, i.e., no curvature. A line is a name for 1-dimensional a�ne subspace, a plane

is a name for 2-dimensional a�ne subspace, and a hyperplane is a name for n� 1-dimensional a�ne
subspace.

Problem 1.6 (Hyperplanes and their normal vectors). We know that in R2, a line can be represented by
a “linear” equation. For example, x + 2y = 2 would be some line in R2. What is the situation in higher
dimensions?

Consider the space R3 and a subset H = {

2

4
x
y
z

3

5 : x+ 2y + 3z = 6}.

1. Let a, b, c be the intersection of H with the x, y, z-axes respectively. Find the coordinates of a, b, c.

2. Using the definition in the last problem, show that H is exactly a plane through a, b, c.

3. Show that the arrow vectors a� b, b� c, c� a (these are all arrow vectors lying on the plane) are all

perpendicular to

2

4
1
2
3

3

5. (The last vector here is obtained by extracting the coe�cients 1, 2, 3 from the

equation of our plane x+ 2y + 3z = 6.)

4. (Read Only) In general, any “linear” equation in Rn would yeild a hyperplane. Specifically, if the
variables are x1, . . . , xn, then for any coe�cients a1, . . . , an 2 R and any constant b 2 R, the solutions
to the equation a1x1 + · · · + anxn = b is a hyperplane. And the normal vector to this hyperplane is

exactly

2

64
a1
...
an

3

75. Can you see why? (Again, this is not part of the HW.)
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2 HW 2 Due Sep 28

Problem 2.1 (Gaussian Eliminations). Solve these by Gaussian elimination, and write out the solution set
explicitly. (So don’t just stop at RREF for this problem.)

1.

2

4
1 2 3
4 5 6
7 8 9

3

5

2

4
x
y
z

3

5 =

2

4
1
4
7

3

5.

2.


1 2 3
4 5 6

�2

4
x
y
z

3

5 =


1
4

�
.

3.

2

4
1 2
4 5
7 8

3

5

x
y

�
=

2

4
1
4
8

3

5.

Problem 2.2 (Situations of the solution set). Find a constant b that satisfies the condition.

1.


1 2
3 b

� 
x
y

�
=


3
7

�
has no solution.

2.


3 2
6 4

� 
x
y

�
=


10
b

�
has no solution.

3.

2

4
2 5 1
4 b 1
0 1 �1

3

5

2

4
x
y
z

3

5 =

2

4
0
2
3

3

5 has no solution.

4.


b 3
3 b

� 
x
y

�
=


6
�6

�
has infinitely many solutions.

5.


2 b
4 8

� 
x
y

�
=


16
c

�
has infinitely many solutions. (For this problem, find constants b, c that satisfy the

condition.)

6.

2

4
1 b 0
1 �2 �1
0 1 1

3

5

2

4
x
y
z

3

5 =

2

4
0
0
0

3

5 has a non-zero solution.

7.

2

4
b 2 3
b b 4
b b b

3

5

2

4
x
y
z

3

5 =

2

4
0
0
0

3

5 has a non-zero solution. (For this problem, find three possible values for b that

satisfies the condition.)

Problem 2.3 (Solving a hardcore linear system). KFor each real value of p, find all solutions to the following
system: 2

4
p 1 1
1 p 1
1 1 p

3

5

2

4
x
y
z

3

5 =

2

4
1
p
p2

3

5 .

(Hint: first replace the first row by the sum of three rows.)

Problem 2.4 (Find the system given a solution set). For a matrix A, suppose the solution set to Ax =

2

4
2
4
2

3

5

is {

2

4
2
0
0

3

5+ s

2

4
1
1
0

3

5+ t

2

4
0
0
1

3

5 | s, t 2 R}.
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1. Can you find the values of A

2

4
2
0
0

3

5 , A

2

4
1
1
0

3

5 , A

2

4
0
0
1

3

5 by simply observing the solution set?

2. What does the subproblem above tell you about the columns of A and their relations? Find A.

Problem 2.5 (Alternative method to the last problem). For a matrix A, suppose the solution set to

Ax =

2

4
2
4
2

3

5 is {

2

4
2
0
0

3

5+ s

2

4
1
1
0

3

5+ t

2

4
0
0
1

3

5 | s, t 2 R}. Let us try an alternative method.

1. From the solution set’s description, how many free variables do you have? How many dependent
variable?

2. Write out RREF of the augmented matrix of this system by simply reading at the solution set.

3. Find A by doing row operations to RREF.

Problem 2.6 (Column operations and variable substitution). Given a linear system


1 2
4 5

� 
x
y

�
=


3
6

�
, a

change of variables would give rise to a new system. For example, if x0 = x+ 2y and y0 = 4x+ 5y, then the
equations x+ 2y = 3 and 4x+ 5y = 6 would be equivalent to the equations x0 = 3 and y0 = 6. So the new

system is


1

1

� 
x0

y0

�
=


3
6

�
. The augmented matrix will change from


1 2 3
4 5 6

�
to


1 0 3
0 1 6

�
.

Find the elementary COLUMN operations on the augmented matrix that corresponds to the following
change of variable.

1. x0 = y, y0 = x.

2. x0 = 2x, y0 = y.

3. x0 = x, y0 = x+ y.

4. x0 = x+ 1, y0 = y.
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3 HW 3 Due Oct 05

Problem 3.1 (Rank-one matrices). If a matrix has all rows parallel, must it also have all columns parallel?
(As a convention, we treat 0 as parallel to everything.) Give a counter-example or prove why.

Problem 3.2 (Arithmetic sequences in Matrices). For a given matrix, suppose the columns are all arithmetic

sequences. (For example, something like

2

664

1 2 4
3 3 3
5 4 2
7 5 1

3

775.)

1. Assume that the first row of such a matrix is aT and the second row is bT. Can you deduce all lower
rows?

2. KShow that such a matrix must have rank at most 2.

Problem 3.3 (Dimensions in matrix multiplications). Say A,B,C are 3⇥5, 5⇥3, 3⇥1 matrices respectively,
then which of BA,AB,ABAB,BAC,BABC are well-defined?

Problem 3.4 (Powers of a matrix). Calculate the following matrix powers.

1.


11 6
�20 �11

�2
.

2.


11 6
�20 �11

�3
.

3.


11 6
�20 �11

�2020
.

4.


11 6
�20 �11

��1

.

5.

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775

2

.

6.

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775

3

.

7.

2

664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

775

2020

.

8.

2

664

1 �1 �1 �1
�1 1 �1 �1
�1 �1 1 �1
�1 �1 �1 1

3

775

2

.
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9.

2

664

1 �1 �1 �1
�1 1 �1 �1
�1 �1 1 �1
�1 �1 �1 1

3

775

3

.

10.

2

664

1 �1 �1 �1
�1 1 �1 �1
�1 �1 1 �1
�1 �1 �1 1

3

775

2020

.

11.

2

664

1 �1 �1 �1
�1 1 �1 �1
�1 �1 1 �1
�1 �1 �1 1

3

775

�1

.

Problem 3.5 (Commutativity trouble). Let A =


1 1
0 1

�
, B =


1 0
1 1

�
, C = A�B.

1. Calculate (A+B)2, A2 + 2AB +B2. Are they the same?

2. Calculate (AB)2, A2B2. Are they the same?

Problem 3.6 (Elementary shearings). In R4, let Xij = eieTj be the corresponding 4 by 4 matrix. (Note

that the elementary shearing matrix is Ek
ij = I + kXij .)

1. Write out X13, X32, X12.

2. Calculate X13X32 and X32X13. (See if you can do this via the fact that Xij = eieTj , and use associa-
tivity. Dot products between these standard basis vectors are super easy.)

3. Verify that X2
ij = O when i 6= j. (Not part of the problem, but you may realize that this implies that

(E1
ij)

k = (I +Xij)k = I + kXij = Ek
ij .)

4. For any two square matrices A,B, show that AB = BA if and only if (A� I)(B� I) = (B� I)(A� I).
(Hence to study the commutativity behavior between elementary shearings, we only need to study the
commutativity of these Xij .)

Problem 3.7 (Shifting operators). Let J =

2

664

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775.

1. Going from A to JA, would J be shifting things up? down? left? right?

2. Going from A to AJ , would J be shifting things up? down? left? right?

3. Given the Pascal’s symmetric matrix P =

2

664

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

3

775, calculate PJ +JTP . Can you explain the

“coincidence”?

4. Calculate J, J2, J3, J4. (Also note that their appearances is exactly how they would shift the identity
matrix.)

5. Show that I � J has inverse I + J + J2 + J3.

8



6. Calculate (J + I)2, (J + I)3, (J + I)4. (Not part of the problem, but can you see a pattern for the
entries? Can you prove the pattern for (J + I)k?)

7. KDescribe the set of all matrices that commutes with J .

Problem 3.8 (Constraints through matrix multiplications). In each cases, find a matrix B that satisfies
the given condition.

1. AB = 4A for all 3 by 3 matrices A.

2. BA = 4A for all 3 by 3 matrices A.

3. Every row of BA is the first row of A for all 3 by 3 matrices A.

4. Every entry of AB is the average of the entries in the corresponding row of A for all 3 by 3 matrices
A.

5. B2 6= O, B3 = O. (Just find any example of such a matrix is enough.)

6. B


1 1
1 1

�
=


1 1
1 1

�
B. Find all possible B for this problem.

Problem 3.9 (Polynomials of a matrix). Suppose for a matrix A we have A2 = A.

1. Simplify the polynomials A3+2A2�A�I and A2+3A+4I into the format sA+ tI for some constants
s, t 2 R. (Read only: note that you can use this strategy to simplify all possible polynomials of A into
the format sA+ tI.)

2. KShow that I + 2A is invertible by finding its inverse. (Hint: The inverse is also a polynomial of A.)

9



4 HW 4 Due Oct 12

Problem 4.1 (Matrix multiplications and row/column operations). Calculate the following matrix multi-
plications

1.

2

4
0 0 1
0 1 0
1 0 0

3

5

2

4
1 2 3
4 5 6
7 8 9

3

5

2

4
0 0 1
0 1 0
1 0 0

3

5.

2.

2

4
1 0 0
�1 1 0
�1 0 1

3

5

2

4
1 2 3
1 3 1
1 4 0

3

5.

3.

2

66664

1 0 0 0 0
�1 1 0 0 0
�1 0 1 0 0
�1 0 0 1 0
�1 0 0 0 1

3

77775

2

66664

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

3

77775
.

4.

2

664

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

3

775

k

for an integer k. Find the formula depending on k.

Problem 4.2 (Gaussian elimination to find inverse). Find inverse matrices. You may start with
⇥
A In

⇤

and work your way to
⇥
In A�1

⇤
, or you may do whatever that works.

1.

2

664

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

3

775.

2.

2

664

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

3

775. (Compare this with above. Merely a single-entry di↵erence, yet the inverses

look drastically di↵erent.)

3.

2

664

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

3

775. (Horses move like this in chess.)

4.

2

64
1

. .
.

1

3

75.

5.

2

664

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

3

775.

6.

2

4
3 �1 �1
�1 3 �1
�1 �1 3

3

5.
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7.

2

664

1 �a 0 0
0 1 �b 0
0 0 1 �c
0 0 0 1

3

775.

Problem 4.3 (Weird “triangular” matrices). An n ⇥ n matrix is called a northwest matrix if all entries
below the anti-diagonal from (1, n) entry to (n, 1) entry are zero. Similarly, we can define a southeast

matrix. Now, if A is northwest, what about AT, A�1, A2? What if we multiply a northwest matrix with a
southeast matrix?

Problem 4.4 (The place where SM formula can be used). Suppose A has inverse

2

4
1 9 0
1 0 8
0 1 1

3

5. If I increase

the (1, 3) entry of A by 1, what is the new inverse? (Hint: It is easier to use Sherman-Morrison formula.)

Problem 4.5 (Block Operations). Calculate the inverse of the following matrices. (Try not to use the ugly
formula. Try do block operations from scratch for practice.)

1.


In O
A Im

�
. (This is lower triangular.)

2.


O Im
In A

�
. (This is block-southeast.)

3.


O A
B O

�
where A,B are invertible.

4.


A C
O B

�
where A,B are invertible. (This is block upper triangular.)

Problem 4.6. A matrix A is skew symmetric if AT = �A.

1. If A is 3⇥ 3 and skew symmetric, show that Ax = v⇥x for some v depending only on A. (Here cross

product is defined as

2

4
a1
a2
a3

3

5 ⇥

2

4
b1
b2
b3

3

5 =

2

4
a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

3

5. In R3, one can verify that the vector v ⇥ w is

always perpendicular to both v and w. Feel free to do the dot product and check this.)

2. Find a non-zero matrix A such that


O A
A O

�
is skew symmetric but not symmetric.

3. Find a 2n⇥ 2n skew symmetric matrix A such that A2 = �I for each n. (Remark: For real numbers,
you may never have x2 = �1. But for real matrices, A2 = �I is possible.)

4. Show that for any square matrix A, you can write it as the sum of a symmetric matrix and a skew
symmetric matrix.

Problem 4.7. Suppose the RREF of A is R. Find the RREF of the following matrices.

1.
⇥
A 2A

⇤
.

2.


A
2A

�
.

3.


A A
A A

�
.

11



4.


A A
O A

�
, where the rank of A is equal to the number of rows of A.

Problem 4.8 (We can study a�ne maps using matrices as well). A map f : Rn ! Rn is called an a�ne

map if you can find an n⇥ n matrix A and a vector b 2 Rn such that f(x) = Ax+ b. (It does not fix the
origin, so it is not linear, merely a�ne.)

1. Show that


A b
0T 1

� 
x
1

�
=


f(x)
1

�
. Let us define Mf as


A b
0T 1

�
, and call this the matrix for the a�ne

map.

2. Show that MfMg = Mf�g.

3. Show that f is invertible i↵ A is invertible, and M�1
f = Mf�1 . Also find the block inverse M�1

f .

Problem 4.9 (Hidden Block Diagonal Matrix). Define


a11 a12
a21 a22

�
4


b11 b12
b21 b22

�
=

2

664

a11 0 a12 0
0 b11 0 b12
a21 0 a22 0
0 b21 0 b22

3

775

1. Find a matrix X such that for all A,B, X(A4B)X�1 =


A O
O B

�
.

2. Show that (A14A2)(B14B2) = (A1B1)4(A2B2). (The first sub-problem might help.)

3. Show that when A,B are invertible, (A4B)�1 = A�14B�1. (The first sub-problem might help.)
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5 HW5 Due Oct 19

These problems are a bit harder than usual. Better start early.

Problem 5.1. The trace of an n ⇥ n matrix A is the sum of all of its diagonal entries. We denote it as
tr(A). If you like, you can write tr(A) =

Pn
i=1 e

T
i Aei.

1. Show that tr(xA+ yB) = x tr(A) + y tr(B).

2. Show that tr(In) = n.

3. Show that tr(A) = tr(AT).

4. For a unit vector u, show that tr(uuT) = 1 and tr(In � uuT) = n� 1. (For projections, trace simply
tells you the dimension of the projection range.)

5. Show that, if A =


a1 a2
a3 a4

�
, B =


b1 b2
b3 b4

�
, then tr(ATB) = tr(BAT) =

P
aibi. (This is a “dot

product” for matrices.)

6. Show that tr(vwT) = tr(wTv).

7. KCan you prove that tr(AB) = tr(BA) in general? Here A is m ⇥ n and B is n ⇥ m. (Hint: break
down A into columns and B into rows, and use sub-problem 6. Alternatively, exploit the symmetry of
the “dot product” in sub-problem 5, but you will need to generalize the formula in sub-problem 5 to
arbitrary non-square matrices first.)

8. KProve that for any square matrices A,B, then AB�BA CANNOT be the identity matrix. (However,
in infinite dimensional spaces, AB�BA = I is related to the famous Heisenberg uncertainty principle
in physics.) (Hint: Obviously use previous subproblems.)

Problem 5.2. We know permutation matrices corresponds to permutations. For example, P =

2

4
0 1 0
1 0 0
0 0 1

3

5

corresponds to the permutation (1, 2, 3) 7! (2, 1, 3). We see that 3 is unchanged, so this is a fixed point of
our permutation. In this examlpe, we have one fixed point.

1. Find a 5⇥ 5 permutation matrix P such that P k 6= I for all 1  k  5, but P 6 = I.

2. For a permutation matrix P , prove that tr(P ) is the number of fixed elements for the corresponding
permutation.

3. KConsider the compositions of two permutations P1P2 and P2P1. Show that they always have the
same number of fixed points. (Hint: Obviously previous sub-problems should make your life easier.)

Problem 5.3 (Vector spaces and basis). For the following, if it is not a vector space, just point out which
axiom of vector spaces is failed by what vectors. If it is a vector space, you don’t need to verify axioms.
Just find its dimension instead, and find a basis if it is finite dimensional. (All spaces are over R unless
specifically mentioned.)

1. V is the set of all discontinuous functions f : R ! R with its usual addition and scalar multiplication.

2. The solution set of x2 + y2  z2 in R3. (This is the pair of cones but we also include the insides of the
two cones.)
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3. KThe set of subsets of X = {1, 2, 3}, where we define S + T for subsets S, T as the symmetric

di↵erence, i.e., S + T = {x 2 X | x 2 S but not T, or x 2 T but not S}.
This is a vector space defined over F2, and scalar-vector multiplication is simply 0S = ? and 1S = S
for all subsets S.

(Here F2 = {0, 1} such that 0 = 0+0 = 1+1 = 0⇥1 = 1⇥0 = 0⇥0 and 1 = 0+1 = 1+0 = 1⇥1. You
can also think “even” and “odd” in place of 0 and 1. Then all these calculations would make sense.)

4. J =

2

4
0 1 0
0 0 1
0 0 0

3

5 and V is the space of all matrices that commutes with J . (You can use the results of

previous HW directly.)

5. A =


1 0
0 2

�
and V is the space of all matrices that commutes with A.

6. KV is the space of all 3⇥3 magic matrices. (I.e., matrices like the zero matrix, or like M =

2

4
2 9 4
7 5 3
6 1 8

3

5,

where each row, each column, and each of the two diagonal adds up to the same number.)

(Hint: Flip all columns of M . Flip all rows of M . Take transpose of M . Take reflection of M along
the anti-diagonal. Take di↵erences of these things. Take linear combinations of these things. Try until
you figure this out.)

Problem 5.4 (Solution space to a di↵erential equation). Consider the space V of all real functions f that
solves the di↵erential equation f 000 � 6f 00 + 11f 0 � 6f = 0. You may use the fact that V is spanned by
ex, e2x, e3x.

1. Show that the matrix A =

2

4
e0 e0 e0

e1 e2 e3

e2 e4 e6

3

5 is invertible.

2. Show that ex, e2x, e3x are linearly independent, so that they form a basis for V . (Hint: use the previous
sub-problem.)

3. KGiven any f 2 V , find the coordinates of f under this basis in terms of f(0), f(1), f(2). (Hint: use
the matrix A in the first sub-problem. You may simply write A�1 without calculating the inverse
matrix.)

Problem 5.5 (Quotient Space). Recall that a line in R3 is a subset L = {p+ tv : t 2 R} for fixed p,v 2 R3.
This is a line through p and in the direction of v.

Consider the space V = R3, and fix a line W through the origin. Let V/W be the space of all lines in V
parallel to W . For any two lines L1, L2 2 V/W , we define L1 +L2 := {p+ q : p 2 L1, q 2 L2}. And for any
scalar k 2 R and any line L 2 V/W , we define kL := {kp : p 2 L}.

1. Show that for any two lines L1, L2 2 V/W , we still have L1 + L2 2 V/W . And for any line L 2 V/W
and any k 2 R, we still have kL 2 V/W .

2. Show that for any two lines L1, L2 2 V/W and any k 2 R, we have k(L1 + L2) = kL1 + kL2. (You
don’t need to verify the other axioms. But in fact we also have other axioms as well, so V/W is a
vector space.)

3. Which line in V/W is the “zero vector”?

4. Find the dimension of V/W and find a basis for V/W .
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Problem 5.6 (Addition and Scalar multiplication on polynomials mod p(x)). (KThis problem is a bit more
advanced and abstract.) Let V be the space of all polynomials. Fix a polynomial p(x) = x2 + 3x+ 2.

1. For any finitely many polynomials, can you always find another polynomial that is NOT in their span?
(This means V is infinite dimensional.)

2. Let W be the collections of all polynomials that contain p(x) as a factor. (By convention, the zero
polynomial contains all other polynomial as factors.) Is W a subspace?

3. KFor any r(x) 2 V , we write [r(x)] as the subset {r(x) + p(x)q(x) : q(x) 2 V }, i.e., all polynomials
whose remainder after divided by p(x) is the same as r(x). We define [r1(x)] + [r2(x)] as the subset
{f1(x)+f2(x) : f1(x) 2 [r1(x)] and f2(x) 2 [r2(x)]}. For k 6= 0, we define k[r(x)] as the subset {kf(x) :
f(x) 2 [r(x)]} for scalar k 2 R, and we define 0[r(x)] = [0]. Show that [r1(x)]+[r2(x)] = [r1(x)+r2(x)]
and k[r(x)] = [kr(x)].

4. KWe use V/W to denote the set of all subsets [r(x)] with addition and scalar multiplication as specified
above. This is a finite dimensional vector space (you don’t need to verify this, but feel free to do so).
Find its dimension and find a basis.
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6 HW6 Due Oct 26

Problem 6.1 (Space of matrices). Consider M2⇥2 be the space of 2 ⇥ 2 matrices. We fix a basis X1 =
1 0
0 0

�
, X2 =


0 1
0 0

�
, X3 =


0 0
1 0

�
, X4 =


0 0
0 1

�
. We also fix a matrix A =


1 2
3 4

�
.

1. Consider the linear map LA : M2⇥2 ! M2⇥2 that sends X to AX. Write out the matrix for this linear
map under the given basis. (Preferably as a block matrix. The block form would make it easier to
imagine generalizations to higher dimensions.)

2. Consider the linear map RA : M2⇥2 ! M2⇥2 that sends X to XA. Write out the matrix for this linear
map under the given basis. (Preferably as a block matrix. The block form would make it easier to
imagine generalizations to higher dimensions.)

3. Calculate the 4⇥4 matrix multiplication LARA and RALA. (You may use block matrix multiplication
to facilitate the process.)

4. Can you see why LARA = RALA without any calculation? (Hint: Think about the meaning of these
linear maps. LA means multiplying A to X from the left, while RA means multiplying A to X from
the right. Which law of matrix multiplication is this?)

5. Find a basis of M2⇥2 made of invertible matrices, and find the change of coordinate matrix to this new
basis.

Problem 6.2 (Chang of basis and linear maps). Let V be a space with three bases B1,B2,B3 and W be
a space with two bases C1, C2, and a bijective linear map L : V ! W . We use Cij to mean a change of
coordinate map from Bi to Bj or from Ci to Cj , and Lij to mean the matrix for L from Bi to Cj . Which of
the following formula about matrices Lij , Cij are true? (No proof needed for correct ones. But for wrong
ones, just briefly point out what is wrong with it.)

1. L11 = C21L12.

2. L�1
11 = L�1

12 C21.

3. L22 = C12L11C
�1
12 .

4. L31 = C21L12C31C23L
�1
21 C21L12C21C32.

Problem 6.3 (Complex numbers). Consider the complex plane C as a vector space over R. We know it is
a two dimensional real vector space with a basis 1, i.

1. For the complex number w = 2 + 3i, consider the map Mw : C ! C that maps input z to output wz.
Find the matrix for Mw under the basis 1, i.

2. For any two complex numbers w, z, do the matrix multiplication to verify that MwMz = Mwz.

3. Can you see without computation that MwMz = Mwz? Which law of complex number multiplication
is this? (Hint: Think about the meaning of these linear maps.)

4. Consider F = {

a �b
b a

�
| a, b 2 R}, and find a bijective map � : C ! F that satisfies �(w + z) =

�(w)+�(z),�(wz) = �(w)�(z). (Hint: surely the previous sub-problems are building up to something,
yes?)

5. (Reading only) � above is called a field isomorphism. It shows that F is also a field, and F and C
are essentially the same field, just with di↵erent names for each element. Working on the field C is
identical to working on the field F. In a sense, you may think of “complex numbers” as a specific kind
of 2⇥ 2 real matrices in disguise.
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Problem 6.4 (Equation space and its subspace). let V be the space of linear equations on three variables,
with elements such as ax + by + cz = d for arbitrary real numbers a, b, c, d. So the vectors here are again
equations. We can do linear combination of these equations, i.e., 2(2x + 3y � z = 3) + 3(x � y = 2) =
(7x+ 3y � 2z = 12).

(Note that if x = 1 and x = 2 are both elements of V , and V is a vector space, then V must include its
di↵erence, i.e., 0 = 1. This equation 0 = 1 is also an element of V , and it is indeed of the form ax+by+cz = d
where a = b = c = 0 and d = 1.)

1. Find a basis of V , and find the dimension of V .

2. Suppose we have a basis made of equations v1, . . . ,vk. What is the solution set when all equations
v1, . . . ,vk are satisfied?

3. Fix a point p in R3. Let W be the subset of V , made of all equations that contains this point p in its
solution set. Is W a subspace? Prove or give counter examples. (Hint: to show that something is a
subspace, you just need to show that v +w and kv are still in W when v,w is in W .)

4. Consider x = 1, y = 2, z = 3, x+ y + z = 7. Are they linearly independent? Prove or provide a linear
relation. (Note: you might want to try this proof for fun. First prove that the first three are linearly
independent. For the last equation, take the subspace of all equations whose solution set contains the

point

2

4
1
2
3

3

5. Then this subspace contains x = 1, y = 2, z = 3, but fails to contain the last equation

x+ y + z = 7. This gives you a way to use independence extension lemma.)

5. Consider x = 1, x = 2, x = 3. Are they linearly independent? Prove or provide a linear relation.

6. (Not part of the HW) If you are curious, you may consider ways to generalize the statements here.
What if we fix a line L, and let W be made of all equations that contains this line L in its solution
set? What if we include more variables and go to higher dimensions?

Problem 6.5 (E↵ective number of chemical reactions). We have three chemical reactions when burning
charcoals, C + O2 = CO2, 2C + O2 = 2CO, and 2CO + O2 = 2CO2. Note that these are NOT really
equations. Rather, they reflect the process that the left hand side is transformed into the right hand side
during the chemical reaction involved. So we don’t solve them. Rather, we do their linear combinations
according to how much of each reaction occurred. Then we shall see what’s converted into what in total.

For example, (2C + O2 = 2CO) + (2CO + O2 = 2CO2) = 2(C + O2 = CO2), and this means first we
burn C to get CO, and then all the CO are burned and converted into CO2. The total e↵ect of combining
2C +O2 = 2CO and 2CO +O2 = 2CO2 is to do C +O2 = CO2 twice.

Let W be the space of linear combinations of the molecules C,CO,CO2, O2.

1. The chemical reaction C + O2 = CO2 is a map sending each w 2 W to w � C � O2 + CO2. Is this
map linear?

2. Consider the maps corresponding to the chemical reactions C + O2 = CO2, 2C + O2 = 2CO, and
2CO+O2 = 2CO2. We define their linear combination in the sense of (2C+O2 = 2CO)+(2CO+O2 =
2CO2) = 2(C +O2 = CO2). Are they linearly independent? What is the dimension of their span?

3. Let M =

2

664

�1 �2 0
0 2 �2
1 0 2
�1 �1 �1

3

775, i.e., the three columns corresponds to the changes induced by the three

chemical reactions on W with basis C,CO,CO2, O2. Find invertible matrices R,C such that RMC is
in rank normal form, and find the rank r of M . (So we see that the three equations C + O2 = CO2,
2C +O2 = 2CO, and 2CO +O2 = 2CO2 only have r e↵ective equations. )
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Problem 6.6 (Algorithm to find full-rank decomposition). We know that, given any m ⇥ n matrix A of
rank r, then A = BC where B is m⇥ r and injective, and C is r ⇥ n and surjective.

Suppose A =

2

4
1 2 3
4 5 6
7 8 9

3

5.

1. Delete all non-pivotal columns of A, and we obtain a matrix B. Find B. Why must the rank of A
equal to the rank of B?

2. Find the reduced row echelon form of A and delete all zero rows, and we obtain a matrix R. Can you
find the rank of R without any further computation?

3. Compute BR, what do you have? (This gives an algorithm to perform full rank decompositon, if you
ever need to.)

4. (Not part of the homework) Can you see why you have this phenomena? This process can be generalized
to an arbitrary A.

Problem 6.7 (Meaning of rank-one decomposition). Suppose we have seven people, A, B, . . . , G, and they
watched six videos on bilibili, a, b, . . . , f. Suppose for each video, they can click “like” or “dislike”, and this
data is collected into the following matrix.

M =

2

66666666664

a b c d e f
A 1 1 1 0 0 0
B 1 1 1 0 0 0
C 1 1 1 0 0 0
D 1 1 1 1 1 1
E �1 �1 �1 1 1 1
F �1 �1 1 1 1 1
G �1 �1 �1 1 1 1

3

77777777775

.

Here 1 means the corresponding person likes the corresponding video, �1 means dislike, and 0 means no
response.

Let us suppose that a, b, c are all educational videos, while c, d, e, f are all funny videos. So we have two
categories for a video: educational or funny. Note that each person seems to react reasonably consistent
about videos in each category. The exception is c, which is both educational and funny, and whether a
person likes or dislikes seems to be influenced by other factors.

1. What is the rank of this 7⇥ 6 matrix?

2. Build a matrix X such that its two columns corresponds to the two categories of videos, and its seven
rows corresponds to the seven people, and the entries records whether the corresponding person likes,
dislikes or has no response to the corresponding category in general.

3. Build a matrix Y such that its two rows corresponds to the two categories of videos, and its six columns
corresponds to the six videos. And an entry is 1 if the video is in this category, zero if this video is
NOT in this category.

4. Check to see that M �XY has rank 1. (This represents portions of M that cannot be explained by
categories of the videos.)

5. KWrite M as the sum of three rank one matrices, where the first one reflects how educational videos
contributes to M , the second one reflects how funny videos contributes to M , and the third one reflects
how other factors contributes to M .
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7 HW7 Due Nov 9

Problem 7.1 (More Inclusion-Exclusion Principals). 1. Prove that for subsets X,Y, Z, we have |X[Y [
Z| = |X|+ |Y |+ |Z|� |X \ Y |� |X \ Z|� |Y \ Z|+ |X \ Y \ Z|.

2. Find an example of subspaces X,Y, Z such that dim(X + Y + Z) 6= dim(X) + dim(Y ) + dim(Z) �
dim(X \ Y )� dim(X \ Z)� dim(Y \ Z) + dim(X \ Y \ Z).

3. Prove that for subspaces X,Y, Z, we have dim(X + Y + Z)  dim(X) + dim(Y ) + dim(Z)� dim(X \
Y )�dim(X \Z)�dim(Y \Z)+dim(X \Y \Z). (Hint: Use the regular IEP for subspaces repeatedly.
Prove that (X \ Z) + (Y \ Z) ✓ (X + Y ) \ Z.)

4. Find matrices A,B,C such that rank(ABC) > rank(AB) + rank(BC)� rank(B).

Problem 7.2 (Finding Kernel Algorithm). Let me show you a magical way to find a basis for the kernel of
a matrix. Given a matrix A, how can we find Ker(A)? Here is an algorithm that always works.

First, we perform Gaussian elimination to get RREF(A), say RREF(A) =

2

66664

1 2 0 3
0 0 1 4
0 0 0 0
0 0 0 0
0 0 0 0

3

77775
.

Next, we throw away zero rows and get


1 2 0 3
0 0 1 4

�
. Note that at this stage, we always have more

columns than rows (can you see why?).
Next we add zero-rows so that all the pivots are on the diagonal, so we have a square matrix A0 =2

664

1 2 0 3
0 0 0 0
0 0 1 4
0 0 0 0

3

775.

Finally, I claim that non-zero columns of A0 � I =

2

664

0 2 0 3
0 �1 0 0
0 0 0 4
0 0 0 �1

3

775 is a basis for Ker(A). This should

always work.

1. For any matrix A, we can obtain a square matrix A0 according to the algorithm above. Show that
Ker(A) = Ker(A0).

2. For A =

2

66664

1 2 0 3
0 0 1 4
0 0 0 0
0 0 0 0
0 0 0 0

3

77775
, show that non-zero columns of

2

664

0 2 0 3
0 �1 0 0
0 0 0 4
0 0 0 �1

3

775 is indeed a basis for Ker(A).

(You would need to verify linear independence, then check the number of vectors, say by rank-nullity)

3. For the matrix A0 =

2

664

1 2 0 3
0 0 0 0
0 0 1 4
0 0 0 0

3

775, we pick its diagonal entries to form a diagonal matrix D =

2

664

1
0

1
0

3

775. Verify that DA0 = A0 and A0D = D. (No need to prove these: this is true whenever A0

is upper triangular, and for each i either the i-th column of A0 is ei, or the i-th row of A0 is 0T. And
this is always the case if we obtain A0 from some RREF as described in the algorithm of this problem.)
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4. Suppose A0 is any upper triangular matrix, and its diagonal entries form a diagonal matrix D such
that DA0 = A0 and A0D = D, show that Ran(A0 � I) ✓ Ker(A0). (Hint: Prove that (A0)2 = A0 using
the given conditions, and go from here to see that A0(A0 � I) = 0.)

5. If U is an upper triangular matrices, and it has k non-zero diagonal entries, show that rank(U) � k.

(Hint: Repeatedly use rank


A B

C

�
� rank(A) + rank(C).)

6. (Not part of HW) Above information should contain enough ideas to prove that our algorithm is always
valid. Feel free to finish the rest of the proof if you want.

Problem 7.3 (Applications of last problem). Given a subspace V of Rn, how to find its orthogonal com-
plement? First, we find a basis A =

⇥
v1 . . . vk

⇤
for V . Then V ? = Ran(A)? = Ker(AT). Then we use

the kernel finding algorithm in the last problem to find a basis for Ker(AT).

1. Find a basis for the kernel of

2

4
1 0 2 0 3

1 4 0 5
1 6

3

5.

2. In R3, find a basis for the orthogonal complement of span(

2

4
a
b
c

3

5) where a 6= 0. (This is a basis of the

subspace with normal vector

2

4
a
b
c

3

5.)

3. The chess matrix is

A =

2

66666666664

r n b q k b n r
p p p p p p p p
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
p p p p p p p p
r n b q k b n r

3

77777777775

.

Here r, n, b, q, k, p are distinct non-zero real numbers. Find a basis for all four fundamental subspaces
of A.

4. KSuppose A =


I F
0 0

�
and B =


I G
0 0

�
where F,G are both n ⇥ n, and the four fundamental

subspaces of A and B are identical. Prove that F = G.

Problem 7.4 (Orthogonal basis made of coordinates ±1). A Hadamard matrix is a matrix H whose
entries are all ±1, and the columns are mutually orthogonal (but they don’t have to be unit vectors). (When
n is a power of 2, then an example of Hadamard matrix would be the matrix made by the Haar wavelet
basis.)

1. For any n⇥ n Hadamard matrix, compute HTH.

2. If H is a Hadamard matrix, show that


H H
H �H

�
is also a Hadamard matrix.

3. Can you find a 3⇥ 3 Hadamard matrix? Find it or show why not.

4. Let H be any Hadamard matrix. Then if we permute the rows and columns, or if we negate some
rows and columns, prove that the result is still a Hadamard matrix. (If two Hadamard matrices can
be obtained from each other like this, then we say they are equivalent.)
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5. KProve that all 4⇥ 4 Hadamard matrices are equivalent.

6. (Read only) It is conjectured that a Hadamard matrix should exist for all (4k)⇥(4k) matrices. However,
this remains unproven to this date. For examlpe, is there a 668 ⇥ 668 Hadamard matrix? We don’t
know the answer yet, as far as I can tell. The Haar wavelet basis gives a Hadamard matrix whenever
n is a power of 2. But, for examlpe, try to find a Hadamard matrix when n = 12, if you want a
challenge. And on the question of equivalence, in general, Hadamard matrices of the same size could
be inequivalent. For example, there are five inequivalent 16⇥ 16 Hadamard matrices.

Problem 7.5 (A useful “non-inner product” space). Consider the space R4 where we define h

2

664

x1

y1
z1
t1

3

775 ,

2

664

x2

y2
z2
t2

3

775i =

x1x2 + y1y2 + z1z2 � t1t2. This is NOT an inner product, but nevertheless, this is the structure used by
special relativity. This is sometimes called a Minkovski space-time. We say v ? w if hv,wi = 0 under
the definition above.

1. Find a matrix D such that hv,wi = vTDw. Is D symmetric? Positive Definite?

2. KFor an arbitrary subspace W ✓ R4, we define its “orthogonal complement” to be W? = {v 2 R4 |v ?
W}. Show that we always have dimW + dimW? = 4. (Hint: use rank-nullity.)

3. Find a subspace strictly contained in its own “orthogonal complement”. (“strictely contained” means
they are not equal.)

4. Find a basis for the Minkovski spacetime made of vectors of “length” zero.
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8 HW8 Due Nov 16

Problem 8.1 (Left over from the class). For an m⇥n matrix A, let A = BC be the full rank decomposition.
As we shall see, the full rank decomposition is, in its essence, simply finding basis for all subspaces related
to A.

1. Show that columns of B form a basis for Ran(A). In particular, Ran(B) = Ran(A). (Hint: C is
surjective.)

2. Show that columns of CT form a basis for Ran(AT). In particular, Ran(CT) = Ran(AT).

3. Let B = QR be the QR decomposition where Q has orthonormal columns, and R is upper triangular
with positive diagonal entries. Show that Ran(A) = Ran(Q). (This is the claim we used in class.
You don’t need to, but you can try to find three di↵erent proofs here. First perspective is to realize
that this is a special case of the first subproblem. Second perspective is to think of R as a change
of basis in the domain. Third perspective is to think of the QR decomposition as the Gram-Schmidt
orthogonalization, so we go from a basis to a subspace to an ONB of the same subspace.)

4. KGiven any m ⇥ n matrix A, let X be a matrix whose columns form a basis for Ran(A), and let Y
be a matrix such that the columns of Y T form a basis for Ran(AT). Show that you can find invertible
matrix T such that A = XTY . (Hint: Use the first two subproblems, and the fact that basis transition
matrices are invertible. Note that this explains the non-uniqueness of full rank decomposition.)

Problem 8.2. Suppose a1, . . . ,an form an orthonormal basis for an inner product space V . Either prove
that the followings are orthonormal basis, or perform Gram-Schmidt to them.

1. n = 3 and we have b1 = 1
3 (2a1 + 2a2 � a3), b2 = 1

3 (2a1 � a2 + 2a3), b3 = 1
3 (�a1 + 2a2 + 2a3).

2. n = 5, and b1 = a1 + a5, b2 = a1 � a2 + a4, b3 = 2a1 + a2 + a3.

Problem 8.3. For the following matrices, find their QR decomposition, and find the matrix of orthogonal
projection to their range.

1.

2

664

2 0 �1
1 1 1
0 2 1
1 2 2

3

775.

2.

2

664

1 1 �1
2 �1 2
�1 1 1
0 1 1

3

775.

Problem 8.4. Consider the following functions.

1. f(x, y, z) = 2x2+4y2+3z2+4xy+4yz. Find a symmetric matrixA such that f(x, y, z) =
⇥
x y z

⇤
A

2

4
x
y
z

3

5.

Is A positive definite? If so, find the Chelosky decomposition of A, and then complete the squares for
f(x, y, z).

2. f(x, y) = 4x2 + 4xy + 2y2 + 2y + 1. Find a symmetric matrix A such that f(x, y) =
⇥
x y 1

⇤
A

2

4
x
y
1

3

5.

Is A positive definite? If so, find the Chelosky decomposition of A, and then complete the squares for
f(x, y, z).
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Problem 8.5. Some interesting facts about orthogonal projections.

1. If P is an orthogonal projection, show that the length squared of its i-th column is its (i, i) entry.

2. If A,B are orthogonal projections, show that AB = BA if and only if AB is an orthogonal projection.
Do you know to what space? (In terms of Ran(A) and Ran(B).)

3. KIf A,B are orthogonal projections, show that A+B is an orthogonal projection i↵ Ran(A) ? Ran(B).
Do you know to what space? (In terms of Ran(A) and Ran(B).)

Problem 8.6 (Linear Regression). Suppose there are four points


xi

yi

�
on the xy-plane


0
0

�
,


1
8

�
,


3
8

�
,


4
20

�
.

Consider the following models.

1. We wish to find the best line parallel to the x-axis to fit the data. I.e., our model is y = b, and we
want to find the b to minimize

P4
i=1|yi � b|2. Find matrix A and vector y such that ATAb = ATy

gives the best b as the solution.

2. We wish to find the best line through the origin to fit the data. I.e., our model is y = kx, and we want
to find the k to minimize

P4
i=1|yi � kxi|2. Find matrix A and vector y such that ATAk = ATy gives

the best k as the solution.

3. We wish to find the best parabola to fit the data. I.e., our model is y = ax2+bx+c, and we want to find

the a, b, c to minimize
P4

i=1|yi�ax2
i �bxi�c|2. Find matrix A and vector y such that ATA

2

4
a
b
c

3

5 = ATy

gives the best a, b, c as the solution.

Problem 8.7. Calculate the following determinants.

1.

2

664

1 2 1 4
0 �1 2 1
0 0 2 �1
0 0 0 3

3

775.

2.

2

664

1 1 1 1
1 2 4 8
1 3 9 27
1 �1 1 �1

3

775. (This is a Vandermonde matrix for 1, 2, 3,�1. The answer should be ±(3� 2)(3�

1)(3 � (�1))(2 � 1)(2 � (�1))(1 � (�1)), i.e., plus or minus the product of all possible di↵erences of
these values.)

3.

2

664

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

3

775. (This is an anti-circulant matrix. The next semester linear algebra course will talk

about this.)

4.

2

66664

1 2 3 4 5
6 7 8 9 10
11 12 0 0 0
13 14 0 0 0
15 16 0 0 0

3

77775
. (Hint: Don’t calculate. Just stare at it until you see the aswer.)
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5.

2

66664

0 . . . 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 . . . 0

3

77775
. The matrix is n⇥ n.
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9 HW9 Due Nov 23

Problem 9.1. Let A be a 3⇥3 matrix

2

4
aT
1

aT
2

aT
3

3

5 with det(A) = 5. Find the determinant of the matrices below.

1. 2A.

2. �A.

3. A2.

4. A�1.

5. AT.

6.

2

4
aT
1 � aT

3

aT
2 � aT

1

aT
3 � aT

2

3

5. (Hint: Do this in two ways if you like. You can do this with row operations, or via

decomposition det(EA) = det(E) det(A).)

7.

2

4
aT
1 + aT

3

aT
2 + aT

1

aT
3 + aT

2

3

5. (Hint: Do this in two ways if you like. You can do this with row operations, or via

decomposition det(EA) = det(E) det(A).)

Problem 9.2. Let A =
⇥
a1 . . . an

⇤
be any n ⇥ n matrix. Geometrically speaking, | det(A)| is the

absolute volumn of the parallelotope A, and kaik is the length of the i-th edge. As you can imagine, the
volumn | det(A)| should be the product ka1k . . . kank when all edges are mutually orthogonal. And when
the edges are NOT mutualy orthogonal, then intuitively | det(A)| should be strictely less than the product
ka1k . . . kank.

This is the famous Hadamard inequality | det(A)|  ka1k . . . kank. We prove this inequality in this
problem.

1. Suppose A is invertible and we have QR decomposition A = QR where R =
⇥
r1 . . . rn

⇤
is upper

triangular. Show that krik = kaik.

2. Show that in the set up above, det(R)  kr1k . . . krnk.

3. Prove the Hadamard inequality | det(A)|  ka1k . . . kank.

Problem 9.3. Prove or find counter examples.

1. We always have det(AB �BA) = 0 for any square matrices A,B.

2. We always have det(�A) = � det(A) for square matrices A.

3. If n is odd and A is n ⇥ n and skew-symmetric, then A is not invertible. (Hint: take anther look at
the last sub-problem.)

4. KSuppose we have LDU decomposition A = LDU . Let Ai be the upper left i⇥ i block of A, and let
di be the i-th diagonal entry of D. Then di =

det(Ai)
det(Ai�1)

. (Hint: also write L,D,U in blocks.)

Problem 9.4 (Don’t do these things). What’s wrong with these arguments?

1. For block matrix we have det


A B
C D

�
= AD � BC. (Not part of the HW: What should the correct

formula be if A is invertible?)
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2. We have det(


a b
c d

��1

) = det( 1
ad�bc


d �b
�c a

�
) = ad�bc

ad�bc = 1.

3. If AB = �BA, then det(A) det(B) = � det(B) det(A), so 2 det(A) det(B) = 0. So one of A,B is not
invertible.

Problem 9.5. Calculate the following determinants.

1. A is 3⇥ 3 with determinant 5. Find the determinant of the cofactor matrix C for A. (Hint: What is
CTA?)

2.

2

66664

1 1 1 1 1
1 2 0 0 0
1 0 3 0 0
1 0 0 4 0
1 0 0 0 5

3

77775
. (You are not required to do the generalization of this, but feel free to try to find

the determinant of

2

6664

a1 1 . . . 1
1 a2
...

. . .
1 an

3

7775
. Also feel free to use two methods: Laplace expansion or low

rank perturbation.)

Problem 9.6 (Leibniz formula). Use Leibniz formula (the big formula) to help with the following problems.

1. Consider det

2

664

2x x 1 2
1 x 1 �1
3 2 x 1
1 1 1 x

3

775. This is a polynomial in x. What is the coe�cient for x4? What is the

coe�cient for x3?

2. Suppose we multiply each (i, j) entry of a 4 ⇥ 4 matrix A by j. For each term in the big formula of
det(A), how would this term change? How would det(A) change?

3. Consider A =

2

664

a 0 b 0
0 c 0 d
e 0 f 0
0 g 0 h

3

775, where all letter variables are non-zero. In the big formula of det(A),

how many non-zero terms are there? Can you factorize the determinant? (Hint: This is a “hidden”
block diagonal matrix.)

Problem 9.7 (Pascal Matrices). Let Pn be the n⇥n symmetric Pascal’s matrix. (E.g., the 4⇥ 4 version is2

664

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

3

775.) Similarly, let Ln, Un be the n⇥ n lower triangular and upper triangular Pascal’s matrix.

(E.g., the 4⇥ 4 version is Ln =

2

664

1
1 1
1 2 1
1 3 3 1

3

775, and we always have Un = LT
n .)

For this problem, you may freely use the fact that Pn has LU decomposition Pn = LnUn.

1. Find det(Pn).

2. Let An be obtained by reducing the lower right entry of Pn by 1. Find det(An). (Hint: Can you feel
how cofactor is involved here?)
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Problem 9.8 (Laplace expansion). Use Laplace expansion or cofactors to help with the following problems.

1. A Hessenberg matrix is a matrix that is “almost” triangular, except for an extra diagonal of en-

tries. For example, the matrices H4 =

2

664

2 1 1 1
1 2 1 1
0 1 2 1
0 0 1 2

3

775 is Hessenberg. Define the n ⇥ n matrix

Hn =

2

66664

2 1 . . . 1

1
. . .

. . .
...

. . .
. . . 1
1 2

3

77775
. Show that det(Hn) is the Fibonacci sequence.

2. A tridiagonal matrix is a matrix that is simultaneously upper Hessenberg and lower Hessenberg. For

examlpe, S4 =

2

664

3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3

3

775 is tridiagonal. Generalize S4 into n ⇥ n matrices. Find the inductive

formula for det(Sn). How is this related to the Fibonacci sequence?

Problem 9.9 (Determinant and inverse matrix). Let f = ln(ad� bc).

1. Find @f
@a ,

@f
@b ,

@f
@c ,

@f
@d .

2. Show that


a b
c d

��1

=

@f
@a

@f
@b

@f
@c

@f
@d

�T
.

3. KIs this a coincidence? If not, can you generalize this to higher dimensions? (Hint: What is the

derivative @ ln(det(A))
@aij

? Use chain rule and see what happens.)
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