清华大学本科生考试试题专用纸

考试课程

Linear Algebra (English)

2021 Fall **Final Exam** 2021.12.22

Exam Duration: 3 Hours

Name:

年 月 Н

Student ID:

This exam includes 6 pages (including this page) and 5 problems. Please check to see if there is any missing page, and then write down your name and student ID number on this page and the first page of your answer sheets. Also write down the initials of your name on the top of every page of your answer sheets, in case they are scattered.

This exam is open book. You are allowed to consult your textbook and notes, but no calculator. Plagerism of all kinds are strictly forbidden and will be severly punished.

Please write down your answers to the problems in the provided **SEPARATE AN-SWER SHEETS**, and follow the following rules:

- Always explain your answer. You should a • ways explain your answers. Any problem answere with nothing but a single answer would receive r credit.
- Write cleanly and legible. Make sure that you writings can be read. The graders are NOT r sponsible to decipher illegible writings.
- Partial credits will be given.
- Blank spaces are provided in the exams. Feel free to use them as scratch papers. However, your for mal answer has to be written in the **SEPARAT ANSWER SHEETS**, as required by the Univer sity.
 - The total score of the exam is 50. If your total score exceeds 50 (there are 53 points in total), it will be recorded as 50.

l- ed	Problem	Points	Score
10	1	13	
ır	2	10	
э-	3	11	
	4	10	
e r-	5	9	
E r-	Total:	53	

1. We have points $\begin{bmatrix} -2\\ -1\\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}$ in the space \mathbb{R}^3 . Together they form a data matrix $A = \begin{bmatrix} -2 & 1 & 1\\ -1 & 2 & -1\\ 1 & 1 & -2 \end{bmatrix}$. (Note that the points are already centered.) (a) (3 points) Find a singular value decomposition of A.

Final Exam - Page 2 of 6

2021.12.22

(c) (2 points) Find the plane of best fit.

Linear Algebra (English)

(d) (2 points) Find the maximum and minimum Rayleigh quotient $\frac{v^T S v}{v^T v}$ for $S = (A^T A)^2 + 2A^T A + 3I$.

(e) (3 points) Find a polynomial p(x) such that $(A^{T}A + 2I)^{-1} = p(A^{T}A)$.

2021.12.22

- 2. In the *xy*-plane, we have a line ax + y = 1 for some unknown constant $a \in \mathbb{R}$. Suppose we also know that the line must go through the points $\begin{bmatrix} 1 \\ b \end{bmatrix}, \begin{bmatrix} 2 \\ -b \end{bmatrix}, \begin{bmatrix} -2 \\ 4b \end{bmatrix}$ for some unknown constant $b \in \mathbb{R}$. We wish to find all possible a, b.
 - (a) (2 points) Find a 3×2 matrix A and a vector \boldsymbol{u} such that a, b is a possible solution to the problem above if and only if $A \begin{bmatrix} a \\ b \end{bmatrix} = \boldsymbol{u}$.

(b) (2 points) Show that
$$A \begin{bmatrix} a \\ b \end{bmatrix} = \boldsymbol{u}$$
 above has no solution.

(c) (4 points) Find the QR decomposition of A, where Q is 3×2 with orthonormal columns and R is 2×2 and upper triangular with positive diagonal entries.

(d) (2 points) Find the least square solution to $A \begin{vmatrix} a \\ b \end{vmatrix} = u$.

Linear Algebra (English) Final Exam - Page 4 of 6

3. Consider
$$F = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$
.

(a) (2 points) Is F Hermitian or skew-Hermitian or Unitary or none of these? Can you tell without calculation if F is diagonalizable or not?

(b) (4 points) Calculate F^2 and find a basis for each eigenspace.

(c) (3 points) Find all eigenvalues of F and their algebraic multiplicity, and find a basis for the eigenspaces of non-real eigenvalues.

(d) (2 points) Let
$$F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Find the matrix X

such that $2F = X \begin{bmatrix} F_2 \\ F_2 \end{bmatrix} P$. (This is the fundation of the famous Fast Fourier Transform algorithm, ranked as one of the top 10 algorithms of 20-th century.)

Linear Algebra (English) Final Exam - Page 5 of 6

- 4. Consider $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{bmatrix}$. We aim to find the orthogonal projection matrix to $\operatorname{Ran}(A)$.
 - (a) (3 points) Find the reduced row echelon form of $A^{\rm T}$, and find a basis for $\operatorname{Ker}(A^{\rm T})$.

(b) (2 points) Find the orthogonal projection matrix P_1 to Ker (A^{T}) .

(c) (2 points) Find the orthogonal projection matrix P_2 to $\operatorname{Ran}(A)$.

(d) (3 points) Let $B = \begin{bmatrix} 5 & 5 & 6 \\ 5 & 8 & 9 \\ 6 & 9 & 13 \end{bmatrix}$. Show that $\begin{bmatrix} I & A^{\mathrm{T}} \\ A & B \end{bmatrix}$ is positive definite. Please explicitly states the criteria of positive-definiteness that you are using. (Hint: Block LDL^T decomposition.) Linear Algebra (English) Final Exam - Page 6 of 6

5. Let V be the space of homogeneous polynomials in x, y with degree two. (Homogeneous means we only have degree two terms. For example, elements of V could be $x^2 + 2xy + 3y^2$, $4x^2 - 3xy - y^2$ and so on. There cannot be degree one or degree zero terms.)

Let W be the space of polynomials in x with degree at most two. Now, given any polynomial in V, say $x^2 + 2xy + 3y^2$, we can substitute y by x + 2, and therefore get $x^2 + 2x(x+2) + 3(x+2)^2$. This would be an element of W. Hence "substitute y by x + 2" is an abstract map $S: V \to W$. This is a linear map.

- (a) (1 point) Verify that $S(2x^2 + 3xy) = 2S(x^2) + 3S(xy)$.
- (b) (2 points) Pick basis x^2, xy, y^2 for V and basis $x^2, x, 1$ for W, find the matrix A for S under these basis.
- (c) (2 points) Find all possible $p \in V$ such that $S(p) = 3x^2 + 6x + 4$.
- (d) (2 points) Pick basis $x^2, x(y-x), (y-x)^2$ for V and basis $x^2, x, 1$ for W, find the matrix B for S under these basis.
- (e) (2 points) Let X the change of coordinate matrix in V from the basis x^2, xy, y^2 to the basis $x^2, x(y-x), (y-x)^2$. How are A, B, X related? Calculate X from this relation.

共6页第6

页