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13.9 Poincaré duality and de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
13.10Hodge dual and Maxwell’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
13.11Pulling tangents and pushing forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
13.12de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

vi



0.1 A philosophical discourse on the philosophy of math and learn-
ing

Math is not an object-oriented subject. Rather, it is more relation-oriented. When we learn that 1 + 1 = 2,
the symbols 1 and 2 here do not refer to some genuin objects somewhere in the universe. Rather, the
equation is suppose to points out a universal relation about quantities in this world. If you have one apple
and another apple, then you have two apples. You can easily find infinite examplifications of such a relation.
As math students, we see this quantity relation, and we write down the equation 1 + 1 = 2 to capture this
relation.

Similarly, linear algebra uses matrices. But what are matrices? They are not actual objects. They are
relations of some kind. The object-oriented view versus relation-oriented view will lead to very di↵erent
teaching practice and learning practice.

Suppose I am teaching my children (2 year old and 3 year old) the concept of cars. From an object-
oriented view, I would do the following: I show them a million pictures, and say “This is a car” or “This is
not a car”. Then after enough practices, they are taught the concept of cars. Perhaps your education before
college is exactly like this. Do the same problem enough times, your exam scores will then improve, right?

However, from a relational point of view, I would do things di↵erently. I would say the following: “A car
has a steering wheel, and you can turn it.” “A car has a gas paddle to run faster, and a break to go slower.”
“Yesterday we went to the park by a car.” “This red car is our car, and that blue car is our neighbor’s car.”
“The policeman use a police car to catch bad guys.” “Let us sing a song about cars.” “Let us play with
this toy car.” I bring out the relation of cars with everything else in my children’s life. Then with enough
connections, their knowledge of car is now solidified in the web of its relations with regards to everything
else. In particular, they now understand the concept of cars, even though they have not seen millions of
pictures of cars.

Now suppose a person A learned about cars in the object-oriented way. And a person B learned about cars
in the relation-oriented way. If I give them exams (“which of the following picture is a car?”), both should
perform adequately well. Maybe A would perform even better, because of the extra practices. However,
which one is more likely to enjoy cars when they grow up? Which one is going to have a better intuition
about car mechanics? Which one is more likely to be a better driver? I would guess that B is going to be
better in these senses.

Think about learning English. You can memorize words and grammar rules to your heart’s content,
and you might still freeze when you try to speak English out loud. Instead, if you go live in an English
environment, then you’ll be able to speak English easily in no time, because now you have connected English
with various aspects of your life.

So I hope dearly that in your own studies, try to focus NOT on the WHAT, but on the HOW; NOT
on the concepts, but on the CONNECTIONS between concepts. Everyone can search for the definition of
some concepts online, but only YOU can connect the concept with YOUR own prior knowledge, in ways
comfortable to YOU. These web of relations is what you learn.

Mere recitations will make you STOP learning, while making connections is how you START learning.

1
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Chapter 1

Introduction

1.1 What is Linear Algebra

1.1.1 Linear Combinations

In my personal view, the study of Linear Algebra is essentially the study of linear combinations. But
what is this? Is this something we can eat? Is it something we wear to keep us warm during winter?

Succintly put, I think a linear combination is a phenomenon in our daily lives. Think about the following
examples:

Example 1.1.1.

1. For breakfast I like to eat apples, bananas and cherries. Today I ate 2 apples, 3 bananas and 4 cherries.
Then I can say that I ate a linear combination of apples, bananas and cherries, with coe�cients 2, 3, 4.
I can also write that I ate

(2⇥ apples + 3⇥ bananas + 4⇥ cherries).

2. Each of your class must use linear algebra at least once, to calculate your grade for the class. Your
grade in a linear algebra class might be determined as the following: homework takes 20 percent,
midterm takes 30 percent, and the final exam takes 50 percent. Then I can say that your grade is a
linear combination of your homework, midterm and final with coe�cients 0.2, 0.3, 0.5. I can also write
that your final grade is

(0.2⇥Homework + 0.3⇥Midterm + 0.5⇥ Final).

3. Say I traveled to the USA. At the airport, I need to change yuans into dollars. Say I exchanged 12
yuan for 2 dollar. Then what’s the change in my wallet? Well, it is a linear combination of yuans and
dollars, with coe�cients �12 and 2. I can also write that the change in my wallet is

(�12⇥ yuan + 2⇥ dollar).

4. My household is made of myself, my wife, two sons and no pet. You can say that my household is a
linear combination of me, wife, sons and pets, with coe�cients 1, 1, 2, 0 respectively.

You can also say that my household is a linear combination of me, wife and sons, which is also correct.
However, it would be WRONG to say that my house hold is a linear combination of me, sons and pets,
because no matter how you combine them, you will always miss out my wife, which is an important
part of my household. (THE most important part. My wife might read this.)

,
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Remark 1.1.2. As you can see from the examples above, the coe�cients (or scalars, since they “scale” the
corresponding item to some multiples of them.) here can be integers, non-integers, positive numbers, negative
numbers, and even zero. All real numbers are good.

Later we shall also introduce complex coe�cients. But for the most part of this class, you can stay
comfortably in the world of real numbers.

Here are some more abstract, mathematical structures, on which we can also do linear combinations.

Example 1.1.3.

1. In high school, we define “vectors” as some sort of arrows. We say that it is something with direction
and magnitude. For example, if v,w are two arrows, then we can perform “arrow additions” like v+w,
or even linear combinations like 2v + 3w, by drawing the corresponding parallelogram and find the
diagonal arrow.

w

v

v +w w

v

2v + 3w

2. Given two functions f(x), g(x), defined from real numbers to real numbers, we can do their linear
combinations like 2f(x) + 3g(x), which will still be a function.

,

Now, as long as we are doing linear combinations, here is a fun problem to comtemplate. It will also
serve as a major indication of how one should learn mathematics in general.

Example 1.1.4 (Grinfeld’s Question). It is crutial how we interpred our linear combinations. The following
question is raised by Pavel Grinfeld.

We all have songs stored in our computer or ipod or smart phones or any music players. If you look into
a music file, you see a bunch of numbers, the data of your file, recording the soundtracks.

Say you open a soft music file, and for simplicity, suppose the sound track is like the following:
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�4 �2 2 4

�2

�1

1

2

Music wave

x

y

Say you open a file of someone reading a book, and for simplicity, suppose the sound track is like the
following:

�4 �2 2 4

�2

�1

1

2

Reading wave

x

y

If you simply add of the two sound tracks, “book+music” will be like the following:

�4 �2 2 4

�2

�1

1

2

Sum wave

x

y
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What does this sum sound like? Well, actually this is very straight forward: you will simultaneously hear
both. You will hear the reading of the book, and with music in the background. Simple yes?

Now think about this: what if we do substraction “book-music”? What does it sound like now? Is the
music played in the reversed order? Maybe the high pitches and low pitches are inverted? Or is it going to
be gibberish?

Think about this for a while and then check the answer on the next page. ,

Here I leave a page break, so you can think about it a bit without looking at the answer on the next
page.
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Example 1.1.5 (Grinfeld’s Question Answer). It turns out that “book-music” sounds exactly the same
as “book+music”! Surprised?

The key lies in interpretation. For simplicity, let us consider a simple sound wave A sin( 2⇡t
f
). Here A is

a real number that means amplitude, and it records how high the “belly” of your waves are. And f is an
integer that means frequence, i.e, how many periods has we gone through when t goes from 0 to 1.

Given a sound wave, the amplitude would determine how loud we hear, while the frequence would
determine the pitch of the sound. For example, a pitch may vibrate 440 cycles per second, or 440Hz in short,
then it sounds like the standard “La” sound in most modern musics. And the amplitude simply determines
how loud the sound is.

Now suppose we have a sound wave “music” which is the following:

�4 �2 2 4

�2

�1

1

2

Music wave

x

y

Then the “minus music” is actually the following:

�4 �2 2 4

�2

�1

1

2

Negated Music

x

y

Wait! Even though the waves are not exactly the same, nevertheless they have the SAME amplitude
and SAME frequency! So “-music” sounds exactly the same as “music”, as it has the same pitch and same
loudness. (To be more precise, the negated sound wave is in fact the original sound wave shifted by half a
period, so they sounds exactly the same in our ears.)

In particular, “book+music” and “bood-music” will sound exactly the same. ,

Remark 1.1.6. Note that if “book”=“music” are exactly the same, then book � music = 0 while book +
music = 2book, hey, surely they must sound di↵erent now! However, by Fourier analysis, such a thing could

7

解读
⼀

整数 频率振动瑶

⺠定叶分析



only happen if the book soundwaves and the music soundwaves coincide completely on some short interval.
That is almost never the case in real life.

Also be careful here. I am NOT claiming that the soundwave for “book+music” and “bood-music” are
exactly the same. I am merely saying that they sounds the same to our ears. sin(x) and sin(x + 1) are
di↵erent curves, yet they have the same frequency and amplitude, so our ear cannot tell the di↵erence.

The point of the above example is the following: simply knowing the math will not help you at all. What
WILL help you is the interpretation of the math. For every mathematical concepts, try to gather at least
one, and hopefully many interpretations. It could be interpretations in terms of applications, or in terms of
other mathematical concepts, or it could just be some mental picture of sorts. The more the merrier. These
interpretations will give you intuitions, and thus tell you where to go in your own problem solving endeavors.

When you look at a problem and you go blank, having no clue what to do, then it simply means you
have not gathered enough intuitions. Go explore the definitions some more, play with more examples, talk
to other people. Keep finding more interpretations, until you have enough intuition to guide you.

And while you are gathering these intuitions, keep in mind that they could be wrong. Anything that is
not a rigorous proof could very well be wrong. But it does not mean your old interpretations are useless.
Build intuitions, find the mistakes in your intuitions, and revise and improve your intuitions. This is simply
how learning should be done.

1.1.2 Linear Maps

So, intuitively at least, linear combination simply means we are combining things by multiplying each with a
number, and add them together. As you can see, I’m teaching you nothing new so far. I’m merely pointing
out a structure with which you are already familiar, since they are everywhere in your life.

But what’s the point of having structures? Well, structures are meant to be related to each other.
Consider the following examples:

Example 1.1.7.

1. Say I go shopping and buy apples, bananas and cherries, and the prices for each is 3 yuan, 1 yuan and
2 yuan respectively.

I intend to buy the following:

(2⇥ apples + 3⇥ bananas + 4⇥ cherries).

When I check out, the linear combination of fruits will transform into the same linear combination of
prices of each fruit, which is what I must pay:

(2⇥ apple price + 3⇥ banana price + 4⇥ cherry price) = 17yuan.

In this example, the inputs are linear combinations of fruits, and the outputs are real numbers. In
mathematical words, we have a function “CheckOut” that sends linear combination of fruits to their
total price. In this case, we have

CheckOut(2⇥ apples + 3⇥ bananas + 4⇥ cherries) = 17yuan.

You can easily see that, for any real number x, y, and any linear combination of fruits a, b, we should
always have

CheckOut(xa+ yb) = xCheckOut(a) + yCheckOut(b).

In particular, even though we are changing fruits into numbers, the structure of linear combination is
in fact preserved.
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2. I put a bunch of hens and rabbits into a cage. Each hen has 1 head, 2 legs. Each rabbit has 1 head
and 4 legs. Then if I put a linear combination 3⇥ hens + 5⇥ rabbits into the cage, then in my cage, I
would have the linear combination

3(1⇥ head + 2⇥ leg) + 5(1⇥ head + 4⇥ legs) = 8⇥ head + 26⇥ legs.

In this example, the inputs are linear combinations of animals, and the outputs are linear combinations.
In mathematical words, we have a function “Count”, that sends linear combinations of animals to linear
combinations of body parts.

If a, b are two linear combination of animals, then Count(xa+ yb) = xCount(a) + yCount(b).

,

As you can see, at the center of this is a kind of functions with a special property. These are called
linear maps. In mathematical words, a linear map is a function f that preserves the structure of linear
combinations, i.e., if a, b are possible inputs, and we combine them into a new input xa+yb, then we always
have f(xa+ yb) = xf(a) + yf(b).

1.2 The spaces Rn

1.2.1 Definition of Rn

Now, I hope that you acknowledge that linear combinations and linear maps are omnipresent in our lives.
However, the job of mathematics is to do abstractions, i.e., focus only on the structure and ignore the
irrelavant details.

Say I want to talk about fruit combinations of apples, bananas and cherries. Maybe I’m tired of keep
saying (2 ⇥ apples + 3 ⇥ bananas + 4 ⇥ cherries). Instead, I may simply write a sequence of real numbers,

i.e.,

2

4
2
3
4

3

5. This saves time, so why not?

Note that the ORDER of these real numbers are vital. If I have

2

4
3
2
4

3

5, then it will NOT be (2⇥ apples +

3⇥ bananas + 4⇥ cherries). Instead, it is (3⇥ apples + 2⇥ bananas + 4⇥ cherries).

Definition 1.2.1. 1. We define R⇥R⇥ · · ·⇥R or simply Rn to be the set of ordered list of n elements

of R, i.e.,

2

4
a1
...
an

3

5 such that all these “coordinates” are in R. (Traditionally people also write (a1, ..., an)

to denote this ordered list of elements. But in our class, we uses the vertical notation. Don’t ask why,
it is just a tradition for linear algebra, probably for aethetic reasons that you shall see later, when we
multiply matrices to vectors.)

2. For elements of Rn, which we shall call real vectors, we define vector addition as

2

64
a1
...
an

3

75 +

2

64
b1
...
bn

3

75 =

2

64
a1 + b1

...
an + bn

3

75.
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3. For any real number k 2 R and a real vector

2

64
a1
...
an

3

75 2 Rn, we define scalar multiplication as k

2

64
a1
...
an

3

75 =

2

64
ka1
...

kan

3

75.

4. We say the dimension of Rn is the number n.

In our class, if we refer to Rn, we shall always use the vector addition and scalar multiplication defined
above.

Example 1.2.2.
In the breakfast example, everything seems to be in R3. Of course, one need to have an open mind

about “decimal quantities” of fruits, or “negative quantities” of fruits. Well, maybe I cut an apple in half to
have 0.5 ⇥ apple. Or maybe instead of eating an apple for breakfast, I vomit out an apple, so today I had
(�1)⇥ apple.

We all know negative energy and negative mass could be useful in physics, so why not negative apples?
I’m simply pleading the fair readers to keep a flexible mind about things such as these. (Mathematical rigor
is never my main concern. I did call these sets of notes POISONOUS, because traditional math teachers will
probably not stand for such things....) ,

Example 1.2.3.
When given a plane, say we are doing some high school geometry problem, then we can draw a coordinate

chart. By doing so, we have declared that each point on the plane is now essentially a pair of real numbers.
What is this? This is R2.

So in a sense, we can think of R2 as a plane with a coordinate chart. Similarly, one can think of R3 as
the space with a coordinate chart. In this fashion, one can see that, the so called “n-dimensional space” is
simply Rn if we draw a coordinate chart. We may not see higher dimensional space, but we can certainly
calculate. Just treat it as Rn and we can happily compute away whatever we come across. ,

What about linear maps? Recall that a function is a linear map if it sends linear combinations of many
inputs to the SAME linear combination of respective outputs, i.e., f(

P
aivi) =

P
aif(vi).

Definition 1.2.4. A function f : Rn ! Rm is said to be a linear map if f(
P

aivi) =
P

aif(vi) for all
ai 2 R,vi 2 Rn.

Example 1.2.5. To show that a map f is linear, it is enough to check that f(kv) = kf(v) and f(v+w) =
f(v) + f(w). These will obviously allow you to show that f respect all linear combinations.

Consider a map R✓ : R2 ! R2. For each arrow vector v 2 R2, R✓ simply rotate it by ✓ counter clockwise.
Then this map is linear, as can be seen in the graphs below.
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x

O

R✓(x) ✓

kx

R✓(kx) = kR✓(x)

✓

(a) Scalar multiplication

x

O

R✓(x)

x0

R✓(x0)

x+ x0

R✓(x+ x0) = R✓(x) +R✓(x0)

✓

✓

✓

(b) Vector addition

Figure 1.2.1: Rotation is linear

,

Keep in mind of a very important property of linear maps. Since the output is always proportional to
the input, a linear map should always send no input to no output.

Proposition 1.2.6. Given a linear map f : Rn ! Rm, we must have f(0) = 0.

Here 0 refers to the zero vector 0 =

2

64
0
...
0

3

75, or theorigin of the space Rn or Rm. In the formula f(0) = 0,

the input 0 is the origin of Rn, while the output 0 is the origin of Rm, so technically they might not be the
same zero vector. (They might have di↵erent number of coordinates, even though all coordinates are zero.)

Proof. We just calculate this
f(0) = f(20) = 2f(0).

Now substract both sides by f(0), we see that 0 = f(0).

Example 1.2.7. In particular, a translation map (shift all inputs by the same vector), say T : R2 ! R2

where T (v) = v +


1
0

�
, is NOT linear. This is because T (0) is no longer 0.

This map is in fact an a�ne maps, which is basically a linear map but you can then add a constant
vector afterwards. So functions f : R ! R such as f(x) = 2x are linear, and functions such as f(x) = 2x+1
are a�ne. We do not do a�ne maps in this class. (But a�ne maps can still be studied in similar manners.)
,

1.2.2 Coordinates and Matrices

Now the single most important property of Rn is a basis.
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Definition 1.2.8. For the vectors

2

66666664

1
0
0
...
0
0

3

77777775

,

2

66666664

0
1
0
...
0
0

3

77777775

,

2

66666664

0
0
0
...
0
1

3

77777775

, we usually denote them as e1, ..., en, and we call these

the standart basis vectors for Rn.

Proposition 1.2.9. Every vector in Rn is a UNIQUE linear combination of the standard basis.

Proof. The proof is trivial, but let us do it to see some bigger picture. “Unique” means exactly one. To
show that something is unique, you need to show that there is at least one, and then you need to show that
there is at most one. This is the standard procedure to prove uniqueness.

Every vector is AT LEAST one linear combination of them:

We have

2

64
a1
...
an

3

75 =
P

aiei. Honestly, this is how you should think of coordinates. They are just coe�cients

telling you how to combine the standard basis vectors.
Every vector is AT MOST one linear combination of them:

Suppose

2

64
a1
...
an

3

75 =
P

biei is another linear combination. Then note that
P

biei =

2

64
b1
...
bn

3

75. So we see

that

2

64
a1
...
an

3

75 =

2

64
b1
...
bn

3

75, which by definition of Rn indicates that ai = bi for all i. So it is NOT another linear

combination after all, it is the same one.

The idea of the standard basis is implicit in many applications already. For example, if we were doing
linear combinations of apples, bananas and cherries, then the standard basis is simple the following three
vectors: a single apple, a single banana, and a single cherry.

The following is an example that reveals how we could exploit these structures to our benefit.

Example 1.2.10. On a plane, each vector is given by two coordinates. (Note that in our class, we usually

write vectors vertically.) Given a vector v =


x
y

�
, we can rotate it counterclockwise by ✓. What is the

coordinate of the result in terms of x, y, ✓?
On the face, this appears to be a rather annoying problem. Sure, in the traditional sense, you can draw

graphs, draw auxilliary lines (Fu Zhu Xian), analyze triangles, use trigonometries (San Jiao Han Shu), and
eventually find the answer. But here we shall present another proof, which is both straightforward and
elementary, if we start with exploiting the linear structures. THIS IS HOW WE SHOULD THINK IN THIS
CLASS!

Consider the rotation as a map R✓ sending vectors to vectors. Then this is a linear map!
Then in particular, we should have the following computation:

R✓(


x
y

�
) = R✓(x


1
0

�
+ y


0
1

�
) = xR✓(


1
0

�
) + yR✓(


0
1

�
).

In particular, we will figure out the rotation formula as soon as we find out the value of R✓(


1
0

�
) and

R✓(


0
1

�
)! In fact, it is easy to see the following:

R✓(


1
0

�
) =


cos ✓
sin ✓

�
;
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R✓(


0
1

�
) =


� sin ✓
cos ✓

�
.

As a result, we see that

R✓(


x
y

�
) = x


cos ✓
sin ✓

�
+ y


� sin ✓
cos ✓

�
=


x cos ✓ � y sin ✓
x sin ✓ + y cos ✓

�
.

,

As you can see from the example above, the only computations we did are the rotations of only two
vectors. By understanding the rotation of two vectors (the two standard basis vectors), we now understand
the rotation of all vectors.

The key to our simplicity is the fact that EVERY vectors here can be UNIQUELY expressed as the

linear combination of


1
0

�
and


0
1

�
. This means that by studying only two vectors, we manage to study ALL

vectors (as far as linear things are concerned)!
And this leads to a very central concept of study in this course, the infamous matrices. As we have seen,

the image of the standard basis vectors


1
0

�
and


0
1

�
via R✓, i.e.,


cos ✓
sin ✓

�
and


� sin ✓
cos ✓

�
, would completely

determine the entire formula for R✓!

So we say that the linear map R✓ is represented by the matrix


cos ✓ � sin ✓
sin ✓ cos ✓

�
, where the first colum

records the image of the first standard basis vector


1
0

�
, and the second column records the image of the

second standard basis vector


0
1

�
. As we have seen, together they record ALL info about this linear map.

Definition 1.2.11. 1. An m by n real matrix (plural of matrix is matrices) is a rectangular array of

real numbers with m rows and n columns, like

2

64
a11 ... a1n
...

. . .
...

am1 ... amn

3

75. We usually denote these matrices

(plural form of “matrix”) with capital letters like A,B,C,D,M,X, Y . For example, we might say

A =

2

64
a11 ... a1n
...

. . .
...

am1 ... amn

3

75.

2. We call the number in the i-th row and j-th column of this matrix the (i, j) entry of this matrix.

3. Given a linear map f : Rn ! Rm, its matrix is Mf :=
⇥
f(e1) ... f(en)

⇤
, so the columns are exactly

images of the standard basis vectors.

Remark 1.2.12. Note that we sometimes write matrices as a capital letter A, sometimes as its entries2

64
a11 ... a1n
...

. . .
...

am1 ... amn

3

75, sometimes as its column vectors
⇥
a1 ... an

⇤
, and sometimes as its row vectors

2

4
rT1
...
rT
n

3

5.

(Here the letter T in the exponent means this is a horizontal vector, instead of a vertical vector.) Despite
di↵erent notations, it is easy to see that they are all about rectangular arrays of numbers.

Think about how this works. If a linear map f has a matrix Mf =
⇥
a1 ... an

⇤
, then it implies that

f(ei) = ai. So when we do calculations, we see that f(

2

64
x1
...
xn

3

75) = f(
P

xiei) =
P

xif(ei) =
P

xiai. So
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we merely need do a linear combination of columns of Mf , with coe�cients according to the inputting
coordinates.

Example 1.2.13 (Nutrition table is a linear map). Suppose f : R3 ! R2 is some unknown linear map,

whose matrix is


1 2 3
4 5 6

�
. Then to find f(

2

4
2
2
3

3

5), we have

f(

2

4
2
2
3

3

5) =f(2

2

4
1
0
0

3

5+ 2

2

4
0
1
0

3

5+ 3

2

4
0
0
1

3

5) express the input in the standard basis

=2f(

2

4
1
0
0

3

5) + 2f(

2

4
0
1
0

3

5) + 3f(

2

4
0
0
1

3

5) use linearity of f

=2


1
4

�
+ 2


2
5

�
+ 3


3
6

�
use the matrix of f

=


15
36

�
calculate.

Maybe, say, the domain R3 represent the “fruit space”, where

2

4
2
2
3

3

5 means two apples, two bananas and

three cherries. While the codomain R2 here represent the “nutrition space”, where


1
4

�
means one unit of

fiber and four units of sugar.
Now suppose our matrix is actually the nutrition table

2

4
apple banana cherry

fiber 1 2 3
sugar 4 5 6

3

5 .

Then what is the meaning of the f? It is simply a function sending any combination of fruits to the
contained nutrition!

(I made up these numbers arbitrarily. They in no way reflect the real nutrition value in these fruits....)
,

Definition 1.2.14. Given an m by n matrix A =
⇥
a1 ... an

⇤
, and a vector x =

2

64
x1
...
xn

3

75, we define their

multiplication to be

Ax =
⇥
a1 ... an

⇤
2

64
x1
...
xn

3

75 =
X

xiai.

Corollary 1.2.15. If a linear map f is represented by a matrix A, then f(v) = Av.

We have an big formula for matrix-vector multiplication below. Try to wrap your mind around it at
least. However, in practice I would highly recommand you to take the column view presented above, or the
row view that we shall introduce in the future.

2

64
a11 ... a1n
...

. . .
...

am1 ... amn

3

75

2

66664

x1
...
...
xn

3

77775
=

2

64

P
a1ixi

...P
amixi

3

75 .
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Remark 1.2.16. Note that the input vector might NOT be as “tall” as the matrix. But the output vector
MUST be as “tall” as the matrix. Think about why.

We may sometimes think about matrices and linear maps interchangably. Given a linear map, the first
thing we do should be finding out its matrix. Given a matrix, the best way to interpret this array of numbers
is to think of it as a linear map. Matrices are for calculation, and maps are for interpretation. They serve
each other very well. Let us see some more examples.

Example 1.2.17.
Say I go shopping and buy apples, bananas and cherries, and the prices for each is 3 yuan, 1 yuan and 2

yuan respectively. When I check out, I send fruit combinations to their total cost. Now, what’s vital to this
“CheckOut” function are the unit prices, the prices for a single apple, a single banana, or a single cherry.
Why is that? because it is precisely the value of “CheckOut” on the standard basis! Essentially, the unit
prices tell us CheckOut(e1) = 3,CheckOut(e2) = 1,CheckOut(e3) = 2. As a result,

CheckOut(

2

4
a
b
c

3

5)

=
⇥
3 1 2

⇤
2

4
a
b
c

3

5

=3a+ b+ 2c.

We see that the matrix for check out is simply a “row vector”
⇥
3 1 2

⇤
. ,

Example 1.2.18 (Hens and Rabbits in a Cage).
Ah, the famous Ji Tu Tong Long problem.
I put a bunch of hens and rabbits into a cage. Each hen has 1 head, 2 legs and 2 wings. Each rabbit has 1

head and 4 legs. When we attempt to do the counting, we see that Count(e1) =


1
2

�
, and Count(e2) =


1
4

�
.

So if we input x hens and y rabbits, we have

Count(


x
y

�
)

=


1 1
2 4

� 
x
y

�

=


x+ y

2x+ 4y

�
.

Now, in light of this, what is the traditional hen-rabbit cage problem? Well, it states that given the
number of heads and legs, say 6 heads and 20 legs, can we deduce the number of hens and rabbits?

So given unknown vector x, we want to solve it from the equation Ax =


6
20

�
, where A =


1 1
2 4

�
is the

matrix here. (This is a standard pre-image problem.)

The question is equivalent to the following: how can we combine


1
2

�
and


1
4

�
into


6
20

�
?

The linear way of thinking might goes like this. Instead of getting


6
20

�
, let us first try to get


1
0

�
and


0
1

�
instead. Just by staring at these vectors, and try some values, it is easy to realize the following:

1. To create


1
0

�
from


1
2

�
and


1
4

�
, I would need multiples of


1
2

�
and


1
4

�
to cancel each other’s second

coordinate. So we can see that

2


1
2

�
�

1
4

�
=


1
0

�
.
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2. To create


0
1

�
from


1
2

�
and


1
4

�
, I would need multiples of


1
2

�
and


1
4

�
to cancel each other’s first

coordinate. So we can see that 
1
2

�
�

1
4

�
=


0
�2

�
.

Thus we have

�1

2


1
2

�
+

1

2


1
4

�
=


0
1

�
.

Note that f(


1
0

�
) =


1
2

�
and f(


0
1

�
) =


1
4

�
. Substituting this, we get

2f(


1
0

�
)� f(


0
1

�
) =


1
0

�
,

�1

2
f(


1
0

�
) +

1

2
f(


0
1

�
) =


0
1

�
.

Using linearity of f , we see that

f(


2
�1

�
) =


1
0

�
,

f(


� 1

2
1
2

�
) =


0
1

�
.

Now, our desire is to get a right hand side of


6
20

�
. So simply add six copies of the first equation and

twenty copies of the second equation above, and we get

6f(


2
�1

�
) + 20f(


� 1

2
1
2

�
) =


6
20

�
.

Use linearity again, we get our answer

f(


2
4

�
) =


6
20

�
.

So the answer is 2 hens and 4 rabbits.
Note that, our original problem is f(x) = b for some constant vector b. Therefore, ideally, IF we have

an inverse function f�1, then one would simply have x = f�1(b). How would one figure out this inverse
function? Again, it is enough to figure it out on the standard basis. If you look at our arguments above, you

will realize that we are essentially proving that f�1(


1
0

�
) =


2
�1

�
and f�1(


0
1

�
) =


� 1

2
1
2

�
. Hence the inverse

map have a matrix of A�1 =


2 � 1

2
�1 1

2

�
. What does this mean? It means that 2 hens and �1 rabbit will

give 1 head and no leg, while � 1
2 hen and 1

2 rabbit will give no head and 1 leg.
Now given any constant vector b, to solve x from Ax = b, we simply have x = A�1b. Hence simpy

multiplying the matrix


2 � 1

2
�1 1

2

�
with b would give us the answer. We have solved ALL possible hen-rabbit

cage problems in one go. ,

1.2.3 (Optional) Modular Examples

The idea of linear combinations and basis extends far beyond just linear algebra. Here is an ancient Chinese
problem on mathematics. (Sun Zi Ding Li, or Chinese Remainder Theorem.)
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Example 1.2.19. Suppose I have an integer. When divided by 3, the remainder is 2. When divided by 5,
then remainder is 3. When divided by 7, the remainder is 4. Find all such integers.

In the ancient text of Sun Zi Suan Jing, the standard solution is this: multiply the remainder for 3 by
70. Multiply the remainder for 5 by 21. Multiply the remainder for 7 by 15. Now the answer is the sum of
these numbers plus an arbitrary multiple of 105.

Why does this work? The first realization is the following: for each integer n 2 Z, we can send it to r(n),

a triple of remainders

2

4
n mod 3
n mod 5
n mod 7

3

5. For example, for the number 73, we have r(73) =

2

4
1
3
3

3

5. You can easily

check that r(a+ b) = r(a)+ r(b) and r(ab) = a · r(b), where addition and multiplication is done with respect
to the modular arithmetic of each coordinate. In some sense, this “remainder map” r is “linear”.

Now, the algorithm described by Sun Zi Suan Jing is merely pointing out that r(70) =

2

4
1
0
0

3

5 , r(21) =

2

4
0
1
0

3

5 , r(15) =

2

4
0
0
1

3

5. So in this sense the numbers 70, 21 and 15 form a “basis”. Now to seek a number with

remainders a mod 3, b mod 5, c mod 7, one obvious candidate would then be 70a + 21b + 15c, because it
would yield

r(70a+ 21 + 15c) =a · r(70) + b · r(21) + c · r(15)

=a

2

4
1
0
0

3

5+ b

2

4
0
1
0

3

5+ c

2

4
0
0
1

3

5

=

2

4
a
b
c

3

5 .

So 70a+ 21b+ 15c is a number with the desired remainders.
Now if n is another number with the desired remainders, then n � (70a + 21b + 15c) would have all

remainders zero. So it must be a multiple of 3, 5, and 7, and hence it is a multiple of 105. So n is
70a+ 21b+ 15c with an arbitrary multiple of 105.

As you can see, at the heart of this problem is the idea of linear combinations, and expressions from a
collection of “basis” elements. ,

Technically, the example above is NOT considered a problem of linear algebra, because the three coordi-
nates take values in DIFFERENT sets. To be precise, this is actually a Z-module (because you can multiply2

4
a mod 3
b mod 5
c mod 7

3

5 by any integer).

However, the idea is completely about linear combinations, as you can clearly see from the examples.
And as such it opens up a lot of applications of ideas we are going to use.
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Part I

The Space Rn
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Chapter 2

Systems of Linear Equations

2.1 Preliminary on Maps

We need to get some terminology straight. First we need sets. What is a set? Intuitively, a set is a collection
of stu↵, and these stu↵ inside a set are called elements. This intuitive picture will serve us just fine, so let
us NOT dive into the set theory stu↵ for the moment. We only focus on what we would need.

Remark 2.1.1. This intuitive understanding of set might run into trouble such as Russel’s paradox. Learn
set theory if you’d like to know more.

Example 2.1.2. Say S = {1, 2,|} and T = {2, 3}. Then we can create the union of the sets S [ T =
{1, 2, 3,|}. We can also create the intersection of the sets S \ T = {2}.

We can also create the product (or more specifically a Cartesian product) of the sets as S ⇥ T =

{

s
t

�
: s 2 S and t 2 T}, or more specifically,

S ⇥ T = {

1
2

�
,


2
2

�
,


|
2

�
,


1
3

�
,


2
3

�
,


|
3

�
}.

Note that if |S| means the number of elements in a set S, then we have |S ⇥ T | = |S| ⇥ |T | for finite sets
S, T .

Finally, we write S ⇥ · · ·⇥S (n times) simply as Sn, as we did in the notation of Rn. Note that we have
|Sn| = |S|n for a finite set S. ,

Now we need maps to connect various sets.

1. A map (or sometimes called a function) is a machine that takes an element (or “input”) from one
set, and transform it into an element (or “output”) in anther set.

2. We usually write f : X ! Y , if f is sending elements of X to elements of Y .

3. We call the set of inputs the domain of our map, and the set of outputs the codomain of our map.

4. If the domain and codomain are the same, we also say that this map is a transformation .

5. If f sends an input x to y, we write f(x) = y or f : x 7! y. We say y is the image of x, and x is a
pre-image of y.

(IMPORTANT DETAIL: be careful of the di↵erence of “a” and “the”. When I write “the image”, I
am implying that such image is UNIQUE, that there is only one possible image for x. When I write
“a pre-image”, I am saying that maybe y has more than one pre-image. We simply don’t know and
make no assumptions.)
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Example 2.1.3. 1. A human is a map. If we think of X as the set of all foods, and Y as the set of all,
well, you know. Then human : X ! Y is a map. Each particular food is transformed by a human into
a particular piece of, well, you know.

2. In the world of Harry Potter, a wand is a function that sends incantations into magical spells. (Inci-
dentally, “f” looks like a wand in shape.)

3. Let X = {1, 2, 3}. Then f : X ! X with f(1) = 2, f(2) = 3, f(3) = 1 is a map, and g : X ! X with
g(1) = 2, g(2) = 1, g(3) = 3 is a map, and h : X ! X with h(x) = 1 for all x is a map. In fact, let us
draw some diagrams to see them.

1 1

2 2

3 3

(a) Map f

1 1

2 2

3 3

(b) Map g

1 1

2 2

3 3

(c) Map h

4. Of course we also know many maps from R to R. Say f(x) = x + 1, f(x) = 2x, f(x) = ex, f(x) =
ln(x), f(x) = sinx, etc..

5. What is NOT a function? Well, here are two cases where f : {1, 2, 3} ! {1, 2, 3} is NOT a function.

1 1

2 2

3 3

(a) 3 has no defined value

1 1

2 2

3 3

(b) 1 has too many defined

value

,

Remark 2.1.4. Many academic text in English uses the following shorthands all the time. Might as well
get used to them. (They all come from Latin.)

Some useful shorthands in any English text:

1. The word “etc.” means “and so on...”. For example, “I ate some apples, bananas, cherries, etc..”

2. The word “i.e.” means “that is”, and it usually means the next words are explanations of the previous
words. For example, “I went to my dream university, i.e., Tsingua University.”

3. The word “e.g.” means “for example”. For example, “I like all fruits, e.g., apples, bananas, cherries,
etc..”

4. This is not Latin, but it is VERY important. If I write “i↵”, it does not mean “if”, and it is NOT a
typo. It means “if and only if”.

Now a central theme of mathematics is to try to figure out inverse maps, if possible.
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Example 2.1.5. 1. My son had red poop one day. I was super scared for a minute, but then I was
reminded that he had dragon fruits for lunch. If we think of my son as a map sending foods into poops,
then given the red poop, I have successfully figured out the pre-image.

2. Say f(x) = 2x+ 5. How to solve for f(x) = 3? Well, 2x+ 5 = 3, and then we see that x = �1.

3. Say f(x) = ex. How to solve for f(x) = 1? Well, ex = 1, so we have x = ln 1 = 0.

4. Say f(x) = x2. How to solve for f(x) = �1? Well, you cannot....

5. Say f(x) = x2. How to solve for f(x) = 1? Well, there are two solutions x = ±1. There is no UNIQUE
solution!

,

Obviously the last two scenarios are less desirable. Preferably, we hope our maps would have these kinds
of properties:

1. If every element in the codomain has at least one preimage, then we say the map is a surjective map.
Or simply say our map is a surjection . (Everything is the codomain is hit by some arrow in the
diagram.)

1 1

2 2

3 3

4

(a) Surjection

1 1

2 2

3 3

4

(b) Not a surjection

1 1

2 2

3 3

4

(c) Not a surjection

2. If every element in the codomain has at most one preimage, then we say the map is a injective map.
Or simply say our map is an injection . (Arrows never collide to the same targets in the diagram.)

1 1

2 2

3 3

4

(a) Injection

1 1

2 2

3 3

4

(b) Not an injection

1 1

2 2

3 3

4

(c) Not an injection

3. If every element in the codomain has a UNIQUE preimage (exactly one), then we say the map is a
bijective map. Or simply say our map is a bijection . (Arrows give a one-to-one correspondence in
the diagram.)
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1 1

2 2

3 3

(a) Bijection

1 1

2 2

3 3

4

(b) Not a bijection

1 1

2 2

3 3

4

(c) Not a bijection

Remark 2.1.6.
Bijection = each element in the codomain has exactly one pre-image.
Surjection = each element in the codomain has at least one pre-image.
Injection = each element in the codomain has at most one pre-image.
Since exactly one = “at least one” +“at most one”, we immediately see that surjection = surjection +

injection.

Proposition 2.1.7 (Inverse map). If f : X ! Y is a bijection, then there is a UNIQUE map g : Y ! X
such that f(x) = y if and only if g(y) = x.

Proof. Existence of g: Draw diagram with arrows as above. Reverse all arrows. Done.
As an extra remark, look at what would happen if f is not bijective. If f is not injective, then we

have f(a) = f(b) = c for some a 6= b. Then reversing the arrows would require g(c) = a AND g(c) = b,
contradiction.

If f is not surjective, then there is some y 2 Y with no pre-image. So reversing the arrows, g(y) is still
undefined.

In conclusion, bijectivity of f is central here.
Uniqueness of g: How to show that something is unique? Well, you simply show that any two possible

things must actually be the same, and therefore there is only one thing after all.
Suppose g, h both satisfy the requirements, we aim to show that g = h. How to show that two maps are

the same? Well, if they send the same inputs to the same outputs, then they are the same as maps. Pick
any y 2 Y . But then since f is a bijection, there is a UNIQUE x such that f(x) = y. Then by requirements
we must have g(y) = x and h(y) = x. So we see that g(y) = h(y) for all y, and thus they are the same as
maps.

In this case, we say g is the inverse map of f , and write g = f�1.

Proposition 2.1.8. If f : X ! Y has an inverse map g : Y ! X, then both are bijections.

Proof. For each y 2 Y , then g(y) 2 X is a pre-image of y for f . Hence f is surjective.
Suppose f(x) = f(x0). Let y represent this element. Then f(x) = y implies that x = g(y), while

f(x0) = y implies that x0 = g(y). Hence x = x0. So f is injective.
The case of g is identical.

Remark 2.1.9. This is the standard way to prove surjectivity and injectivity. To prove that some f : X ! Y
is surjective, for each y 2 Y , simpy find a pre-image. To prove that f is injective, then assume f(x1) = f(x2),
and try to deduce x1 = x2 from that.

Example 2.1.10. Here are some examples. Pay special attention to the codomain.

1. The map f : R ! R with f(x) = ex has NO inverse. It is injective but NOT surjective, since it can
never take non-positive value.
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2. The map f : R ! R+ with f(x) = ex has an inverse. Here R+ refers to the set of positive real numbers.
Its inverse is f�1 : R+ ! R with f�1(x) = ln(x).

3. The map f : R ! R with f(x) = x2 is NEITHER surjective NOR injective.

4. The map f : R ! [�1, 1] with f(x) = sinx is surjective but NOT injective.

5. The map f : R ! R with f(x) = 1
x
is NOT really a map, since f(0) is not defined.

6. But the map f : R� {0} ! R� {0} is a bijection. It is its own inverse.

,

As you can see, the codomain MATTERS! Let us have a definition here to di↵erentiate the idea between
“the whole codomain” and “the codomain that the map actually touched”. For any map f : X ! Y , we
say the range or image of the map is the set {f(x) | x 2 X}. We may write it as Ran(f), Im(f) or simply
f(X) sometimes. Obviously, f is surjective i↵ f(X) = Y .

Here is an example of a function f : {1, 2, 3, 4} ! {1, 2, 3, 4} where its range is di↵erent from its codomain.
Therefore it is NOT surjective.

1 1

2 2

3 3

4 4

Range

Remark 2.1.11. In fact, for any subset of the domain S ✓ X, we can define f(S) = {f(x) | x 2 S}.
Conversely, for any subset of the codomain S ✓ Y , we can define f�1(S) = {x | f(x) 2 S}, EVEN when the
map is NOT invertible! Here f�1 does NOT refer to the inverse map. It is simply a symbolic convenience,
referring to the pre-images of f .

One last thing, composition. Given a map f : X ! Y and g : Y ! Z, their composition is a map
g � f : X ! Z, such that g � f(x) = g(f(x)).

Proposition 2.1.12. Map composition is associative, i.e., (f � g) � h = f � (g � h) for maps f : Y ! Z, g :
X ! Y, h : W ! X.

Proof. Just compute directly by definition.

(f � g) � h(x) = (f � g)(h(x)) = f(g(h(x))) = f((g � h)(x)) = f � (g � h)(x).

Graphically, map composition is obviously associative. Just look at this graph:

W X Y Z
h

(f�g)�h=f�(g�h)

g�h

g

f�g

f

So we have associativity checked. What about other properties? Say, do we have commutativity? The
answer is NO.
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Example 2.1.13. Here are some examples.

1. Say f, g : R ! R with f(x) = ex, g(x) = 2x. You can easily verify that f � g is NOT the same as g � f ,
since f � g(x) = e2x while g � f(x) = 2ex. Composition is NOT commutative.

2. Say f, g : R ! R with f(x) = 2x + 1, g(x) = 3x + 2. Compute f � g and g � f , what would you see?
What if we change g into g(x) = 3x+ 1?

3. What condition on the injectivity or surjectivity of f, g would guarantee that f � g is injective? surjec-
tive? bijective? Find proofs and counter examples if you like.

,

Example 2.1.14. Here are some food for thought. Try to prove the following statements yourself.

1. If f, g are both injective, then f � g is injective.

2. If f, g are both surjective, then f � g is surjective.

3. If f, g are both bijective, then f � g is bijective.

4. If f � g is injective, then g is injective. (But f may not be injective.)

5. If f � g is surjective, then f is surjective. (But g may not be surjective.)

6. If f � g is bijective, then g is injective and f is surjective. (But we know no more.)

For the last three statements, here is an example to think about.

1 1 1

2 2 2

3 3 3

4

,

Remark 2.1.15. Here we provide proof to two statements that will be useful later.
If f � g is surjective, then let us show that f is surjective. The standard proof for surjectivity is like this:

you pick an arbitrary element of the codomain, and go find a pre-image. (So everything has a pre-image.)
For each y in the codomain of f (which is also the codomain of f � g), we can find a pre-image for the

map f � g, say x. Then f(g(x)) = y. But then g(x) is a pre-image of y for the map f . So we have found a
pre-image for arbitrary y. So f is surjective.

If f � g is injective, then let us show that g is injective. The standard proof for surjectivity is like this:
you show that any two inputs with the same image must actually be the same input. (So di↵erent inputs
must go to di↵erent images.)

Suppose g(x) = g(y) for two inputs x, y, and our goal is to prove x = y. Now we apply f to both sides
of g(x) = g(y), and we have f � g(x) = f � g(y). But since f � g is injective, f � g(x) = f � g(y) means that
x = y. This is what we want, so we are done! This shows that g is injective.

Now, in the example above, we see that if f � g is bijective, then we can NOT guarantee that f, g are
bijective. However, in some special cases, this can be done.
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Proposition 2.1.16. If X,Y are finite sets with the same amount of element, then any map f : X ! Y is
injective i↵ surjective i↵ bijective.

Proof. Suppose X,Y both have n elements.
Suppose f is injective. Let elements of X be x1, . . . , xn, and let yi = f(xi). Since f is injective, and

x1, . . . , xn are all distinct, therefore their images y1, . . . , yn are all distinct. But Y only has n elements!
Therefore Y = {y1, . . . , yn}, and f is surjective.

Now suppose f is surjective. Let elements of Y be y1, . . . , yn, and for each yi pick any pre-image xi (which
we can do because f is surjective). Now, since x1, . . . , xn all goes to distinct images, they must themselves
be distinct elements. But X only has n elements! Therefore X = {x1, . . . , xn}, and f is injective.

In conclusion, f is injective i↵ surjective, and hence i↵ bijective.

Remark 2.1.17. The porposition above can also be thought about in an intuitively manner. Suppose X,Y
have the same size. Then if f is not injective, then it will squeeze elements somehwere, hence its range will
be smaller in size. So it cannot be surjective.

Conversely, if f is not surjective, then it will have smaller range than domain. So something must
squeeze. So it cannot be injective.

Corollary 2.1.18. If X,Y, Z are finite sets, all with the same number of elements. Then for any g : X ! Y
and f : Y ! Z, if f � g is bijective, then both f and g are bijective.

Proof. If f � g is bijective, then g is injective and f is surjective. But since X,Y, Z all have the same number
of elements, g is injective i↵ bijective, and f is surjective i↵ bijective. So f, g are both bijective.

Now that we have all the terminology, let us look at my favorite map. (I’m sure it will be your favorite
as well.) It is going to be the identity map.

Definition 2.1.19. A map idX is an identity map for the set X if its domain and codomain are both X,
and we have idX(x) = x always. Sometimes we write id for short if the underlying set is obvious.

Proposition 2.1.20. 1. The identity map is always bijective, and it is its own inverse map.

2. For any set, its identity map is UNIQUE.

3. id � g = g whenever the composition is defined, and g � id = g whenever the composition is defined.

4. If a map f satisfies the condition that f � g = g whenever the composition is defined, or that g � f = g
whenever the composition is defined, then f must be the identity map for its domain. (This is a
necessary and su�cient condition.)

Proof. Only the last one is non-trivial. Suppose the domain of f is X and the codomain is Y . Pick g = idX ,
then f � g is defined, and f � g = g as required. However, since g is the identity map on X, we also have
f � g = f . Hence f = g. Done.

Proposition 2.1.21. If we have a pair of maps f : X ! Y and g : Y ! X, such that f �g = idY , g�f = idX ,
then f, g are inverse of each other.

Proof. If f(x) = y, then g(y) = g � f(x) = idX(x) = x.
If g(y) = x, then f(x) = f � g(y) = idY (y) = y.
So f(x) = y i↵ g(y) = x.

The identity map is the nicest and most important map ever. In particular it is also linear.

Proposition 2.1.22. Consider the identity map id : Rn ! Rn. Then id is linear, and its matrix is the

n⇥ n matrix

2

64
1

. . .
1

3

75. (Here empty entries means zero.)
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Proof. Recall that the identity map simply does nothing to the input. So it is linear because for all s, t 2 R
and a, b 2 Rn, we have

id(sa+ tb) = sa+ tb = sid(a) + tid(b).

Now let us find its matrix. Since id(ei) = ei, we see that the i-th column is simply ei. This results in the
pattern as described.

2.2 A Single Linear Equation: Dot Product, Projection, Hyper-
planes

Our goal is to understand the pre-image problem in linear algebra: given a known vector b and a matrix A,
solve x from Ax = b. (I.e., find a pre-image of b under the linear map A.)

We start by looking at the simplest case, when A has a single row. It turns out that there is a great
geometric interpretation in this case.

To start, if we have A =
⇥
a1 . . . an

⇤
, then the codomain is really just R, and Ax = b is now

⇥
a1 . . . an

⇤
2

64
x1
...
xn

3

75 = b.

Or in high school term, it is the linear equation

a1x1 + · · ·+ anxn = b.

Focus on the left hand side for now. Hey, this is something we are familiar with. In high school, we have
talked about dot products (or scalar products) between vectors, and they look exactly like the left hand side!

Definition 2.2.1. Given two vectors v =

2

64
v1
...
vn

3

75 ,w =

2

64
w1
...
wn

3

75 in Rn, we define their dot product or scalar

product to be
P

viwi.

Conventionally, we write vT to represent a “row vector” which is essentially v written horizontally. Then
we see that vTw = wTv = v ·w. So the meaning of vT simply means taking a dot product with v. As a
linear map, vT sends w to v ·w.

Proposition 2.2.2. The dot product is bilinear, symmetric and positive definite.
Bilinear means (a1v1+a2v2) ·w = a1(v1 ·w)+a2(v2 ·w) and w · (a1v1+a2v2) = a1(w ·v1)+a2w ·v2).
Symmetric means v ·w = w · v. (So using this, we only need one of the two bilinearity requirements.)
Positive definite means v · v � 0 always, and v · v = 0 i↵ v = 0.

Proof. Straightforward computation.

The idea of a dot product is super useful, because it is very geometric. In particular, we can use it to
detect orthogonality and compute angles and projections. Here is some brief review + generalization of facts
from high school.

Definition 2.2.3. The length of a vector v =

2

64
v1
...
vn

3

75 is defined as kvk :=
p
v · v, or

p
v21 + · · ·+ v2

n
in

coordinates.
The angle between two vectors v,w 2 Rn is defined as ✓(v,w) = arccos( v·w

kvkkwk ). We say v and w are
perpendicular or orthogonal if the angle between them is ⇡

2 , or equivalently, if v ·w = 0.
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Remark 2.2.4. We write it here as a definition for convenience, but technically one can deduce this angle
formula here. If you are curious, it goes like this.

Given v,w, then together with the vector v �w, they form a triangle.

w

v v �w

✓

So by the cosine law, we know that

kv �wk2 = kvk2 + kwk2 � 2kvkkwk cos ✓.

Therefore we have

cos ✓ =
kv �wk2 � kvk2 � kwk2

2kvkkwk =
(v �w) · (v �w)� v · v �w ·w

2kvkkwk .

Now simplify the numerator and we are done.

Note that the formula for angles is very revealing. We always have cos ✓ = v·w
kvkkwk = ( v

kvk ) · (
w

kwk ). In
particular, given two unit vectors, their dot product is cosine of the angle between them. It reaches maximum
value of 1 when the two vectors are in the same direction, and it reaches minimum value �1 when the two
vectors are in the opposite direction.

For a general intuition, you might interpret dot product as a measurement of “agreeness”. If two vector
“agree” with each other a lot, then the dot product is big. (v ·w is large when the two vectors are in similar
directions.) If two vector “disagree” with each other a lot, then the dot product is very negative. (v ·w is
very negative when the two vectors are in almost opposite directions.)

Example 2.2.5. This is a purely computational example. Skip it if you feel like it.

Consider

2

4
1
1
0

3

5 and

2

4
0
1
1

3

5. They each has length
p
2, and their dot product is 1. So their angle ✓ satisfies

cos ✓ = 1
2 . So you can now compute this angle easily. Draw them out to see better. (Also note that these

two vector form a triangle with

2

4
1
0
�1

3

5, and this is an equilateral triangle with all sides of length
p
2. So the

angle is exactly as you would expect.)

Now look at

2

4
1
1
1

3

5 and

2

4
1
�2
1

3

5. By doing a dot product, we get zero. So they are perpendicular. Draw

them out to see better. (Also note that these two vector form a triangle with

2

4
0
3
0

3

5, and the three edges

satisfy Pythagorean theorem. So this is a right triangle, and the angle is exactly as you would expect.) ,

Now, since dot product gives us the angle, they also help us with computing projections.

Proposition 2.2.6. Given two vectors v,w 2 Rn, where w 6= 0 (because 0 gives no direction for projec-
tion....), then we can perform the projection of v onto the direction of w. The signed-length of this projection
is v·w

kwk . (Or more neatly as v · w
kwk , where

w
kwk is the unit vector in the direction of w.)

(Here signed-length means this: a positive length means the projected result has the same direction as w,
while a negative length means the projected result has the opposite direction as w.)
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Proof. Let the angle between v,w be ✓. Then cos ✓ = v·w
kvkkwk .

w

v

✓

By basic trigonometry, the signed-length is kvk times the cosine of this angle. So we have

kvk cos ✓ = kvk v ·w
kvkkwk =

v ·w
kwk .

So we are done. Now, is there a problem with this proof? OOPS! We are assuming kvk 6= 0 in the above
process (see the denominator), which is not guaranteed. So we have to do it separately.

IF we do have kvk = 0, then v = 0, and hence the projection result would have zero lengt. So the
formula is still correct. Now we are finally done.

Corollary 2.2.7. Given two vectors v,w 2 Rn, where w 6= 0 (because 0 gives no direction for projection....),
then we can perform the projection of v onto the direction of w. The resulting vector is v·w

w·ww.

Proof. The resulting vector should be the signed-length v·w
kwk times the unit vector in the direction of w, i.e.,

w
kwk . The result is v·w

kwk2w, which is as desired.

Now, how are these related to linear algebra, and in particular, to row vectors? Well, lo and behold.

Corollary 2.2.8. Consider a “row vector” uT such that u is a unit vector (i.e., length one). Then uT as
a linear map would send each v to the (signed-length of the) projection of v to the direction of u.

Proof. Let w =


a
b

�
. So kwk = 1. Then the signed length of the projection of v to w is

v ·w
kwk = v ·w = v1a+ v2b =

⇥
a b

⇤
v.

So, if w is a unit vector, then wT is just the (signed-length of the) projection to w. If w is not a unit
vector, then it is a multiple of a unit vector. Hence wT is a multiple of the (signed-length of the) projection to
w. So, as you can see, all row vectors should be interpreted as multiples of a (signed-length of a) projection.

Now we move on to the reverse process. Suppose A is a matrix with a single row, i.e., a multiple of a
projection. Given b 2 R, how to solve for x from the equation Ax = b?

Consider the following two problems.

Example 2.2.9. Suppose I have 12 yuan in my wallet, and I intend to spend them all. I can buy apple
with 2 yuan each, or banana with 3 yuan each. What sorts of linear combinations can I buy?
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2 4 6 8

2

4

2x+ 3y = 12

x

y

Well, suppose I buy x apples and y bananas. Then they should satisfy a constraint of 2x+3y = 12. The
set of all possible solutions here, treated as points on the plane with coordinates (x, y), is a straight line in

R2 going through the point


6
0

�
and


0
4

�
.

Now let us revisit this equation 2x + 3y = 12. Note that the left hand side is actually the dot product

between two vectors. So in this sense the equation can be rewritten as


2
3

�
·

x
y

�
= 12.

Alternatively, using the matrix notation that we have know of, we can also write
⇥
2 3

⇤ x
y

�
= 12. ,

Example 2.2.10. Suppose now we can also buy pears with 4 yuan each. Then we have a price vector

p =

2

4
2
3
4

3

5, and the linear combinations that we can purchase could be any solution x to the equation

p · x = 12. Or alternatively, writing p as a row vector pT, we want solutions to pTx = 12.

2
4

6

2

4

�2

2

This would be a plane in R3 with equation 2x+ 3y + 4z = 12. It is the plane that went through points2

4
6
0
0

3

5 ,

2

4
0
4
0

3

5 ,

2

4
0
0
3

3

5. ,

Either way, we are interested in the solution of the following problem: Given a vector p 2 Rn and a
constant b, what are all possible solutions to the equation p · x = b?
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Example 2.2.11. What is the solution to p · x = b?
Well, it means for any solution x, its projection to p must be the vector b

kpk2p, a fixed vector independent
of x. So geometrically, this is the collection of all vectors that got projected to the SAME PLACE in the
direction of p.

In R2, this would yield a line perpendicular to p and its distance to the origin is exactly |b|
kpk . In R3, this

would yield a plane perpendicular to p and its distance to the origin is exactly |b|
kpk . You can easily guess

the pattern here. ,

On R2, we see that the solution is a line, while in R3 we see that the solution is a plane. In general, we
may have the following definition.

Definition 2.2.12. A subset of Rn is a called a hyperplane if it is the set of all possible solutions x for
an equation n · x = b for fixed n 2 Rn and b 2 R. We also require that n 6= 0.

Sometimes we call any vector that is a non-zero multiple of n a normal vector to that hyperplane, and
we say n · x = b to be the linear equation for this hyperplane. (Typically this looks like something similar
to ax+ by + cz = d for constants a, b, c, d and unknowns x, y, z.)

So basically we can define a hyperplane as the solution set with a single linear constraint (e.g., your
budget b). In Rn, we can intuitively see that this is some n� 1 dimensional thingy that is perpendicular to
the direction of p with a distance d

kpk to the origin.

Remark 2.2.13. Now what does this perpendicularity mean? Intuitively, any “arrow” vector INSIDE this
hyperplane should be perpendicular to p. Take any points x,y in this hyperplane, then x�y would represent
an arrow vector from y to x inside this hyperplane.

Here we see that if x1,x2 are both solutions to p ·x = b, then we necessarily have p · (x1 �x2) = 0. See?
Perpendicularity.

Next let us explore some relations among these hyperplanes.

Example 2.2.14. Suppose we fix p and vary b. How would the hyperplane p · x = b changes?
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Draw 2x + 3y + 4z = 12, 13, 14, 15, and you shall see that they are all parallel planes in R3, since they
must all be perpendicular to the same p. In particular, in our case, the larger is b, the more the plane will
move in the direction of p. ,

Example 2.2.15. Suppose we fix b and double p. How would the hyperplane p · x = b changes?
Well, note that (2p) · x = b i↵ p · x = 1

2b. So it is as if we never changed p, and simply change b into
half of b. ,

Example 2.2.16. Suppose we have two hyperplanes given by p · x = b and q · x = c. Then one might
simply add the two equations and get (p+ q) · x = b+ c. Are the three hyperplanes related?

Consider the case of planes x = 1 and y = 2 in R3. These two plane intersect at a line perpendicular to

the xy-plane and hit that plane at

2

4
1
2
0

3

5. Points on this line typically would have coordinates

2

4
1
2
t

3

5 for some

t 2 R.
Now let us add the two plane equations and get x+ y = 3. Immediately one may check that this plane

still contains the same line! The planes x = 1, y = 2 and x+ y = 3 have a line as their common intersection!

Figure 2.2.1: red equation + blue equation = green equation

In general, if you have one linear equation, then adding another linear equation to it is like rotating (or
more precisely, shearing) the hyperplane along the common intersection. See if you can prove this yourself.

So try to see if you can answer the following question: Suppose we fixed b and all but the first coordinate
of p. Say we increase the first coordinate of p by 1. How would the hyper plane p · x = b change? Around
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which intersection should it rotate? ,

2.3 Row and Column View of Linear System

This section is NOT about solving a linear system. Rather, it is about understanding the phenomena of a
linear system.

Recall that, a map f : Rn ! Rm is called a linear map if f(
P

aivi) =
P

aif(vi). Our whole class is
devoted to the study of such maps.

Also recall that any linear map could be written as a matrix, by studying how the standard basis goes
via this map.

Think now. If f : Rn ! Rm is a linear map, the domain is Rn, and the standard basis would be
e1, . . . , en. So the matrix of f would be

⇥
f(e1) . . . f(en)

⇤
. Note how we have n columns. The number

of columns is ALWAYS the dimension of domain in this case.
What about rows? Each f(ei) would be an element of the codomain Rm, so it has m coordinates or m

“rows”. So in total, we see that
⇥
f(e1) . . . f(en)

⇤
has m rows and n columns. We say that this is an m

by n matrix or m⇥ n matrix.
Given an m⇥n matrix A and a vector b 2 Rm (Think: why not Rn?), one might want to tries to find all

solutions x to the system Ax = b. Previously we have already seen this, as in the hen and rabbit problem.
However, let us now look at this linear system with some fresh perspectives.

What is the MOST important feature of a matrix? Well, it has rows and columns. In fact, this seems to
be the whole point of a matrix: to write numbers in rows and columns. As a result, there are always TWO
ways to view a system of linear equations.

Example 2.3.1. Taking the row view, each row of Ax = b is a single linear equation, and thus corresponds
to a hyperplane. We want ALL equations to hold simultaneously, so we are seeking the INTERSECTION
of all these hyperplanes.

For example, in the beef market, the more expansive is the price, the less likely customers will buy beef.
According to the 1924 journal of Farm Economics (by Schultz), if the price is p, then the demand for beef is
roughly q = 1.3� 2

7p. On the other hand, the higher the beef price, the more people would start supplying
beef. I did not find available data here, but let us say the supply is q = 0.5 + 1

2p. Note that I have used the
same symbol q for both supply and demand, since they both equal to the amount of trades of beef.

So we have the following equations that must simultaneously hold.

⇢
q+ 2

7p=1.3,
q� 1

2p=0.5.

2 4 6

2

4

Demand

Supply

Equilibrium

q

p
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Or in matrix terminology, it means


1 2

7
1 � 1

2

� 
q
p

�
=


1.3
0.5

�
.

Each equation (or each row) would represent a line in the plane. Graph the two lines, and their intersection
point determines the amount of trade and the price of the beef. ,

Example 2.3.2. To see the column view, review the Hen-Rabbit problem, Example 1.2.18. It boils down
to the following equation:

⇢
x +y= 6,
2x+4y=20.

Or in matrix terminology, it means


1 1
2 4

� 
x
y

�
=


6
20

�
.

The two columns represent a hen and a rabbit respectively. (Btw, the two rows represent heads and legs
respectively.)

In the column view, we are asking ourselves what linear combination would yield the result, while in the
row view we are trying to find intersections of hyperplanes. For this specific problem, the column view is
slightly more intuitive.

Figure 2.3.1: This is just a schematic picture. Things are not to scale.

Intuitively, we are trying to use a “mixture” of


1
2

�
and


1
4

�
to get to


6
20

�
. As you can see from a graph,

too much


1
2

�
in the mixture and your resulting arrow will be too low, while too much


1
4

�
in the mixture

and your resulting arrow will be too high.

A geometric solution would be like this: draw the arrow


6
20

�
, and from the end point of this arrow, draw

lines parallel to


1
2

�
and


1
4

�
, as show in the figure above. We should be able to figure out the answer now

using this parallelogram.

Say we have x hens in the answer. Then we want


6
20

�
� x


1
2

�
=


6� x
20� 2x

�
to be parallel to


1
4

�
. In

particular, we want 20� 2x to be four times of 6� x. From this we can solve for a solution.

Note that we are trying to figure out how much hens we need, so that


6� x
20� 2x

�
is parallel to the rabbit

vector. In primary school, we call this method “pretent the animals are all rabbits, and see how much
discrepancy we have in the leg numbers.” ,

Ideally, we always hope that our system would have a unique solution. However, this is not always
possible. Now, with the visual picture in mind, let us look at the following linear system, which is weirdly
unsolvable.
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Example 2.3.3. Consider


1 2
3 6

� 
x
y

�
=


1
2

�
. It turns out that there is no solution.

�1 �0.5 0.5 1 1.5 2

�1

1

2

x+ 2y = 1

3x+ 6y = 2
x

y

With the row view, you may graph out the two lines and try to find intersection. However, you shall see
that the two lines are parallel. So there is no intersection.

a1

a2

b

Figure 2.3.2: This is just a schematic picture, not drawn to scale.

With the column view, you may see that the two column vectors are actually colinear , i.e., they are on

the same line. As you can imagine, any linear combination of them must STAY on this line. Since


1
2

�
is

not on this line, this is impossible.
In high school, we would do the following. We realize that the first equation tripled is 3x+6y = 3, while

the second equation is 3x+6y = 2, contradiction. The first-row-second-row ratio is di↵erent on the left side
and on the right side. In the row picture, it means the two planes are not coinciding. In the column picture,
it means the slopes are o↵. ,

Here is another situation, where we have too many solutions.

Example 2.3.4. Consider


1 0 1
0 1 2

�2

4
x
y
z

3

5 =


2
3

�
. It turns out that there are infinitely many solutions. And

if you tries to solve it the high school way, then you will fail to find a unique answer, because you don’t have
enough equations.

With the row view, things happen in R3. You may graph out the two planes in the space, and try to find
intersection. However, the two planes intersect in a line. So everything on that line is a solution.

To find this line, since the line lies on both planes, it is orthogonal to both normal vectors, i.e., it is

orthogonal to both

2

4
1
0
1

3

5 and

2

4
0
1
2

3

5. So, this is a line parallel to

2

4
1
2
�1

3

5. (You can compute this via cross

product. We do not really need it in this course, but feel free to search online and learn about it.)
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You can also verify that the line goes through

2

4
1
1
1

3

5. If you like, you may now write your solution in

parametrized form, i.e.,

2

4
1
1
1

3

5 +

2

4
1
2
�1

3

5 t for any t 2 R. Alternatively, you may also write

2

4
1 + t
1 + 2t
1� t

3

5 or, more

aligned with high school tradition, as 8
<

:

x = 1 + t,
y = 1 + 2t,
z = 1� t.

With the column view, things happen now on the plane R2. We have have three vectors in R2 trying to

combine into


2
3

�
, but in fact the first two would be enough. (In fact any two of the three would be enough.)

We do not really need the third vector.

In fact, let us say that x, y, z are the coordinates of the solution, so x


1
0

�
+y


0
1

�
+z


1
2

�
=


2
3

�
. Now, if we

have already found this solution, we can get naughty and try to increase z by one unit, and simultaneously
decrease x by one unit and y by two units. Then the left hand side would remain unchanged after all.

In fact, I can change z by an arbitrary amound, and simply change x, y accordingly, and therefore get

infinitely many solutions. Essentially, since the three columns have a relation


1
0

�
+ 2


0
1

�
�

1
2

�
= 0, we see

that decreasing z by t while increasing x by t and y by 2t will always leave the left hand side unchanged.

In e↵ect, I have found a direction to move freely within the solution set. Given any solution, say

2

4
1
1
1

3

5,

then I can move an arbitrary amount along the direction

2

4
1
2
�1

3

5, and we would still be in the solution set.

So again, we have found our solution set to be

2

4
1 + t
1 + 2t
1� t

3

5 for arbitrary t 2 R. ,

Here I want to draw your attention to the following phenomena, which underlies both anomalies.

Definition 2.3.5. A collection of vectors v1, . . . ,vk in Rn is called linearly dependent if one is a linear
combination of the others. Otherwise, the collection is linearly independent.

(Conventionally, a single non-zero vector is linearly independent. And any collection that contains a zero
vector is linearly dependent.)

Example 2.3.6. Consider 8
<

:

x +y= 1,
x+2y= 2,
2x+3y= 3.

Note that the third equation is a linear combination of the first two (it is the sum of the first two). It is
REDUNDANT!

Now consider 8
<

:

x +y= 1,
x+2y= 2,
2x+3y= 4.

Here we have an inconsistency. The third equation is NOT a linear combination of the previous two,
but its left hand side is. In particular, the left hand side and the right hand side of the third equation are
NOT the same linear combinations of the corresponding sides of the previous two equations! This creates a
contradiction.
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All in all, consider Ax = b. If rows of A are linearly dependent, we will want to check the right hand
side b and see if it follows the same linear dependency. If they have the same linear dependency, we have
redundant equations. If they have distinct dependencies, then we have no solution to our system. ,

Example 2.3.7. Again consider


1 0 1
0 1 2

�2

4
x
y
z

3

5 =


2
3

�
. This is the case of Ax = b where columns of A are

now linearly dependent.
Note that rows of A are describing the equations. What does columns of A describe? Well, they are

each coe�cients for specific variables. For example, the first column of A are all the coe�cients for your first
variable, and the second column for the second variable, etc..

So just as dependencies among rows usually signifies a redundancy in equations, a dependency among
columns signifies a redundancies in variables. We don’t actually need these much variables. In our case,
since the third column is a linear combination of the first two, we can in fact set z to be ANYTHING, and
work out the first two variables to compensate for that.

So if a column is a linear combination of others, then the corresponding variable is FREE! Specifically
in our example, say if you want one extra copy of the third column, you can just use one less first column
and two less second column.

Note that you may have no solution to start with. Say


1 2
2 4

� 
x
y

�
=


1
3

�
. Here you can freely choose

the seond variable and compensate with the first vairable. HAD we a solution, then we can use one more
copies of the second column by using two less first column. But it does not matter in the end, since there is
no solution to start with.

Having column dependencies means you have freedom to move around your solutions. However, if you
have no solution to begin with, then there is no where to start your moving from. (But if you can find a
single solution, then this freedom guarantees infinitely many solutions.)

So a linear dependency among columns of A means you either have infinitely many solutions, or maybe
you have no solutions. ,

After Gaussian elimination we shall prove the following with the help of rank. For now just let me spoil
the answer in advance.

1. A matrix A as a linear map is injective i↵ columns of A are linearly independent. In this case, a linear
system Ax = b has either a UNIQUE solution, or there is no solution. (I.e., the system has at most
one solution.)

2. A matrix A as a linear map is surjective i↵ rows of A are linearly independent. In this case, a linear
system Ax = b always have at least one solution.

3. A matrix A as a linear map is bijective i↵ both columns and rows are linearly independent. In this
case, a linear system Ax = b always have a UNIQUE solution.

2.4 Gaussian Elimination

This section is about solving a linear system.

Example 2.4.1. Let us revisit the hen rabbit problem. Say we want to solve


1 1
2 4

� 
x
y

�
=


6
20

�
. What

should we do?
Well, the high school way is to solve by substitution. However, there is a much cooler way to do this.
Imagine that all hens and rabbits are well-trained. If they hear a whistle, they will all raise a leg. Now,

we started with 6 heads and 20 legs. I whistle twice, now I have 6 heads but only 8 standing legs. But now
all hens have no leg standing! All the hens must now fall on their butt, and only rabbits are left with two
leg standing each. So 8 divided by 2 is the number of rabbits, 4. We have 2 hens and 4 rabbits.

This is the process of Gaussian elimination. ,
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For the ease of use, let us define the following notion.

Definition 2.4.2. For a linear system Ax = b, we say A is the coe�cient matrix of the system, and we
say

⇥
A b

⇤
is the augmented matrix of the system.

Here the notation means we write A, but then put in b as the last column. Basically the augmented
matrix is just the same as writing down the whole system, but we get too lazy to write the variables and
the equality symbles and so on.

Now, in the process above, we started with the system


1 1 6
2 4 20

�
. When I whistle twice, essentially I

am substracting twice the first row from the second row (we also write r2 ! r2 � 2r1), and we get a new

system


1 1 6
0 2 8

�
. (In high school terms, we are substracting multiples of one equation from the other.)

However, despite being a new system, note that the solution set is the SAME as before! This perserving of
solutions is the very fundation of why we did this.

Then we divide the second row by 2 (we also write r2 ! 1
2r2), we have


1 1 6
0 1 4

�
. Pay attention now.

The second row reads exactly y = 4. We have solved one variable.
Next we want to solve for x from the first equation. We substract the second row from the first row

(r1 ! r1 � r2), and we have


1 0 2
0 1 4

�
. Now the two lines reads x = 2, y = 4, which is the solution.

They key lies in the following operations, called elementary row operations.

1. (Swapping) Swapping two rows. (I.e., swapping two equations.) We write ri $ rj .

2. (Scaling) Multiplying a row by the same scalar. (I.e., multiplying both sides of an equation by the
same number.) We write ri ! kri.

3. (Shearing) Adding a multiple of one row to another row. (I.e., adding multiples of one equation to
another.) We write rj ! rj + kri.

(Note that, geometrically, the first row operation only re-order the hyperplanes. The second one does not
change the hyperplanes. And the third one is “rotating” hyperplanes around their common intersections.)

The magic of these three operations is that they preserve solutions.

Proposition 2.4.3. The elementary row operations on the augmented matrix would preserve the solution
set.

Proof. Swapping means simply switch the places of two equations. And this obviously has no e↵ect on
the solution set. Similarly, Scaling means simply multiplying both sides of a particular equation by some
non-zero number. And this obviously has no e↵ect on the solution set as well.

For shearing, here are two kinds of arguments. First is geometrical. Recall that changing rj to rj + kri
means we rotate the hyperplane for the equation rj along the intersection of ri and rj . This will definitely
preserve the intersection, which is what we actually need to find the solution set. Hence the solution set is
preserved.

Alternatively, here is a more algebraic argument. For simplicity, consider the system with equations
ri, rj , rj + kri. Here the last equation rj + kri is obviously equivalent. So the system of ri, rj , rj + kri has
the same solution set as the system of ri, rj .

However, look at ri, rj , rj + kri again. Now, we do NOT treat rj + kri as redundant. Rather, we treat
rj is redundant, since it can also be expressed as linear combination of others. I.e., rj = (rj + kri) � kri.
Hence throwing away the redundant equation rj , we see that ri, rj , rj + kri also has the same solution set
as the system of ri, rj + kri.

Therefore, the system of ri, rj has the same solution set as the system of ri, rj + kri.

39



Whatever argument you use, there is a really important hidden part of the proof: all elementary op-
erations can be reversed. The inverse operation of ri $ rj is itself, the inverse operation of ri ! kri is
ri != 1

k
ri, and the inverse operation of rj ! rj + kri is rj ! rj � kri.

So, whatever row operations you just did, you can always go back. This is vital for the preservation of
the solution set.

Example 2.4.4. Consider the ILLEGAL row operation rj ! krj where k = 0. Since 0 has no inverse,
this operation CANNOT be reversed. It actually would fail to preserve the solution set. For example, the
solution set to the linear system of x = 1 (which is a hyperplane) is NOT the same as the solution set to the
linear system 0 = 0 (which is the whole space). ,

So, ideally, if you have a linear system, you basically just use these three operations in whatever order
necessary, until we reached the solution.

Remark 2.4.5. One can similarly define elementary column operations. What would that mean?
Well, row operations acts on equations. Column operations acts on variables. An elementary column

operation would be equivalent to a change of variable.
For example, say we have a system x + 2y = 3, x + 3y = 4. If we substract the first column from the

second column, this would mean we are doing a change of variable x0 = x + y, y0 = y, and now we have
x0 + y0 = 3, x0 + 2y0 = 4 as desired.

In theory one can also solve equations by keep changing variables. However, it is less e�cient, because
once you solved the new variables, you have to then retrace and try to resolve the old variable. So as far as
linear systems are concerned, we prefer row operations.

Now, given a system of linear equations
⇥
A b

⇤
, when is the end game? When would we consider it

solved?

Example 2.4.6. For the hen-rabbit problem, we have


1 1 6
2 4 20

�
. We eventually got to


1 0 2
0 1 4

�

Now the two equations reads x = 2, y = 4. So we are done. We have an unique solution. ,

So ideally, we hope to make the coe�cient matrix into what we call an identity matrix.

Definition 2.4.7. The n ⇥ n identity matrix In or simply I is a matrix whose diagonal entries are all 1,
and non-diagonal entries are all zero.

So basically somethings like

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775. Looking at the matrix, it does not look like much. But

looking at its column, we see that I =
⇥
e1 . . . en

⇤
. So it is basically a linear map that sends all basis

vectors to themselves! In particular, it will send every vector to itself.
So, you can see why we call it the identity matrix. As a linear map, it is the identity map.
We love the identity matrix for many many reasons. To list a few,

1. For n⇥ n identity matrix I, we have Iv = v for all vector v 2 Rn.

2. As a linear map, I is bijective and it is its own inverse. (Since it is the identity map.)

3. Suppose we have a augmented matrix for a linear system
⇥
A b

⇤
, and ideally we would have no

redundant equations, no free variables, so we can just solve all variables and it would be unique. What
is the end game then? Then end game would be like x1 = SomeNumber, x2 = SomeOtherNumber,
etc., and in matrix form it would look like

⇥
I AnswerV ector

⇤
. So the identity matrix is exactly what

we want for the left hand side of our matrix. Also note that
⇥
I AnswerV ector

⇤
is automatically in

RREF.

Now, this might not be possible sometimes. Consider the following example.
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Example 2.4.8. Suppose we have a system


1 1 1 2
1 1 2 3

�
2

664

w
x
y
z

3

775 =


4
6

�
. We want to reduce the number of

variables in the equations, i.e., we want as many zeroes as possible in the coe�cient matrix. So let us first kill

the w variable in the second equation by doing r2 ! r2�r1. This gives the system


1 1 1 2
0 0 1 1

�
2

664

w
x
y
z

3

775 =


4
2

�
.

As you can see now, the second equation probably cannot simplify any further. So instead, let us use
this to simplify the first equation as much as possible. Doing r1 ! r1 � r2, we get another zero entry with


1 1 0 1
0 0 1 1

�
2

664

w
x
y
z

3

775 =


2
2

�
.

Now the two equations reads w + x + z = 2, y + z = 2. For each equation, if we move all but the first
variable to the right side of the equation, we have w = 2� x� z, y = 2� z.

It is now reasonably clear that we can let x, z be whatever values they like, and then deduce the cor-

responding w and y from it. If you like, you can also write the solution set as {

2

664

2� x� z
x

2� z
z

3

775 : x, z 2 R}.

,

So, what we should do is to use all those row operations, and try to simplify the equation by introducing
as much zeroes as possible. Then, hopefully we can choose some “free variables”, and the other variables
can just depend on them, i.e., “dependent variables”.

Now, there is a special type of matrices where we can easily choose our free variables and dependent
variables.

Definition 2.4.9. We say a matrix is in Row Echelon Form if it satisfy the following property:

1. All zero rows are below all non-zero rows.

2. In each non-zero row, we call the first non-zero entry the pivot of that row. Then the pivots of lower
rows are always to the right of previous (higher) rows.

We say a matrix is in Reduced Row Echelon Form if furthermore, all pivots are 1, and all entries
above each pivot are zero.

So a REF looks something like this:

2

6666666664

• ⇤ · · · ⇤ ⇤ ⇤ · · · ⇤ ⇤ ⇤ · · · ⇤ · · · · · · · · · ⇤ ⇤ · · · ⇤
• ⇤ · · · ⇤ ⇤ ⇤ · · · ⇤ · · · · · · · · · ⇤ ⇤ · · · ⇤

• ⇤ · · · ⇤ · · · · · · · · · ⇤ ⇤ · · · ⇤
. . .

...
...

...
⇤ ⇤ · · · ⇤
• ⇤ · · · ⇤

3

7777777775

,

And a RREF looks something like this:
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2

6666666664

1 ⇤ · · · ⇤ 0 ⇤ · · · ⇤ 0 ⇤ · · · ⇤ · · · · · · · · · 0 ⇤ · · · ⇤
1 ⇤ · · · ⇤ 0 ⇤ · · · ⇤ · · · · · · · · · 0 ⇤ · · · ⇤

1 ⇤ · · · ⇤ · · · · · · · · · 0 ⇤ · · · ⇤
. . .

...
...

...
0 ⇤ · · · ⇤
1 ⇤ · · · ⇤

3

7777777775

.

Example 2.4.10. Consider the system


1 1 1 2
0 0 1 1

�
2

664

w
x
y
z

3

775 =


4
2

�
. This is in row Echelon form.

The the first equation says w (the pivot location) has to depend on later variables in certain way. The
second equation says that y (the pivot location) has to depend on later variables in certain way. And these
are the ONLY requirements!

So there are only requirements on w and y, and no requirement on x, z. Hence we can pick arbitrary
x, z, and get a solution. ,

Example 2.4.11. Suppose our system is now

2

664

1 1 0 0 2
0 0 1 0 3
0 0 0 1 4
0 0 0 0 0

3

775

2

66664

x1

x2

x3

x4

x5

3

77775
=

2

664

4
4
5
0

3

775. This is a reduced Echelon

form. Note that the pivots are on the first, third and forth column.
Now the equations are like x1 + x2 + 2x5 = 4, x3 + 3x5 = 4, x4 + 4x5 = 5, 0 = 0. By moving all variables

other than the left-most one to the right side of the equation, we see that we can choose the x2, x5 to be the
free variables. As you can see here, the dependent variables correspond exactly to columns with pivots, i.e.,
pivotal columns , whereas the free variables corresponds to columns without pivots, i.e., free columns.

The point is that, each pivot, as the left-most non-zero entry of the row, will corresponds to a dependent
variable specified by this very row (which represents an equation). And the requirements of RREF guarantee
that this dependent variable will NOT be used in any other equations, and hence we can simply read out
the solution.

Intuitively, you may think of RREF is “as close as possible” to the identity matrix. So when the identity
matrix is out of reach, we go for RREF. (Also note that the identity matrix itself is a special case of RREF.)
,

Now we move on to Gaussian Elimination. The foundation of the idea is of course row operations.
Starting from a system

⇥
A b

⇤
, we perform row operations until this augmented matrix is in reduced row

echelon form. Then we are done.
However, sometimes we would use upper rows to reduce the rows below, like rj ! rj + kri with j > i.

Other times, we would use lower rows to reduce the rows above, like rj ! rj + kri with j < i. Can we do
this in a more organized way? Gaussian elimination is the attempt to always go in the following order: first,
we ONLY use upper rows to reduce lower rows. We keep doing this until we reach REF. Then, we only use
lower rows to reduce upper rows, and reach RREF.

Example 2.4.12. Typically Gaussian elimination works like this. We start with a system say

2

4
1 1 1 3
2 4 4 10
3 4 6 13

3

5.

First I use ONLY the first row to reduce the rows below. The goal is to make the entry 1 in the upper
left column into a pivot, so I want to kill every entry below it. We have

2

4
1 1 1 3
2 4 4 10
3 4 6 13

3

5 !

2

4
1 1 1 3
0 2 2 4
0 1 3 4

3

5 .
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Now the first row is done. Leave it alone forever. Next we want to move to the down-right entry of the
previous pivot, and make it the new pivot. So we ONLY use the second row to reduce the rows below. We
have 2

4
1 1 1 3
0 2 2 4
0 1 3 4

3

5 !

2

4
1 1 1 3
0 2 2 4
0 0 2 2

3

5 .

Now we are in REF and we have finished the first portion of elimination. For the second portion, we
shall only use lower rows to change upper rows. First I change all pivots to ones.

2

4
1 1 1 3
0 2 2 4
0 0 2 2

3

5 !

2

4
1 1 1 3
0 1 1 2
0 0 1 1

3

5 .

Now I go bottom up. We start from the last row, and kill all entries above the last pivot. So we have
2

4
1 1 1 3
0 1 1 2
0 0 1 1

3

5 !

2

4
1 1 0 2
0 1 0 1
0 0 1 1

3

5 .

Next we look at the second last pivot, and use this row to kill all entries above this pivot. We have
2

4
1 1 0 2
0 1 0 1
0 0 1 1

3

5 !

2

4
1 0 0 1
0 1 0 1
0 0 1 1

3

5 .

Now we are in RREF and we can simply read out the answer. ,

As you can see, the idea is basically to keep doing row operations to get RREF. However, we do it in an
organized way: top-down first, and bottom up later.

Unfortunately, this does not always work. Look at this example.

Example 2.4.13. We start with a system say

2

4
0 0 1 1
1 1 1 3
1 2 2 5

3

5.

First, I would use the first row to reduce the rows below, and make the upper left entry a pivot. Oops!
This cannot be done, since the upper left entry is zero, and it has no ability to reduce anything. We failed.

Well, this is actually not a big deal. In this case, just pick any non-zero entry in the first column, and
SWAP it with the first row. Then we can proceed as desired. In this case, we have

2

4
0 0 1 1
1 1 1 3
1 2 2 5

3

5 !

2

4
1 1 1 3
0 0 1 1
1 2 2 5

3

5 !

2

4
1 1 1 3
0 0 1 1
0 1 1 2

3

5 .

Now we want to make the (2, 2) entry into a pivot again. Oops! We hit zero again. What should we do?
Well, we simply swap again. Keep in mind that we ONLY swap the second row with lower rows. Row one
is already done, and should be left alone ever since. So we have

2

4
1 1 1 3
0 0 1 1
0 1 1 2

3

5 !

2

4
1 1 1 3
0 1 1 2
0 0 1 1

3

5 .

Well, actually no more reduction is needed. We are already done with REF. Now we proceed with the
bottom-up portion of elimination, and find RREF. ,

As you can see, if you hit an obstruction during your elimination process, then don’t worry. Just swap
rows to make your pivot non-zero, and continue.

What if there is no proper rows to swap with? Consider this example.
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Example 2.4.14. Consider the system

2

4
0 1 2 3 4 0 10
0 2 4 0 2 1 9
0 3 6 1 4 1 15

3

5.

First I would like to make the upper left entry a pivot. Oops, it is zero. No worry, I shall simply swap
with... wait, the entire first column is zero. There is no one to swap with!

But actually this is no cause for worry. This simply means that the first pivot is NOT in the first column.
So we start with the second column and proceed. So we have

2

4
0 1 2 3 4 0 10
0 2 4 0 2 1 9
0 3 6 1 4 1 15

3

5 !

2

4
0 1 2 3 4 0 10
0 0 0 �6 �6 1 �11
0 0 0 �8 �8 1 �15

3

5 .

So (1, 2)-entry is my first pivot. Now we move to the lower right entry, i.e., the (2, 3)-entry, and try to
make it a pivot. However, it is zero again, and there is nothing below to swap with. But this is fine. This
simply means that we have no pivot in this column as well. We simply move to the next column, and make
the (2, 4)-entry a pivot instead. So we have

2

4
0 1 2 3 4 0 10
0 0 0 �6 �6 1 �11
0 0 0 �8 �8 1 �15

3

5 !

2

4
0 1 2 3 4 0 10
0 0 0 �6 �6 1 �11
0 0 0 0 0 � 1

3 � 1
3

3

5 .

And now we are in REF. Then we proceed with the bottom-up portion of elimination, and find RREF,

which is

2

4
0 1 2 0 1 0 4
0 0 0 1 1 0 2
0 0 0 0 0 1 1

3

5. ,

Technically, some people only use the term Gaussian elimination to describe the process of going from
an arbitrary matrix to REF. And people use the longer term Gauss-Jordan elimination to refer to the whole
process of going all the way to RREF. It is NOT a very important distinction though.

Algorithm 2.4.15. The Gaussian Elimination refers to the following process, where we start with a
generic matrix A, and put it into REF.

First, find a non-zero entry in the first column, and do a row swap to make that row the first row. (If
the first column is entirely zero, then simply skip it, and do this to the second column, etc..)

Next, use the first row to row-reduce all lower rows, so that all other entries in the first column are zero.
We are happy with our first row now. From this point on, the first row shall NEVER change.

Next, look at the next column, find a non-zero entry in it (but not in the first row), swap that row to the
second row, and row-reduce lower rows, and so on. You can see how this goes.

This process will give you a REF in the end. (Note that this is largely a “downward” process. We work
out the first row, then the second row, and so on.)

Algorithm 2.4.16. The Gauss-Jordan Elimination refers to the following process, where we start with
a generic matrix A, and put it into RREF.

First, we use Gaussian elimination to go from A to a REF. Next, we scale the rows so that all pivots
are 1. Finally, we use each pivotal rows to clear entries above the pivots. Now we have RREF and we are
done. (In practice, this is an“upward” process. We usually work with the last pivot, clear all entries above
it, then the second to last pivot, clear all entires above it, and so on. This way we avoided some redundant
calculations.)

Proposition 2.4.17. For any matrix A, we can transform it into RREF using elementary row operations.
(We call the result the RREF of A or simply write RREF (A).)

Proof. Just use Gauss-Jordan elimination.

Proposition 2.4.18. We have the following situations for a linear system Ax = b.
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1. If the RREF of the augmented matrix has a pivot in the last column (the “augmented portion”), then
there is no solution. (Because that corresponding equation would read 0 = 1.)

2. If the RREF of the augmented matrix has no contradiction (no pivot in the “augmented portion”), and
has the same number of pivots as variables, then there is a unique solution.

3. If the RREF of the augmented matrix has no contradiction (no pivot in the “augmented portion”), and
has less pivots than variables, then there are infinitely many variables. (Not enough constraints to solve
it.)

2.5 Uniqueness of RREF

Freedom is not what it is. It is what we choose it to be.
I could be talking about life, but actually I am talking about variables. Recall that in reality, we can

sometimes choose which variable is free. Say we only have a single equation x + y = 1, then we can write
x = 1 � y, where y is free and x is dependent. Or we can also write y = 1 � x, and now x is free and y is
dependent. In this sense, RREF is trying to move dependent variables to be as early as possible, and push
free variables to be as late as possible.

However, if we choose free variables to be as late as possible, then there must be only one way to do it.
In particular, it means we must have the following:

Proposition 2.5.1. For any matrix A, its RREF is unique. (I.e., if we can use elementary row operations
to reduce A to RREF, say X, and also use elementary row operations to reduce A to RREF, say Y , then
X = Y .)

We need a key lemma here.

Lemma 2.5.2. Elementary row operations preserves linear dependency among columns.

Example 2.5.3. Say

2

4
0 1 2 3 4 0
0 2 4 0 2 1
0 3 6 1 4 1

3

5. Note how the third column is twice the second column. Now

do all kinds of row operations to it, and see that this will always be the case. ,

Proof of the Lemma. The key realization is the following: given a matrix A, its column dependencies are
exactly solutions to the system Ax = 0!

(For example, in the

2

4
0 1 2 3 4 0
0 2 4 0 2 1
0 3 6 1 4 1

3

5 case, if you apply this matrix to

2

6666664

0
�2
1
0
0
0

3

7777775
, you will get 0. This

is precisely because the third column is twice the second column. Recall that we DEFINE the matrix vector
multiplication to be a linear combination of the columns of the matrix.)

Now row operations preserve solutions. Therefore, they preserve linear dependencies among columns.

Proof of the Proposition. Think about a RREF, say X =

2

4
0 1 2 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1

3

5. You can easily see that

pivotal columns are EXACTLY the columns that are NOT a linear combination of previous columns, where
as free columns MUST BE a linear combination of previous pivotal columns, and the entries in the free
column simply tells you the coe�cients! (Furthermore, these “linear” statements must be simultaneously
true for both X and A, because row operations preserves the linear relations among columns.)
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Say A =

2

4
0 1 2 3 4 0
0 2 4 0 2 1
0 3 6 1 4 1

3

5. The first column of A is all zero, hence the first column is always going

to be zero in RREF.
The second column of A is NOT a linear combination of previous columns. Hence it is the FIRST pivotal

column, and the corresponding column in RREF must be e1.
The third column of A is twice the second column. So this must still be true in the RREF. So the third

column of RREF must be 2e1.
The fourth column of A is NOT a linear combination of previous columns. Hence it is the SECOND

pivotal column, and the corresponding column in RREF must be e2.
The fifth column of A is the sum of the second and fourth column of A. Hence this relation must still be

true in RREF, and the fifth column of RREF must be e1 + e2.
Finally, the last column of A is NOT a linear combination of previous columns. (One can see this by,

say, noticing that all previous columns are orthogonal to

2

4
�1
�4
3

3

5, but not the last column.) Hence it is the

THIRD pivotal column, and the corresponding column in RREF must be e3.

So the RREF of A has no choice but to be

2

4
0 1 2 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1

3

5.

In short, the first column of A that is NOT a linear combination of previous columns must be a pivotal
column, and thus must be e1 in any RREF. The second one which is NOT a linear combination of previous
columns must also be a pivotal column, and thus must be e2. And so on.

And a free column MUST be a linear combination of previous pivotal columns for some specific coe�-
cients. RREF simply records this coe�cients. So any RREF must also have the same free columns.

So RREF is unique.

Definition 2.5.4. For a matrix A, we define its rank to be the number of pivots in the RREF of A. (Note
that this is well-defined since RREF is unique. Otherwise we cannot define this.)

So given a linear system Ax = b, what is the rank of A? What is the rank of the augmented matrix⇥
A b

⇤
?

Well, if the two rank disagree, it means we have a contradiction. (Can you see why?)
If the two ranks agree, what is this rank? On one hand, it means after simplification, how many non-zero

rows we have for our system. Note that the zero rows are all REDUNDANT equations. Therefore what’s
left are the e↵ective eqations.

For example, if we have x+ y = 1, 2x+ 2y = 2, then the second equation is redundant. Even though we
have two equations, but e↵ectively it is as if we only have one equation (either one will do in this case). So,
rank is the same as the number of e↵ective equations.

On the other hand, each pivot corresponds to a dependent variable. So, rank is also the number of
dependent variables.

So given a coe�cient matrix A of size m⇥ n (i.e., the system Ax = b has m equations and n variables),
we have the following conclusion: (Here by rank I mean the rank of A, not the augmented matrix.)

1. rank = the number of e↵ective equations = the number of dependent variables. (The fundamental
theorem of linear algebra.)

2. m - rank = the number of redundant equations.

3. n - rank = the number of free variables (in fact, the dimension of the solution set).

Here are some really interesting corollaries.
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Proposition 2.5.5. Given an m⇥n matrix A of rank r, then we always have r  m,n. Furthermore, r = n
i↵ the linear map defined by A is injective (whatever b, we have at most one solution to Ax = b), and r = m
i↵ the linear map defined by A is surjective (whatever b, we have at least one solution to Ax = b).

Proof. That r  m,n is obvious. (Just look at the pivots in RREF....)
Suppose r = n. Then either we have a contradiction, or we have all variables dependent variables. There

is no free variable. So the solution is unique in that case.
Conversely, suppose A is injective. Then the only solution to Ax = 0 is x = 0, i.e., there are NO linear

dependency among the columns at all. So all columns are pivotal, and r = n.
Suppose r = m. Note that the augmented matrix also have m rows, and by adding another column, its

rank cannot get smaller. So its rank is at least r and at most m. But given r = m, its rank must also be r.
So there is no source of contradiction. We always have at least one solution.

Conversely, suppose r < m. This implies that on the left hand side, we have linear dependency among
rows (and therefore we get redundant equations). Choose b that violates this linear dependency in its
coordinates, then Ax = b will have no solution.

Corollary 2.5.6. The linear map for a matrix A is bijective i↵ A is a square matrix with full rank. (I.e.,
m = n = r.) In particular, a square matrix is injective i↵ surjective i↵ bijective.

(Compare this with the situation of sets. If finite sets S, T have the same size, then any functions
f : S ! T is injective i↵ surjective i↵ bijective.)

Corollary 2.5.7. A matrix has linearly independent columns i↵ its linear map is injective. It has linearly
independent rows i↵ its linear map is surjective.

For a square matrix, its rows are linearly independent i↵ its columns are linearly independent i↵ its
corresponding linear map is bijective.

Proof. We have column independence i↵ all columns are pivotal, i↵ n = r.
We have row independence i↵ row operations cannot produce a zero row, i↵ m = r.

The corollary above is a bit shocking for beginners. You might want to try a few to see what might

happen. Say

2

4
1 2 3
4 5 6
7 8 9

3

5. Its rows are dependent, and columns are dependent. If you change the lower

right entry to 10, then rows are independent and columns are independent. You must always have both or
nothing.

Corollary 2.5.8 (Dimensions are linearly well-established). There is no linear bijection between Rm and Rn

when m 6= n. Furthermore, if m > n, then any linear map from Rn to Rm must not be surjective (smaller
space cannot cover larger space), while any linear map from Rm ! Rn must not be injective (larger space
must squeeze to fit into a smaller space).

This last corollary is also comparable to the situation of sets. However, the requirement of linearity is
important here. If one only require continuity, then there is in fact a continuous and surjective map from R
to R2. Search for “space-filling curve” if you are interested.
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Chapter 3

Operations on Matrices

We are doing linear maps from Rm to Rn

3.1 Matrix Multiplication

Recall that we have learned about matrix-vector multipications. if A =
⇥
a1 . . . an

⇤
and v =

2

64
v1
...
vn

3

75, then

we have

⇥
a1 . . . an

⇤
2

64
v1
...
vn

3

75 =
X

viai.

So Av is simply a linear combination of columns of A with respect to the coe�cients given as coordinates
of v.

Now consider the first coordinate of the output. Given a linear combination of columns of A, to find the
first coordinate, we actually only need the first coordinate of EACH column, and combine them accordingly.

This gives rise to a di↵erent (but equivalent) formula. If A =

2

64
rT1
...

rT
m

3

75, then see if you can verify the

following formula 2

64
rT1
...

rT
m

3

75v =

2

64
rT1 v
...

rT
m
v

3

75 .

So e↵ectively, it is like we are doing a “dot product” of v with each row of A.

Example 3.1.1. Here is a simple example. Let us see the two ways of computing a matrix-vector multipli-
cation. 

1 2
3 4

� 
2
3

�
= 2


1
3

�
+ 3


2
4

�
=


8
18

�
.


1 2
3 4

� 
2
3

�
=

2

664

⇥
1 2

⇤ 2
3

�

⇥
3 4

⇤ 2
3

�

3

775 =


8
18

�
.

Personally, I just imagine that for Av, then v is a brick, and the rows of A are the faces of the people
that I hate. So I take the brick, and smash it onto those faces one by one. Here “smash” would mean taking
a dot product. ,
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3.1.1 Composition of Linear Maps

Recall that, the matrix A =


1 1
2 4

�
represents the “counting” process in the chicken-rabbit cage problem.

Given these four enties, we now know how to count. And given a vector v =


x
y

�
that represents x chickens

and y rabbits, the vector Av represents the number of heads and leg. Note that as a linear map, we have
A : R2 ! R2.

Now suppose we are furthermore selling these heads and legs for money, and suppose the rest of the body
parts has no value. (Ma La Tu Tou and Pao Jiao Feng Zhua....) Anyway, say each head is worth 5 yuan
and each leg 7 yuan. How much would x chickens and y rabbits worth in total? Note that this evaluation
process is also linear, and it should be a linear map from R2 to R, i.e., it should be a 1 by 2 matrix.

To do this, we need the evaluation map B =
⇥
5 7

⇤
applied to Av. The evaluation map has this matrix

because it sends e1, i.e., one head, to 5, while it sends e2, i.e., one leg, to 7.

So with the chicken-rabbit input of v =


x
y

�
, we should get Av =


x+ y

2x+ 4y

�
of head-leg output, and the

total worth of them would be B(Av) = 5(x+ y) + 7(2x+ 4y) = 19x+ 33y.
In particular, we see that the composition B �A is still linear, and it has a matrix of

⇥
19 33

⇤

Proposition 3.1.2. The composition of linear maps is still linear.

Proof. Say f, g are linear and has a well-defined composition. Then f � g(av + bw) = f(g(av + bw)) =
f(ag(v) + bg(w)) = af(g(v)) + bf(g(w)) = a(f � g)(v) + b(f � g)(w).

Definition 3.1.3. Given two matrix A,B, say as linear maps we have A : Rn ! Rm, B : Rd ! Rn, then
we can do their composition. The composition of these two linear maps is what we define to be the matrix
multiplication AB.

Proposition 3.1.4. The matrix multiplication AB is well-defined i↵ the number of columns of A is the
same as the number of rows of B.

This is because the codomain of B must match with the domain of A. So when you do matrix multipli-
cations, you should always expect to see something like below. You can almost imagine that the n here in
the middle just got canceled away.

m

8
<

:

nz }| {2

4

3

5 n

8
<

:

dz }| {2

4

3

5 = m

8
<

:

dz }| {2

4

3

5 .

(m⇥ n matrix)(n⇥ d matrix) = (m⇥ d matrix)

Now we move on to the computations.

Proposition 3.1.5. Let us write B in terms of its columns, B =
⇥
b1 . . . bn

⇤
. Then AB =

⇥
Ab1 . . . Abn

⇤
.

Proof. Note that the i-th column of AB should be (AB)ei. By definition of map composition, this is
A(B(ei)), and Bei must be the i-th column of B, i.e., bi. So (AB)ei = Abi is the i-th column of AB.

In particular, feel free to verify now that
⇥
5 7

⇤ 1 1
2 4

�
=

⇥
19 33

⇤
, as in our chicken-rabbit example.

We also see immediately that matrix-vector multiplication is a special case of matrix-matrix multiplication,
if we simply think of the vector as a matrix with a single column.

Remark 3.1.6. As a side note, you also see that given an m ⇥ n matrix A, then you can only multiply a
column vector (i.e., n ⇥ 1 matrix) to the right of A, and only multiply a row vector (i.e., 1 ⇥m matrix) to
the left of A.
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Example 3.1.7. To rotate R2 by an angle of ✓ counter clockwise, this linear map has a matrix of R✓ =
cos ✓ � sin ✓
sin ✓ cos ✓

�
. To reflect R2 about the line x = y, this linear map has a matrix of F =


0 1
1 0

�
. (Can you

see why F is this matrix?)
What if we rotate and then reflect? Then we are doing FR✓. Doing this computation, you shall see we

have FR✓ =


sin ✓ cos ✓
cos ✓ � sin ✓

�
.

What if we reflect and then rotate? Again computation gives R✓F =


� sin ✓ cos ✓
cos ✓ sin ✓

�
.

Can you see the relation between the two? In fact we shall always have R✓F = FR�✓ for whatever
rotation R✓ and reflection F . (Here we require the rotation to be around the origin, and the reflection to be
fixing the origin.)

Figure 3.1.1: The blue process is FR✓ while the red process is R✓F .

Note that rotations before and after a reflecion are like mirror images of each other. So intuitively, it
should be clear that rotation by ✓ before a reflection is the same as rotation by ✓ after the reflection. ,

Above example shows that matrix multiplication (i.e., linear map composition) fails to be commutative.
But we do have associativity. Warning: Associativity is the source of MANY magic in linear algebra. Keep
it in mind.

Proposition 3.1.8. We have (AB)C = A(BC).

Proof. This is because map composition is associative. End of proof just by definition.
If you want a more computational proof, here it is. Write C in terms of its columns C =

⇥
c1 . . . cn

⇤
.

Then

A(BC) = A(B
⇥
c1 . . . cn

⇤
) = A

⇥
Bc1 . . . Bcn

⇤
=

⇥
ABc1 . . . ABcn

⇤
= (AB)

⇥
c1 . . . cn

⇤
= (AB)C.

Remark 3.1.9. In the old Chinese textbooks, this was done like this. They introduce matrix multiplication
without any talk of map composition, and simply throw a formula to the students as the definition of matrix
multiplication.

2

64
a11 . . . a1n
...

. . .
...

am1 . . . amn

3

75

2

64
b11 . . . b1d
...

. . .
...

bn1 . . . bnd

3

75 =

2

64
a11b11 + a12b21 + · · ·+ a1nbn1 . . . a11b1d + a12b2d + · · ·+ a1nbnd

...
. . .

...
am1b11 + am2b21 + · · ·+ amnbn1 . . . am1b1d + am2b2d + · · ·+ amnbnd

3

75 .

Next, they literally compute AB and then (AB)C. Then they compute BC and A(BC). And they
manipulate the formulat to show that the two are the same.

It is my opinion that this is a counter-intuitive and counter-productive approach to prove associativity.

Example 3.1.10. From this point on, we don’t need matrix-vector multiplication any more. We only need
matrix multiplication. Here are somethings to think about.
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Suppose v =

2

4
1
2
3

3

5 and w =

2

4
1
2
3

3

5. Then what is vTw? This is simply the dot product, and it yields

1+ 4+9 = 14. Alternatively, you can also think of this as a matrix multiplication of a 1⇥ 3 matrix vT with
a 3⇥ 1 matrix w, and it gives you the 1⇥ 1 matrix which is simply the number

⇥
14

⇤
.

Now consider vwT. This is the matrix multiplication of a 3⇥1 matrix with a 1⇥3 matrix, hence it gives

a 3⇥ 3 matrix as a result! This would be vwT = v

2

4
1
2
3

3

5.

Recall the formula
A
⇥
b1 b2 b3

⇤
=

⇥
Ab1 Ab2 Ab3

⇤
.

So we see that

v
⇥
1 2 3

⇤
=

⇥
v1 v2 v3

⇤
=

2

4
1 2 3
2 4 6
3 6 9

3

5 .

In general,

2

64
v1
...
vm

3

75
⇥
w1 . . . wn

⇤
=

2

64
v1w1 . . . v1wn

...
. . .

...
vmw1 . . . vmwn

3

75. In particular, the (i, j)-entry of vwT is simply

viwj . ,

Example 3.1.11 (Projection Formula). Recall scalar multiplication kv and vk for some v 2 Rn, say n 6= 1.
The former is not matrix multiplication, because k only has one column while v has n rows. However, the
latter IS a matrix multiplication, since v only has one column, and k has one row, and the way of calculation
is exactly as expected!

In particular, if you started with (vTw)u, then it should NOT be equal to vT(wu) (which is an illegal
anyway). This is because (vTw) and u here are NOT doing a matrix multiplication, and this is merely a
scalar multiplication. However, you can write (vTw)u = u(vTw) = (uvT)w. Now u(vTw) is a legal matrix
multiplciation, so we can proceed to use the associativity of matrix multiplication.

We know the projection of v to a direction w gives the vector v·w
w·ww. This is a linear map sending v to

its image, i.e., Pw : Rn ! Rn such that Pw(v) = v·w
w·ww. How to find the matrix Pw?

Well, first we try to reorganize Pw(v) into matrix multiplications as much as possible, as 1
wTww(wTv).

Next we use associativity to get 1
wTw (wwT)v.

So we see that Pw = wwT

wTw . What a pretty formula!
Be careful here. The denominator is NOT a matrix!!! You can NEVER put a matrix or a vector in the

denominator. Only numbers are allowed to do so. The number here means we are dividing each entry of the
matrix wwT by the number wTw.

In particular, if u is a unit vector, then projection to u is Pu = uuT. ,

3.1.2 Rows, Columns, and Entries of a matrix

We already know the following by definition of matrices as linear maps.

Proposition 3.1.12. The i-th column of a matrix A is Aei.

But what about rows?

Proposition 3.1.13. The i-th row of a matrix A is eT
i
A.

For example, calculate
⇥
0 1 0

⇤
2

4
1 2 3 4
5 6 7 8
9 10 11 12

3

5. When we apply the row vector to each column, it

is as if we are taking a dot product, and we simply get the second coordinate of each column, which gives
the second row.
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Remark 3.1.14. Say A is a matrix and v is a (vertical) vector, then Av is again a (vertical) vector.
In comparison, if we have a row vector vT, then vTA is again a row vector.
In fact, you may check that Av is a linear combination of columns of A according to coordinates of v.

Similarly, vT is a linear combination of rows of A according to coordinates of vT.

In the example
⇥
0 1 0

⇤
2

4
1 2 3 4
5 6 7 8
9 10 11 12

3

5, we are taking none of the first row, one copy of the second

row, and none of the third row. So the result of this linear combination is simply the second row.

Remark 3.1.15. If the columns of A are linearly dependent, then Av = 0 for some nonzero vector v.
Similarly, if the rows of A are linearly dependent, then vTA = 0T for some nonzero vT.

It all works out pretty symmetrically. Just remember, “columns are to the right of A, while rows are to
the left of A”.

Corollary 3.1.16. Suppose A =

2

64
aT
1
...

aT
m

3

75. We have matrix multiplication AB =

2

64
aT
1
...

aT
m

3

75B =

2

64
aT
1 B
...

aT
m
B

3

75.

Proof. This is because eT
i
(AB) = (eT

i
A)B = aT

i
B.

This is the “dual” picture to our previous go to way to do matrix multiplication, i.e., A
⇥
b1 . . . bn

⇤
=⇥

Ab1 . . . Abn
⇤
.

Let us now finally shift our attention to entries.

Proposition 3.1.17. The (i, j) entry of A is eT
i
Aej.

Proof. Note that eT
i
(Aej) is the i-th row of the j-th column of A, so we are done.

Also note how associativity is lurking here. We can alternatively look at (eT
i
A)ej , which is the j-th

column of the i-th row of A, and it is the same entry.

Proposition 3.1.18. The (i, j) entry of AB is the dot product between the i-th row of A and the j-th column
of B.

Proof. eT
i
(AB)ej = (eT

i
A)(Bej). Simple associativity.

In particular, if we write A in rows and B in columns, we have

AB =

2

64
aT
1
...

aT
m

3

75
⇥
b1 . . . bn

⇤
=

2

64
aT
1 b1 . . . aT

1 bn
...

. . .
...

aT
m
b1 . . . aT

m
bn

3

75 .

If you truely like things to be computational, you can further write matrix multiplication in terms of
entries.

AB =

2

64
a11 . . . a1r
...

. . .
...

am1 . . . amr

3

75

2

64
b11 . . . b1n
...

. . .
...

br1 . . . brn

3

75 =

2

64

P
i
a1ibi1 . . .

P
i
a1ibin

...
. . .

...P
i
amibi1 . . .

P
i
amibin

3

75 .

Example 3.1.19. Let us do a calculation for fun.
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A lower triangular matrix is a matrix whose entries above the diagonal are all zero. For example, say

L =

2

664

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3

775. Similarly, an upper triangular matrix is a matrix whose entries below the diagonal

are all zero. For example, say U =

2

664

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

3

775. (Note that row echelon forms are all upper triangular.)

Calculation gives LU =

2

664

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

3

775. Pretty, yes?

Let us try to see another pretty sight. A Pascal’s lower triangular matrix is a lower triangular matrix,
where the first column has all 1, the diagonal entries are all 1, and each entry is the sum of the entry above

it and the entry to its upper left. Say L =

2

664

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

3

775.

Similarly, a Pascal’s upper triangular matrix is a lower triangular matrix, where the first row has all 1,
the diagonal entries are all 1, and each entry is the sum of the entry to the left and the entry to its upper

left. Say U =

2

664

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

3

775.

Calculation gives LU =

2

664

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

3

775. Pretty, yes? This is the symmetric Pascal’s matrix, where the

first row and first column has all 1, and each entry is the sum of the entry to the left and the entry above it.
These pretty structures are of curse NOT coincidences. (Nothing in math is a coincidence.) However,

their nature is more combinatorial than linear algebra, so let us leave it at that. ,

We like triangular matrices for the following reason.

Proposition 3.1.20. The product of two upper (lower) triangular matrices is still upper (lower) trianguler.
Furthermore, the diagonal entries of the product is the entry-wise product of the diagonal entries of the two
matrices. In short, we should have

2

64
a11 ⇤ ⇤

. . . ⇤
ann

3

75

2

64
b11 ⇤ ⇤

. . . ⇤
bnn

3

75 =

2

64
a11b11 ⇤ ⇤

. . . ⇤
annbnn

3

75 .

Proof. Note that a triangular matrix must be a square matrix. So if two triangular matrices could multiply,
then they must have the same number of columns and rows.

Suppose A,B are upper triangular, say A =

2

64
aT
1
...
aT
n

3

75 and B =
⇥
b1 . . . bn

⇤
. Then the (i, j)-entry of AB is
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aT
i
bj . This is a dot product. Say aT

i
=

⇥
a1 . . . an

⇤
=

⇥
0 . . . 0 ai . . . an

⇤
and bj =

2

64
b1
...
bn

3

75 =

2

666666664

b1
...
bj
0
...
0

3

777777775

.

Let us consider a lower-triangular entry, which is the case when i > j. Since A,B are upper triangular,
the first (i� 1) entries of aT

i
are zero, and the last (n� j)-entries of bj are zero. So we have

⇥
i� 1z }| {

0 . . . 0 ai . . . an
⇤

2

6666664

...
bj
0
...
0

3

7777775

9
>=

>;
n� j

=

First i � 1 terms are 0z }| {
a1b1 + · · ·+ · · ·+ · · ·+ anbn| {z }

Last n � j terms are 0

.

Since i > j, we have (i� 1) + (n� j) � n. So all terms are zero. So all (i, j)-entry of AB with i > j are
zero. Hence AB is still upper triangular.

When i = j, then we have

⇥
i� 1z }| {

0 . . . 0 ai . . . an
⇤

2

6666664

...
bi
0
...
0

3

7777775

9
>=

>;
n� i

=

First i � 1 terms are 0z }| {
a1b1 + . . . +aibi + · · ·+ anbn| {z }

Last n � i terms are 0

= aibi.

So the (i, i)-entry of AB is just aiibii.
The case of lower triangular matrices is similar.

Let us have one last example. What if we multiply a matrix with itself?

Definition 3.1.21. The k-th power of a matrix A, written as Ak, is A multiplying itself k times.

Example 3.1.22. Let A =


1 1
0 1

�
. This is a very important matrix, the simplest shearing matrix.

By calculation, you can see that A2 =


1 2
0 1

�
, A3 =


1 3
0 1

�
and so on. See a pattern? Let us prove it

here with mathematical induction.

I claim Ak =


1 k
0 1

�
. The base case when k = 1 is trivial, so we only need the inductive step now.

Suppose the statement is true for k, let us prove it for k + 1.

We have Ak+1 = AkA =


1 k
0 1

� 
1 1
0 1

�
=


1 k + 1
0 1

�
. So we are done. ,

Finally, let us play a bit with the most important matrix, i.e., the identity matrix.

Proposition 3.1.23. Consider the n⇥ n identity matrix I. For all n⇥m matrix A, we have IA = A. For
all m⇥ n matrix A, we have AI = A.

By convention, for any square matrix A, we usually define A0 = I. (We use this convention even if A has

no inverse matrix. Even if A =


0 0
0 0

�
, we still define A0 = I. This convention will ensure that AsAt = As+t

for all non-negative integer s, t and any square matrix A.)
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3.1.3 Geometries of Linear Maps

Now we move on to several kinds of matrices, and hopefully also provide you with a variaty of perspectives
on how to understand them. I want you to keep in mind: each specific entry is NOT important. Only
collectively as a linear may, would they be important. What does the matrix behave? What is the process
of this linear map? Those are the more important questions.

Let us start with some geometrically interesting maps.

Example 3.1.24. We know rotations on the plane are R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
. What if you compose two rota-

tions? We haveR✓R� =


cos ✓ � sin ✓
sin ✓ cos ✓

� 
cos� � sin�
sin� cos�

�
=


cos ✓ cos�� sin ✓ sin� � sin ✓ cos�� sin� cos ✓
sin ✓ cos�+ sin� cos ✓ cos ✓ cos�� sin ✓ sin�

�
.

Do these formula looks familiar to you? They SHOULD! These are basic trignometry stu↵.

So upon further simplification, this gives


cos(✓ + �) � sin(✓ + �)
sin(✓ + �) cos(✓ + �)

�
= R✓+�. Huh. On second thought,

this is no surprise at all if you just think about the geometry. R✓R� literally means do the rotation by �,
then do the rotation by ✓. Obviously the result is a rotation by ✓ + �. In fact, this whole process could be
thought of as a proof of the trigonometry sum formula.

Btw, it should also be obvious that Rk

✓
= Rk✓ and so on.

The moral of the story is this: matrix multiplication formula is fine. But sometimes, understanding the
meaning of the maps can help you calculate much faster. ,

Example 3.1.25. Flipping the plane about the line x = y has a matrix of F =


0 1
1 0

�
. If you try to

apply this to a vector, you see that it sends


x
y

�
to


y
x

�
, so it literally just swap the coordinates. We have

previously see that FR✓ = R�✓F .

Flipping the plane about the x-axis has a matrix of D =


1 0
0 �1

�
. (Can you see why?) You can again

verify that DR✓ = R�✓D.
In fact, for any reflection F of the plane about a line through the origin, we always have FR✓ = R�✓F .

Intuitively, rotating by ✓ means in the mirror, you are rotating by �✓. Try to see this geometrically, and
then see if you can verify this numerically. (In general, to reflect along the line with slope angle ✓, the matrix

is


cos(2✓) sin(2✓)
sin(2✓) � cos(2✓)

�
.) ,

Example 3.1.26. Let us stretch the plane now. Say we stretch everything in the x-axis direction by a

factor of 2. This is a linear map with matrix


2 0
0 1

�
. (Can you see why?) A picture of myself will now

appear twice as fat....

(a) Before Holiday

Holiday is a linear map������������!

(b) After Holiday

Figure 3.1.2: Holiday =


2 0
0 1

�

Matrices like these are called diagonal matrices. They stretch things along the coordinate-axes. Say
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if we have

2

4
2 0 0
0 3 0
0 0 1

6

3

5, then this linear map is stretching the space R3 in the x-axis direction by a factor of

2, then in the y-axis direction by a factor of 3, and finally in the z-axis direction by a factor of 1
6 (so we are

squeezing in this direction).

(a) Before Hulk Smash

Hulk Smash is a linear map���������������!

(b) After Hulk Smash

Figure 3.1.3: Hulk Smash=

2

4
2 0 0
0 3 0
0 0 1

6

3

5

The identity matrix is a special case of a diagonal matrix. We are now stretching everything by a factor

of 1, i.e., we leave them all unchanged. You may also think of the reflection matrix


1 0
0 �1

�
as a diagonal

matrix. We are scaling things in the y-direction by a factor of �1, so things are flipped about the x-axis.

The square projection matrix (projection to the x-axis),


1 0
0 0

�
, which sends


x
y

�
to


x
0

�
, is also a special

case of this. We are now squeezing everything in the y-axis direction into nothing. Hence we obtained an
orthogonal projection to the x-axis.

Multiplications of diagonal matrices are always diagonal. This compares nicely with triangular matrices.
(In fact, a matrix is diagonal i↵ it is both upper triangular and lower triangular.)

In general, for diagonal matrices we can computationally verify that

2

64
a1

. . .
an

3

75

2

64
b1

. . .
bn

3

75 =

2

64
a1b1

. . .
anbn

3

75. Here some entries are empty, which means they are zero. Can you see this geometrically?

Algebraically, also note that for diagonal matrices, we always have commutativity. ,

Example 3.1.27. For a parallelogram, we learned long ago that its area is “base” times “height”. Now,
given a parallelogram and fixed base, can you draw all parallelograms with the same height?

You will end up drawing many “sheared” versions of this parallelogram.

Consider the matrix


1 k
0 1

�
. Then for any parallelogram whose base is on the x-axis, this linear map will

“shear” it into some tilted version of itself, but always with the same base and same height! In particular, a
shearing always preserves their volumn. This is the shearing of the x-axis direction to the y-axis direction.

In physics, a “shearing” is a force that acts like a pair of scissors. If you observe a pair of scissors, you
will realize that one blade is always on top of the other. When you use the scissors to cut things, the top
blade will push things to the right, while the lower blade will push things to the left. This is exactly what
1 k
0 1

�
will tries to do to the plane.
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x-axis

Figure 3.1.4: A shearing of a circle

In fact, a shearing will always preserve the area of whatever shape in the plane. Draw some triangles
and see if you can prove that these triangles have area preserved after a shearing.

Now, consider the geometric nature of a shearing, if I do the same shearing twice, it is as if I simply

sheared by twice the original amount. Hence it is geometrically very obvious that


1 1
0 1

�k
=


1 k
0 1

�
.

If I did some shearing and then sheared some more, then in total I simply did a bigger shear. Hence it

is also geometrically very obvious that


1 a
0 1

� 
1 b
0 1

�
=


1 a+ b
0 1

�
. Note that all shearings of the xy-plane

parallel to the x-axis will commute.

However, shearings along di↵erent directions will NOT commute. For example,


1 0
1 1

�
is a shearing

parallel to the y-axis. (Draw some graph and verify this yourself.)
Then we have 

1 0
1 1

� 
1 1
0 1

�
=


1 1
1 2

�
.


1 1
0 1

� 
1 0
1 1

�
=


2 1
1 1

�
.

So they do not commute. ,

3.1.4 Linear Combinations of Matrices

Matrix multiplication is a very powerful tool. It allows us to compose linear maps, understand behaviors
among linear maps, understand iterations of a linear transformation, and so on so forth.

Another powerful tool is to do linear combinations of matrices.

Definition 3.1.28. Given two maps f, g : Rn ! Rm (for this definition, they are not required to be linear),
we define f + g : Rn ! Rm to be the map such that (f + g)(x) is defined as f(x)+ g(x), and for any number
k 2 R, we define kf : Rn ! Rm to be the map such that (kf)(x) = kf(x).

This definition is very much standard. For example, if we are considering real functions from R to R,
say ex and x2, then the sum of ex and x2 is the function ex + x2. This is obviously the only sensible way to
define such a sum.

In the case of matrices (i.e., linear maps), note that we require the domains and codomains to be the
same. In particular, A+B is ONLY defined when A,B have the same number of rows and the same number
of columns.

Luckily for us, this is super easy to compute.

Proposition 3.1.29. Given A,B of the same size, then the (i, j) entry of A + B is simply the (i, j) entry
of A plus the (i, j) entry of B. Similarly, for any k 2 R, the (i, j) entry of kA is simply k times the (i, j)
entry of A.

Proof. By definition of linear combinations of matrices, (A + B)v = Av + Bv and (kA)v = k(Av) for all
input v.

Let us now figure out the j-th column of A + B. But we have (A + B)ej = Aej + Bej . Hence this is
simply the sum of the j-th column of A and j-th column of B. Done.

Similarly, (kA)ej = k(Aej). So the j-th column of kA is simply k times the j-th column of A.
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Example 3.1.30. Think about the identity map


1 0
0 1

�
=


1 0
0 0

�
+


0 0
0 1

�
. What does this equation

mean? It tells us that the identity map is the sum of the projection to x-axis and the projection to y-axis.

v

e1eT1 v

e2eT2 v

In particular, if we input a vector v to the equation, we have


1 0
0 1

�
v =


1 0
0 0

�
v +


0 0
0 1

�
v. This

means each vector is the sum of its x-axis “component vector” plus its y-axis “component vector”. This
orthogonal decomposition of v is a very useful tool in many problems in high school physics.

Note that


1 0
0 0

�
= e1eT1 and


0 0
0 1

�
= e2eT2 . In general, for the n ⇥ n identity matrix I, we have

I =
P

eieTi , and geometrically this means any vector is the sum of its “coordinate component vectors”.

In fact, take any pair of orthogonal unit vectors in R2, say u =


3
5
4
5

�
,v =


� 4

5
3
5

�
, and calculate uuT+vvT.

What do you see? And now you know why. ,

Example 3.1.31. Let us work out a formula for the reflection matrix in R3. Suppose we want to reflect
about a plane through the origin. What should I do?

v
nnTv

(I � nnT)v

Hv �nnTv

Figure 3.1.5: From v to its reflection Hv.

Let n be a unit normal vector. Then for any vector v, we have v = (nnT)v+(I�nnT)v, where I is the
identity matrix. You can verify that this is an orthogonal decomposition into a component parallel to n, i.e.,
(nnT)v, and a component orthogonal to n (and hence parallel to our plane of reflection), i.e., (I � nnT)v.

Now for the part that is parallel to plane of reflection, it should stay unchanged. For the part that
is parallel to the normal vector, it shall be reflected (i.e., negated). So all in all, we want to send v to
�(nnT)v + (I �nnT)v. Simplifying this, we want to send v to (I � 2nnT)v. Obviously this linear map is
simply multiplying by the matrix I � 2nnT.

In general, for any unit vector n 2 Rn, for this very reason In � 2nnT is always a reflection about a
hyperplane with normal vector n. This gives all possible reflections in all dimensions.

Some texts also refers to these “higher dimensional reflections” as Householder transformations. ,

So far we have been trying to focus on the geometry of linear maps. Now let us also look at some
analytical perspectives.

Example 3.1.32. We learn integration, and it is basically the idea of accumulation. Suppose I track my
total amount of money each month. Say I start with 1 dollar, but after one month I have 3 dollars, after
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two months I have 6 dollars, and after three months I have 7 dollars. I can write these data as a vector

2

664

1
3
6
7

3

775.

Suppose I am NOT interested in the accumulated amount of money. Rather, I am interested in how
many money can I earn each month. The “ rate of increase”, or in calculus terms, the “derivative” of the
total amount of money. What should I do?

The key is the forward di↵erence matrix . It looks like D =

2

664

1 0 0 0
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

775. It will send

2

664

x1

x2

x3

x4

3

775

to

2

664

x1

x2 � x1

x3 � x2

x4 � x3

3

775. So it records the initial amount, and traces the increases between terms.

In our case, D

2

664

1
3
5
9

3

775 =

2

664

1
2
3
1

3

775. I started with 1 dollar, and during the first month I earned 2 dollars. During

the second month I earned 3 dollars. And during the third month I earned 1 dollar.
Obviously this matrix is very useful in statistics. But furthermore, keep in mind that essentially, D is

just a discrete version of “taking derivatives”. For example, consider D

2

664

1
2
4
8

3

775 =

2

664

1
1
2
4

3

775, i.e., the derivative of a

exponential function is still exponential (ignoring the first coordinates).
There are some interesting properties if you apply this D to sequences. For example, D applied to an

arithmetic sequence gives D

2

66664

1
3
5
7
9

3

77775
=

2

66664

1
2
2
2
2

3

77775
. This is because the arithmetic sequence as a function has constant

derivative. So after D, its coordinates are constant (ignoring the first coordinate).

Applying D to a quadratic sequence gives D

2

66664

1
4
9
16
25

3

77775
=

2

66664

1
3
5
7
9

3

77775
, an arithmetic sequence (ignoring the first

coordinate), because the derivative of a degree two polynomial is a degree one polynomial.

Finally, applying D to the Fibbonacci sequence gives the sequence again D

2

666666664

1
1
2
3
5
8
13

3

777777775

=

2

666666664

1
0
1
1
2
3
5

3

777777775

, just shifted

by two terms. This is because the formula for the Fibbonacci numbers is the linear combination of two
exponential functions, and hence the derivative of it is also a linear combination of these two exponential
functions. ,
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Example 3.1.33. Now look atD =

2

664

1 0 0 0
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

775. It is obviously the di↵erence between two matrices,

D = I � J , where I is the identity matrix, and J is the matrix with ones immediately below the diagonal,
and zeroes everywhere else. What do they do?

I obviously sends a sequence to itself. The identity map never changes anything. But J is the “shift

down” operator. It shifts the sequence down a term, and sends

2

664

x1

x2

x3

x4

3

775 to

2

664

0
x1

x2

x3

3

775. Looking at this, you can

probably see why I � J gives the forward di↵erence matrix. We have the original term (preserved by I)
minus the previous term (that got shifted down by J).

Similarly one can look at JT, the matrix with ones immediately above the diagonal, and zeroes everywhere

else. Then I � JT is the backward di↵erence matrix . It will send

2

664

x1

x2

x3

x4

3

775 to

2

664

x1 � x2

x2 � x3

x3 � x4

x4

3

775. ,

A very interesting property of linear combinations of matrices is the law of distribution. We look back
at the definition, and we have

Lemma 3.1.34 (Matrix-Vector law of distribution). For any v 2 Rn, any m ⇥ n matrices A,B and any
x, y 2 R, we have (xA+ yB)v = x(Av) + y(Bv).

Proof. This is just repeating the definition of linear combinations of maps.

This can immediately be generalized to a full law of distribution on any matrix multiplications.

Proposition 3.1.35 (Law of distribution). For any matrices A,B,C and any x, y 2 R, we have (xA +
yB)C = x(AC) + y(BC) and C(xA + yB) = xCA + yCB whenever the matrix multiplications/linear
combinations involved are all well-defined.

Proof. (xA + yB)C is just xA + yB applied to each column of C. So this immediately follows from the
lemma above.

C(xA+ yB) is slightly trickier, but not much. Let ai be the i-th column of A and bi be the i-th column
of B, then we know the i-th column of xA+ yB must be xai + ybi.

So the i-th column of C(xA+ yB) is C(xai + ybi) = xCai + yCbi by linearity of C. And this is exactly
the i-th column of x(CA) + y(CB).

Remark 3.1.36. By this time it should be pretty clear that “the law of distribution” is just a special case of
linearity. In real numbers, when we have the law of distribution a(b+ c) = ab+ ac, we are really just saying
that “multiplication by a” is linear.

Pay special attention to the ORDER of multiplication, because for example AB might NOT be BA. So if
you write A(xB+ yC) = xBA+ yCA, then it would be the WRONG formula. As a quick memorization tip,
whatever is on the left before, it will still be on the left (because the map happens later in time). Similarly,
whatever is on the right before, it will still be on the right.

Corollary 3.1.37. (A + B)2 = A2 + AB + BA + B2, and so on. If AB = BA, then in fact (A + B)2 =
A2 + 2AB +B2. However, if AB 6= BA, then we must have (A+B)2 6= A2 + 2AB +B2.

Corollary 3.1.38. (A+ I)2 = A2 + 2A+ I, and so on for other polynomial calculations.

Definition 3.1.39. Given a polynomial p(x) = anxn + · · · + a1x + a0 and a square matrix A, we have
p(A) = anAn + · · ·+ a1A+ a0I.
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Corollary 3.1.40. Given two polynomials p(x), q(x) and a square matrix A, then p(A)q(A) = q(A)p(A).
And if h(x) = p(x)q(x), then h(A) = p(A)q(A) = q(A)p(A).

Proof. Observe that polynomial is simply a linear combination of powers. For example, p(x) = anxn + · · ·+
a1x+ a0 means p(x) is a linear combination of xn, . . . , x1, x0 with coe�cient ai for xi. And p(A) is simply
the corresponding linear combination of powers of A.

You can summarize this proof using only one sentence: Since all powers of A commute, therefore
all polynomials of A (i.e., linear combinations of powers of A) commute.

Now we begin our proof. Let p(x) =
P

m

i=0 aix
i and q(x) =

P
n

j=0 bjx
j . Then we have

p(A)q(A) =(
mX

i=0

aiA
i)(

nX

j=0

bjA
j)

=
X

i,j

aibjA
iAj

=
X

i,j

aibjA
i+j

=
X

i,j

aibjA
j+i

=
X

i,j

aibjA
jAi

=(
nX

j=0

bjA
j)(

mX

i=0

aiA
i) = q(A)p(A).

Now

h(x) = p(x)q(x) = (
mX

i=0

aix
i)(

nX

j=0

bjx
j) =

X

i,j

aibjx
i+j .

So from previous calculations we have

h(A) =
X

i,j

aibjA
i+j = p(A)q(A).

Example 3.1.41. Consider the matrix E =

2

4
1 1 0
0 1 0
0 0 1

3

5. It sends

2

4
x1

x2

x3

3

5 to

2

4
x1 + x2

x2

x3

3

5. So what it does is to

add the second coordinate onto the first.
Note that this matrix E di↵er from I at only one entry. The di↵erence X = E�I is a matrix whose (1, 2)

entry is 1, and all other entries are zero. It sends

2

4
x1

x2

x3

3

5 to

2

4
x2

0
0

3

5. So it simply takes the second coordinate,

and stu↵ it in the first coordinate, and clear everything else.

In particular, it is easy to see that I + kX =

2

4
1 k 0
0 1 0
0 0 1

3

5 will sends

2

4
x1

x2

x3

3

5 to

2

4
x1 + kx2

x2

x3

3

5. Furthermore,

it is also easy to check that X2 = O, the zero matrix. In particular, Xk = O whenever k � 2.
As a result, we have

(I +X)k = I + kX +Higher degree terms = I + kX.
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So Ek =

2

4
1 k 0
0 1 0
0 0 1

3

5. Hey! This is exactly how shearings would behave!

This is no surprise. Imagine what would happen if we have a parallelopiped with base on the xz-plane.
The base would be fixed, and it would be tilted along the x-direction but the height is preserved (the height
would be in the y-direction). This E is a 3-dimensional shear, and it preserves volumn instead of area. ,

So to end this section, let us write out all di↵erent ways to write matrix multiplication AB.

1. A
⇥
b1 . . . bn

⇤
=

⇥
Ab1 . . . Abn

⇤
.

2.

2

64
aT
1
...

aT
m

3

75B =

2

64
aT
1 B
...

aT
m
B

3

75.

3.

2

64
aT
1
...

aT
m

3

75
⇥
b1 . . . bn

⇤
=

2

64
aT
1 b1 . . . aT

1 bn
...

. . .
...

aT
m
b1 . . . aT

m
bn

3

75.

4.
⇥
a1 . . . an

⇤
2

64
bT1
...
bT
n

3

75 =
P

aib
T
i
.

The last one is new. Can you see why?

Proposition 3.1.42.
⇥
a1 . . . an

⇤
2

64
bT1
...
bT
n

3

75 =
P

aib
T
i
.

Proof. An entry-wise calculation proof goes like this. Say A is m⇥ n and B is n⇥ d. The (i, j) entry of AB
is simply

P
k
aikbkj . So we have

AB =

2

64

P
k
a1kbk1 . . .

P
k
a1kbkd

...
. . .

...P
k
amkbk1 . . .

P
k
amkbkd

3

75 =
X

k

2

64
a1kbk1 . . . a1kbkd

...
. . .

...
amkbk1 . . . amkbkd

3

75 =
X

k

akb
T
k
.

So we are done.

Alternatively, to use fancy entry notation, consider the (i, j) entry eT
i
ABej . We have eT

i

⇥
a1 . . . am

⇤
2

64
bT1
...
bT
n

3

75 ej =

⇥
eT
i
a1 . . . eT

i
am

⇤
2

64
bT1 ej
...

bT
n
ej

3

75. Now this is just a row vector with a column vector, so it calculates like a dot

product and gives
P

k
(eT

i
ak)(b

T
k
ej). Use associativity and linearity, we have eT

i
(
P

k
akb

T
k
)ej . So we see

that AB and
P

k
akb

T
k
have the same (i, j)-entry for all i, j. So they are the same matrix.

Yet alternatively, for a third proof, consider the fact that I =
P

eieTi . Then we have

AB = AIB = A(
X

eie
T
i
)B =

X
Aeie

T
i
B =

X
(Aei)(e

T
i
B) =

X
aib

T
i
.

Associativity is so cool....
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3.1.5 Transpose of Matrices

Now we talk about the transpose of a matrix.

Definition 3.1.43. Given a m ⇥ n matrix A, its transpose is an n ⇥ m matrix AT whose (i, j) entry is
the (j, i) entry of A.

Intuitively, AT is just an entry-wise “reflection” of A about the diagonal entries. Like

2

4
1 2
3 4
5 6

3

5
T

=


1 3 5
2 4 6

�
.

Proposition 3.1.44. (AT)T = A.

But what does this transpose mean?
It concers a deeper mathematical concept called a “dual space”, which I cannot explain yet. (It is taught

in next semester’s class.) However, here is an example, and if you like, draw whatever intuition from it as
much as you can.

Example 3.1.45. Suppose I want to burgers, chicken wings and cokes. There are two meal combos. Combo
one contains 1 burger and 2 wings and 1 coke. Combo two contains 2 burger 3 wings and 4 cokes. Can you
see a linear relation here?

Of course. If we have x combo one and y combo two, then we have

2

4
1 2
2 3
1 4

3

5

x
y

�
burgers, wings and cokes.

Now suppose the burgers, wings and cokes are p, q, r dollars each. Then the combos have prices

1 2 1
2 3 4

�2

4
p
q
r

3

5.

Food Space R3

x

2

4
1
2
1

3

5+ y

2

4
2
3
4

3

5

Food Price R32

4
p
q
r

3

5

Combo Space R2

x
y

� Combo Price R2
p+ 2q + r

2p+ 3q + 4r

�

Evaluated to total price

xp +2yp

+2xq +3yq

+xr +4yr

2

41 2 1

2 3 4

3

5Combining ingredient prices

Evaluated to total price

xp +2xq +xr

+2yp +3yq +4yr

2

664

1 2

2 3

1 4

3

775 Counting ingredients

So, we are combining foods into meal combos. On the content side, we have A. On the evaluation side,
we have AT. “Counting ingredients” and “combining prices” are transpose of each other. ,
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Remark 3.1.46. This remark is largely philosophical. Read it if you like, and forget about it if you cannot
understand....

Transpose is suppose to bounce between objects and evaluations of objects. To understand this, we first
need a philosophical perspective: an object and its evaluation is in duality.

Mathematically speaking, given a set X, we can call a function f : X ! R an evaluation on X. Now let
Y be the set of all evaluations on X.

Given f 2 Y , obviously it evaluates x 2 X via x 7! f(x). However, given x 2 X, we can also use it to
evaluate any f 2 Y via f 7! f(x).

Consider this. Say that we have students doing two math tests. Then we have a function f sending
students to their scores on the first test, and a function g sending students to their scores on the second test.
So who is evaluating whom? An obvious answer is that functions are evaluating inputs. Each test evaluates
students to the corresponding test score.

But one can also argue that the students are also evaluating the tests. For a fixed student, by doing both
tests, this person is evaluating the di↵erences between the tests, by giving di↵erent scores.

Such is the duality, where evaluations and “evaluatees” can switch places if we switch perspective. Trans-
pose, philosophically speaking, is such a perspective switch, where we are switching the roles of evaluations
and “evaluatees”. What is a vector v? Think of this as an object. What is a row vector wT? Think of this
as an evaluation of vectors. Then if A sends vectors forward to vectors, we have AT sending evaluations
backward to evaluations.

Now, philosophy and understanding aside, the biggest computational consequence of transpose is to make
rows into columns and columns into rows. Recall that when we do AB, we are doing dot products of rows
of A and columns of B. So if we do transpose, we are reversing the order of multiplication.

Proposition 3.1.47. We have (AB)T = BTAT

Proof. This is an entry-wise proof.

Write A in rows by A =

2

64
aT
1
...

aT
m

3

75 and write B in columns by B =
⇥
b1 . . . bn

⇤
. Then the (i, j) entry of

AB is aT
i
bj .

Now note that AT =
⇥
a1 . . . an

⇤
and BT =

2

64
bT1
...

bT
m

3

75. So the (i, j) entry of BTAT is bT
i
aj , which by

commutativity of dot product equals to aT
j
bi. This is the (j, i) entry of AB. So BTAT = (AB)T.

Intuitively, since matrix multiplication uses the rows of the first matrix to dot the columns of the second
matrix, by taking transpose (i.e., reversing the role of rows and columns), the order of multiplication is
reversed.

(Also recall the idiom “rows to the left and columns to the right”. If we switch the roles of rows and
columns, then we are switching left and right. So the order of multiplication is reversed.)

Proof. This is a cooler (albeit longer) proof. Again we uses special case that we know to be true, to establish
a more general case.

First, by commutativity of dot product, we know vTw = wTv. Note that transpose does nothing to 1
by 1 matrices. So vTw = wTv = (wTv)T, and this is a special case of our desired statement.

Second, consider (Ax)T. Say A =

2

64
aT
1
...

aT
m

3

75, then

(Ax)T
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=(

2

64
aT
1
...

aT
m

3

75x)T

=

2

64
aT
1 x
...

aT
m
x

3

75

T

=
⇥
aT
1 x . . . aT

m
x
⇤

=
⇥
xTa1 . . . xTam

⇤

=xT
⇥
a1 . . . am

⇤

=xTAT.

So our statement is good when we have matrix multiplying vectors.
Finally, consider the full case. Say B =

⇥
b1 . . . bn

⇤
. Then

(AB)T

=(A
⇥
b1 . . . bn

⇤
)T

=
⇥
Ab1 . . . Abn

⇤T

=

2

64
(Ab1)T

...
(Abn)T

3

75

=

2

64
bT1 A

T

...
bT
n
AT

3

75

=

2

64
bT1
...
bT
n

3

75AT

The idea of using special case to prove a general case is a powerful one, and the “linear perspective”
rather than “entry perspective” is nice, so I want you to see this proof.

Remark 3.1.48. Note that 1 by 1 matrices are unchanged by taking transpose. So we have eT
i
Aej =

(eT
i
Aej)T = eT

j
ATei, so the (i, j) entry of A is the same as the (j, i) entry of AT, as expected.

Another fine property of transpose is that it is linear.

Proposition 3.1.49. We have (xA+ yB)T = xAT + yBT

Proof. This is trivial. Just name the entries and compute. Say A = (aij)m⇥n, B = (bij)m⇥n, then both sides
has (i, j) entry xaji + ybji.

Or if you would like to practice fancy ways to write entries, you can do this, where I repeatedly used the
fact that transpose of 1 by 1 matrix is itself:

eT
i
(xA+ yB)Tej = eT

j
(xA+ yB)ei = xeT

j
Aei + yeT

j
Bei = xeT

i
ATej + yeT

i
BTej = eT

i
(xAT + yBT)ej .
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3.2 Gaussian Elimination via Matrices

3.2.1 Elementary Matrices

Now it is time to review Gaussian eliminations. What are those row operations?

Consider the shear E =

2

4
1 1 0
0 1 0
0 0 1

3

5. We know it adds the second coordinate onto the first of the input

vector. Now imagine applying E to a matrix on the left, EA. What would happen?
Well, say A in columns is A =

⇥
a1 . . . an

⇤
. Then EA = E

⇥
a1 . . . an

⇤
=

⇥
Ea1 . . . Ean

⇤
. So

we are adding the second coordinate onto the first of EACH column vector. E↵ectively, we are adding the
second row of A to the first row of A, i.e., r1 ! r1 + r2. This is a row operation!

Remember how elementary operations preserve linear relations among the columns? That means exactly
that these row operations are linear. So all of them are in fact matrix multiplications.

Definition 3.2.1. The following matrices are called elementary matrices. (They corresponds to elementary
row operations when we multiply them to the left of some matrix.) Here we assume i 6= j are two indices.

1. A swap matrix is a matrix Pij which has 1 on the (i, j) and (j, i) entry, 0 on the (i, i) and (j, j) entry,

and otherwise identical to the identity matrix. For example, over R7, P25 =

2

666666664

1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3

777777775

.

2. A scale matrix is a diagonal matrix D with all diagonal entries non-zero. (We don’t want to multiply
both sides of an equation by zero....)

3. A shear matrix is a matrix Ek

ij
with i 6= j, whose (i, j) entry is k, and is otherwise identical to the

identity matrix.

You can check yourself that they corresponds exactly to elementar row operations. The correspondence
is like this:

1. PijA means applying the row operation ri $ rj to A.

2. DA means applying the row operation ri ! diri to A for all i, where di is the i-th diagonal entry of
D.

3. Ek

ij
A means applying the row operation ri ! ri + krj to A.

All of these should be remembered. However, if you have trouble remember them, just think this: for
any elementary matrix E, we have E = EI. So the look of E as a matrix is exactly how the identity matrix
I would be transformed, if we apply the corresponding row operation.

Remark 3.2.2. So what are we doing when we do Gaussian elimination? We started with augmented matrix⇥
A b

⇤
. When we perform a row operation, we are multiplying some elementary matrix E to the left of it.

So we are doing E
⇥
A b

⇤
=

⇥
EA Eb

⇤
, and we now have a new augmented matrix.

Equivalently, consider the equations Ax = b. We can also multiply E from the left to both sides of the
equations. This gives EAx = Eb.

So as you can see, doing a row operations on the augmented matrix is EXACTLY the same as simply
multiplying a matrix to both sides of the equation.
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Example 3.2.3. Immediately I know that Ex

ij
Ey

ik
= Ey

ik
Ex

ij
. Why? Because it is obvious if you think

of them as row operations. Similarly, for di↵erent indices i, j, k, l, we have Ex

ij
Pkl = PklEx

ij
, because the

corresponding row operations don’t even touch each other. And so on so forth.
(In general, parallel things commute. Disjoint things commute. Entangled things are more likely to fail

to commute.)
You can also easily see that (Ek

ij
)t = Ekt

ij
, Ex

ij
Ey

ij
= Ex+y

ij
, which justify the exponent notation. We even

have Ek

ij
and E�k

ij
as inverse map of each other. (All by simply looking at the meaning as row operations.)

In this sense, many calculations about these elementary matrices can simply be done without any entry-
wise calculations. Just think what would happen as row operations. ,

Example 3.2.4. In the example above, we have spotted many commuting behavior. However, there are

also many non-commuting behaviors. Consider E12 =

2

4
1 1 0
0 1 0
0 0 1

3

5 and E23 =

2

4
1 0 0
0 1 1
0 0 1

3

5.

A calculation would reveal that E12E23 =

2

4
1 1 1
0 1 1
0 0 1

3

5, while E23E12 =

2

4
1 1 0
0 1 1
0 0 1

3

5. Notice the di↵erence

in (1, 3) entry.

Essentially, we can think of it like this. Say A =

2

4
rT1
rT2
rT3

3

5. E12E23 means we first do E23 and add the third

row to the second row, so now we have

2

4
rT1

rT2 + rT3
rT3

3

5. Then we do E12 and add the second row to the first,

and we have

2

4
rT1 + rT2 + rT3

rT2 + rT3
rT3

3

5. Note that the original third row is eventually carried over to the first row.

In comparison, E23E12 means we do E12 first and add the second row to the first, and now we have2

4
rT1 + rT2

rT2
rT3

3

5. Then we do E23 and add the third row to the second, and now we have

2

4
rT1 + rT2
rT2 + rT3

rT3

3

5. As you

can see, this order of operations means that the original third row never made it into the first row.

The di↵erence in the (1, 3)-entry between the matrices

2

4
1 1 1
0 1 1
0 0 1

3

5 and

2

4
1 1 0
0 1 1
0 0 1

3

5 means exactly this

question: does the original third row make it into the first row or not? ,

Now this is not the end of it. For an elementary matrix E, what if we do AE?
Consider AE1

12 for 3 by 3 matrices. Note that E1
12 =

⇥
e1 e1 + e2 e3

⇤
. So if we write A in columns

A =
⇥
a1 a2 a3

⇤
, then we haven

AE1
12 = A

⇥
e1 e1 + e2 e3

⇤
=

⇥
Ae1 Ae1 +Ae2 Ae3

⇤
=

⇥
a1 a1 + a2 a3

⇤
.

So we are adding the first column to the second, i.e., c2 ! c2+c1! Remember the saying “row left column
right”? Well congratulations, it just got a new meaning. For these elementary matrices, if applied to the
left, then they are elementar row operations. If applied to the right, then they are in fact elementar column
operations.

1. APij means applying the row operation ci $ cj to A.

2. AD means applying the row operation ci ! dici to A for all i, where di is the i-th diagonal entry of
D.

3. AEk

ij
means applying the row operation cj ! cj + kci to A.
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Pay special attention to the shearings! For Ek

ij
, as row operation it is ri ! ri + krj , where as column

operations it is cj ! cj + kci, the meaning of the indices is reversed!

Remark 3.2.5. There is more that is reversed. Consider the matrix multiplication of several elementary
matrices, E1E2 . . . Ek. Which operation happen first?

As row operations, we are doing E1E2 . . . EkA, so actually Ek happens first, then Ek�1, and so on.
But as column operations, we are doing AE1E2 . . . Ek. So actually E1 happens first, then E2, and so on.

Here is an extra funny non-trivial thing to think about.

Example 3.2.6. Look at


1 2 3
4 5 6

�
. Let us first do r2 ! r1 + r2 and have


1 2 3
5 7 9

�
, and then do

c3 ! c3 + c2 + c1 and have


1 2 6
5 7 21

�
.

What if we do c3 ! c3 + c2 + c1 first, and then do r2 ! r1 + r2? Then we first get to


1 2 6
4 5 15

�
, and

then we have


1 2 6
5 7 21

�
. We get to the same result.

A row op and a column op always commute. ,

Proposition 3.2.7. Given a matrix A, if we first do a row operation and then do a column operation, it is
the same as first doing that column operation, then do that row operation.

Proof. Say the row operation is represented by matrix E, and the column operation is represented by matrix
F . Then we are saying (EA)F = E(AF ), which is true by associativity.

3.2.2 Inverse Matrices

Proposition 3.2.8. The inverse map of a bijective linear map is linear.

Proof. Consider f(f�1(av + bw)) = av + bw = af(f�1(v)) + bf(f�1(w)) = f(af�1v + bf�1(w)). Now
apply f�1 to both sides, and we have f�1(av + bw) = af�1v + bf�1(w) as desired.

Definition 3.2.9. We say a square matrix is invertible if it is bijective as a linear map. The matrix for
its inverse map is denoted as A�1, the inverse of A.

In particular, a matrix is invertible if and only if it is bijective as linear maps. Since there is NO bijection
between spaces of di↵erent dimension, only square matrices could have the possibility of being invertible. In
fact, we already know the following when we talk about ranks.

Proposition 3.2.10. Suppose A is a square matrix. Then TFAE

1. A is invertible (bijective).

2. A is injective.

3. A is surjective.

These are enough to get us the following basic properties of matrices.

Proposition 3.2.11. If A,B are square matrices (very important condition), then AB invertible implies
that A,B are both invertible.

Proof. If the composition AB is bijective, then B must be injective. (This is simply a property of any (not
necessarily linear) maps.) But since B is square, this means that B is bijective.

Similarly, if the composition AB is bijective, then A must be surjective. (This is simply a property of
any (not necessarily linear) maps.) But since A is square, this means that A is bijective.
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Corollary 3.2.12. For square matrices A,B, if AB = I, then A,B are invertible and they are inverse of
each other.

Proof. I is bijective, so A,B are both invertible. Now apply A�1 to both sides from the left, we have
B = A�1.

Keep in mind that order of multiplications matter! If we were to apply A�1 to both sides from the right,
we would have ABA�1 = A�1, which would fail to tell us anything.

About the order of multiplication, we have a very useful calculation law here.

Proposition 3.2.13. If A,B are invertible (bijective), then AB is invertible. We have (AB)�1 = B�1A�1.

Proof. If A,B are both bijective, then obviously their composition is also bijective.
(AB)(B�1A�1) = A(BB�1)A�1 = AIA�1 = AA�1 = I. So we are done.

Note how the order of multiplication is reversed! This fact is true for all maps, not just linear ones. If
you wear your sock and then wear your shoe, then you must take o↵ your shoe and then take of your sock.
The order is reversed. If you open a door and go out, then to undo it, you have to get in and then close the
door. Again the order is reversed.

This is a very neat comparison with transpose. In fact, inverse and transpose play nicely with each other.
Recall the following:

Proposition 3.2.14. Suppose A is any matrix (maybe non-square). Then TFAE (short hand for “the
followings are equivalent”)

1. A is injective. (8b, Ax = b has at most one solution.)

2. The columns of A are linearly independent.

Proposition 3.2.15. Suppose A is any matrix (maybe non-square). Then TFAE

1. A is surjective. (8b, Ax = b has at least one solution.)

2. The rows of A are linearly independent.

This immediately implies the following statement.

Corollary 3.2.16. A is injective i↵ AT is surjective, and A is surjective i↵ AT is injective

Proof. A is injective i↵ columns of A are linearly independent i↵ rows of AT are linearly independent i↵ AT

is surjective.
The other one is very similar.

Combining the two, we have the following.

Proposition 3.2.17. A is invertible i↵ AT is invertilbe, and (AT)�1 = (A�1)T.

Proof. AT(A�1)T = (A�1A)T = IT = I. Yay.

We are now at a very good place to talk about the law of cancellation. Suppose you have real numbers
x, y, z 2 R, and you have an equation xy = xz. What would you do to simplify this? Surely you would
“cancel” the x on both sides, and obtain y = z. This is called the law of cancellation. However, this is ONLY
true if x 6= 0, and NOT true if x = 0.

Does matrix multiplications satisfy the law of cancellation? Consider these examples.
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Example 3.2.18. Let A =


0 1
0 0

�
. You can verify that AA = O. Yet we also have AO = OA = O. Thus

we have AA = AO and AA = OA. You can easily see that BOTH indicates that the law of cancellation
FAILS for matrices.

In general, the term law of left cancellation refers to the phenomenon of AB = AC implying B = C.
For some A, this is true. For some other A, this is false.

Similarly, the term law of right cancellation refers to the phenomenon of BA = CA implying B = C.
For some A, this is true. For some other A, this is false. ,

Proposition 3.2.19. The law of left cancellation is true for A i↵ A as a linear map is injective. Dually,
the law of right cancellation is true for A i↵ A as a linear map is surjective.

Proof. Suppose the law of left cancellation is true for A. For any inputs v,w, if Av = Aw, then applying
left cancellation gives v = w. So A is injective.

Conversely, suppose that A is injective. Suppose AB = AC. Then for any input v for B and C, we
would have (AB)v = (AC)v. Associativity then gives us A(Bv) = A(Cv). Now we use injectivity of A,
which gives us Bv = Cv. So B and C give the same output for all inputs. Hence B = C. So the law of left
cancellation is true for A.

So we have proven the statement about left cancellation. What about right cancellation? Well, observe
that A has the law of left cancellation i↵ AT has the law of right cancellation. At the same time, A is
injective i↵ AT is surjective. So we are done.

As you can see, being injective, surjective or bijective will have a very tangible impact on our calculations
with matrices.

Let us now see some examples of invertible matrices and transpose. Note that all matrices, even non-
square matrices, have transpose. In contrast, even some square matrices has no inverse.

Example 3.2.20. 1. The inverse of the identity matrix is itself, obviously.

2. R✓ and R�✓ are inverse of each other. Funnily, they are also transpose of each other. Huh.

3. I � uuT, i.e., projections to a hyperplane with unit normal vector u, is not invertible. Apply this to
u and you get 0, so this is not injective.

4. Householder transformations are inverse of themselves. (Because they are reflections.) Calculate and
see: (I � 2uuT)2 = I. (Is the inverse also the transpose?)

5. In the case of rotations and reflections, note that these maps preserves orthogonality. They send
orthogonal inputs to orthogonal outputs. Later we shall see that transpose and orthogonality are very
closely related.

6. Say D =

2

64
d1

. . .
dn

3

75. Then it is invertible i↵ all di are non-zero, and its inverse in that case is

D�1 =

2

64
d�1
1

. . .
d�1
n

3

75. On the other hand, the transpose of D is just D itself.

7. Swaps are inverses of themselves. (This is in fact a special case of a Householder transformation.)

8. Ek

ij
and E�k

ij
are inverse of each other. They are NOT transpose of each other. This is a very good

place to look at the di↵erence between transpose and inverse. Ek

ij
as a row operation is ri ! ri + krj .

Its transpose Ek

ji
is rj ! rj + kri, whereas its inverse is E�k

ij
, which is ri ! ri � krj .

,

71



In particular, all elementary matrices are invertible. As a result, we always have Ax = b if and only if
EAx = Eb for any elementary matrix E. This explains right away why row operations fix solution set. And
why don’t we use column operations? Because it is hard to slide in E after A in this equation.

Now, if we are faced with a linear system Ax = b, the most obvious reaction would be applying A�1 to
both sides, and get x = A�1b. But how to find the inverse? We already know how: Gaussian elimination.

Proposition 3.2.21. Given an invertible n⇥ n matrix A, then its RREF is I.

Proof. Informally this is obvious. Given any system, say the augmented matrix is
⇥
A b

⇤
, then with A bijec-

tive, we should have a unique solution. All variables solved, which can only come from
⇥
I AnswerV ector

⇤
.

Formally, consider any system Ax = b. We have no free variables because A is injective, and no
contradiction because A is surjective. So all n pivots are in the n columns of A. This gives no choice except
that A will be row reduced to I.

Corollary 3.2.22. Any invertible matrix is a product of elementary matrices.

Proof. Consider row reducing A to I. Say we used elementary row operations with matrices E1, . . . , Ek.
Then Ek . . . E1A = I. So A = E�1

1 . . . E�1
k

.

Above corollary shows that, if B is any invertible matrix, then BA is essentially the same as applying
some sequence of row operations on A. And similarly AB is the same as applying some sequence of column
operations on A.

Corollary 3.2.23. Given an invertible matrix A, consider the matrix
⇥
A I

⇤
. (This means we put A and

I side to side to make a big rectangular matrix.) Then its RREF is
⇥
I A�1

⇤
.

Proof. Obviously
⇥
I A�1

⇤
is a RREF, so we only need to show that the two are row-equivalent, i.e., they

can be transformed into each other using elementary row operations.
But if A is invertible, then A�1 is a sequence of row operations. Note that applying row operations to⇥

A I
⇤
is equivalent to applying the same row operations to A and to I simultaneously. So we have the

following matrix multiplication calculation

A�1
⇥
A I

⇤
=

⇥
A�1A A�1I

⇤
=

⇥
I A�1

⇤
.

So this is how to find the inverse of a matrix.

Example 3.2.24. Consider the chicken rabbit matrix


1 1
2 4

�
. To find its inverse, we consider the augmented


1 1 1 0
2 4 0 1

�
. Now to RREF, we do r2 ! r2�2r1, r2 ! 1

2r2, and r1 ! r1�r2. This gives


1 0 2 � 1

2
0 1 �1 1

2

�
.

So the inverse to our original matrix is


2 � 1

2
�1 1

2

�
. ,

Proposition 3.2.25. For an invertible 2⇥ 2 matrix, we have


a b
c d

��1

=
1

ad� bc


d �b
�c a

�
.

So we swap the diagonal entries, and negate the non-diagonal ones. In particular, 2 ⇥ 2 matrix here is
invertible i↵ ad� bc 6= 0.

Proof. We have 
a b
c d

� 
d �b
�c ad

�
=


ad� bc 0

0 ad� bc

�
.
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So if ad� bc 6= 0, we see that


a b
c d

�
multiply with 1

ad�bc


a b
c d

�
would give us the identity matrix. So this

matrix is invertible and we have found its inverse.
If ad� bc = 0, then the two column vectors are parallel. So A is not bijective.

There is no easy formula for higher dimension cases. (Oh there is a formula alright, it is just too ugly to
be useful.)

3.2.3 Inverses of Triangular Matrices

Here let us give pay special attention to triangular matrices.

Example 3.2.26. Let us calculate

2

664

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3

775

�1

. Consider

2

664

1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1

3

775. Now we do

r2 ! r2 � r1, r3 ! r3 � r1, r4 ! r4 � r1, and then we do r3 ! r3 � r2, r4 ! r4 � r2, and finally we do

r4 ! r4 � r3. We would have

2

664

1 0 0 0 1 0 0 0
0 1 0 0 �1 1 0 0
0 0 1 0 0 �1 1 0
0 0 0 1 0 0 �1 1

3

775.

So

2

664

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3

775

�1

=

2

664

1 0 0 0
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

775

As you can see, we only used upper rows to reduce lower rows, which is neat.

Similarly, we have

2

664

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

3

775

�1

=

2

664

1 �1 0 0
0 1 �1 0
0 0 1 �1
0 0 0 1

3

775, and this process would only involve using

lower rows to reduce upper rows.

Recall our pretty pattern LU =

2

664

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

3

775. Its inverse would be U�1L�1 =

2

664

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

3

775.

(This last matrix is in fact related to heat distributions and wave distributions and so on. Its output
coordinates are like 2xi � (xi�1 + xi+1), so it is comparing each coordinate with the average of neighboring
coordinates. Take heat distribution for example, if a place has higher temperature than its neighbors, then
it will cool down.) ,

Proposition 3.2.27. A (lower or upper) trianglular matrix is invertible if and only if its diagonal entries
are all non-zero.

Proof. For upper triangular matrices, if all diagonal entries are non-zero, then we are already in REF and
we see that we have full pivots. So it is invertible.

Conversely, suppose say the (i, i) entry is zero. (For example, consider

2

66664

1 2 3 4 5
0 6 7 8 9
0 0 0 10 11
0 0 0 12 13
0 0 0 0 14

3

77775
.)

Then the first i columns only uses i � 1 rows, so they could produce at most i � 1 pivots. (The first
three columns in the example above contains only two pivots.) And the last n� i columns obviously could
produce at most n� i pivots. (The last two columns in the example above contains only two pivots.) So we
have at most (i� 1) + (n� i) = n� 1 pivots, which is less than full. So our matrix is NOT invertible.
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For a lower triangular matrix, note that it is the transpose of an upper triangular matrix.

Note that an invertible upper triangular matrix is already in REF. Given U =

2

64
a1 ⇤ ⇤

. . . ⇤
an

3

75, how would

we further reduce it to RREF? Well, we first divide the i-th row by ai to make all pivots into ones. Now the
matrix is a unit triangular matrix.

Definition 3.2.28. A triangular matrix (upper or lower) is unit triangular if all diagonal entries are 1.

Proposition 3.2.29. An invertible matrix is unit upper triangular i↵ it can be written as a series of row
operations made ONLY of shearings, and ONLY use lower rows to change upper rows. (No swaps or scaling
involved, and no using upper rows to change lower rows.)

Similarly, an invertible matrix is unit lower triangular i↵ it can be written as a series of row operations
made ONLY of shearings, and ONLY use upper rows to change lower rows. (No swaps or scaling involved,
and no using lower rows to change upper rows.)

Proof. Given U =

2

66664

1 a12 . . . a1n
. . .

. . .
...

. . . an�1,n

1

3

77775
, we aim to show that U = E1 . . . Ek for shearings E1, . . . , Ek that

only uses lower rows to change upper rows. This means U = E1 . . . EkI. So the question is now this: starting
from the identity matrix, can we find shearings E1, . . . , Ek that only uses lower rows to change upper rows,
and reach U?

Well, this is actually quite easy. Start from the second second column and work your way to the right,

and you can see that this is always possible. For example, to reach

2

664

1 2 3 4
1 2 3

1 2
1

3

775, we can simply do

2

664

1
1

1
1

3

775
r1!r1+2r2�������!

2

664

1 2
1

1
1

3

775
r1!r1+3r3�������!
r2!r2+2r3

2

664

1 2 3
1 2

1
1

3

775
r1!r1+4r4�������!
r2!r2+3r4

r3!r3+2r4

2

664

1 2 3 4
1 2 3

1 2
1

3

775 .

For lower unit triangular matrices, you can do the similar thing (or simply take transpose).

So we have the following intuitions:

1. Think of a unit upper triangular matrix as a series of shearings using lower rows to reduce upper rows.

2. Think of a unit lower triangular matrix as a series of shearings using upper rows to reduce lower rows.

3. A non-unit triangular matrix is simply a unit triangular matrix plus some row scaling.

4. Can you figure out the corresponding understanding of unit triangular matrices as column operations?

In particular, here are some nice corollaries.

Corollary 3.2.30. Products of unit upper (lower) triangular matrices are still unit upper (lower) triangular.
The inverse of a unit upper (lower) triangular matrix is still unit upper (lower) triangular.
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Proof. Products of unit upper (lower) triangular matrices means we do all the corresponding row operations,
and they are all shearings using the lower rows to change upper rows. So the result is still unit upper (lower)
triangular.

The inverse to ri ! ri + krj is ri ! ri � krj . In particular, if we are using lower rows to change upper
rows (i.e., i > j), then the inverse is also using lower rows to change upper rows. So the inverse is still unit
upper (lower) triangular.

Corollary 3.2.31. If a matrix is upper (lower) triangular and invertible, then its inverse is also upper
(lower) triangular with diagonal entries inverted.

Proof. Just also invert the row scaling as well.

Example 3.2.32. Sometimes the inverse of a unit triangular matrix is super easy to do. For example,2

4
1 0 0
�2 1 0
�4 0 1

3

5
�1

=

2

4
1 0 0
2 1 0
4 0 1

3

5. Here the entries are simply negated. Why? Just think in terms of row

operations and you shall see.

However, it is more annoying if the row operations are entangled. For example,

2

4
1 0 0
1 1 0
1 1 1

3

5
�1

=

2

4
1 0 0
�1 1 0
0 �1 1

3

5. The original matrix

2

4
1 0 0
1 1 0
1 1 1

3

5 is adding the first row to the second, then the second

row to the third (and the original first row is in a sense “carried over”). To reverse, this, we are substracting
the second row from the third, then substract the first row from the second (and the original first row now
fail to influence the third row at all).

Basically, if all non-diagonal non-zero entries are in the same column or same row of a unit triangular
matrix, then the inverse would simply negate them. Otherwise it is more complicated and you just have to
do it the slow way. ,

3.2.4 LU decomposition

We are returning to Gaussian elimination now with our new found toys and perspectives. What is Gaussian
elimination?

Example 3.2.33. Suppose we have A =

2

4
1 1 1
2 3 5
4 6 8

3

5. To do Gaussian elimination, first we shall attempt a

top-down process where we use upper rows to reduce lower rows. In this case, we want r2 ! r2 � 2r1, r3 !

r3 � 4r1. This is the same as multiplying L1 =

2

4
1 0 0
�2 1 0
�4 0 1

3

5 to the left of A. (Recall that the looks of L1 is

exactly what L1 shall do to I, so you can quickly see that this is the right matrix.)

So we have L1A =

2

4
1 1 1
0 1 3
0 2 4

3

5. Next we want to do r3 ! r3�2r2, so we are multiplying L2 =

2

4
1 0 0
0 1 0
0 �2 1

3

5

and get L2L1A =

2

4
1 1 1
0 1 3
0 0 �2

3

5. This is our REF, and obviously it is upper triangular. Let us call this U .

So we have L2L1A = U . Reorganize this, we see thatA = LU where L = L�1
1 L�1

2 =

2

4
1 0 0
�2 1 0
�4 0 1

3

5
�1 2

4
1 0 0
0 1 0
0 �2 1

3

5
�1

=
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2

4
1 0 0
2 1 0
4 0 1

3

5

2

4
1 0 0
0 1 0
0 2 1

3

5 =

2

4
1 0 0
2 1 0
4 2 1

3

5 is lower triangular and U is upper triangular. ,

If you recall, our idea of elimination is to first go top down, using upper rows to reduce lower rows as
much as possible, until we reach REF. This means we are using lower triangular shearing matrices, and the
result we get to, an REF, is an upper triangular thing.

Suppose we got lucky, and have no need to use row swaps. Then we have lower triangular shearings
L1, . . . , Lk, such that Lk . . . L1A = U for some upper triangular U . Then in particular, let L = L�1

1 . . . L�1
k

,
we see that A = LU for a lower triangular L and an upper triangular U .

All in all, this L records how to row reduce A, and U is the resulting REF.

Definition 3.2.34. We say a square matrix A has an LU decomposition if A = LU for a lower triangular
L and upper triangular U .

In essence, LU decomposition is just the matrix way of writing Gaussian elimination. Given the LU
decomposition, it is very easy to tell what steps should you do. You can really just read it out.

Example 3.2.35. Suppose we have A = LU as

2

4
1 1 1
2 3 5
4 6 8

3

5 =

2

4
1 0 0
2 1 0
4 2 1

3

5

2

4
1 1 1
0 1 3
0 0 �2

3

5.

When we row reduce, the new row operations E would act as EA = (EL)U . So you can just focus on
reducing L to I, and when you have reduced L to I successfully, A would turn into the REF matrix U
automatically.

Looking at L column by column (left to right). Then we should do

L =

2

4
1 0 0
2 1 0
4 2 1

3

5 r2!r2�2r1�������!
r3!r3�4r1

2

4
1 0 0
0 1 0
0 2 1

3

5 r3!r3�2r2�������!

2

4
1 0 0
0 1 0
0 0 1

3

5 = I.

Note that even without any thinking, I can literally read out the steps by reading the entries column by
column (left to right).

Now we do the same thing to A, and we should reach U . Indeed, we have

A =

2

4
1 1 1
2 3 5
4 6 8

3

5 r2!r2�2r1�������!
r3!r3�4r1

2

4
1 1 1
0 1 3
0 2 4

3

5 r3!r3�2r2�������!

2

4
1 1 1
0 1 3
0 0 �2

3

5 = U.

In conclution, simply read out the entries of L, and we should know how to do elimination on A.
Conversely, given an elimination process from an invertible matrix A to its REF, then we can read out the
unit lower triangular matrix L from the elimination process. ,

The LU decomposition is among the MOST widely used matrix decompositions. This is not just because
gaussian elimination is useful, it is also because triangular matrices are super nice. For an n⇥ n triangular
matrix A, Ax = b can be solved in about 1

2n
2 calculations, while in general solving Ax = b for a generic

n⇥ n matrix A takes about 1
3n

3 calculations.

Remark 3.2.36. Suppose we are going from A to its RREF. How many calculations do we need? Here if
an entry changed once we count it as one calculation, and I am ignoring lower degree terms. And swapping
does not count as calculations because no value is changed, only the storage location is swapped.

If A is triangular, say lower triangular, then each entry below the diagonal would change exactly once
during elimination. So we need a total of (n� 1)+ (n� 2)+ · · ·+1 calculations. Then we scale the diagonal
entries to 1, which takes at most n calculations. So we need a total of n+ · · ·+ 1 = 1

2n
2 + 1

2n calculations.
If A is generic, since we ignored swapping, we can assume that we can just go forward elimination and

then back. To use the first row to reduce all rows below, generically we need n(n� 1) calculations. Next, we
use the second row to reduce below. Note that the first column is empty now, so we only need (n� 1)(n� 2)
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calculations. And so on so forth. This takes n(n � 1) + (n � 1)(n � 2) + · · · + 2 ⇥ 1 + 1 ⇥ 0 calculations.
Now we are left with an upper triangular matrix, which takes n+ · · ·+ 1 calculations. So combine the two,
we need n2 + · · ·+ 12 = 1

3n
3 + 1

2n
2 + 1

6n calculations.

So instead of solving Ax = b, suppose we already know that A = LU . Then first we can solve y from
Ly = b, and then we can solve x from Ux = y. This would take about n2 steps instead of about 1

3n
3 steps.

When n is large, this makes a huge di↵erence.

Remark 3.2.37. However, keep in mind of this: even though solving LUx = b is easy, finding A = LU
is not. In fact, finding A = LU is exactly the Gaussian elimination, so it takes about 1

3n
3 calculations. So

what is the point after all?
The point is that in practice, say we are doing a CT scan, then the A is fixed, while the scan result b is

unknown before hand. Suppose we have many future patients, then solving Ax = b1, Ax = b2, . . . , Ax = br
one by one would takes r

3n
3 calculations. On the other hand, if we do A = LU before hand, then we only

need 1
3n

3 + r

2n
2 calculations, which saves time. Or simply put, LU decomposition is basically doing most of

Gaussian elimination beforehand, without even knowing what b is.
Now, how about finding A�1 and then simply apply A�1 to all these b1, b2, . . . , br? Well that works. But

how would you find the inverse? You would use Gaussian elimination, which in essence is just A = LU . So
finding A = LU beforehand is basically the same as finding A�1 before hand, except that LU decomposition
can be done even for non-invertible matrices.

Now, LU decomposition might not be unique. For example, the zero matrix multiplying any upper trian-
gular matrix would give the same answer. However, the uniqueness do exist under some special perspective.

Definition 3.2.38. The LDU decomposition of A is A = LDU where L is UNIT lower triangular, U is
UNIT upper triangular, and D is diagonal.

Intuitively, L is the forward elimination that gives you the REF. Then we scale pivots to 1, which is D,
scaling of rows. Finally U represent the backward process that gives RREF.

Theorem 3.2.39. If A is invertible and has LU decomposition, then the LDU decomposition of A is unique.

Proof. Suppose L1D1U1 = A = L2D2U2 are two LDU decompositions. I aim to show that L1 = L2, U1 =
U2, D1 = D2. Note that since A is invertible, all matrices involved here are invertible.

The key is to manipulate the equation into L�1
2 L1D1 = D2U2U

�1
1 . Now the left hand side is lower

triangular, but the right hand side is upper triangular! How can a matrix be both lower triangular and
upper triangular? Well it has to be diagonal, of course.

Furthermore, L�1
2 L1 is in fact unit lower triangular, with ones on the diagonal. Now L�1

2 L1D1 means
multiplying columns of L�1

2 L1 with corresponding entries of D1. So diagonal entries of L�1
2 L1D1 will just be

the diagonal entries ofD1. But we already know that L�1
2 L1D1 is diagonal! So we must have L�1

2 L1D1 = D1.
Since D1 is invertible, we can simplify this to L1 = L2.

Similarly we have U1 = U2 on the right hand side. Finally, L�1
2 L1D1 = D2U2U

�1
1 is now D1 = D2.

Done.

Fun proof, yes?

Remark 3.2.40. Why LU decomposition? Why not UL decomposition? This is largely a matter of conven-
tion.

Suppose A = LU . Then A�1 = U�1L�1, so you see that an LU decomposition of A corresponds to an
UL decomposition for A�1. So, if you want to do UL decomposition for A, you are essentially doing LU
decomposition to A�1.
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3.2.5 Diagonally Dominant Matrices

Now, is it possible to just recognize an invertible matrix by sight? Most of the time, no. However, we have
seen some special cases, like diagonal matrices, triangular matrices and so on. These we can just tell by
sight. Here is another kind.

Example 3.2.41. Imagine that a matrix has big entries on the diagonal, and tiny entries o↵ the diagonal.
Must it be invertible?

In 2 ⇥ 2 case, we have


big tiny
tiny big

�
. It is quite obvious that the two columns are NOT parallel, hence

the columns are linearly independent. So our square matrix must be invertible.

What about the 3 ⇥ 3 case? We have

2

4
big tiny tiny
tiny big tiny
tiny tiny big

3

5. To be invertible, it means it shall have full

pivots (on the diagonal) after Gaussian elimination.
Imagine the first step of such an elimination. We would need to substract tiny

big times the first row from
rows below. This shall yeild something like

2

4
big tiny tiny
0 big� tiny

big tiny tiny� tiny
big tiny

0 tiny� tiny
big tiny big� tiny

big tiny

3

5 .

But as you can imagine, tiny
big tiny is probably even more tiny. So it shall have little e↵ect on the entries.

We should expect big entries to remain big, and tiny entries to remain tiny. Hence we have something like

2

4
big tiny tiny
0 big tiny
0 tiny big

3

5 .

The next elimination step would similarly create

2

4
big tiny tiny
0 big tiny
0 0 big

3

5 .

So we see that we shall have full pivots. Such a matrix must be invertible. This idea can easily be
generalized to larger matrices (but the precise definition of “big” here is unfortunately quite blurry). ,

Definition 3.2.42. A square matrix A = (aij)n⇥n is (row) diagonally dominant if in each row, the absolute
value of the diagonal entry is larger than the sum of absolute values of all other entries, i.e., |aii| >

P
j 6=i

|aij |
for each i. (We can similarly define column diagonally dominant matrices.)

Intuitively, a diagonally dominant matrix is basically a matrix that is “close to being diagonal”.

Proposition 3.2.43. A (row or column) diagonally dominant matrix is invertible.

Before we prove it, let us first figure out when shall we see these matrices.

Example 3.2.44. Diagonally dominant matrix usually apear on things that are “mostly stable”.
Let us predict the weather. Each hour, the weather could be sunny, cloudy or rainy. Furthermore, given

any hour, the weather next hour is likely to be the same.
Suppose we know the following:

1. If an hour is sunny, then the next hour has 90% chance to still be sunny, and 10% chance to be cloudy.

2. If an hour is cloudy, then the next hour has 60% chance to be cloudy, and 20% chance to be rainy.
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3. If an hour is rainy, then the next hour has 50% chance to be rainy, 30% chance to be cloudy, and 20%
chance to be rainy.

A probability chart might look like this:

Sunny Now Cloudy Now Rainy Now
Sunny Next 0.9 0.2 0.2
Cloudy Next 0.1 0.6 0.3
Rainy Next 0 0.2 0.5

.

Note that things are mostly stable because one hour is very likely to have the same weather as the next
hour. We also have a natural matrix here. What linear map would this matrix represent?

Suppose a given hour has x, y, z chance to be sunny, cloudy or rainy respectively. We may write this info

as a vector

2

4
x
y
z

3

5. Then the next hour, we shall have x

2

4
0.9
0.1
0

3

5 + y

2

4
0.2
0.6
0.2

3

5 + z

2

4
0.2
0.3
0.5

3

5 chance of being sunny,

cloudy or rainy.

To put this together, we see that the matrix A =

2

4
0.9 0.2 0.2
0.1 0.6 0.3
0 0.2 0.5

3

5 is the transition process. It sends the

probability distribution of an hour v to the probability distribution of the next hour Av. In a sense, A helps
us predict the future.

Note that A is (row) diagonally dominant. The diagonal entries specifically refers to the chances of
a sunny hour remains sunny, a cloudy hour remains cloudy, and a rainy hour remains rainy. And these
situations dominates. Essentially, this is because the weather usually likes to remain unchanged between
two consecutive hours. As with most continuous process.

In situations such as heat di↵usions, wave transmissions, probability evolutions and so on, you will always
see such diagonally dominant matrices.

So what does it mean that these matrices can be inverted? Well, you can watch a film “Tenet” by Noland.
When he creates a world where entropy is reversed, bullets go back into guns, cars drive backwards, flames
freeze things, he is in a sense using the fact that these evolution matrices are invertible. ,

How to show that something is invertible? Well, you do Gaussian elimination and see if you get full
pivots, i.e., see if the RREF is the identity matrix. This can be rephrased into the following statement.

Lemma 3.2.45. A square matrix A is invertible i↵ x = 0 is the only solution to Ax = 0.
(All outputs have unique pre-images i↵ the zero output has a unique pre-image.)

Proof. If A is invertible, then it is injective. So Ax = 0 has at most one solution, and therefore it has to be
0.

Now suppose Ax = 0 has a unique solution x = 0. This means the augmented matrix
⇥
A 0

⇤
has an

RREF of
⇥
I 0

⇤
. So A has full pivots, and hence A is invertible.

(Some textbook might WRONGLY tell you to look at the determinant of the matrix. However, finding
determinant is almost always slower than doing elimination. So in practice you should NOT do that.)

Example 3.2.46. Now why are these things invertible?

Consider

2

4
0.9 0.2 0.2
0.1 0.6 0.3
0 0.2 0.5

3

5

2

4
x
y
z

3

5 =

2

4
0.9x+ 0.2y + 0.2z
0.1x+ 0.6y + 0.3z

0.2y + 0.5z

3

5. Being diagonally dominant means each output

coordinate depends the MOST on the corresponding input coordinates, and less on other input coordinates.
To check for invertibility, let us consider how to make the output zero.
The first output coordinate is 0.9x + 0.2y + 0.2z. Note that, if x has the largest non-zero absolute

value among x, y, z (|x| � |y| and |x| � |z|), then this cannot be zero. y, z are already small, and they got
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multiplied with non-diagonal entries, which are also small. x is already large, and it got multiplied with the
diagonal entry, which is also large.

In particular, any solution to

2

4
0.9 0.2 0.2
0.1 0.6 0.3
0 0.2 0.5

3

5

2

4
x
y
z

3

5 = 0 must NOT have x with the largest non-zero

absolute value among x, y, z.
But similarly, the solution cannot have y with the largest non-zero absolute value, and cannot have z

with the largest non-zero absolute value. We are left with one choice, x = y = z = 0. ,

Proof of the Propositions. Suppose A is row diagonally dominant, and x 6= 0. Say x =

2

64
x1
...
xn

3

75 where xi has

the largest absolute value among all coordinates. Then let us consider the i-th coordinate of the output.
If A = (aij)n⇥n, then the i-th coordinate of the output is

|
X

j

aijxj | � |aii||xi|�
X

j 6=i

|aij ||xj | � |aii||xi|�
X

j 6=i

|aij ||xi| = (|aii|�
X

j 6=i

|aij |)|xi| > 0.

So Ax 6= 0. We cannot combine columns of A non-trivially to get 0. So A has linearly independent column,
and A is injective and hence bijective.

Finally, if A is column diagonally dominant, then AT is row diagonally dominant, so we are done.

If you check out the Chinese textbook by Liang, Tian and myself, there is also a cool example on heat
distribution on wires about diagonally dominant matrix.

3.3 Block Matrices

3.3.1 Meaning of Blocks

There are two major techniques when it comes to matrices. The first one is decompositions, and we have
already seen it in the form of LU decompositions or LDU decompositions. Given a complicated map, we
decompose it into the composition of a chain of simpler maps.

The second one is to utilize block matrices, which is what we shall do here. We start with a mystery.

Example 3.3.1. Consider the transformation on R3 that rotate the xy-plane by 45 degree counterclockwise
and stretch the z-axis by a factor of 2. So by looking at images of e1, e2, e3, we see that the matrix is2

4
1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 2

3

5.

This is NOT a diagonal matrix. However, it is a block diagonal matrix . If you divide it into four

blocks as

2

64

1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 2

3

75, you see that the non-diagonal blocks are all zero.

Now if you take inverse, we have

2

4
1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 2

3

5

�1

=

2

4
1p
2

1p
2

0

� 1p
2

1p
2

0

0 0 1
2

3

5. Hey, this is just as if we are

taking inverse of each diagonal block!
If we take the inverse of a diagonal matrix, we just invert each diagonal entry. It seems that, if we take

the inverse of a block diagonal matrix, we can just invert each diagonal block.
In fact, the two blocks here behaves “independently”. The upper left block only uses the first two

coordinates to change the first two coordinates (rotating the xy-plane), while the lower right block only uses
the third coordinate to change the third coordinate (stretching the z-axis). No wonder they got inverted
independently. ,
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As you can see, block matrices are NOT just a formality in grouping entries. It in fact has meanings.
Each individual block is in fact a linear “submap” in some sense.

Example 3.3.2. Consider a map sending foods to nutrients. Say we have foods: apples, bananas, meat.

And we have nutrients: fibers, proteins, suger. Then this map is a matrix A, such that if we have

2

4
x
y
z

3

5

apples, bananas and meat, then we have A

2

4
x
y
z

3

5 fibers, proteins and suger. Obviously A is a 3 by 3 matrix.

Now consider the block form A =

2

4
a b c
d e f
g h i

3

5 =


A11 A12

A21 A22

�
, where Aij represent the corresponding

blocks.
What does A11 do? It sends fruits to the low calory nutrients they contain. What does A12 do? It send

fruits to the high calory nutrients they contain. What does A21 do? It sends meat to the low calory nutrients
it contains. What does A22 do? It send meat to the high calory nutrients it contains.

fruits low calory

meat high calory

A11
A21

A12
A22 .

And what is A? A as a linear map is simply the collection of these four linear maps. ,

Intuitively, when we have a block matrix, we are grouping input coordinates and output coordinates. The
block Aij records how the i-th group of inputing coordinates e↵ect the j-th group of outputing coordinates.

Example 3.3.3. Consider

2

4
1 1 1
1 1 2
0 0 1

3

5. Note that the lower left block is zero. This means the first two input

coodinates does NOT e↵ect the third output coordiante.

Indeed we have

2

4
1 1 1
1 1 2
0 0 1

3

5

2

4
x
y
z

3

5 =

2

4
x+ y + z
x+ y + 2z

z

3

5.

R2 R2

R R

A11

A12

A22 .

This is a block upper triangular matrix .
In particular, block diagonal means each groups of coordinates only e↵ect themselves. In particular,

instead of one system, it is more like many separate independent systems, one for each diagonal block. Here

is a picture for

2

64

1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 2

3

75.

R2 R2

R R

A11

A22 .

,
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Definition 3.3.4. A block diagonal matrix is a matrix whose block form is

2

64
A1

. . .
Ak

3

75 for square

matrices A1, . . . , Ak.

A block upper triangular matrix is a matrix whose block form is

2

64
A1 ⇤ ⇤

. . . ⇤
Ak

3

75 for square matrices

A1, . . . , Ak. One can similarly define a block lower triangular matrix.

Remark 3.3.5. Note that we usually require the diagonal blocks to be square. For example,

2

4
1 0 0
2 0 0
0 3 4

3

5 is

NOT considered a block diagonal matrix or a block upper triangular matrix.

We want nice formula such as

2

64
A1 ⇤ ⇤

. . . ⇤
Ak

3

75

�1

=

2

64
A�1

1 ⇤ ⇤
. . . ⇤

A�1
k

3

75, so we want these blocks to be

square.

We are now ready to do some calculation to make these ideas rigorous.

Proposition 3.3.6.


A
B

�
x =


Ax
Bx

�
given that A,B has as much columns as coordinates of x.

Proof. Write A,B in row vectors and this is trivial. Here is a graph if A is m1 ⇥ n and B is m2 ⇥ n.

Rn Rm1

Rm2

A

B
.

Proposition 3.3.7.
⇥
A B

⇤ x
y

�
= Ax + By given that A has as much columns as coordinates of x, and

B has as much columns as coordinates of y.

Proof. Write A,B in column vectors and this is trivial. Here is a graph if A is m⇥ n1 and B is m⇥ n2.

Rn1 Rm

Rn2

A

B

.

Lemma 3.3.8. For matrices (in block form) A =
⇥
A1 A2

⇤
and B =


B1

B2

�
, where A1 has the same number

of columns as the number of rows of B1, and A2 has the same number of columns as the number of rows

of B2. Then AB =
⇥
A1 A2

⇤ B1

B2

�
= A1B1 + A2B2. (Just like how a horizontal vector acts on a vertical

vector.)

Proof. For any input vector v, we have

ABv =
⇥
A1 A2

⇤ B1

B2

�
v =

⇥
A1 A2

⇤ B1v
B2v

�
= A1B1v +A2B2v
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So in short, ABv = (A1B1 +A2B2)v.
Here is a nice graph to see it. From the domain Rn of AB to the codomain Rm of AB, there are two

“routes”, one is via A1B1, and the other is via A2B2. So in total we just have A1B1 +A2B2.

Rn Ra Rb Rm
B1

B2

L

A1

A2

Remark 3.3.9. Compare this with the formula of vTw =
P

viwi, and
⇥
a1 . . . an

⇤
2

64
bT1
...
bT
n

3

75 =
P

aib
T
i
.

Lemma 3.3.10. For matrices (in block form) A =


A1

A2

�
and B =

⇥
B1 B2

⇤
, where A1, A2 has the same

number of columns as the number of rows of B1, B2. Then AB =


A1

A2

� ⇥
B1 B2

⇤
=


A1B1 A1B2

A2B1 A2B2

�
. (Just

like how a column vector acts on a row vector.)

Proof. For any input vector


x
y

�
, we have

AB


x
y

�

=


A1

A2

� ⇥
B1 B2

⇤ x
y

�

=


A1

A2

�
(B1x+B2y)

=


A1B1x+A1B2y
A2B1x+A2B2y

�

=

2

664

⇥
A1B1 A1B2

⇤ x
y

�

⇥
A2B1 A2B2

⇤ x
y

�

3

775

=


A1B1 A1B2

A2B1 A2B2

� 
x
y

�
.

Here is a nice graph to see it. Say the domain of AB is Rn1+n2 , and codomain is Rm1+m2 , and the
codomain of B and domain of A is Rd. Then the only route from Rni to Rmj is AjBi.

Rn1 Rm1

Rd

Rn2 Rm2

B1

B2

A1

A2

.
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You can see the trend here. You can simply pretend that these blocks are “entries”, and just do it as if
you are doing matrix multiplications. You’ll be just fine.

(But be careful of the order of multiplication. Whatever is originally on the left, it will end up on the

left. E.g.
⇥
A1 A2

⇤ B1

B2

�
= A1B1 +A2B2 is correct, while

⇥
A1 A2

⇤ B1

B2

�
= B1A1 +B2A2 is WRONG. )

We merely do a simple case here, since it contains all the crucial ideas for a generalization.

Proposition 3.3.11. Sometimes we can divide a matrix into tiny blocks. Then matrix multiplications can

be done block-wise, as if the blocks are just entries. For example, if A =


A1 A2

A3 A4

�
and B =


B1 B2

B3 B4

�
,

where A1 is m1 by n1, A2 is m1 by n2, A3 is m2 by n1, A4 is m2 by n2, B1 is n1 by r1, B2 is n1 by r2, B3

is n2 by r1, B4 is n2 by r2.

Then AB =


A1B1 +A2B3 A1B2 +A2B4

A3B1 +A4B3 A3B2 +A4B4

�
. Just as you would expect from doing multiplications of 2

by 2 matrices.
Essentially we can divide A and B into as many blocks as we want, and multiply A and B by pretending

that each block is just some number, as long as all block multiplications involved are well-defined.

Proof. Think of A as two column blocks and B as two row blocks, we have


A1 A2

A3 A4

� 
B1 B2

B3 B4

�
=


A1

A3

� ⇥
B1 B2

⇤
+


A2

A4

� ⇥
B3 B4

⇤
=


A1B1 +A2B3 A1B2 +A2B4

A3B1 +A4B3 A3B2 +A4B4

�
.

A picture looks like this:

Rn1 Rd1 Rm1

Rn2 Rd2 Rm2

B1

B3

B2

B4

A1

A3

A2

A4 .

As you can see from above, to move from Rn1 to Rm1 , you can do A1B1 or A2B3. So the corresponding
upper left block after the multiplication is A1B1 +A2B3.

As you can imagine, this is probably NOT going to make computation easier. However, it will make
certain special case easier. For example you can have the following:

1.


A1 O
O A2

� 
B1 O
O B2

�
=


A1B1 O
O A2B2

�
. Here O means a block of all zero entries.

2. When invertible,


A O
O B

��1

=


A�1 O
O B�1

�
.

3. Products of block triangular matrices are block trianguler, and the diagonal blocks of the product is
the product of corresponding diagonal blocks.

We end this section with an super mysterious special scenario, where there is no block in sight, yet the
essense of a block matrix is still there.

Example 3.3.12. Sometimes there are “hidden blocks”.

Consider the matrix

2

4
2 0 1
0 2 0
5 0 3

3

5. You can check that its inverse is

2

4
3 0 �1
0 1

2 0
�5 0 2

3

5. Curiously, you may

also check that


2 1
5 3

�
and


3 �1
�5 2

�
are inverse of each other. Hey! It is as if in the original matrix

84



2

4
2 0 1
0 2 0
5 0 3

3

5, the four corner entries form a “secret” block and the middle entry form the other block, and we

are block diagonal!
How can this be? Recall the REASON behind the behavior of block diagonal matrices. It is because

groups of coordinates are independent of each other. Now consider

2

4
2 0 1
0 2 0
5 0 3

3

5, and you can see that the

first coordinate and the third coordinate will NOT e↵ect the second coordinate, and the second coordinate
will NOT e↵ect the first and third coordinate. So it indeed have the desired behavior. It is “secretly” block
diagonal. ,

3.3.2 Block Elimination and Block Inverse

Recall that elementary row operations are essentialy multiplying matrices from the left. Now sometimes we
get lazy, and we will try to do MANY operations together, and do a BLOCK row operation.

Example 3.3.13. Consider

2

4
O Ia O
Ia O O
O O Ib

3

5. When acting on matrices with 2a + b rows from the left, this

matrix will swap the first a rows with next a rows. In particular,

2

4
O Ia O
Ia O O
O O Ib

3

5

2

4
A
B
C

3

5 =

2

4
B
A
C

3

5 where A,B

have a rows each, and C has b rows. ,

Example 3.3.14. Consider


Ia O
X Ib

�
and


A
B

�
where A has a rows, B has b rows and X is any a⇥ b matrix.

We have


Ia O
X Ib

� 
A
B

�
=


A

B +XA

�
. We are adding X times the first block row to the second block row. ,

Example 3.3.15. Consider


X O
O Y

� 
A
B

�
=


XA
Y B

�
. This is block row scaling. ,

Similarly, if we apply block swapping matrices, block shearing matrices and block diagonal matrices to
the right, then we are doing block column operations.

Example 3.3.16. How to find the inverse of


A B
C D

�
, provided that A is invertible?

We can first row reduce downward as we are used to. To kill C, I need to substract CA�1 copies of the
top block rom from the bottom block row. (Note that A�1C would be WRONG here. The order matters.)

This gives


I O

�CA�1 I

� 
A B
C D

�
=


A B
O D � CA�1B

�
. Note that the matrix on the right hand side is

invertible i↵ both diagonal blocks are invertible.
This yields the following theorem. ,

Definition 3.3.17. For a block matrix


A B
C D

�
where A,D are square, the Schur complement of A is

D � CA�1B when A is invertible, and the Schur complement of D is A�BD�1C when D is invertible.

Proposition 3.3.18. For a block matrix M =


A B
C D

�
, if A and its Schur complement are both invertible,

then M is invertible with inverse


I �A�1B
O I

� 
A�1 O
O (D � CA�1B)�1

� 
I O

�CA�1 I

�
.
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The proof is basically finishing the block LDU decomposition and then invert each matrix. The LDU
decomposition is

M =


I O

CA�1 I

� 
A O
O (D � CA�1B)

� 
I A�1B
O I

�
.

Don’t memorize this formula. Rather, just remember the idea of block operations, and don’t be surprised
when you do block operations and see a Schur complement somewhere.

3.3.3 Woodburry formula and Sherman-Morrison formula (Optional)

Block matrix multiplications are no doubt super helpful, but due to the non-commutativity, expressions could
also get super long. For example, when A and its Schur complements are invertible, we have an expression

for the inverse of


A B
C D

�
. Multiply out the previous results, we have


I �A�1B
O I

� 
A�1 O
O (D � CA�1B)�1

� 
I O

�CA�1 I

�

=


A�1 �A�1B(D � CA�1B)�1

O (D � CA�1B)�1

� 
I O

�CA�1 I

�

=


A�1 +A�1B(D � CA�1B)�1CA�1 �A�1B(D � CA�1B)�1

�(D � CA�1B)�1CA�1 (D � CA�1B)�1

�
.

But when D and its Schur complements are invertible, we have another expression for the inverse of
A B
C D

�
. Symetrically, this is


(A�BD�1C)�1 �D�1C(A�BD�1C)�1

�(A�BD�1C)�1BD�1 D�1 +D�1C(A�BD�1C)�1BD�1

�

Compare the upper left block in both expressions you would obtain the famous Woodbury formula, true
whenever A,D are invertible and B,C have the correct number of rows and columns:

(A�BD�1C)�1 = A�1 +A�1B(D � CA�1B)�1CA�1.

The formula is powerful and useful in some fields. Although it looks horrible, note that we have Schur
complements everywhere. In fact, the ugly portion (A�1B)(D � CA�1B)�1(CA�1), the three portions
corresponds exactly to the LDU decomposition entries. Of course, there is no need to memorize this though.
(I won’t test it in the final.) Whenever you need this in the future, just google it again to get this formula.

Example 3.3.19. Let us do some special case of this. Suppose A = I, B = ei, C = eT
j
, D = �I where

i 6= j. Then we have a formula (I � eieTj )
�1 = I + eieTj . Is this true?

Well it is. These are just shearing matrices for a single row operation, and obviously the inverse of that

shearing behaves this way. Say when i = 2, j = 1, we have


1 0
1 1

��1

=


1 0
�1 1

�
.

Let us be more general. Consider the inverse I + uvT. Forget about the precise Woodburry formula,
and rather just remember this: its inverse is I � kuvT for some number k. Now look at the equation
(I + uvT)(I � kuvT) = I, and you can solve and get k = 1

1+vTu .

The formula (I + uvT)�1 = I � uvT

1+vTu is much more useful and easier to remember.

Now substitute u by A�1u, and multiply A�1 on both sides from the right, we have (A + uvT)�1 =

A�1 � (A�1u)(vT
A

�1)
1+vTu . This is sometimes called the Sherman-Morrison formula.

Matrices that looks like uvT are also called rank-one matrices sometimes, because they can only have
one pivot. Don’t memorize the precise Sherman-Morrison. Rather, keep in mind of what it is trying to say:
if we change a matrix A by a rank-one matrix, then its inverse would also change by some rank-one matrix.
In fact, the Woodburry formula can be think of as a rank r version of this. ,
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Example 3.3.20. Here is another nice applicatin of the Woodburry formula. Apply this to (I + AB)�1,
and we have (I + AB)�1 = I � A(I + BA)�1B. Note that A,B here does not need to be square. As long
as AB is square, we are fine. Also note that AB,BA might be suqare matrices of di↵erent dimensions.

In particular, this implies that I +AB is invertible i↵ I +BA is invertible. ,

Remark 3.3.21. Here is an alternative proof of the fact above, that (I + AB)�1 = I � A(I + BA)�1B.
What is the fundamental relation between I + AB and I + BA? It is the following fact, called a push-over
identity: A(I +BA) = (I +AB)A and (I +BA)B = B(I +AB). Can you see the “pushing over”?

Now inverting the I + AB, I + BA, and we have the push-over identity in the form of (I + AB)�1A =
A(I +BA)�1.

To complete the proof, we have I = (I +AB)�1(I +AB) = (I +AB)�1 + (I +AB)�1AB. Now use the
above identity, and we have the desired formula.

Remark 3.3.22. This remark is entirely optional. By the summation of geometric series, we know that for
real numbers |x| < 1, we have the formula

1

1 + x
= 1� x+ x2 � x3 + ....

Apply this to AB or BA, we have

(I +AB)�1 = I �AB +ABAB �ABABAB + ....

(I +BA)�1 = I �BA+BABA�BABABA+ ....

Now note that A(I + BA)�1B is exactly AB � ABAB + ABABAB � .... This is exactly a part of the
formula for (I +AB)�1, wow! Hence we have (I +AB)�1 = I �A(I +BA)�1B.

The arguments so far are not rigorous yet, and there are some convergence issues to think about. Never-
theless, it gives a very nice intuition about this fact.

3.3.4 Symmetric Matrices and LDLT Decomposition

You surely have wondered about this. Some matrices are very pretty, in that they equal to their own

transpose, say

2

4
1 2 3
2 4 5
3 5 6

3

5.

Definition 3.3.23. A matrix A is said to be symmetric if A = AT.

So these are matrices like


1 2
2 3

�
, where the entries are symmetric about the diagonal.

Proposition 3.3.24. For any square matrix A, A+AT is symmetric.
For any m⇥ n matrix A, AAT and ATA are symmetric.

Proof. Direct calculation.

Now it sure looks pretty on the outside. Luckily, it is also pretty on the inside.

Proposition 3.3.25. If A = AT is invertible, and it has an LU decomposition, then in fact we have
A = LDLT where L is unit lower triangular, and D is diagonal.

Proof. We know the LDU decomposition is unique. Now consider A = LDU and A = AT = (LDU)T =
UTDTLT, and note that these are two LDU decomposition for A. So we must have U = LT.

We sometimes call this the LDLT decomposition. It is in fact faster than the traditional elimination
(only take half as much time). Why? Because symmetricity means we only need to work with entries below
the diagonal.
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Example 3.3.26. Suppose we have

2

664

1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10

3

775. For the first step of the elimination, we use the first

row to reduce below, and we have

2

664

1 2 3 4
0 1 0 �1
0 0 �1 �3
0 �1 �3 �6

3

775. Huh. The lower right block is still symmetric!

In fact, this is no coincidence. Say our symmetric matrix is


a vT

v S

�
. Consider the elimination


1 0T

� 1
a
v I

� 
a vT

v S

�
=


a vT

0 S � 1
a
vvT

�
, we see that the lower right block must still be symmetric.

So we do not need to compute all entries during our elimination. Starting with

2

664

1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10

3

775, to

do the first step of the elimination, we only need to calculate the entries below the diagonal and get2

664

1 2 3 4
0 1
0 0 �1
0 �1 �3 �6

3

775, and we can then fill in the blank according to the symmetricity without a thought.

So for big matrices, we save about half the time. ,

3.3.5 When do we have an LU Decomposition

Definition 3.3.27. For a matrix A, its upper left k⇥k entries for its k-th leading principal submatrix.

Theorem 3.3.28. An invertible matrix A has an LU decomposition if and only if all its leading principal
submatrices are invertible. (I.e., upper left square block of various sizes are all invertible.)

Example 3.3.29. If the upper left entry is zero, then Gaussian elimination needs a swap right away. So of
course there is no LU decomposition.

Consider

2

4
1 1 3
2 2 3
4 5 6

3

5. We now use top row to eliminate below, and we have

2

4
1 1 3
0 0 �3
0 1 �6

3

5. And now we

need a swap, so no LU decomposition. This is precisely because the
⇥
2 2

⇤
on the second row is a multiple

of
⇥
1 1

⇤
on the first row, i.e., the second leading principal submatrix is NOT invertible. (Dependent rows

= NOT surjective.) ,
Proof of Su�ciency. If A = LU and A invertible, it follows that L,U are both invertible. So the diagonal
entries of L,U are all non-zero.

Now consider the block form L =


L11 O
L21 L22

�
, U =


U11 U12

O U22

�
, here L11, L22, U11, U22 are all triangular

with non-zero diagonal entries, and hence all invertible.

Then we have A = LU =


L11 O
L21 L22

� 
U11 U12

O U22

�
. Ignore the rest, just focus on the upper left block of

this multiplication and we see that the k-th leading principal submatrix is exactly L11U11. Hence it must
be invertible.

Proof of Necessity. Say A is n⇥n. We do this by induction on n. The case n = 1 is trivial because A would
be a non-zero number.

Let us do the inductive step. We write block form A =


An�1 v
wT a

�
. If all leading principal submatrices

of A are invertible, then all leading principal submatrices of An�1 are invertible. So by induction hypothesis,
we have An�1 = Ln�1Un�1. In particular, L�1

n�1 is the elimination we would do on An�1.
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Now we block eliminate A. First we have


I 0

�wTA�1
n�1 1

�
A =


An�1 v
0 a� wTA�1

n�1v

�
. Next we elimi-

nate An�1, so we need to use L�1
n�1. This leads to


L�1
n�1 0
0T 1

� 
I 0

�wTA�1
n�1 1

�
A =


Un�1 L�1

n�1v
0 a� wTA�1

n�1v

�
.

Now we end up with an upper triangular matrix. So reorganizing the terms, A has the following LU decom-
position:

A =


Ln�1 0

wTA�1
n�1Ln�1 1

� 
Un�1 L�1

n�1v
0 a� wTA�1

n�1v

�

3.3.6 Permutations and PLU Decomposition

Now, what if a matrix has no LU decomposition? Well, you swap the rows around, and then do the
elimination.

Definition 3.3.30. A matrix is a permutation matrix if as a row operations it will simply permute the
rows. (As a linear map, it will simply permute the coordinates of the input vector.)

Consider that the appearance of a matrix must exactly be what it will do to I as a row operation, we
immediately have this corollary.

Corollary 3.3.31. A matrix is a permutation matrix if and only if it has rows of I in any order, if and
only if it has the column of I in any order, if and only if it has exactly a single non-zero entry of 1 in each
row and in each column.

Example 3.3.32. Here are all possible 3 by 3 permutation matrices.

2

4
1 0 0
0 1 0
0 0 1

3

5 ,

2

4
0 1 0
1 0 0
0 0 1

3

5 ,

2

4
0 0 1
0 1 0
1 0 0

3

5 ,

2

4
1 0 0
0 0 1
0 1 0

3

5 ,

2

4
0 1 0
0 0 1
1 0 0

3

5 ,

2

4
0 0 1
1 0 0
0 1 0

3

5 .

The corresponds to “change nothing”, r1 $ r2, r1 $ r3, r2 $ r3, cyclically r3 ! r2 ! r1 ! r3, and
cyclically r1 ! r2 ! r3 ! r1. ,

Here is a trivial proposition, cosider the meaning of permutation matrices as row operations.

Proposition 3.3.33. 1. There are n! permutation matrices of size n⇥ n.

2. Multiplications of permutation matrices are permutation matrices.

3. Inverse of a permutation matrix is the transpose of that permutation matrix.

4. Every permutation matrix is a product of swapping matrices.

Proof. First two are trivial.
Let us prove that the inverse of a permutation matrix is the transpose. Suppose the (i, j) entry of a

permutation matrix P is 1. What does this mean? From the fact that PI = P , this means that the j-th
row of the identity matrix is changed into the i-th row. In particular,

(i, j) entry of PT is 1

,(j, i) entry of P is 1

,P as a row operation send the j-th row to the i-th row

,P�1 as a row operation send the i-th row to the j-th row

,(i, j) entry of P�1 is 1.
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Now let us prove the last one. Instead of proving it, let me give you an algorithm to do this. (The
rigorous proof is just to use mathematical induction to show that this works always. I’ll leave that to you.)

Suppose we want to permute (1, 2, 3, 4, 5) to (4, 1, 2, 5, 3). We swap to construct our desired result from
left to right:

(1, 2, 3, 4, 5) ! (4, 2, 3, 1, 5) ! (4, 1, 3, 2, 5) ! (4, 1, 2, 3, 4) ! (4, 1, 2, 5, 3).

You can see how by swapping I can succeed one by one from left to right.

Now we can make our statement about matrices without LU decomposition.

Definition 3.3.34. A PLU decomposition of a matrix A means writing A = PLU where P is a permu-
tation matrix, L is a lower triangular matrix, and U is an upper triangular matrix.

Theorem 3.3.35. Every invertible matrix has a PLU decomposition.

Proof. Say A is invertible n⇥n matrix. We again proceed by induction on n. The case n = 1 is again trivial.
Let us look at the inductive step now.

If A is invertible, its first column cannot all be zero. So we can find a swap P1 such that P1A has nonzero

(1, 1) entry. Say A =


a vT

w An�1

�
where a 6= 0.

Next elimination gives P1A =


1 0T

1
a
w I

� 
a vT

0 An�1 � 1
a
wvT

�
.

Since a 6= 0 and A invertible, we see that An�1 � 1
a
wvT must be invertible and (n� 1)⇥ (n� 1). So it

has a PLU decomposition, say An�1 � 1
a
wvT = Pn�1Ln�1Un�1.

So to go on elimination, we need to permute the bottom n� 1 rows of


a vT

0 An�1 � 1
a
wvT

�
, and we now

have

P1A =


1 0T

1
a
w I

� 
1 0T

0 Pn�1

� 
a vT

0 Ln�1Un�1

�

P1A =


1 0T

1
a
w I

� 
1 0T

0 Pn�1

� 
1 0T

0 Ln�1

� 
a vT

0 Un�1

�

A =P�1
1


1 0T

1
a
w I

� 
1 0T

0 Pn�1

� 
1 0T

0 Ln�1

� 
a vT

0 Un�1

�
.

Now we are almost done, except that


1 0T

1
a
w I

� 
1 0T

0 Pn�1

�
is in the wrong order, and they do not

commute! What should we do? We multiply and decompose.


1 0T

1
a
w I

� 
1 0T

0 Pn�1

�
=


1 0T

1
a
w Pn�1

�
=


1 0T

0 Pn�1

� 
1 0T

1
a
P�1
n�1w I

�

So we have our desired PLU decomposition

A = (P�1
1


1 0T

0 Pn�1

�
)(


1 0T

1
a
P�1
n�1w I

� 
1 0T

0 Ln�1

�
)


a vT

0 Un�1

�
.

Here the parenthesis helps you see the P,L,U portion of the decomposition.

Don’t memorize these proofs. The point is to show you how block multiplication and block elimination
works, so focus on that. If you look at all the proofs, for the criteria of LU decomposition and for the
existence of PLU decomposition, you see that the key is just to proceed with the elimination, and write the
next step in block form.
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Abstract Structures
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Chapter 4

Abstract Vector Space

4.1 Motivation

We have mastered Rn. Now we move on to abstract vector spaces. As you shall soon discover, abstract
vector spaces are “pretty much” the same as Rn, and upon picking a basis, they behave exactly like Rn. In
some sense, there is nothing to learn. However, they represent a shift in perspective which is more geometric,
more spatial, and more fundamental.

In short, an (abstract) vector space refers to any set in which we can do linear combinations. We call
elements of vector spaces as vectors. Also, maps between vector spaces that respect the linear structures are
linear maps.

There are several reasons why we cannot do everything in Rn.

Example 4.1.1 (Infinite dimensional vector spaces). At the start of this class, we have an example where we
add or substract sound waves. This example is pretty much about the same kind of phenomena: sometimes
we can do linear combinations of certain objects, yet these objects cannot be written in coordinates.

Let V represent the space of all infinitely di↵erentiable real functions. (I.e., functions f : R ! R such
that f (k)(x) exists everywhere for all k.) Functions such as ex, sinx, cosx and polynomials are all elements
of V .

Now, if several functions are infinitely di↵erentiable, then their linear combinations are infinitely di↵er-
entiable. (More specifically, via the formula (af + bg)0(x) = af 0(x) + bg0(x).) In particular, we see that
elements of V can linearly combine into some other elements of V . V is a place where you can do linear
algebra.

We can also study linear maps. Let D : V ! V be the map sending each f to f 0. Then you can also
immediately see that this is a linear map. (Again via the formula (af + bg)0(x) = af 0(x) + bg0(x).) One
might also study the map M : V ! V that sends f(x) to xf(x).

Here is a funny formula, which is secretly related to Heisenberg’s uncertainty principle in physics. We
have DM � MD = I, where I : V ! V is the identity map sending f to itself. To see this, note that
[(DM �MD)f ](x) = (DMf)(x)� (MDf)(x) = (xf(x))0 � xf 0(x) = f(x). This is very interesting though.
We know that over Rn, we could never have linear maps A,B : Rn ! Rn such that AB � BA = I. (We
would do this in the homework.)

So our space V is unlike Rn for any n. It is in fact an infinite dimensional space, and there is no
“standard basis” in the conventional sense. Elements of V can be linearly combined, yet they do not have
“coordinates”. Linear maps can be computed, yet they do not have “matrices”. ,

Luckily for us, infinite dimensional spaces are NOT the main concern of our class. Almost everything in
our class should be finite dimensional.

Example 4.1.2 (Subspaces). A subspace is, loosely speaking, a vector space contained within another larger
vector space.
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Consider the plane R2. Let V = {

x
x

�
2 R2 : x 2 R}, the subset of all vectors whose coordinates are the

same. This is a straight line. Let W = {

x
�x

�
2 R2 : x 2 R}, the subset of all vectors whose coordinates

add up to zero. This is also a straight line.
You can quickly verify that any linear combinations of vectors in V should stay in V . Such things are

called “subspaces” of R2. Similarly, W is also a subspace, as linear combinations of vectors in W should stay
in W .

Sometimes, we do not care about the whole space R2. Rather, I just want to study a map sending
elements of V to elements of W . Imagine that V is an elastic band, and I would like to “relocate” this elastic
band into the position of W , and then stretch it by a scale of three.

In e↵ect, we have a map f : V ! W that sends


x
x

�
to


3x
�3x

�
. You can quickly verify that

f(a


x
x

�
+ b


y
y

�
) =


3ax+ 3by
�3ax� 3by

�
= af(


x
x

�
) + bf(


y
y

�
).

So our map f is linear.
However, note that V,W are both lines (one-dimensional). So, should f be some 1⇥ 1 matrix? But that

would be absurd. It sends a vector with two coordinates to a vector with two coordinates. Maybe it is a
2⇥ 2 matrix? But then its domain and codomain are both one-dimensional. Hmm.

Now, you may say “screw this, I’m just going to use a 2⇥ 2 matrix to represent f .” Fine. Note that the

matrix


3 0
0 �3

�
would indeed send every


x
x

�
to


3x
�3x

�
. Aha! Is this the matrix for f?

However, also note that the matrix


0 3
�3 0

�
would indeed send every


x
x

�
to


3x
�3x

�
. And so does the

matrix


1 2
�1 �2

�
, which is not even invertible, and so does infinitely many other matrices. And all these

matrices have very di↵erent properties and behaviors. Yet they somehow ALL represent the linear map f?
Impossible!

The trouble is again related to the standard basis. When we write elements of V,W in coordinates,

we are expressing them as linear combinations of the standard basis, i.e.,


a
b

�
really stands for ae1 + be2.

However, the standard basis vectors are OUTSIDE of V or W .
As you can imagine, it might NOT be a good idea to express elements inside of V as linear combinations

of vectors outside of V . By using outside vectors to express inside vectors, V,W are one-dimensional spaces,
yet their elements have more than one coordinates. You have redundant information flying around. And
everything is messed up accordingly in the ensuing calculations.

In short, you CANNOT rely on the regular “coordinate” argument anymore, and you should abandon
the standard basis. In other words, you would have to think of V,W as abstract vector spaces.

Maybe we can just name vectors in V,W according to their distance to the origin. Then
⇥
a
⇤
2 V

now represents a vector in V with distance a to the origin (upper right being positive), and
⇥
b
⇤
2 W now

represents a vector in W with distance b to the origin (lower right being positive). In this way, we can write
a matrix L =

⇥
3
⇤
, and it just multiply this distance by 3. ,

Example 4.1.3 (Change of basis). Let us prove that the three medians of a triangle are concurrent, i.e.,
sharing the same intersection point. I’m sure you have a bazzilion ways to do it in highschool. However, let
us try to do it with brute force computation!

Now, generically, our triangle ABC lies in R2, but the three vertices could be anywhere! So the coordinate

should be like


ax
ay

�
,


bx
by

�
and


cx
cy

�
, where all six numbers are unknown. Now, we might try to just go ahead

and compute with this. We may find the three midpoints, and then find the line equations of the three
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median, and then intersect them to see what happens. Or, we might as well kill ourselves, since this would
surely be one ugly computation process. Let us give up for now.

So what can we do? Well, a better way is to “forget” about your old coordinate system. Just erase your
x-axis and y-axis and such. And we shall simply re-define our coordinate system. How? Well, a coordinate
system requires three things: You need to pick an origin, then you need to pick the directions for your x-axis

and y-axis, i.e., you need to pick the vectors


1
0

�
and


0
1

�
.

Let us now define the origin to be A. Nice! Now A has coordinates


0
0

�
. Then let us define


1
0

�
to be

the vector AB and


0
1

�
as the vector AC. Then now B =


1
0

�
and C =


0
1

�
.

Huh, now the calculations are super easy. The three mid points of the three sides of the triangle are

D =


1/2
1/2

�
, E =


0
1/2

�
, F =


1/2
0

�
. The three medians areAD : x = y,BE : x+2y = 1, and CF : 2x+y = 1.

You can check that all three lines went through the point


1/3
1/3

�
. End of proof.

In other words, if the original coordinates (tied to the standard basis) suck, then we would like to change
coordinate (by using a di↵erent set of vectors as “basis”). As a result of that, Rn is no longer the same
Rn, and every vector before and after the basis-change would have di↵erent coordinates. Nevertheless, the
underlying ABSTRACT space and abstract vectors are the same space. The space did not change at all,
and the vectors did not change at all. We simply changed the names (coordinates).

I hope this example illustrates the di↵erence between ABSTRACT entities (independent of coordinates),
and the NOMINAL entities (dependent of coordinates). ,

So what is abstraction? My favorite explanation is one by Aristotle. He thinks that abstraction is about
“forgetting intentionally”. For example, say I am looking at a football, and I’m trying to reach the abstract
concept of “sphere”. What should I do? According to Aristotle, I should intentially “forget” its color,
“forget” its smell, “forget” its texture and its location, and so on until the only thing that I still remember
is its shape, the sphere.

(You see, I have a terrible memory, and I forget things all the time. That is probably why I am good at
mathematics.)

But how can forgetting things help us? In the example above, we intentionally FORGET the origin and
the coordinate axes, so that we can re-pick our own. Given Rn, if you forget where the origin is, and you
also forget where the standard basis vectors are, then you would reach some abstract entity.

In our case, according to the level of abstraction, we have the following concepts:

1. Rn is, well, Rn . We know it already. It comes with a GIVEN origin, and a standard basis e1, ..., en .
Now, the location of the origin and the direction of these standard basis elemtents might be inconve-
nient, but there’s nothing much you can do about it, because at the level of Rn, coordinates must be
fixed, and the standard basis vectors must be fixed.

2. Now, we can choose to “forget” where the basis is. Then we arrive at an abstract vector space V , i.e.,
it is like Rn, but we forget where the standard basis vectors are. Then as a result, you CANNOT write
things in coordinates anymore, since you no longer remember which vectors are the standard basis
vectors. Given an element of V , you may write v 2 V , but you do not have a coordinate expression.
Nevertheless, given v,w, you can do linear combinations of them just fine. You would still have
2v + v = 3v, and you don’t need coordinates to do that.

3. (Optional) Now starting from abstract vector spaces, you can further “forget” where the origin is.
Oops. Then we arrive at an a�ne space . It is just like Rn, but not only you forget to remember
where the basis vectors are, you also forget where the origin is. In particular, you CANNOT add
vectors or scale vectors now. Why? For example, scaling v means the arrow from the origin to v is
tripled in length, but we don’t know where the origin is! So what can we do? Well, for example, we
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can find “mid-points”. Given two vector v,w, you can find their midpoint by doing 1
2v + 1

2w, and
geometrically you can see that this process does NOT require the origin. It is essentially still the same
set as Rn with the same algebraic structure, but you just forget where the origin is. (Our class does
NOT study a�ne spaces. You can check out the subject of a�ne geometry if you like.)

So, why abstract? Why forget? The short answer is that we forget in order to remember, or re-choose.
The more you forget, the more freedom you get to enjoy.

Hopefully now you have a vague sense of what abstract vector spaces are. On the plane, we can fix a

vector v. Under some basis, it will have a “name” as maybe


1
2

�
. Under a di↵erent basis, it will have a

di↵erent “name” as maybe


3
4

�
. But despite the di↵erent names, the underlying vector is the same v. We

want to focus on the essential vector rather than to focus on the superficial name.

4.2 Axioms of Abstract Vector Spaces

Informally, we want to define abstract vector space as a set, in which you can do linear combinations. Now
let us ponder the exact meaning of this, and hopefully we shall arrive at a collection of axioms that give us a
good definition. You can safely skip most of this subsection and jump right to the end to see the definition.
Meanwhile, if you are ever curious why we use these definitions, then here is a relatively detailed discourse
of them.

Keep in mind of this key idea: All the laws serves one purpose: we want to simplify ALL expressions
into linear combinations. Look at the following expressions. What calculation law would you want to have,
in order to simplify them into linear combinations of the form av + bw?

1. (v +w) + v.

2. 2(v +w).

3. 2(3v).

4. 2v + 3v.

5. v + (�1)v.

6. ....

Example 4.2.1 (Associativity and Commutativity).
Say I have w + v + w. The obvious thing to do is to simplify it into v + 2w. But what is actually

involved? Specifically, we need to do the following:

(w + v) +w = (v +w) +w = v + (w +w) = v + 2w.

Here we mainly talk about the first two steps. The first is called commutativity, and the second is called
associativity. It is trivially obvious that we want these properties to be part of the definition of a vector
space.

But if you are curious, let us discuss them further. For new students of mathematics, a common mis-
conception is that maybe commutativity is stronger than associativity. That is WRONG. The two are
independent.

Pause and think about this. Given (a+ b)+ c, if we only have associativity, can you write out all possible
equivalent re-formulations for this formula? How many are there? What if we only have commutativity?

Eitherway, without associativity or commutativity of addition, (w + v) +w will NEVER be able to be
simplified into v + 2w. Then the very concept of linear combination will no longer work the way we want.
,
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Remark 4.2.2 ((Optional) Operation Order and Operand Order).
Associativity states that (a + b) + c = a + (b + c), so we may change the order of the operations. But

Commutativity states that (a+ b) + c = (b+ a) + c. Here the order of operations are NOT changed, because
we are always adding a and b first, then we add the result with c. What is allowed by commutativity is to
change the order of OPERANDS (or summands), i.e., the objects of the operation (or the sum).

In short, if we want to change the calculation order of the “+” symbols, we need associativity. If we need
to change the order of a, b, c, then we need commutativity. One deals with operations while fixing the operands,
the other deals with operands while fixing the operations, so their actions are completely independent of each
other.

Case in point, for our example (w+v)+w, without commutativity, association will only ever change the
order in which we compute the addition symbols, but the order of summands will always remain w,v,w. So
the two w cannot be moved together to be simplified. On the other hand, without associativity, commutativity
will only ever change the order of w,v,w, but the order of computation is unchanged. So we will ALWAYS
compute the sum of v and w first, and never able to compute w +w first as we would have liked.

Of course, these discussion is only relevant if you aspire to learn more algebra after this class. For the
purpose of this class, we want vector addition to be both. So no order matters any way.

Example 4.2.3 (Zero Vector).
Say I have 0v + 0w. Surely I would like to simplify that to 0, the zero vector, yes?
Afterall, the zero vector is special. All linear maps must send the zero vector to the zero vector, and all

vectors are parallel to the zero vector, and so on. You just have to have a zero vector.
Now, what does a zero vector do? The defining trait of the zero vector is the fact that 0 + v = v for

all other v. Note that this immediately implies that the zero vector is unique. If 0,00 are two zero vectors,
then 0 = 0+ 00 = 00. ,

Example 4.2.4 (Negation of vectors). Our study is called “linear algebra”, and “linear” is the adjective
form of “line”. A line extends both ways to infinity. In particular, given any direction, there must be an
opposite direction.

In short, for any vector v, there must be a vector w such that v +w = 0. We call this the negation of
v, and denote it as �v. The concept of negations immediately allow us to SUBSTRACT vectors. We define
x� y to be x+ (�y).

Now one can immediately see that given any vector v, its negation is unique. If w,w0 are both its
negations, then w = w + v +w0 = w0.

The existence of negations of vectors also indicates that we have the law of cancellations when it comes
to vector additions, i.e., if v +w = u+w, then v = u. ,

All the axioms so far only concerns with vector addition. Now let us move to scalar multiplications

Example 4.2.5 (Scalar Multiplications are linear on scalars). All calculational laws serves to simplify
expressions into linear combinations. Say we see 2v + 3v? Surely we want to simplify that into 5v. This
requires a law of distribution on scalars, i.e., (a+ b)v = av + bv.

Finally, what about 2(3v)? Surely we want to simplify that into 6v. We want a weird law of “associativity
for scalar multiplications” that goes like (ab)v = a(bv). However, looking at this from another angle, and
it would not be weird anymore: let mv be the map that sends a real number x to the vector xv, then
mv(ax+ by) = (ax+ by)v = (ax)v + (by)v = a(xv) + b(yv) = amv(x) + bmv(y), i.e., mv is linear.

So don’t think of these as law of distributions or some weird law of associativity. The best way to think
about this is that, for fixed v, the output kv is linear on the input k. ,

Example 4.2.6 (Scalar Multiplications are linear on vectors). On the other hand, what if we see 2(v+w)?
Surely we want this to be 2v+2w, right? So we need a law of distribution on vectors, i.e., k(v+w) = kv+kw.

In particular, let mk be the map that sends vectors v to kv. Then mk(av + bw) = k(av + bw) =
k(av) + k(bw) = (ak)v + (bk)w = a(kv) + b(kw) = amk(v) + bmk(w). So mk is linear.

Again, I think the best way to think about this is that, for fixed k, the output kv is linear on the input
v. ,
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We see that scalar multiplication is linear on each of the two inputs. This sort of thing is called bilinear .
Now there are some interesting consequences for the bilinearity of scalar multiplications.

Example 4.2.7 (One is respected). Consider 1(kv) = (1⇥ k)v = kv. It is reasonably obvious that when
we multiply a vector by 1, we do not want to change that vector. However, what if you have 1v and no k to
be a mediator? Then we do not know what might happen here.

Note that this has to be a separate axiom. Nothing else implies this. If one were to define, say, 1


x
y

�
=


x
0

�
, then check carefully and see that all previous axioms are NOT violated. ,

Example 4.2.8 (Zero is respected). We have 0v+ v = (0+ 1)v = v. Substract v from both sides, we see
that 0v = 0 for all vectors.

In fact, since k 7! kv is linear, 0 has to goes to the zero vector. ,

Example 4.2.9 (Minus one is respected). Note that v+(�1)v = (1�1)v = 0. So we see that (�1)v = �v
is the negation indeed. ,

Let us now define an abstract vector space (over R).

Definition 4.2.10. An abstract vector space is a set V together with two operations, a vector addition
+ : V ⇥ V ! V and a scalar multiplication m : R⇥ V ! V , such that the following is true:

Vector addition gives an abelian group:

1. (Associative and Commutative) Vector addition is associative and commutative.

2. (Zero Vector) There is a zero vector 0 2 V such that 0+ v = v for all v 2 V .

3. (Negation Vector) For any vector v 2 V , there is a unique negation �v 2 V such that v + (�v) = 0.
(This also gives the law of cancellation for vector additions.)

Scalar multiplication is bilinear:

1. (Linear in scalars) (ab)v = a(bv) and (a+ b)v = av + bv for all a, b 2 R,v 2 V .

2. (Linear in vectors) a(v +w) = av + aw for all a 2 R,v,w 2 V .

3. (Respect identity) 1v = v.

Remark 4.2.11. Uniqueness of the zero vector and the negation vector are consequences of their definition
and associativity. The negation axiom also allows us to define vector substractions via v �w = v + (�w).

The (linear in scalars) axiom shows that 1v+0v = (1+ 0)v = 1v. Now use the (Negation vector) axiom
to cancel the 1v on both sides, we see that 0v = 0.

Now use the (respect identity) axiom, we have (�1)v + v = (�1)v + 1v = (�1 + 1)v = 0v = 0. Hence
(�1)v is the negation of v.

You don’t have to memorize these axioms. Rather, just remember the purpose of them. ALL of them
serves the same purpose: whatever you do with vector additions and scalar multiplications, in the end it is
just a linear combination. To have a nice concept of “linear combination” is the purpose of all of them.

Now this immediately prompts ups to define linear maps, which are maps that perserve vector space
structures.

Definition 4.2.12. Given two vector space V,W , a map f : V ! W is linear if f(v +w) = f(v) + f(w)
and f(kv) = kf(v). I.e., f preserves linear combinations.
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4.3 (Optional) Axioms and mathematical structures

Defining mathematical structures via a bunch of axioms is very important to mathematicians. For non-
mathematicians, they are less useful. But for mathematicians, this is the best way to di↵erentiate di↵erent
structures, and identify similar structures. Here are some mathematical structures for those interested.

(These are absolutely not required. You don’t need to know any of these.)

Definition 4.3.1. A group is a set G with an operation G⇥G ! G (which may be written multiplicatively
or additively, however you like), such that the following axioms hold. (Here the result of an operation of g
and h is written simply as gh.)

1. (Associativity) (xy)z = x(yz) for all x, y, z 2 G.

2. (Identity) There is an element e 2 G such that eg = ge = g for all g 2 G. (We call e the identity
element.)

3. (Inverse) For each g 2 G, we can find h 2 G such that gh = hg = e.

Here associativity is the heart of all mathematical wonders. The latter two axioms guarantee that we
have the law of cancellation. Finally, the uniqueness of the identity element and the uniqueness of the inverse
element can be deduced from the axioms.

Example 4.3.2.

The set of integers Z with the operation of addition is a group.

The set of integers Z with the operation of multiplication is NOT a group, because many elements have no
multiplicative inverse. We see here that merely specifying the set is NOT enough. From now on, we shall
write things like (Z,+) and (Z,⇥) to specify which operations are in use. So (Z,+) is a group and (Z,⇥) is
not a group.

The set of natural numbers (k, k+) is NOT a group, because many elements have no additive inverse.

The rational numbers Q, real numbers R, complex numbers C are all groups (under addition).

Throwing away zero, then (Q�{0},⇥) is in fact a group. The same is true for (R�{0},⇥) and (C�{0},⇥).

Any vector space V with vector addition form a group.

All invertible diagonal n⇥ n matrices with matrix multiplication form a group. ,

Note that for all the groups above, we have an extra law, the law of commutativity.

Definition 4.3.3. A group is an abelian group if we have the law of commutativity. (Abel is the name of
a famous mathematician. “Abelian” is the adjective of “Abel”.)

What about non-abelian groups? They are also super important!

Example 4.3.4.

All invertible n⇥ n matrices with matrix multiplication form a group. If n 6= 1, this group is NOT abelian.

All invertible upper triangular n⇥ n matrices with matrix multiplication form a group. If n 6= 1, this group
is NOT abelian. You can also just look at unit upper triangular matrices, and it is still a group, and if
n 6= 1, 2, this group is NOT abelian.

All permutations on n objects from a group. When n 6= 1, 2, this is NOT abelian.

In fact, for any set X, all bijective functions f : X ! X form a group. (The operation is function composi-
tion.) Usually this is not abelian

We can also add extra conditions here. All continuous bijective function f : R ! R form a group (with
function composition as the group operation).
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All symmetries of a triangle form a non-abelian group. There are six elements here, three reflections and
three rotations (here we treat the identity symmetry as a “zero rotation’). ,

The last example is very revealing. Ultimately, one might see the study of groups as the study of symme-
tries. Symmetries of geometric shapes, symmetries of the universe, symmetries among various symmetries
themselves, you name it!

Now, groups are super important, and the axioms are very few. However, this makes them HARD to
study. With only a few axioms, there are many possible ways a group might look like. The study of finite
non-abelian groups is still pretty much a big mystery to us. Nevertheless, they already help us solve many
di�cult problems.

Two prominant kinds are the various “straight edge and compass” problems (e.g., can you trisect an
arbitrary angle using a compass and an (unmarked) ruler?), and the statement “polynomials of degree 5 and
above have no radical solutions.” (I.e., no nice formula exists. Say if the polynomial has degree 2, we have
b±

p
b2�4ac
2a . But for polynomials of degree 5 and above, no such formula exists.) These are done by studying

potential symmetries among solutions to an algebraic equation.

Remark 4.3.5. The mathematician most famous for inventing most of group theory is a French super genius
called Galois. He also solve the polynomial problem mentioned above.

He died when he was 20 years old, duelling for a woman he loved. Yet in his short life, his contribution
to math is more than most mathematicians’ whole life’s work. Wow, he did ALL THAT before turning 20
years old? This surely makes us feel bad, yes? Comparatively, what was I doing when I was 20? Well... I
guess I was also chasing after a woman, who is now my wife and the mother of my two children. Hey, I
guess I’d rather have my life than Galois’ after all.

His life story is quite awesome. Check it out.

In short, groups are useful, but they are usually way too hard to study. To make them easier to study,
we need to add more axioms.

Definition 4.3.6. A field is a set F with two operations + : F ⇥ F ! F and ⇥ : F ⇥ F ! F, such that the
following axioms hold.

1. (F,+) is an abelian group. We usually write the additive identity element as 0.

2. (F� {0},⇥) is an abelian group. We usually write the multiplicative identity element as 1.

3. We have the law of distribution.

So technically, the statement of being an “abelian group” needs four axioms. So we have a total of nine
axioms for a field. But with these many axioms, they are MUCH easier to study.

Example 4.3.7.

Q,R,C are all very useful fields.

Let us define Fp for a prime number p as the set {0, . . . , p� 1}, where addition and multiplication are done
mod p. (E.g., (p� 2) + 3 = 1 and so on. We simply treat p = 0 always.) Then Fp is a field.

If p is not a prime, then the above construction will NOT be a field. For example, if we consider mod 6,
then 2 will have no multiplicative inverse.

There are other fields, but the ones above are the most important ones. ,

Now look at the definition of a vector space again.

Definition 4.3.8. A vector space over a field F is a set V together with two operations, a vector addition
+ : V ⇥ V ! V and a scalar multiplication m : F⇥ V ! V , such that the following axioms hold. (We write
the result of scalar multiplication of k 2 F with v 2 V as kv.)

1. (V,+) is an abelian group.
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2. (F-linear structure) (a+ b)v = av + bv and a(bv) = (ab)v.

3. (F-linear structure respect V -group structure) k(v +w) = kv + kw, and 1v = v.

Remark 4.3.9. Technically, to define a vector space, the group requirement means four axioms, and that F
is a field means nine more axioms, and then we need four more for the vector space. So these 17 axioms can
only mean one thing: vector spaces are super easy to learn, as we have so many axioms (tools) to help us!

Specifically, pay attention to the second axiom here on F-linear structures. Intuitively this says that each
v is contained in a “line” made of various kv, and structure-wise, this “line” looks exactly like F. Addition
on this “line” is the same as addition on F, and multiplication on this “line” is the same as multiplication
on F. (So if F = R, this means every vector is contained in something that looks like R, i.e., a line.)

So what is a vector space over F? Conceptually, it is a space where elements are trapped inside various
“lines”. And the field F describes the shape and property of these “lines”.

Our class focus mainly on the case of R, so that our intuitions about lines will be spot on.
If we study vector spaces over C (which is geometrically a plane), then each “line” actually looks like a

plane. Then we are no longer doing “linear algebra”, but technically “planar algebra”....
If we study vector spaces over F2, then we would venture into computer science, since the all scalars are

now 0 and 1. Discrete world still have geometry though. My personal favorite finite geometric object is the
Fano plane, and there is a board game called “SET” which is essential investigating vector spaces over F3.

4.4 Vector Spaces and Linear Maps and Examples

Let us see some examples of vector spaces and linear maps. We start with familiar concrete stu↵.

Example 4.4.1 (Subspaces of Rn). 1. Rn is a vector space. Duh. And any m ⇥ n matrix signifies a
linear map from Rn to Rm. This we already know.

2. Any line through the origin in Rn is a vector space. Any plane through the origin is a vector space.
Any solution set to Ax = 0 for any matrix A is a vector space. In fact, these are subspaces of Rn,
because they are subsets who are also vector spaces using the vector addition and scalar multiplication
inherited from Rn.

3. Take the plane x+ y + z = 1 in R3. Then e1, e2 is in it, but 2e1, e1 + e2 are not in it. This is NOT a
vector space. In particular, any subspace must contain the origin of the ambient space.

,

However, a set may be both a vector space and NOT a vector space, depending on how you define your
vector addition and scalar multiplication.

Example 4.4.2. Consider the plane x + y + z = 1 in the space R3. We already know that this is NOT a
vector space under usual vector addition and scalar multiplication. But what if we change the definition of
scalar multiplication and vector addition?

Suppose we define

2

4
a
b
c

3

5 �

2

4
x
y
z

3

5 =

2

4
a+ x� 1
b+ y
c+ z

3

5, and k ⇥

2

4
a
b
c

3

5 =

2

4
ka� k + 1

kb
kc

3

5. Then you can go ahead

and verify that this gives a vector space structure for the plane x+ y + z = 1.

This is not an aribtrary structure. This structure is called “declare

2

4
1
0
0

3

5 to be the origin”, and thus

transforming an a�ne space into a vector space. Can you see why? Check that e1 is indeed the identity
element for �.

Let V be the plane x + y + z = 1 with �,⇥ as its operations, then it is a vector space. Let W be the
plane x+ y+ z = 0, so it is also a vector space. Consider the map f : W ! V that goes like f(x) = x+ e1.
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Then you can in fact verify that f(ax+ by) = a⇥ f(x)� b⇥ f(y). So this f is a linear map. In fact, this
is a bijection with inverse g(x) = x� e1.

In short, the “vector space” V is obtained by shifting W while preserving its linear structure faithfully.
,

Here is a definition used above.

Definition 4.4.3. A subset W of a vector space V is a subspace if it is also a vector space itself, using the
same vector addition and scalar multiplication as V .

Remark 4.4.4. Here the requirement is used to rule out the following weird phenomena: Sometimes V is
a vector space, and under the vector addition and scalar multiplication of V , W is NOT a subspace. (Say
V = R3 and W is the plane given by x+ y + z = 1. )

However, we may define some weird and exotic vector addition and scalar multiplication, which shall
make W into a vector space. (We shall see this construction later.) Then W by itself is now a vector space.
Nevertheless, it is still NOT a subspace of V , because it does not have the same vector addition and scalar
multiplication as V . In fact W will never be a subspace of V .

Proposition 4.4.5. A subset W of V is a subspace of V if and only if it is closed under vector addition
and scalar multiplication of V . (In particular, for any v,w 2 V and k 2 R, we should have v+w, kv 2 V .)

Why would something fail to be a subspace? Here are the most common scenarios.

Example 4.4.6. 1. (Addition not closed) Take the dual cone z2 = x2+y2 in the space R3. Here ±e1+e3
are both in it, but their sum 2e3 is NOT in this cone. So addition is not defined on the cone. (And
can only be defined on the larger set R3.) (However, scalar multiplication is fine though.)

2. (Scalar multiplication not closed) Take the first quadrant of R2. This is NOT a vector space, because
if v 6= 0 is in it, then (�1)v is NOT in it. So scalar multiplication is NOT defined on this set, but
rather, only on the larger set R2.

,

Corollary 4.4.7. A subspace W must contain the zero vector of V . And the inclusion map ◆ : W ! V
defined as w 7! w is linear. (As a side note, the inclusion map is always injective, but maybe not surjective,
unlike the identity map.)

Note that, if W uses a di↵erent definition of vector addition and scalar multiplication, then the inclusion
map is not going to be linear any more.

Definition 4.4.8 (Useful Subspaces for Matrices). Given an m⇥ n matrix A, the following four subspaces
are sometimes called the fundamental subspaces for A.

1. Ran(A), the range or column space which contains all vectors that are images of the linear map A.
(I.e., all possible linear combinations of columns of A). This is a subspace of Rm.

2. Ker(A), the kernel or zero set or null space, which contains all solutions x to Ax = 0. This is a
subspace of Rn.

Proposition 4.4.9. Ran(A) and Ker(A) are indeed subspaces.

Proof. Take any v,w 2 Ran(A) and any a, b 2 R. Then by definition of range, v = Ax for some x and
w = Ay for some y. Then av + bw = A(ax+ by) 2 Ran(A). So this is indeed a subspace.

Take any v,w 2 Ker(A) and any a, b 2 R. Then by definition of range, Av = Aw = 0. Then
A(av + bw) = aAv + bAw = a0+ b0 = 0.

Proposition 4.4.10. For an m ⇥ n matrix A, the corresponding linear map is surjective if and only if
Ran(A) = Rm. It is injective if and only if Ker(A) = {0}.
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Proof. The first statement is literally the definition of surjectivity.
For the second statement, if A is injective, then Ax = 0 will only have one solution. Therefore it has to

be x = 0. So Ker(A) = {0}. Conversely, suppose Ker(A) = {0}. Suppose Av = Aw, then A(v �w) = 0,
and hence v �w 2 Ker(A) and it has to be the zero vector. So v = w. Hence A is injective.

Now we move away from subspaces, and onto more abstract spaces and linear maps.

Example 4.4.11 (Spaces of Matrices). 1. All m ⇥ n matrices is a vector space Mm⇥n, because we can
add matrices and scale matrices.

2. In fact, given any vector spaces V,W , the set of linear maps from V to W is a vector space L(V,W ).
We can add linear maps or scale a linear map in the obvious manner. (I.e., (f + g)(v) = f(v) +
g(v), (kf)(v) = k(f(v)).)

3. The trace of a square matrix is the sum of its diagonal entries. This is a linear map from Mn⇥n ! R.

4. The transpose is a linear map from Mm⇥n to Mn⇥m.

5. The space of all n ⇥ n upper triangular matrices is a vector space and in fact a subspace of Mn⇥n.
And transpose can be restricted to a map from the space of upper triangular matrices to the space of
lower triangular matrices.

6. The space of unit upper triangular matrices is NOT a vector space. If U1, U2 are unit upper triangular,
then U1 + U2 is NOT. (It also does not contain the zero matrix, hence not a subspace.)

7. The space of all n⇥ n invertible matrices is NOT a vector space. If A is invertible, then A�A is not.
(It also does not contain the zero matrix, hence not a subspace.)

8. The space of all n ⇥ n symmetric matrices is a vector space. The transpose map restricted to this
domain and codomain is the identity map.

9. Matrix inversion is NOT a linear map, because in general, (A+B)�1 6= A�1 +B�1.

10. Let us say a 3⇥ 3 matrix is a magic matrix if entries in each row, each column and each of the two

diagonals add up to the same number. For example, we have the famous

2

4
2 9 4
7 5 3
6 1 8

3

5. Then all such

matrices form a subspace of M3⇥3. Can you see why?
,

So far, we have been concerning ourselves with real vector spaces. However, we sometimes might want
to change the realm of coe�cients, say maybe we want to allow all complex numbers to be coe�cients. This
will NOT a↵ect vector addition, but when we do scalar multiplications, we can scale by more choices.

Example 4.4.12. 1. The set of complex numbers C is a real vector space (of dimension 2), since we can
do real linear combinations of complex numbers. In fact, as a real vector space, we know it is basically
the same as R2.

2. However, the set of complex numbers C is also a complex vector space (of dimension 1). We can use
Cn to denote the standard n-dimensional complex vector spaces, and everything works pretty much
the same, except that now we have complex numbers in place of real numbers.

3. The set of real numbers R is an infinite dimensional vector space over the set of rational numbers Q.
This example is just for fun.

,

Finally, a large part of calculus concerns linear maps on function spaces.
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Example 4.4.13. 1. The space of all continuous functions from any domain D to R, C(D), is a vector
space. Here we add or scale functions in the obvious manner, i.e., (f + g)(x) = f(x) + g(x) and
(kf)(x) = kf(x) for all x 2 D. Here D can be R, or any interval, or the set of all people with f sending
each person to their age/height/salary, etc..

2. The space of all di↵erentiable functions from R to R is a vector space. Here we add or scale functions
in the obvious manner.

3. The space of all smooth functions (i.e., infinitely di↵erentiable) from R to R, C1(R), is a vector
space. Here we add or scale functions in the obvious manner. (Usually Ck(R) means the space of all
continuously k-times di↵erentiable real functions.)

4. The di↵erentiation map d

dx
from the space of continuously di↵erentiable real function C1(R) (functions

whose derivatives are continuous) to the space of continuous functions C(R) is a linear map.

5. The integration map from a to b for any a, b 2 R is a linear map
R
b

a
from the space C([a, b]) to R.

(Just an optional side note. If vectors in Rn are “column vectors”, then linear maps Rn ! R are “row

vectors”. In this perspective, elements (functions) in C([a, b]) are “columns”, then the integration
R
b

a

is a “row”.)

6. The limit operation limn!1 is a linear map from the space of convergent sequences to R.
,

Now, the following example illustrates that it is VERY important to figure out what is this underlying
vector space, and VERY important to see if linear combinations make sense. And sometimes (when linear
combinations make no sense) certain things are best NOT treated as a vector space.

Example 4.4.14 (Optional). The spectral colors (colors on a rainbow) depends only on their wavelength.
Think about the wavelength as elements of R, then we see that all spectral colors are subsets of the vector
space R. In this sense, color is one-dimensional.

However, what about those RGB nonsense? In a computer, a color is usually encoded with a TRIPLE
of real numbers, indicating the amount of red, green and blue. Does that not make color three dimensional?

It turns out that there are NON-spectral colors, and this is peculier to human. In the eyes of a human
there are three types of cone cells, and they are activated by roughly the color red, green and blue respectively.
Depending on how the three types of cone cells are activated, our brain will decide its color.

For example, we have the color violet, and the color purple, and they appear similar in our eyes. Violet
feels a little more blue-ish, and it is in fact a spectral color. It has objectively NO relation with red or blue,
and it is simply a di↵erent wave length. Purple is essentially a mixture of red and blue. So why do they
appear similar in our eyes?

It turns out that when we see violet, weirdly our “red” cone sell is activated by a tiny bit. So, even
though violet has nothing to do with red, our brain is convinced that we see a hint of redness in it. For this
reason, human thinks violet and purple are similar. There are many animals with di↵erent numbers and
kinds of cone cells, and to them, maybe violet and purple are NOT similar at all.

So as far as us humans are concerned, since we have three kinds of cone cells, our color perception
depends on how much each type of cone cells is activated. So we need three real numbers to express our
color perception. So even though objective spectral colors form a one-dimensional structure, our human
color perception form a three-dimensional structure.

Color is objective, but the perception of color (whether two colors are “close”) is subjective.
Furthermore, before we declare that we are working in a vector space, we need to think about the

meaning of vector addition and scalar multiplication. On the spectral color line, what does it mean to add
wavelength? Probably no meaning. So it might be best that we DON’T think of it as a vector space. We
need the continuous structure of R more than its linear structure.

On the space R3 of human color perceptions, we add RGB coe�cients all the time in computers. It is a
bit similar to mixing colored lights. So it is OK to treat this as a vector space. ,
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4.5 Basis and Dimensions

4.5.1 Linear Combination Map and Coordinate Map

As we said in the beginning, one of the main point of having an abstract notion of a vector space is to change
basis. What does this mean?

Definition 4.5.1. We say a collection of vectors v1, . . . ,vk 2 V is a basis of V (plural form is “bases”) if
any vector of V is a UNIQUE linear combination of them.

Having a basis is a beautiful thing. Here are some specific examples (without proof).

Example 4.5.2. 1. The solutions to the di↵erential equation f 00 = �f is a vector space with basis
sinx, cosx. (We do not prove it here. The aim is just to show you that basis are useful for describing
solutions to many problems.)

2. Given three objects, say apple, banana and cherry, a person’s preferences about them can be written
as a “preference circle”. For example, the following graph indicates that a person likes apple more
than banana, and banana more than cherry.

Apple Banana.

Cherry

1

1�1

Here 1 means the arrow goes from the more preferred option to the less preferred option, and �1 means
the opposite. A person can have six possible preferences, see if you can write them all out. (Note that
a person’s preference must be contradiction-free, i.e., transitive. If I prefer A to B, and B to C, then I
prefer A to C.)

Now, given many people with their preference cycles, we can add them “coordinate-wise” like this:

Apple Banana + Apple Banana = Apple Banana.

Cherry Cherry Cherry

a1

b1

a2

b2

a1+a2

b1+b2c1 c2 c1+c2

In e↵ect, we are polling the results of peoples preference, to get the preference of the whole population.
Say if we add up the preference cycles of many people, and it turns out that the arrow from apple to
banana is positive, this means more people prefer apple to banana than the oppositive. As you can
see, this gives a vector space, the “population preference space”. Can you find a basis made of three
vectors?

A basis is in fact made of these three:

Apple Banana Apple Banana Apple Banana.

Cherry Cherry Cherry

1

1

�1

1

1

�1�1 1 1
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To see uniqueness, say we have an arbirary preference population cycle such as this:

Apple Banana.

Cherry

a

bc

We can decompose it uniquely as a linear combination of the previous basis with coe�cients a+b

2 , b+c

2 , c+a

2 .

Also, here is a fun thing to try: try to combine many preference cycles such that all three arrows are
positive. So in your population, more people like apple than banana, and more people like banana than
cherry, and more people like cherry than apple. This is called a voting paradox, and it can actually
happen. (This shows why american elections are flawed, when you are forced to choose between two
candidates rather than from all candidates. Politicians exploit this all the time.)

,

To deal with basis properly, we should start by taking a closer look at linear combinations. Fixing vectors
v1, . . . ,vk, then for any real numbers a1, . . . , ak, we have a corresponding linear combination

P
aivi. So

we in fact have a map from Rk to V , that uses input coordinates to do linear combinations of these vectors
v1, . . . ,vk.

Definition 4.5.3. For any ordered collection of vectors (v1, . . . ,vk) in a vector space V , we define the
linear combination map to be the map from Rk to V such that input coordinates are used as coe�cients
to do linear combinations of these vectors.

We sometimes lazily use (v1, . . . ,vk) to denote this map, so we have (v1, . . . ,vk)

2

64
a1
...
ak

3

75 =
P

aivi.

Note the similarity between this and matrix-vector multiplications. However, the map (v1, . . . ,vk) is
technically not a matrix, merely an abstract linear map. And vi are abstract vectors that are usually NOT
a column of numbers. Nonetheless, the i-th “column” vi is exactly the image of ei 2 Rk under the map
(v1, . . . ,vk), which is why the formula looks familiar.

Now, let us think about what a basis mean.

Proposition 4.5.4. v1, . . . ,vn form a basis for V i↵ the linear combination map (v1, . . . ,vn) is bijective.

Proof. (v1, . . . ,vn) being surjective means all vectors in V are linear combinations of these vectors.
(v1, . . . ,vn) being injective means distinct linear combinations of these vectors give distinct results. In

particular, if a vector in V is a linear combination of these vectors, then the coe�cients are unique.
Now the statement looks just like a trivial repetition of the definition....

Extracting from this proof, we have some really interesting insights.

Definition 4.5.5. For any ordered collection of vectors v1, . . . ,vk in a vector space V , we say they are
linearly independent if distinct linear combinations of them gives distinct results. (I.e., linear combination
map (v1, . . . ,vn) is injective.)

Definition 4.5.6. For any ordered collection of vectors v1, . . . ,vk in a vector space V , we say they are
spanning if all vectors of V are linear combination of them. (I.e., linear combination map (v1, . . . ,vn) is
surjective.) We also say that v1, . . . ,vk span the space V .

Corollary 4.5.7. v1, . . . ,vk form a basis i↵ it is linearly independent and spanning.

These concepts are defined exactly the same as the cases in Rn, and they behave the same way.
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Example 4.5.8. Intuitively, linear independence means no redundancy.
Say your goal is to use vectors to span R2. (I.e., we want to use some vectors to express all other

vectors.) You pick e1, e2, e1 + e2. Oops, the last vector is redundant. So these three vectors are NOT
linearly independent.

Spanning means we have enough vectors to span everything.
Together, if you have enough vectors to span everything, and none is redundant, then you have a basis.

,

Finally, for a basis, the linear combination map must be bijective. Hence we can find its inverse.

Definition 4.5.9. Fix an ordered basis (v1, . . . ,vn). (The parenthesis means that the order matters, and it
looks exactly like the linear combination map, which is a happy coincidence.) Then the inverse of the linear
combination map (v1, . . . ,vn) : Rn ! V is the coordinate map (v1, . . . ,vn)�1 : V ! Rn, sending each
vector in V to its coordinates under the chosen basis.

4.5.2 Existence of Basis and Uniqueness of Dimension

The idea is to grab “good” vectors one by one, until they form a basis. However, we need to make sure that
the vectors we grab are linearly independent. Here are some useful lemmas for future use.

Lemma 4.5.10 (Criteria for independence). TFAE:

1. Vectors v1, . . . ,vk are linearly independent.

2.
P

aivi = 0 implies that all ai = 0.

3. None of v1, . . . ,vk is zero and none is a linear combination of the rest.

Proof. The proofs here are not the most e�cient ones. However, it might be beneficial for you to see more
flavors of proofs.

We prove the equivalence cyclically. If they are linearly independent (i.e., all vectors has unique coordi-

nates), then (v1, . . . ,vk) is injective. So if (v1, . . . ,vk)

2

64
a1
...
ak

3

75 = 0 = (v1, . . . ,vk)0, we must have

2

64
a1
...
ak

3

75 = 0,

i.e., all ai are zero.
Now suppose

P
aivi = 0 implies that all ai = 0. Suppose for contradiction that vi =

P
j 6=i

ajvj (this
include the case of vi = 0), then we have vi�

P
j 6=i

ajvj = 0. And this is a linear combination of v1, . . . ,vk

and the coe�cients are not all zero. In particular, ai = 1 6= 0. Contradiction, Hence none of v1, . . . ,vk is
zero and none is a linear combination of the rest.

Now suppose none of v1, . . . ,vk is zero and none is a linear combination of the rest. Let us prove the

injectivity of (v1, . . . ,vk). If (v1, . . . ,vk)

2

64
a1
...
ak

3

75 = (v1, . . . ,vk)

2

64
b1
...
bk

3

75. Suppose for contradiction that some

ai 6= bi, say WLOG (without loss of generality) that a1 6= b1. Then (v1, . . . ,vk)

2

64
a1
...
ak

3

75 = (v1, . . . ,vk)

2

64
b1
...
bk

3

75

implies that 0 = (v1, . . . ,vk)

2

64
a1 � b1

...
ak � bk

3

75 =
P

(ai � bi)vi, and therefore v1 =
P

i 6=1
ai�bi
a1�b1

vi. So v1 = 0 or is

a linear combination of the rest, which cannot happen. So we have a1 = b1, and similarly ai = bi for all i.
Hence (v1, . . . ,vk) is injective, the vectors are linearly independent.
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Here the best tool is the second criterion. The third is hard to use, but it paints a nice conceptual picture,
and explains the reason for the word “independence”.

Let us see how the criterion is used in practice.

Lemma 4.5.11 (Independence extension lemma). If v1, . . . ,vk are linearly independent, and vk+1 is NOT
a linear combination of them, then v1, . . . ,vk+1 are linearly independent.

Proof. Suppose
P

k+1
i=1 aivi = 0. Suppose ak+1 6= 0, then we have vk+1 =

P
k

i=1
ai

ak+1
vi, impossible. So

ak+1 = 0. But then we have
P

k

i=1 aivi = 0, so by linear independence of v1, . . . ,vk, we see all ai = 0.

So with this tool in mind, let us prove the existence of a basis and a dimension.

Definition 4.5.12. A vector space is finite dimensional if it cannot have infinitely many linearly inde-
pendent vectors. Otherwise it is infinite dimensional.

Theorem 4.5.13. A finite dimensional vector space V has a basis.

Proof. If V = {0}, then by convension we say ? is its basis. This is just a convention.
If V 6= {0}, then pick any nonzero vector v1. If this single vector is spanning, then it is a basis all by

itself, so we are done.
If it is not spanning, then there are vectors in V that is NOT a multiple of v1. Say let us pick any one,

v2. Then by the independence extension lemma, v1,v2 is linearly independent. If it is now spanning, then
we have found a basis, done.

If it is not spanning, then there are vectors in V that is NOT a linear combination of v1,v2. Say let us
pick any one, v3. Then by the independence extension lemma, v1,v2,v3 is linearly independent. If it is now
spanning, then we have found a basis, done.

If not, we just keep going. We cannot keep going forever, because by definition we cannot have infinitely
many linearly independent vectors. This process must terminate somewhere, and when it terminates, we
have a basis.

Example 4.5.14. Let us see this in action. Consider the vector space P2, the space of polynomials of degree
at most 2. How to find a basis?

First we pick any non-zero element, say the constant polynomial 1. Does this spans P2? Not yet.
Obviously it only spans all constant polynomials.

So we pick anything that is NOT a constant polynomial, say x. Now, does 1, x span P2? Not yet. Their
linear combination can reach any degree 0 or degree 1 polynomial, but they can never combine to give you
a degree two polynomial.

So we pick anything that is NOT a degree 0 or degree 1 polynomial, say x2. Now they span everything.
So we have a basis 1, x, x2 for our space P2.

Note that this gives a bijection, the linear combination map (1, x, x2) : R3 ! P2 that sends

2

4
a
b
c

3

5 to

a + bx + cx2. Note that the “columns” of the map (1, x, x2) are not really columns, but merely abstract
vectors.

Conversely, for any polynomial a + bx + cx2 2 P2, we can try to find the coordinate of this polynomial

under the basis 1, x, x2. This is obviously just

2

4
a
b
c

3

5. Hence we have a coordinate map C : P2 ! R3 that

sends a + bx + cx2 to its coordinates

2

4
a
b
c

3

5 under the basis 1, x, x2. Obviously C and (1, x, x2) are inverse

map of each other. We always have such a coordinate map, because by the definition of basis, (1, x, x2) is
always a linear bijection. ,
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So it seems that any finite dimensional vector space V has a bijective linear map to some Rn. We want
to call this n the dimension of the space. But this needs one more theorem.

Theorem 4.5.15 (Dimension is well-defined). In a finite dimensional vector space, any two basis contain
the same number of elements. And this number is called the dimension of this space.

Proof. Suppose V has a basis with m vectors, then there is a bijective linear map between Rm and V . Now
suppose V has another basis with n vectors. Then there is a bijective linear map between Rn and V . So
there is a bijective linear map between Rn and Rm, i.e., an invertible m ⇥ n matrix! But this could only
happen when m = n.

So we have established the following idea: An abstract vector space is either infinite dimensional, or it
has a basis of n vectors where n is by definition the dimension of this space. Note that a space usually have
many many basis, but all of them has the same number of vectors.

Example 4.5.16. Another basis for P2 is 1, x+1, (x+1)2. For any polynomial p(x), we can express it as a
unique linear combination of these three. Note that 1 = 1, x = (x+ 1)� 1 and x2 = (x+ 1)2 � 2(x+ 1) + 1,
so everything that is spanned by 1, x, x2 is spanned by 1, x + 1, (x + 1)2. Furthermore, it is obvious that
for 1, x+ 1, (x+ 1)2, each one is NOT a linear combination of previous ones. So by independence extension
lemma they are linearly independent.

To find coordinates for p(x) 2 P2, suppose p(x) = a+b(x+1)+c(x+1)2. Then p(�1) = a and p0(�1) = b

and p00(�1) = 2c. So the coordinates are

2

4
p(�1)
p0(�1)
p
00(�1)
2

3

5 or

2

64

p(�1)
0!

p
0(�1)
1!

p
00(�1)
2!

3

75 if you like to generalize this to higher degree

polynomials. (The similarity to Tayler expansion in calculus is NOT a coincidence, but out of the scope of
this class. We don’t explore that here in our linear algebra class.)

Take P2, the space of polynomials of degree at most 2. Take a vector w = 3x2 + 4x + 1 and basis
1, x+1, (x+1)2. Then the linear combination map is L : R3 ! P2 that sends e1, e2 and e3 to 1, x+1, (x+1)2.

we have L�1(w) =

2

4
0
�2
3

3

5 by our previous formula. You can check that we indeed have 3x2 + 4x + 1 =

�2(x+ 1) + 3(x+ 1)2.
The basis 1, x+ 1, (x+ 1)2 is preferable than 1, x, x2 when x is near �1 most of the time. ,

So, it turns out that a vector space is either infinite dimensional, or essentially Rn because it has a linear
bijection to Rn. In linear algebra, we call a bijective linear map an isomorphism . This is a very important
concept in all of mathematics, it means two things are structurally the same, and they only di↵er in names.

Example 4.5.17. Most practically, isomorphisms allows us to “transfer” calculations. Say we have a
bijective linear map L : V ! W . Then to do calculation in V , it is enough to do the corresponding
calculation in W .

Suppose I want to add v1 2 V and v2 2 V , but I don’t know how to do this. I only know how to add things
in W . Well, no worry. First I send then into W by applying L. Now I add L(v1) and L(v2), which I know
how to do, because I’m now in W . Then I apply the inverse of L. So I see that v1+v2 = L�1(L(v1)+L(v2)).

Most practically, if we find a basis for V , this means we have a bijection V $ Rn. Then any calculation
we want to do in V , we can simply do it in Rn instead. Just write vectors of V in terms of coordinates,
and now we are in Rn, where everything is familiar. After we finish calculation in Rn, just do the linear
combination according to our chosen basis in V to go back to V . ,

Remark 4.5.18 (Optional Remarks on Isomorphisms). This is the idea of isomorphism. For any two
things with structures, we say they are isomorphic if, from some perspective (i.e., through some bijective
function), I can almost pretend that they are the same thing (i.e., the bijective function happens to matches
the structures on both sides exactly).
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For another example of an isomorphism, in Chinese we know that yi plus yi is er. Then I build a
function, called a dictionary, that maps yi to one, er to two, and so forth. Then I see that one plus one is
two, this is still correct. So the dictionary is a function that matches the mathematical structure of things.
Then USING this isomorphism, if I prove some mathematical theorem in Chinese, then I don’t really need
to prove it in English again. I know the mathematical theorem will be true in English as well, I know this
even without doing any translation myself. The very EXISTENCE of a dictionary already guarantees that
the same mathematical theorem should be true in English as well.

The idea is this: as far as linear structures are concerned, the existence of a bijective linear map means
the two things have IDENTICAL linear strucutre. So if I FIX a bijective map between two vector spaces,
then I can PRETEND that they are identical. I’ll be fine as long as I always go back and forth according to
the same bijection.

And under this pretending, I can see that the two things are practically indistinguishable. Say there is
a bijective linear map between V,W . Then if V has dimension n, then W must also have dimension n. If
all triangles in V have concurrent medians, then all triangles in W have concurrent medians. If everyone
living in V loves Chinese food in a linear way, then everyone living in W loves Chinese food in the same
linear way. In short, whenever I prove some big theorem in V about its linear structure, then the same
theorem must be true for W as well. Let me repead: as long as I FIX this bijective linear map, then they are
indistinguishable, they are identical, there are no di↵erence between them.

However, if one day, I decide to go back and forth using ANOTHER linear bijection between them, then
all of a sudden, all previous “pretending” no longer works. This is just like if I pick another basis in V ,
then the expressions are now all di↵erent, and angles and length of vectors are di↵erent, and so on. It is
like waking up from a dream....

So this is how it works. Say you prove something about V (say V has dimension n). To transfer this
property to W , you first build a bijective linear map between them. Now W have the same property from the
perspective of this linear map. Then you show that this property of W is INNATE, that it is really just about
W itself, independent of any choice of basis and independent of how W is connected to other spaces. Then
W has this property INDEPENDENT from the bijection of our choice. (You see why being independent of
choice of basis is important.)

Coordinates of a vector, entries of a matrix, angles and dot products, these things are all DEPENDENT

of basis. They are all illusions. The true linear property are those independent of basis. If A =


1 2 3
4 5 6

�
,

then the (1, 1) entry of A will change under a di↵erent basis, but the surjectivity of A shall never change. It
will always remain surjective.

All in all, the correct way to say this is the following: Not all finite dimensional spaces are Rn, but each
of them looks like some Rn for some n.

Here are some easy result that follows from the power of isomorphism:

Theorem 4.5.19. For any vector space V , suppose it has a basis of n elements. Then we have the following
facts:

1. Every basis must have exactly n vectors.

2. A collection of more than n vectors must be linearly DEPENDENT.

3. A collection of less than n vectors cannot be spanning.

4. A collection is a basis if and only if it is linearly independent and has n vectors.

5. A collection is a basis if and only if it is spanning and has n vectors.

6. Every linearly independend collection of vectors can be extended to a basis.

7. Every spanning system contains a basis.
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Proof. First statement is already done.
For the second and third statement, pretend your space is Rn, and we have a collection v1, . . . ,vk. Then

the linear combination map goes from Rk to Rn, hence it is an n ⇥ k matrix. So if k > n, it cannot be
injective (and the collection cannot be linearly independent). If k < n, then it cannot be surjective (and the
collection cannot be spanning).

For the fourth and fifth statement, this is because an n⇥ k matrix is a bijection if and only if it is square
and injective, and if and only if it is square and surjective.

For the last two statements, simply combine the results above. Say we have a linearly independent
collection. Then as long as I have less than n vectors, i shall repeatedly use independence extension lemma,
until I reach n vectors, and at that moment I must have a basis.

If we have a spanning collection, then as long as I have more than n vectors, i shall have redundant
vectors. I throw them away, until I reach n vectors, and at that moment I must have a basis.

Remark 4.5.20. So say we are in an n dimensional space. To find a basis, we first pick any v1. Then
we pick any v2 linearly independent from v1. Then we pick any v3 linearly independent from v1, v2, and so
on. As soon as we hit vn, we are done. This must be a basis. There is no need to check if it is spanning.
(Interesting question to think about: When I pick my v3, why v2 cannot be a linear combination of v1 and
v3?)

Alternatively, say we have lots of vectors that would certainly span our n dimensional space. Then we
can keep throwing away redundant vecotrs (vectors that are linear combination of others). When we have n
vectors left, we must arrive at a basis. There is no need to check linear independency.

Here we have a special corollary for subspaces.

Definition 4.5.21. For vectors v1, . . . ,vk, their span is the subspace of all linear combinations of them.

Corollary 4.5.22. If vectors v1, . . . ,vk are linearly independent, then their span has dimension k.

Remark 4.5.23. With the idea above, we see that the independency extension lemma is the formal rigorous
statement of the following informal intuition: for an m dimensional subspace, if it moves in a new direction
(new vector not contained in the original subspace), then we get an m+1 dimensional subspace. Point moves
to make a line, and a line moves to make a plane, these are all special cases of the lemma.

And linear dependence happen exactly like this: we add a new vector to our collection, but it fails to
contribute a new dimension!

4.5.3 Dimensionality from first principles (Optional)

In the proof above, we took a huge detour. Long ago we established Gaussian elimination, and from the
RREF of matrices we see that Rm and Rn cannot be isomorphic. (I.e., they have di↵erent linear structure.)
This gives us that dimension for abstract vector spaces are well-defined.

However, can we do this without the detour? Can we prove this fact by simply using AXIOMS of a
vector space, i.e., from first principles? Yes. Warning though, the proof is a bit abstract and hardcore. (But
the idea is simple: you eat, then you poop, then you eat, then you poop, and repeat, until you eat all that
is required.)

Remark 4.5.24. The benefit of doing this in first principles is that it can be generalized to infinite dimen-
sions. With some minor changes to the proofs below, one can show that any vector space has a “Hammal”
basis, a subset H such that any vector of V is a linear combination of some (finitely many) vectors in H,
and everything in H are linearly independent.

The most powerful lemma is of course again the independence extension lemma. But let us rewrite it in
a di↵erent form.

Lemma 4.5.25 (Extending Linear Independency). For any vector space V , if L is a linearly independent
collection of vectors, and a vector w is not in the span of L, then L[{w} is still linearly independent. (Here
L is treated as a subset of V .)
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In contrast, if you have a spanning collection, but it is NOT linearly independent, then it means you
have some redundent vectors here. You may simply throw them away. However, WHAT to throw a way can
be tricky.

Example 4.5.26. Say we have a collection of e1, e2, e1+e2, e3 in R3, where ei are the standard basis. This
is a spanning collection but linearly dependent. You may throw away any single one of the first three, and
you will then get a basis. But you CANNOT throw away e3, since that will destroy the spanning property.
,

So WHAT to throw away can be tricky. But here comes a nice perspective: we can look at this problem
from the opposite angle. What NOT to throw away?

Lemma 4.5.27 (Extending Linear Independency with a Finite Cap). For any vector space V , if L is a
linearly independent collection of vectors, and S is a FINITE spanning system, and L ✓ S, then there is a
basis B containing L and contained in S.

Proof. If L is already spanning, then we are done. Suppose this is not the case.
Let W be the span of L, then W 6= V . In particular, S cannot be contained in W . So we can find

v 2 S \W , and L[ {v} would be a linearly independent set between L and S, according to the last lemma.
If L [ {v} is spanning, then this is a basis and we are done. If not, we repeat above process to throw in

another w 2 S \ span(L [ {v}), and now L [ {v,w} would be a linearly independent set between L and S.
If this is now spanning, then we have a basis. If not, keep doing this.

Since S is finite, either we find a basis somewhere along the process above, or we keep getting larger and
larger linearly independent subset of S, until we fill up all of S. But since all sets obtained this way are
linearly independent, we would see that S is itself linearly independent. Then S is a basis.

Remark 4.5.28. We already know that, for some spanning collections, there might be some redundancy that
we can throw away. The above lemma states that we actually have some freedom in choosing what NOT to
throw away. You can choose to KEEP a linearly independent subset in the spanning collection, and ONLY
throw away vectors among the rest in your spanning collection.

Btw, setting L = ? implies that any finite spanning collection contains a basis.

As you can see, a linearly independent collection is “may or may not be enough”, while a dependent
spanning collection is “may or may not be redundant”. This leads to the following lemma.

Lemma 4.5.29 (Any Finite Spanning System has no less elements than any Linear Independent Set). For
any vector space V , if L is a linearly independent collection of vectors, and S is a FINITE spanning system,
then |L|  |S|.

Proof. Suppose L ✓ S, then obviously we are done. So we proceed by induction from here. We shall do
induction on how many elements of L is NOT in S. The base step is when L ✓ S, and we have already said
that this is trivial.

We assume that we have proven that, if L only contains at most t elements not in S, then we are done.
Let us proceed to try to prove it for the case when L only contains t+ 1 elements not in S.

Pick any v 2 L\S. Then consider S [{v}. Obviously S [{v} is still spanning, and it contains a linearly
independent subset L \ (S [ {v}), so there is a basis B between L \ (S [ {v}) and S [ {v}.

Now how many elements does L have that is not in B? You will see that now B contains all of L \ S
and also contains v, so L now have at most t elements not in B, rather than t+ 1. And B is spanning. So
by induction hypothesis, |L|  |B|. Now we only need to prove that |B|  |S|.

Indeed, since S is spanning, S [ {v} is linearly DEPENDENT since v can be written as a linear combi-
nation of the rest. So, it is NOT a basis, so B is a proper subset of S [ {v}. So |B| < |S|+ 1, which means
that |B|  |S|.

To sum up, we have inductively shown that, as long as L is finite, |L|  |S|.
What if L is infinite to begin with? Then pick any subset L0 ✓ L with |S|+ 1 elements. Now L0 is finite

and linearly independent, so we must have |L0|  |S|. But that would be a contradiction with our choice
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of L! So such a case is impossible. So if some spanning collection S is finite, then any linearly independent
collection L must also be finite.

Remark 4.5.30. So an intuitive proof goes like the following: You pick an element v in L but not in S.
Consider S [ {v}. (S eat something new.) Now S [ {v} must have redundancies, and you can throw away
a redundant vector while KEEPING the linearly independent subset L \ (S [ {v}). (S pooped away the
redundancy.) This way we obtain a new set S0 that is of the same size as S, but now S0 contains one more
elements of L than S does. Repeat this, and eventually we can put all of L into some spanning set of the
same size as S. So we are done. (S finished eating all of L while pooping away |L| irrelevant redundancies.)

Or, to put into simple words, how to achieve anything in life? You need to go one step at a time, and
keep throwing away redundant things.

There are other ways to prove this lemma. But our proof here is easily generalizable, that it also applied
to mathematical areas other than linear algebra.

NOTE that, what if a vector space has NO finite spanning sets at all, that ALL spanning sets are infinite?
Then in that case, this lemma proves nothing at all. However, with some twists and transfinite induction (a
version of mathematical induction that goes beyond infinity), the idea will carry over.

4.5.4 Infinite dimensional spaces (Optional)

Just some examples to show you what might happen.

Example 4.5.31. 1. Consider the space of all sequences, RN. Say (1, 1, 1, ...) is a sequence, and (3, 1, 4, 1, 5, 9, 2, 6, ...)
is a sequence, and ( 21 ,

3
2 ,

4
3 , ...) is also a sequence, and so on. We can add sequences by adding them

term-wise, and we can multiply a real number to a sequence by mutliply the number term-wise. This
makes RN a vector space. This vector space is INFINITE DIMENSIONAL. You can try to come up
with a basis, and you can try (1, 0, 0, ...), (0, 1, 0, ...) and so forth. Surely, it seems like any sequence
is like some infinite linear combination of them, no? But are they really basis? Not really. Infinite
dimensional spaces works di↵erently.

2. Why are they not really a basis? First let us note that the set Sc of all converging sequences is a
subspace in RN. For example, sequence ( 21 ,

3
2 ,

4
3 , ...) is converging with limit 1. This is easy to see,

because if (an), (bn) are converging to values a and b, then (an + bn) would converge to a + b, and
k(an) would converge to ka. So this is indeed a subspace. This is also NOT the whole space, because
there are non-convergin sequences out there. Now you see that the vectors (1, 0, 0, ...), (0, 1, 0, ...) are
all contained in Sc. So they span AT MOST Sc. Their span, by definition of a subspace, will always
stay in Sc. Since there are divergent sequences like (1, 2, 3, ...) in RN � Sc, there is simply no way this
sequence would be in the span of vectors contained entirely in Sc. In fact, (1, 0, 0, ...), (0, 1, 0, ...) does
NOT even span Sc, because they all have limit zero, so all of their linear combinations could only have
limit zero.

3. Su�ce to say, there is no such thing as an “infinite” linear combination. Whenever we do a linear
combination, we are always only allowed to use finitely many vectors, even if we have an infinite
collection of vectors at our hands. Otherwise we may run into paradoxical phenomina as explained
above.

4. Consider the set of all continuous functions from R to R, denoted sometimes as C(R). For two functions
f : x 7! f(x) and g : x 7! g(x), we can define their sum as f + g : x 7! f(x) + g(x). We can also
multiply a function with a real number as kf : x 7! k(f(x)). This makes C(R) a real vector space.
This is NOT finite dimensional.

5. Consider the set of continuous functions from R to R that is periodic with period 2⇡. Then the
Fourier theorem says the following: any such function f must be the sum of some series f(x) =
c+

P
n
an sin(nx)+

P
n
bi cos(nx). The sums go through all possible positive integers. This statement

has a very “basis”-feel to it. Namely, f seems like a linear combination of the constant function and
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the sines and cosines. Furthermore, you might in fact do “dot products” for these functions, and define
f · g =

R 2⇡
0 f(x)g(x)dx. Then you will see that the constant function, sines and cosines are mutually

orthogonal! This is not just a “basis”, but in fact an orthogonal “basis”. This is the start of Fourier
analysis. It is NOT a true basis in the traditional sense. Not every function is a linear combination of
them. However, every function is a LIMIT of linear combinations of them. (We do not always have
such nice things for infinite dimensional basis, btw.)

,

4.6 Entries of a Linear Map and Changing Basis

4.6.1 Change of Basis

The point of an abstract vector space is to change basis, so let us see how it can be done computationally.
From now on, if we say we pick a basis B, then this is an ordered collection of vectors B = (v1, . . . ,vn) that
form a basis. Then we can also use the notation B for the linear combination map B = (v1, . . . ,vn) : Rn ! V .
We no longer distinguish between a basis and its corresponding linear combination map.

Example 4.6.1. Again take our example of P2 with w = 3x2 + 4x + 1. It is

2

4
0
�2
3

3

5 under the basis

B = (1, x+ 1, (x+ 1)2).

Now similarly, for the basis C = (1, x� 1, (x� 1)2), we can compute and have w = C

2

4
8
10
3

3

5. How can one

convert between these two basis?

In general, suppose v in basis B has coordinates

2

4
a
b
c

3

5, then what is its coordinates in basis C? This means

given v =
P

aivi, how can I express v in another basis wi?
To achieve this transition, we need to know what the basis vectors vi looks like in basis vectors wi, and

substitute. Note that In our case, 1 = 1, x + 1 = 2 + (x � 1), (x + 1)2 = 4 + 4(x � 1) + (x � 1)2. So if
v = a + b(x + 1) + c(x + 1)2, then it will be v = a + 2b + b(x � 1) + 4c + 4c(x � 1) + c(x � 1)2 and it has

new coordinates

2

4
a+ 2b+ 4c

b+ 4c
c

3

5.

What is the relation between the two? We see that the new coordinates are in fact

2

4
a+ 2b+ 4c

b+ 4c
c

3

5 =

2

4
1 2 4
0 1 4
0 0 1

3

5

2

4
a
b
c

3

5, a matrix times the old coordinates! Why is that? ,

Such a matrix is called a change of coordinates matrix. For the moment, just rethink the process. We
see that to figure out how coordinates change we first tries to figure out how the basis change. In fact, by

taking a closer look you might see that (1, x+ 1, (x+ 1)2) = (1, x� 1, (x� 1)2)

2

4
1 2 4
0 1 4
0 0 1

3

5. (Just interpret

the multiplication here as a “block multiplication” type of thing.) Such a matrix is called a basis transition
matrix.

Note how the very same matrix is both in opposite directions. The matrix

2

4
1 2 4
0 1 4
0 0 1

3

5 is the change of

coordinates matrix from the OLD coordinates to the NEW coordinates (multiplied from the left), while it
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is also the basis transition matrix from the NEW basis to the OLD basis (multiplied from the right).
Let us try to explain these phenomena. First of all, why is it even a matrix? Recall that, in general,

picking a basis for V is exactly the same as finding an isomorphism between V and R. For any basis
v1, . . . ,vn, the corresponidng isomorphism is simply the linear combination map (v1, . . . ,vn). Conversely,
given any isomorphism L : Rn ! V , then L = (L(e1), . . . , L(en)) is the linear combination map for the basis
L(e1), . . . , L(en). In short, picking a basis = picking an isomorphism.

So from now on, we would simply say “we pick a basis (v1, . . . ,vn)”, and this would mean that the
basis are vectors v1, . . . ,vn, with isomorphism (v1, . . . ,vn). We shall refer to a basis and the corresponding
isomorphism interchangeably. If B is a basis for V , then B also refers to the linear combination map
B : Rn ! V .

Definition 4.6.2. Given a collection of vectors v1, . . . ,vm in V and an m⇥n matrix A =
⇥
a1 . . . an

⇤
(so

the entries of A are all real numbers rather than abstract vectors), we define (v1, . . . ,vm)A = (w1, . . . ,wn)
where wi = (v1, . . . ,vm)ai. So we simply do linear combination of these vi according to each column of A,
and get n vectors out of it.

Definition 4.6.3. Given two basis B = (v1, . . . ,vn) and C = (w1, . . . ,wn) of a vector space V , then we
define the basis transition matrix as a matrix TB!C such that BTB!C = C.

Definition 4.6.4. Given two basis B = (v1, . . . ,vn) and C = (w1, . . . ,wn) of a vector space V , then for
each v 2 V , we use vB to refer to the coordinates of v under B, i.e., vB = B�1(v).

We define the change of coordinate matrix as a matrix CB!C such that CB!CvB = vC for all v 2 V .

Proposition 4.6.5. If B = (v1, . . . ,vn) and C = (w1, . . . ,wn) are two bases of the same vector space V ,
then the TC!B = CB!C = C�1B, and it is an invertible n⇥ n matrix when dimV = n.

Proof. Look at the following diagram.

V

Rn Rn

B

CB!C

C

Note that a vector v lives in the V in the top, and its coordinates in B lives in the bottom left, and its
coordinates in C lives in the bottom right. it is obvious that do perform a change of coordinates CB!C , it is
the same as applying the linear map C�1B. note that this map goes from Rn to Rn, so it corresponds to an
n⇥ n matrix.

Now consider the basis transition map from C to B, TC!B. It is clear that we want B = CTC!B. So we
immediately see that TC!B = C�1B.

Example 4.6.6. Keep in mind that the actual vector v is UNCHANGED throughout the process. What
is changed is its NAME. Say we have P2 with w = 3x2 + 4x + 1. Then under basis (1, x + 1, (x + 1)2), we

can call w by its name

2

4
0
�2
3

3

5. When we change basis, we do NOT change w, only its name. Under a new

basis, it will have a di↵erent name, but it still refers the same w.
Hopefully, with a good choice of basis, the vectors we deal with will have nice names, so that computations

become easier. ,

Corollary 4.6.7. The change of coordinates matrix from B to C and the basis transition matrix from B to
C are inverse of each other.

Remark 4.6.8. You should also note that the strange situation of TC!B = CB!C is a result of associativity.
Given v 2 V , we have BvB = v = CvC by definition. But the left hand side is also (CTC!B)vB, whereas

the right hand side is also C(CB!CvB).
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Example 4.6.9. Suppose I want to buy x burgers and y cokes. Now combo A sells 2 burger and 1 coke,
while combo B sells 3 burger and 4 cokes. How many combos do I need?

Well, note that (comboA, comboB) = (burger, cokes)


2 3
1 4

�
. So


2 3
1 4

�
is the basis transition matrix

from single orders to combos. Therefore, the change of coordinate map from single orders to combos would

be


2 3
1 4

��1

= 1
5


4 �3
�1 2

�
. So I need 4

5x� 3
5y combo A and � 1

5x+ 2
5y combo B.

Note that a matrix inversion process is involved. Typically, a problem will look like this: we start with
an old basis and old coordinates. The problem tells you how the old basis would combine into the new basis.
Then the problem asks how the old coordinates would change into the new coordinates.

In e↵ect, they give you TB!C for free, and ask you for CB!C . These two are just inverse matrix of each
other. ,

Drawing diagrams is a very practical way to help us figure things out. Consider this:

Proposition 4.6.10. Given three basis B1,B2,B3, let Cij , Tij be the change of coordinates map and the
transition map from Bi to Bj. Then C13 = C23C12 (note that this will multiply things from their left, so C12

happens first) and T13 = T12T23 (note that this will multiply things from their right, so T12 happens first).

Proof. Conceptually this is obvious. But we can also stare at the following diagram until we see this.

V

Rn Rn Rn

B1

C12

C13

B2

C23

B3

Also keep in mind that Cij = Tji.
Another alternative is to compute it directly, say C23C12 = B3B�1

2

Now, the fact that CB!C is a matrix is MORE IMPORTANT that the fact that it is C�1B. Because we
have a very straight forward way to find a matrix: its i-th column is simple the image of ei!

So if B = (v1, . . . ,vn), C = (w1, . . . ,wn), then the i-th column of CB!C is C�1Bei = C�1vi, i.e., the
coordinates of vi in the basis w1, . . . ,wn.

Remark 4.6.11 (Algorithm to find change of coordinate matrix). Express each old basis vector in terms
new basis vectors, and that is the corresponding column for your change of coordinate matrix. Review the
example at the start of this subsection to get a better feel of this.

Alternatively, you can also express new basis vectors in terms of old basis vectors (sometimes the problem
tells you how to do this explicitly). Then you will obtina the basis transition matrix, and the inverse matrix
is the change of coordinate matrix.

Now here come the mind blasting moment. ALL invertible matrices might simply be seen as some change
of basis process!

Proposition 4.6.12. Say we started with an n-dimensional vector space V and a basis B. Then for any
n⇥ n invertible matrix A, it is CB ! C for some new basis C.

Proof. Simply set C = BA�1, and we are done.

Remark 4.6.13. Whenever you see an invertible matrix, then under some perspective, it will represent a
change of basis.

So an invertilbe matrix is a change of basis, but it is also a bijective linear map? How can the two be
the same? Say you have a pen in your hand. You can rotate the pen (apply the linear map), or you can tilt
your head (change of basis), and the pen would result in the same posture as far as your eyes can see. The
two process are the same invertible matrix.

116



Example 4.6.14 (Hen and rabbit again?). The matrix


1 1
2 4

�
is invertible. Is this a change of basis? YES!

The content of the cage (the underlying abstract entity) never changes. However, I should think of the
content of the cage as a linear combination of ... what? This is precisely what the hen-rabbit problem is
about.

If we describe the content of the cage using the “basis” of (head, leg), I get coordinates


6
20

�
. If we

describe the content of the cage using the “basis” of (hen, rabbit), what coordinate should I get?

We have a basis transition (hen, rabbit) = (head, leg)


1 1
2 4

�
. So the answer is


1 1
2 4

��1 
6
20

�
. ,

Let us take a moment and think about a change of basis in Rn itself. We of course always start with
the standard basis e1, . . . , en. Suppose we want to change to a new basis v1, . . . ,vn 2 Rn. How would I do
that?

Proposition 4.6.15. The change of coordinate matrix to go from the standard basis in Rn to a new basis

v1, . . . ,vn is
⇥
v1 . . . vn

⇤�1
.

Proof. Note that for vectors in Rn, (v1, . . . ,vn) has exactly the same meaning as
⇥
v1 . . . vn

⇤
. So we

have (e1, . . . , en)
⇥
v1 . . . vn

⇤
= I

⇥
v1 . . . vn

⇤
=

⇥
v1 . . . vn

⇤
= (v1, . . . ,vn). So

⇥
v1 . . . vn

⇤
is

the basis transition matrix from the standard basis to the new basis.

Corollary 4.6.16. An invertible matrix A can be thought of as a change of coordinate matrix in Rn, to go
from the standard basis to a new basis, i.e., the columns of A�1.

4.6.2 Entries of a Linear Map

Given a basis of V , then elements of V will now have coordinates and look like a column vector, so we can
compute. Given a basis of V and a basis of W , then linear maps between them will now have entries and
look like a matrix, so we can compute. This subsection deals with the relation between linear maps and the
matrices we obtained after picking a basis.

Definition 4.6.17. Given a basis B for a space V and a basis C for a space W , the matrix for a linear map
L : V ! W is LB!C = C�1LB.

So if the inputs are coordinates under B, we first combine coordinates into the actual vector via the
linear combination map B, then we map through L, and finally we express the abstract image in terms of
coordinates via the coordinate map C�1. As you can see, this is basically just L, expressed as a matrix using
the basis of the domain and the basis of the codomain.

Think about the following diagram:

V W

Rn Rm

L

B
LB!C

C

Example 4.6.18. What is the change of coordinate map? Consider the identity map id : V ! V . However,
for the domain let us use basis B, whereas for the codomain, let us use the basis C.

Then (id)B!C = C�1 � id � B = C�1B = CB!C .
The change of coordinate map is in fact identity in nature. It does NOT change the actual underlying

vector. It only renames the vector.
Compare the diagrams and we see that the following two are the same thing:

V V

Rn Rn

id

B
idB!C

C
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V

Rn Rn

B

CB!C

C

,

Example 4.6.19. Suppose we have a linear map M : P2 ! P3, that multiply each polynomial by x. How
can we understand this linear map?

One way is the following: we pick a basis in P2 and in P3. Then the two vector spaces are now looking
like R3 and R4. Then we see that our linear map corresponds to a 4 by 3 matrix.

To find this matrix, we again ONLY inspect the image of ei to get its columns. We always do this to
find whatever matrix.

Suppose we pick basis 1, x, x2 2 P2 and 1, x, x2, x3 2 P3, then e1, e2, e3 in P2 are in fact 1, x, x2. They
would go to x, x2, x3, which are e2, e3, e4 in the codomain coordinates. So the corresponding matrix for M

is

2

664

0 0 0
1 0 0
0 1 0
0 0 1

3

775.

Suppose we pick basis 2, x+1, x2 2 P2 and x+1, x� 1, x2 � x, x3 + x2. Compute the image of e1, e2, e3.
They are in fact 2, x + 1, x2 in the domain. So they would go to 2x, x2 + x, x3 in the codomain. Note that
2x = (x+ 1) + (x� 1), and x2 + x = (x2 � x) + (2x) = (x2 � x) + (x+ 1) + (x� 1). Finally,

x3 = (x3 + x2)� x2 = (x3 + x2)� (x2 � x)� x = (x3 + x2)� (x2 � x)� 1

2
(x+ 1)� 1

2
(x� 1).

So these corresponds to vectors in the codomain with coordinates

2

664

1
1
0
0

3

775 ,

2

664

1
1
1
0

3

775 ,

2

664

� 1
2

� 1
2

�1
1

3

775. Then the matrix

for our linear map is now

2

664

1 1 � 1
2

1 1 � 1
2

0 1 �1
0 0 1

3

775.

Either way, since we have the matrix, we can now compute whatever we need about M . ,

Now, the above process is not pleasant when the basis are ugly. So here is a thought: given a matrix for
our linear map under nice bases, can I convert it using the change of basis formula, to get the matrix in the
ugly basis?

Proposition 4.6.20. Given bases B1,B2 for a space V and a basis C for a space W , then for a linear map
L : V ! W we have LB2!C = LB1!CCB2!B1 .

Similarly, given a basis B for a space V and bases C1, C2 for a space W , then for a linear map L : V ! W
we have LB!C2 = CC1!C2LB!C1 .

Proof. The proofs are trivial. Just think about their meaning. Or look at the diagram below.

Rn Rm

V W

Rn Rm

B1

LB1!C1

C1

L

B2

CB2!B1

LB2!C2

C2

CC2!C1
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You can immediately see that for LB2!C1 , for example, we need to go from bottom left to upper right.
So LB2!C1 = LB1!C1CB2!B1 . The other one goes from upper left to bottom right, and can be proven
similarly.

Remark 4.6.21. In particular, change of basis in the domain corresponds to multiplying an invertible matrix
on the RIGHT, while change of basis in the codomain corresponds to multiplying an invertible matrix on the
LEFT.

Example 4.6.22. Note that

(1, x, x2)

2

4
2 1 0
0 1 0
0 0 1

3

5 = (2, x+ 1, x2),

(1, x, x2, x3)

2

664

1 �1 0 0
1 1 �1 0
0 0 1 1
0 0 0 1

3

775 = (x+ 1, x� 1, x2 � x, x3 + x2).

As a result, using the corresponding change of coordinate matrix, the matrix of our previous linear map
under the ugly basis can be computed as

2

664

1 �1 0 0
1 1 �1 0
0 0 1 1
0 0 0 1

3

775

�1 2

664

0 0 0
1 0 0
0 1 0
0 0 1

3

775

2

4
2 1 0
0 1 0
0 0 1

3

5 =

2

664

1 1 � 1
2

1 1 � 1
2

0 1 �1
0 0 1

3

775 .

Hooray, this works! ,

In fact, the process of “diagram chase” would allow us to create many “change of basis” formula for
matrices of linear maps. Let us look at this diagram:

Rn Rd Rm

U V W

Rn Rd Rm

B1

LB1!C1

C1

TC1!D1

D1

L T

B2

LB2!C2

C2

TC2!D2

D2

By snaking around the diagram, you can get results like

(T � L)B2!D1 = CD2!D1TC2!D2CC2!C1LB1!C1CB2!B1 .

I’m not even going to write this as a proposition or to prove it. Just stare at these diagrams and you should
be able to see this.

4.6.3 Row and Column operations and the Rank Normal Form

Now, the diagram chase can be fun, but let us not forget the point of doing this. The point is to gain more
interpretations and to understand linear algebra better.

Suppose we have a matrix A : Rn ! Rm. Now maybe A looks ugly. If I perform some change of basis,
hopefully A will look pretty, and we can solve problems involving A much better, yes? So how to do this?
And how simple can we simplify A?

Now, change of basis in Rn are simply multiplication by invertible matrices. So we can reformulate our
problem into this:
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Question 4.6.23. Given an m⇥ n matrix A, can you find invertible m⇥m matrix R and invertible n⇥ n
matrix C such that BAC is nice?

Now, an invertible matrix on the left is simply a series of row operations, while an invertible matrix on
the right is simply a series of column operations! In fact, combining our intuitions on row/column operations
and change of basis, we have the following:

1. A row operation is a change of basis in the codomain.

2. A column operation is a change of basis in the domain.

3. RREF means doing a change of basis to the codomain, so that your system looks as simple as possible.

So how would we simplify a matrix A via change of basis? Say A =

2

664

1 1 1 1
1 2 2 2
1 1 1 2
1 1 1 1

3

775. First we row reduce

to get RREF

2

664

1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

3

775. Next we column reduce, using pivots to kill the rest of each row. We now have

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

3

775. Finally, let us throw zero columns to the right, and we have

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3

775. Huh.

Proposition 4.6.24. Given any m⇥ n matrix A with rank r, we can find invertible m⇥m matrix R and

invertible n ⇥ n matrix C such that RAC =


Ir⇥r O
O O

�
. We say this is the rank normal form or rank

revealing form for our matrix A.

Proof. What we just did. Starting from A, we first change basis in codomain, i.e., row reduce A, until we
reach RREF. Then change basis in domain, i.e., column reduce, and we are done. Only pivots are left, and
they are column-swapped to stay in the upper left block.

Note that we write


Ir⇥r O
O O

�
for simplicity, but technically it could be

⇥
I O

⇤
or


I
O

�
or I, depending

on whether we have zero columns or zero rows at all.

Corollary 4.6.25. Given any linear map, by finding the right basis for the domain and for the codomain,

the map will have matrix


I O
O O

�
or

⇥
I O

⇤
or


I
O

�
or I. We say this is the rank normal form for your

linear map L.

Think about the meaning of these statements. We realized that ANY linear map, by choosing the correct

basis, will look like the matrix


Ir⇥r O
O O

�
or

⇥
I O

⇤
or


I
O

�
or I.

So it turns out that, as far as finite dimensions goes, if we always pick good bases, then the abstract
world is extremely beautiful and simplistic. We have ONLY FOUR kinds of linear maps:

1. Each finite dimensional vector space looks like Rn for some n.

2. A linear injection must look like


I
O

�
under the right basis for the domain and the codomain. Geo-

metrically, this is an inclusion map. For example

2

4
1 0
0 1
0 0

3

5 would simply send


x
y

�
to

2

4
x
y
0

3

5. It represent

the process of including the xy-plane into R3.
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3. A linear surjection must look like
⇥
I O

⇤
under the right basis for the domain and the codomain.Geometrically,

this is a projection map. For example


1 0 0
0 1 0

�
would simply send

2

4
x
y
z

3

5 to


x
y

�
. It represent the pro-

cess of projecting R3 onto the xy-plane.

4. A linear bijection must look like the identity matrix under the right basis for the domain and the right
basis for the codomain.

5. A linear map that is neither injective nor surjective looks like


I O
O O

�
under the right basis for the

domain and the codomain.

Furthermore, here are some interesting ramifications.

Theorem 4.6.26 (Full rank decomposition). For any m ⇥ n matrix A with rank r, we can find an m ⇥ r
matrix B with rank r (so it is injective), and an r ⇥ n matrix C with rank r (so it is surjective), such that
A = BC.

Proof. Pick the right basis, then A =


Ir⇥r O
O O

�
.

However, we have 
Ir⇥r O
O O

�
=


Ir⇥r

O

� ⇥
Ir⇥r O

⇤
.

So set B =


Ir⇥r

O

�
and C =

⇥
Ir⇥r O

⇤
, and we are done.

Remark 4.6.27. This is part of a larger phenomenon. For any map f between sets, then we can always
find an injective map g and a surjective map h such that f = g � h.

What does this mean geometrically? It means that ALL linear maps A behave like this:

1. First, we do a surjective linear map C, i.e., we collapse a few dimensions of the domain, until only r
dimensions left.

2. Then, we do an injective linear map B, i.e., we use an inclusion map to put the leftover from the last
step into a larger space, the codomain.

Computationally, if all basis we choose are nice, then ALL linear maps A : Rn ! Rm of rank r behave
like this:

1. Given an input

2

64
x1
...
xn

3

75 2 Rn, we drop a few coordinates and get

2

64
x1
...
xr

3

75.

2. Then, we add a few zero coordinates, and get

2

666666664

x1
...
xr

0
...
0

3

777777775

2 Rm.

So, all linear maps are simply “collapse a few dimensions, and then put into a larger space.” From this
intuition, the following corollary is completely trivial.

Corollary 4.6.28. The rank of a matrix A is the same as dim(Ran(A)).

121



Proof. We don’t even need the full rank decomposition. Say A has rank r. Simply pick the right basis, then

A =


Ir⇥r O
O O

�
. Now look, its range (column space) is spanned by e1, . . . , er and therefore has dimension

r. Obviously changing basis could only change the names of vectors, and could not change the dimension of
dim(Ran(A)).

Our previous proofs shows that, given a matrix A with rank r, we can find a rank normal form also with
rank r. But is it possible to find some rank normal form of A with a di↵erent rank? This is NOT possible.
In particular, the rank normal form is unique, as shown below.

Lemma 4.6.29. For any m⇥ n matrix A, pick any invertible m⇥m matrix R and invertible n⇥ n matrix
C, then A and RAC must have the same rank.

Proof. No change of basis could possibly change dim(Ran(A)) in any way.

Corollary 4.6.30. The rank normal form of a matrix is unique. And two matrices A,B have the same rank
if and only if we can find invertible m⇥m matrix R and invertible n⇥ n matrix C, such that B = RAC.

In particular, the rank of a matrix COMPLETELY characterizes the linear map. If two matrices are
both m ⇥ n and have the same rank, then they are the SAME linear map, di↵er only by a change of basis
in the domain and a change of basis in the codomain.

We end this section by a useful decompositon in practice.

Proposition 4.6.31 (Rank-one decomposition). A matrix of rank r is the sum of r rank-one matrices.

Proof. Given a matrix A with rank r, we first do the full rank decomposition A = BC. Note that B has r

columns, and C has r rows. Say B =
⇥
b1 . . . br

⇤
and C =

2

64
cT1
...
cr

3

75. Then we have

A = BC =
⇥
b1 . . . br

⇤
2

64
cT1
...
cr

3

75 =
rX

i=1

bic
T
i
.

Each bicTi is clearly a rank-one matrix. So we are done.

As a side note, let us briefly talk about the rank of an abstract linear map. This is mostly trivial, but
we establish to be technically more rigorous.

Definition 4.6.32. Given a linear map L, we define its rank rank(L) as dimRan(L).

Recall that Ran(L) is the collection of all images of L, and they form a natural subspace of the codomain.
Its dimension is what we call the rank of L.

Proposition 4.6.33. The rank of A as a matrix (i.e., number of pivots) is the same as the rank of A as a
linear map.

Proof. Notice that A and rref(A) can be thought of as the same linear map, di↵er only by a change of basis
in the codomain. So their range have the same dimension. Now the dimension of rref(A) is obviously the
number of pivots.

Example 4.6.34. Let A be a matrix such that each column is an arithmetic sequence. Then each column

is of the form a

2

64
1
...
1

3

75 + d

2

64
0
...

n� 1

3

75. So the range of A is contained in the span of

2

64
1
...
1

3

75 ,

2

64
0
...

n� 1

3

75. So it is at

most 2 dimensional.
So A has rank at most two. ,
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Let us review the full rank decomposition process. If L : V ! W , how can I decompose this into a
surjective linear map followed by an injective linear map?

Well, first of all, we can restricte the codomain to Ran(L). Then the map L0 : V ! Ran(L) would be
surjective, where L0 is essentially the same as L, and they only di↵er in the choice of codomain.

Next, we have an inclusion map ◆ : Ran(L) ! W , since Ran(L) must be a subspace of W .
Finally, see that L = ◆ � L0 as desired.

4.7 Rank-Nullity Theorem and Subspace Algebra

For a linear map L, recall that Ker(L) is the solution set to Lx = 0, while Ran(L) is the subspace of all its
images. Both of these are subspaces.

Now under the right basis, L looks like its rank normal form. So it is very easy to see the following:

Theorem 4.7.1 (Rank-Nullity Theorem). dim(domain(L)) = rank(L) + dimKer(L) = dimRan(L) +
dimKer(L)

Note that if the domain is Rn, then for any system Lx = b, we see that dim(domain(L)) is the total
number of variables. The rank of L is the number of dependent variables. Finally, dimKer(L) means all
possible free directions to move inside the solution set of Lx = 0, i.e., the number of free variables.

Hence, This is the abstract statement of our previously established fact that “the number of dependent
variable + the number of free variable = the number of all variables”. Nevertheless, here is another formal
proof.

Proof. Pick nice basis, and poof! We can now assume WLOG (without loss of generality) that L is the

matrix


Ir O
O O

�
.

Its range is spanned by e1, . . . , er, and its kernel is spanned by er+1, . . . , en. So we are done by counting.

Remark 4.7.2. Intuitively, if L starts with n dimensions, and kills n� r dimensions, its range is left with
r dimension.

Here are some extreme cases.

Corollary 4.7.3. L is injective if and only if Ker(L) = {0}, if and only if Ran(L) has the same dimension
as the domain. L is surjective if and only if Ran(L) is the same as the codomain, if and only if dimKer(A)
is the di↵erence between .

Proof. Obviously L is surjective if and only if Ran(L) is the same as the codomain. Using rank-nullity, the
statement on dimKer(A) is immediate.

For the injective case, note that Lv = Lw i↵ L(v �w) = 0 i↵ v �w 2 Ker(L). If the kernel is trivial,
we have v = w, so L is injective. Conversly if L is injective and Lv = 0 = L0, we have v = 0.

So L is injective if and only if Ker(L) is trivial, if and only if dimKer(L) = 0, if and only if dimRan(L)
is the same as the dimension of the domain.

The idea here actually immediately gives us a picture of how solution sets are like.

Corollary 4.7.4 (Description to all solutions to a linear system). For any linear map L : V ! W and any
w 2 W , the solution set for the equation Lx = w is a translation of Ker(L). More rigorously, if x0 is a
solution, then the solution set is x0 +Ker(L) = {x0 + v | v 2 Ker(L)}.

Proof. If Ly = w too, then Lx0 = Ly, so y � x0 2 Ker(L). So y 2 x0 +Ker(L).
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Example 4.7.5. Consider A =


1 0 0
0 1 0

�
. It sends

2

4
x
y
z

3

5 to


x
y

�
, so it corresponds to the projection of R3

to the xy-plane. Its kernel is simply the z-axis.
So for any b 2 R2, what is the solution set to Ax = b? It must be a parallel translation of the z-axis.

It is simply some vertical line in R3. In particular, if we move b around, the solution set would also move
around in a parallel manner.

In particular, the geometric behavior of A is this: in the domain R3, look at all the lines parallel to the
z-axis. A would shrink each line to a point. Hence the range of A is just the xy-plane.

Each vertical line shrinks to a point�������������������!

You can also see that the kernel has dimension one, the domain has dimension three. By shrinking
everything parallel to the kernel, we end up with a range with dimension two.

Similarly, consider A =
⇥
0 0 1

⇤
. It sends

2

4
x
y
z

3

5 to z, so it corresponds to the projection of R3 to the

z-axis. Its kernel is simply the xy-plane.
So for any b 2 R, what is the solution set to Ax = b? It must be a parallel translation of the xy-plane.

These are just various horizontal planes in R3. In particular, if we move b around, the solution set would
also move around in a parallel manner.

In particular, the geometric behavior of A is this: in the domain R3, look at all the planes parallel to the
xy-plane. A would shrink each plane to a point. Hence the range of A is just the z-axis.

Each horizontal plane shrinks to a point����������������������!

You can also see that the kernel has dimension two, the domain has dimension three. By shrinking
everything parallel to the kernel, we end up with a range with dimension one. ,

Remark 4.7.6. Now we have a clearer intuition on an arbitrary linear map.
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Say L has kernel dimension d. Then in fact, it is collapsing all d-dimensional a�ne subspaces parallel to
Ker(L) to points. Each d-dimensional object is now turned into a 0-dimensional object. So our n dimensional
domain is turned in to the n� d dimensional range.

With our most powerful tool established, we are now free to study subspaces. The first important part
is to study containment relation.

Proposition 4.7.7. Let V be a finite dimensional space. If W ✓ V , then dimW  dimV . If W ✓ V and
dimW = dimV , then in fact W = V .

Proof. Say w1, . . . ,wk are linearly independent vectors inside W . Note that, the definition of linear inde-
pendence does not really need W . It simply tries to combine these vectors and see if we can get 0. Therefore,
they are also linearly independent inside V . In particular, if V is finite dimensional, then W must also be
finite dimensional.

If we pick a basis w1, . . . ,wk for W , then they are linearly independent and they are in V . So we can
extend it to a basis of V , and thus dimW  dimV .

In particular, if V is also k-dimensional, then w1, . . . ,wk is a linearly independent collection of k vectors
in V , and thus also a basis for V . So V = W .

For an alternative proof, consider the inclusion map inc : W ! V , which is linear. So say A is a matrix
for it under some basis. Then the rank of A is at most the number of rows of A. But the former is just
dim(W ) while the latter is dim(V ). So dim(W )  dim(V ). Furthermore, if the two are equal, then A is a
square matrix. So it is injective (since it is inclusion) and square, hence bijective. But if the inclusion map
is bijective, then it is in fact the identity map. So V = W .

We already uses this from time to time without pointing it out. Now let us specifically consider subspaces
of Rn.

Corollary 4.7.8. Any subspace W of Rn is Ran(A) for some A and Ker(B) for some B.

Proof. Pick a basis w1, . . . ,wk 2 W ✓ Rn for W . Now W = Ran
⇥
w1 . . . wk

⇤
. Done.

Now extend w1, . . . ,wk to a basis w1, . . . ,wn for V (via the independence extension lemma, essentially).

Let C =
⇥
w1 . . . wn

⇤�1
be the change of coordimate map for this new basis, and P =

⇥
O In�k

⇤
be the

projection map sending

2

64
x1
...
xn

3

75 to

2

64
xk+1
...
xn

3

75.

Then v 2 W i↵ it only needs vectors w1, . . . ,wk among the basis w1, . . . ,wn, i↵ its last n�k coordinates
under the new basis are all zero, i↵ PCv = 0. So W = Ker(PC).

Now, given some subspaces, we are interested in how to make more subspaces.

Definition 4.7.9. Given two subspaces U,W in V , their intersection U\W is, well, um, their intersection.
Their sum (or their span) U +W is the set {u+w | u 2 U,w 2 W}.

Proposition 4.7.10. Given two subspaces, their intersection and their sum are subspaces.

Proof. Suppose u,w 2 U \W , and take any a, b 2 R.
Since u,w 2 U and U is a subspace, therefore au + bw 2 U . Similarly, since u,w 2 W and W is a

subspace, therefore au+ bw 2 W . Hence au+ bw 2 U \W .
Suppose v1,v2 2 U +W , and take any a, b 2 R.
For i = 1, 2, since vi 2 U + W , we must have vi = ui + wi for some ui 2 U,wi 2 W . Then

av1 + bv2 = a(u1 +w1) + b(u2 +w2) = (au1 + bu2) + (aw1 + bw2). Since the first summand is in U and
the second summand is in W , the result is in U +W .

In the specific case of subspaces of Rn, we have the following nice block matrx interpretations of sum
and intersections.
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Proposition 4.7.11. Ran(A) + Ran(B) = Ran
⇥
A B

⇤
, and Ker(A) \Ker(B) = Ker


A
B

�
.

Proof. Ran(A) + Ran(B) means the all possible linear combinations of (all possible linear combinations of
columns of A) and (all possible linear combinations of columns of B). Ran

⇥
A B

⇤
means the all possible

linear combinations of columns of A and columns of B. Wait. Why do we even need to prove this? This is
totally trivial!

x 2 Ker(A)\Ker(B) means Ax = Bx = 0. On the other hand, x 2 Ker


A
B

�
means


Ax
Bx

�
=


0
0

�
. Wait.

Why do we even need to prove this? Again, this is totally trivial!

Generically, the following also provide some nice intuitions. In particular, they are analogous to the
situations of subsets.

Proposition 4.7.12. U \W is the largest subspace contained in both, and U +W is the smallest subspace
containing both.

Proof. Pretty straightforward by definition.
If V is a subspace containing both U and W , surely it contains all u+w where u 2 U and w 2 W . So

V ◆ U +W .
If V is a subspace inside both U and W , surely it is inside U \W . So V ✓ V \W .

Now, it might feel like sums and intersections of subspaces bear some similarity to unions (smallest subset
containing both subsets) and intersections (largest subset inside both subsets) of subsets. However, there
are some crucial distinctions.

Example 4.7.13. Subspace algebra can be very tricky, and very dangerous. Recall that, normally, for
ordinary subsets, then we have distrubutativity of [ and \ over each other, namely, A [ (B \ C) = (A [
B) [ (A [ C) and (A [B) \ C = (A \ C) [ (B \ C). Draw some Vayne diagram to see this.

However, suppose we look at R2, let U be the line x = 0, let V be the line y = 0 and let W be the line
x = y. Note that any two of them can intersect only at the origin, and any two of them would span the
whole space.

U + (V \ W ) may NOT equal to (U + V ) \ (U + W ). The first one is U , while the second one is the
whole R2.

U \ (V +W ) may NOT equal to U \V +U \W . The first one is U , while the second one is the origin. ,

However, sometimes the analogy is true. Recall that for two subsets, we have |A[B| = |A|+ |B|� |A\B|.
(This is called the inclusion-exclusion principle sometimes.) In particular, if A,B are both big but A[B
is not big enough, then A[B would be “too crowded”, and thus A,B must have big intersections. The same
goes for subspaces

Theorem 4.7.14 (Inclusion-Exclusion Principle for Subspaces). dim(V+W ) = dimV+dimW�dim(V \W ).

Proof. The first proof is done by basis-extension and counting. Suppose dim(V \ W ) = k, dimV =
a, dimW = b.

Pick a basis u1, . . . ,uk for V \ W . Extend this to a basis of V as u1, . . . ,uk,v1, . . . ,va�k. Similarly,
extend the linearly independent collection u1, . . . ,uk to a basis ofW as u1, . . . ,uk,w1, . . . ,wb�k. I claim that
u1, . . . ,uk,v1, . . . ,va�k,w1, . . . ,wb�k form a basis for V +W . (This would then imply that dim(V +W ) =
k + (a� k) + (b� k) = a+ b� k, establishing the desired result.)

Spanning is obvious, so we only prove linear independence here. Suppose
P

aiui+
P

bivi+
P

ciwi = 0.
Then

P
aiui +

P
bivi = �

P
ciwi. Note that the left hand side is in V , while the right hand side is in W ,

so both sides are in V \W !
So

P
ciwi 2 V \ W ✓ W . However, every vector in W must be a unique linear combination of

u1, . . . ,uk,w1, . . . ,wb�k, and if the vector is actually in V \W , then the coordinates for w1, . . . ,wb�k must
all be zero. Hence, since

P
ciwi 2 V \W ✓ W , we see that all ci are zero.
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Then
P

aiui +
P

bivi = 0. But since u1, . . . ,uk,v1, . . . ,va�k is a basis for V , this implies that all ai
and all bi are zero.

So
P

aiui+
P

bivi+
P

ciwi = 0 implies that all coe�cients are zero. Hence u1, . . . ,uk,v1, . . . ,va�k,w1, . . . ,wb�k

is a linearly independent collection of vectors. So it is indeed a basis.
Now let us do an alternative (hardcore but optional) proof. This proof is arguably more abstract, but

it is what advanced mathemagicians (ha!) typically would do: we solve a problem by building TONS of
structures around the problem, and see what would happen.

Consider the following chain

V \W V ⇥W V +WD S

Let us explain the space V ⇥W and the maps D and S.

Here the space V ⇥ W refers to the vector space {

v
w

�
: v 2 V,w 2 W} where addition and scalar

multiplication are done in the obvious manner. Clearly if v1, . . . ,va is a basis for V and w1, . . . ,wb is a

basis for W , then a basis for V ⇥W is


vi

0

�
and


0
wj

�
for all i, j. So dim(V ⇥W ) = dimV + dimW .

The map D sends x to


x
�x

�
. And the map S sends


v
w

�
to v +w. These are all linear maps, as you

can verify. Furthermore, it is obvious by definition that D is injective and S is surjective.
On extra remark, we also have Ran(D) = Ker(S). (This is called exact . The spaces V \W,V ⇥W,V +W

form a classical short exact sequence, which is an important phenomenon in all algebra studies.) To see this,
first of all obviously S �D is the zero map (it sends everything to 0). Hence Ran(D) ✓ Ker(S). Conversely,

if v 2 Ker(S), then S(


v
w

�
) = 0, then v + w = 0, hence


v
w

�
=


v
�v

�
= D(v) 2 Ran(D). Hence

Ker(S) ✓ Ran(D). So we have the desired “exactness”.
We have finished building. Now to prove the statement, just use rank-nullity twice, once on D and once

on S. The rank-nullity on D gives

dim(V \W ) = dimRan(D) + dimKer(D) = dimRan(D) = dimKer(S).

Here dimKer(D) = 0 because D is injective.
The rank-nullity on S gives

dim(V ) + dim(W ) = dim(V ⇥W ) = dimKer(S) + dimRan(S) = dim(V \W ) + dim(V +W ).

So we are done.
Intuitively, short exact sequences are used to decompose algebraic structures. We are pointing out that

V ⇥W is in some sense composed of V \W and V +W .

Remark 4.7.15. (Entirely optional remark)
The second proof above is actually the same as the popular proof for the inclusion exclusion principle

for subsets. For subsets, a proof is typically like this: we “pretent” that there is no intersection and count
elements of X and elements of Y . Now when we put these elements into X [ Y , we would have overlaps.
The overlaps are X \ Y . Hence |X [ Y | = |X|+ |Y |� |X \ Y |.

For our proof here, the space V ⇥W is the linear algebra way of “pretending” that the two spaces have
zero intersection. In particular, dim(V ⇥W ) = dimV + dimW .

For subsets, when we put X,Y into X[Y , we are performing inclusion maps. Here the map S : V ⇥W !
V +W is actually the natural linear extension of both inclusion maps V ! V +W and W ! V +W .

Finally, for subsets, we would try to look at overlaps of X,Y in X [Y . Correspondingly, overlaps for the
map S : V ⇥W ! V +W can be studied as the kernel of S. (Which is the collection of inputs with common
image 0, i.e., they “overlap” at 0.)

Here is an immediate application.
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Corollary 4.7.16. If dim(W ) = n� 1 is a subspaces of n-dimensional space V , then for any subspace U of
V , either U ✓ W or dim(U \W ) = dim(U)� 1.

This essentially reads that any hyperplane would always cut your dimension by one. Say you are in Rn

and have k hyperplanes in generic position. (“Generic position” means their equations have no redundancy
or contradiction.) What is the dimension of their intersection? It would be n � k, as each plane cut the
dimension by 1.

In particular, n variables with k e↵ective equations means your solution set is an n � k dimensional
(a�ne) space.

Here is another application of the inclusion-exclusion formula.

Corollary 4.7.17. If V \W = {0}, then dim(V +W ) = dimV + dimW .

A special case of above is the concept of complement subspaces.

Definition 4.7.18. We say two subspaces U,W of V are complements if U +W = V and U \W = {0}.

This is just the analogy of complements for subsets, where we require S [ T to be the whole set and
S \ T = ?.

Corollary 4.7.19. If U,W are complements of each other in V , then dimV = dimU + dimW .

Another useful phenomenon is that they provides unique decomposition of vectors, similar to

2

4
1
2
3

3

5 =

2

4
1
2
0

3

5 +

2

4
0
0
3

3

5. (This is the unique decomposition where we think of the xy-plane and the z-axis as comple-

mentary subspaces.)

Corollary 4.7.20. If U,W are complementary subspaces of V , then for any v 2 V , we can find unique
u 2 U and unique w 2 W such that v = u+w.

Proof. Since U +W = V , such decomposition must exist.
Now suppose u1 + w1 = v = u2 + w2. Then rearrange this gives u1 � u2 = w2 � w1. Now the left

hand side is in U and the right hand side is in W , so both are in U \W = {0}. Hence both sides are zero,
u1 = u2,w1 = w2.

Now again, the analogy holds at the amount of dimensions, but fail in terms of actual subspaces. In
particular complements of subspaces are NOT unique. For example, in R2, the y-axis and the line x = y
are both complements to the x-axis. (This is the same example that fails the law of distribution among
subspaces. This is NOT a coincidence, but we don’t need to dwell on it too much at the moment.)

Finally, here are something that are very useful sometimes.

Definition 4.7.21. Given a linear map L : V ! W and a subspace U ✓ W , the pullback of U via L is the
subspace is L�1(U) = {v | L(v) 2 U}.

Dually, given a subspace U ✓ V , the pushforward of U via L is the subspace L(U) = {L(v) | v 2 U}.

These can be thought of as generalizations of range and kernel. The range is the pushforward of the
domain. The kernel is the pullback of {0}.

Let us establish some dimension results that is enough for all our future computations.

Lemma 4.7.22. Given a linear map L : V ! W and a subspace U of W , let L0 be the restriction of L with
domain L�1(U) and codomain U . Then Ran(L0) = Ran(L) \ U and Ker(L0) = Ker(L).

Given a linear map L : V ! W and a subspace U of V , let L0 be the restriction of L with domain U and
codomain L(U). Then Ran(L0) = L(U) and Ker(L0) = Ker(L) \ U .
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Proof. The proofs are mostly trivial, but lengthy (because every equality between sets X = Y need to be
proven twice as X ✓ Y and Y ✓ X, hence there are 8 things to prove...). Feel free to skip these proofs.

For both statements, beware of the key relation between L and L0. If x is in the domain of L0, then we
must have L0x = Lx by definition. If x is not in the domain of L0, then L0x is not defined while Lx could
be defined.

Let us prove the first paragraph.
Therefore, pick any x 2 Ker(L0). Then L0x = 0. Hence Lx = 0 and x 2 Ker(L). Conversely, if

x 2 Ker(L), then x 2 L�1({0}) ✓ L�1(U), hence L0x is defined. So L0x = Lx = 0 and thus x 2 Ker(L0).
Pick any b 2 Ran(L0), then b = L0x for some x in the domain of L0. Hence b = Lx 2 Ran(L). And

since x 2 L�1(U), we see that b = Lx 2 U . So b 2 Ran(L) \ U .
Conversely, say b 2 Ran(L)\U . Since b 2 Ran(L), by definition this means b = Lx for some x. But then

since b 2 U , this means that x 2 L�1(U). Hence L0 is defined on x, and L0x = Lx = b. So b 2 Ran(L0).
Now let us prove the second paragraph.
L(U) is literally defined as the set of images of Lu for u 2 U , hence L0 is surjective by construction. So

we have Ran(L0) = L(U).
If x 2 Ker(L0), then L0x = 0, hence x is defined (i.e., x 2 U), and hence Lx = L0x = 0. So we also have

x 2 Ker(L). So x 2 Ker(L) \ U .
Conversely, say x 2 U \ Ker(L). Then Lx = 0, and L0 is defined on x. Therefore L0x = Lx = 0. So

x 2 Ker(L0).

Proposition 4.7.23.
dimL�1(U) = dim(U \ Ran(L)) + dimKer(L).

dimL(U) = dimU � dim(U \Ker(L)).

Proof. Just apply rank-nullity on L0 in the previous lemma.

You don’t need to remember the formula above. Personally I simply keep in mind that all such things
can be done via rank-nullity, and I search for these formulas online (or re-deduce them myself) when I need
them.

Corollary 4.7.24. We have many rank inequalities among matrices:

1. rank(A+B)  rank(A) + rank(B).

2. rank(A)+rank(B)�n  rank(AB)  min(rank(A), rank(B)). (Here n is the dimension of the domain
of A which is also the codomain of B.)

3. (Optional) max(rank(A), rank(B))  rank(
⇥
A B

⇤
)  rank(A) + rank(B).

4. (Optional) max(rank(A), rank(B))  rank(


A
B

�
)  rank(A) + rank(B).

5. (Optional) rank(


A O
O B

�
) = rank(A) + rank(B).

6. (Optional) rank(


A O
C B

�
) � rank(A) + rank(B).

Proof. The goal is NOT to prove these things. Rather, the goal is to practice using rank-nullity on subspaces.

1. Obvious because all columns of A+ B are linear combinations of columns of A and columns of B, so
Ran(A+B) ✓ Ran(A) +Ran(B). Take dimensions and dimRan(A+B)  dim(Ran(A) +Ran(B)) 
dimRan(A) + dimRan(B). The last inequality is inclusion-exclusion principle.
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2. Obviously any image via AB is in particular some image of A, so Ran(AB) ✓ Ran(A), which gives
rank(AB)  rank(A).

Now Ran(AB) = {ABv | v 2 Rn} = A{Bv | v 2 Rn} = ARan(B). By the pushforward formula
(equivalently, by rank-nullity on the map from Ran(B) to ARan(B)), we have dimARan(B) =
dimRan(B)� dim(Ran(B) \Ker(A)). This immediatley established rank(AB)  rank(B).

By the same equation, we can also have dimARan(B) � dimRan(B) � dimKer(A) = dimRan(B) +
dimRan(A)� n. So we are done.

3. For
⇥
A B

⇤
both sides are obvious, because Ran

⇥
A B

⇤
= Ran(A) + Ran(B).

4. Let n be the dimension of the common domain. Now Ker(


A
B

�
) = Ker(A) \Ker(B). Take dimensions

we have min(dimKer(A), dimKer(B)) � dimKer(


A
B

�
) = dimKer(A) + dimKer(B) � dim(Ker(A) +

Ker(B)) � dimKer(A) + dimKer(B)� n. Now use the fact that rank is n minus the dimension of the
kernel, and these converts to the desried equation.

5. It looks quite obvious that Ran(


A
O

�
) and Ran(


O
B

�
) have trivial intersection, while the former has the

same dimension as Ran(A), and the latter has the same dimension as Ran(B).

6. Find pivotal columns of A, and consider the corresponding columns of


A O
C B

�
. They span a space

V , and it is a subspace of Ran


A
C

�
. I claim that V has dimension rank(A), and V \ Ran


O
B

�
= {0}.

Then dimRan


A O
C B

�
= dim(Ran


A
C

�
+ Ran


O
B

�
) � dim(V + Ran


O
B

�
) = dimV + dimRan


O
B

�
=

rank(A) + rank(B).

We only need to prove my claim now. Say k = rank(A). Let


a1

c1

�
, . . . ,


ak

ck

�
be the columns of


A O
C B

�
we used to span V . Since we picked this by picking pivotal columns of A, a1, . . . ,ak are

linearly independent.

Suppose


x
y

�
is in the intersection, then x = 0. So if


x
y

�
=

P
ti


ai

ci

�
, then 0 =

P
tiai, so all coe�-

cients are zero and


x
y

�
= 0. So there is no intersection. We also immediately see that


a1

c1

�
, . . . ,


ak

ck

�

are linearly independent, so V has dimension k.

Remark 4.7.25. Note that
⇥
A B

⇤
and


A
B

�
, although similar in terms of rank inequalities, might NOT

have the same rank. For example, take


e1
e2

�
, B =

⇥
e1 e2

⇤
.

The meaning behind the proof is sometimes more important than the actual results. For example,
consider the statement rank(A) + rank(B) � n  rank(AB). In the proof, we essentially established that
dimRan(AB) � dimRan(B) � dimKer(A). So if A killed k dimensions, then performing the linear map A
after B, A would kill at most k dimensions in Ran(B). Hence the resulting space Ran(AB) has a dimension
at most dimRan(B)� dimKer(A).

Using this idea, one can easily see the following fun statement. (Useful next semester for the establishe-
ment of Jordan canonical form.)
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Proposition 4.7.26. If A is n⇥ n and Ak = n, then dimKer(A) � n

k
.

Proof. Intuitively, if dimKer(A) < n

k
, then for Ran(Ak) = Ak Ran(In), each application of A to the subspace

would kill less than n

k
dimensions, and a total of k steps would kill less than n dimensions. So dimRan(Ak) >

0, there must be surviving dimensions.
Rigorous proof goes like this: If Ak = 0, then we have

0 = dimRan(Ak) � dimRan(Ak�1)�dimKer(A) � dimRan(Ak�2)�2 dimKer(A) � · · · � dimRan(A0)�k dimKer(A) = n�kKer(A).

Hence Ker(A) � n

k
.
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Chapter 5

Inner Product Space

Abstraction is fun and nice and useful, but they have missing pieces. In particular, we do not have lengths
or angles.

Example 5.0.1. Consider the space of polynomials of degree at most one, P1. Then under the basis (1, x),

the elements 2 and 3x in P2 have coordinates


2
0

�
,


0
3

�
. In particular, they seem to have length 2 and 3, and

it seems like they are perpendicular.

However, under the basis (2+3x, 3x), then the elements 2 and 3x in P2 now have coordinates


1
�1

�
,


0
1

�
.

Now they have length
p
2 and 1, and they are no longer perpendicular.

As you can see, “length” and “angles” are NOT defined for an abstract vector spaces.
Similarly, you also lose transpose. Consider M : P1 ! P1 which is a + bx 7! �b + ax. Uder the basis

(1, x), its matrix is


0 �1
1 0

�
, whose inverse equal to its transpose. However, under the basis (1+ x, x), then

its matrix is


�1 �1
2 1

�
, whose inverse is


1 1
�2 �1

�
, which is not the transpose. ,

In practice, we would often want to use length and angles. However, we might still want to reserve an
option to change basis. This gives rise to the definition of an inner product space.

In the sense of abstractions, an inner product space is pretty much Rn where you forget about your basis,
but you remembered the lengths and angles. If you then also forget about the lengths and angles, then you
have reached an abstract vector space.

Conversely, you can also think of an inner product space as an abstract vector space with an extra
structure, the inner product (e.g. dot product), which allows you to do lengths and angles. And you can
think of Rn as an inner product space with an extra structure, i.e., a fixed basis.

In practice, we shall see that (finite dimensional) inner product spaces are pretty much just Rn, but you
are allowed to change basis as long as the length and angle structures are preserved in the process, i.e.,
orthonormal change of basis.

5.1 Fundamental Theorem of Linear Algebra

Here let us plug in the missing pieces in the case of Rn, utilizing the dot product structure. Keep in mind
that these statements will NOT have easy analogues for abstract linear maps. (The analogues exist, but
they require much deeper knowledge to describe.)

We now go back to the world of Rn. Let us refrain from all change of basis at the moment, and always
use the standard basis. By doing so, we have lengths, angles, dot products, and transpose, and all that, i.e.,
the missing pieces are now all back.

Given an m⇥ n matrix A, there are four fundamental subspaces related to it.
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1. The range of A, Ran(A);

2. The kernel of A, Ker(A);

3. The left range or row space of A, which is in fact Ran(AT);

4. The left null space or left kernel of A, which is in fact Ker(AT).

The names are somewhat revealing. For example, what is the subspace spanned by all rows of A? Well,
these rows are just columns of AT, so the space is simply Ran(AT). You can also verify this: b 2 Ran(AT)
if and only if bT = xTA for some x. This explains the name of “left range”. Similarly, for the left kernel,
you can verify that x 2 Ker(AT) if and only if xTA = 0T.

These things have practical meanings in real life applications.

Example 5.1.1. Consider an electric circuit in Figure 5.1.1.

v1 v2

v3 v4

e1

e2
e3 e4

e5

M =

2

6664

3

7775

�1 1 0 0 e1
�1 0 1 0 e2
0 �1 1 0 e3
0 �1 0 1 e4
0 0 �1 1 e5
v1 v2 v3 v4

Figure 5.1.1: Graph of electric circuit and its incidence matrix M

Such a structure is mathematically called a directed graph, where we have some vertices, and some
arrows (electrical wires) that goes from some vertex to another vertex. Here we think of the arrows as actual
electrical wires. Given electrical potentials on the vertices, the di↵erence between electrical potentials would
induce voltages on wires. Then given the resistance of each wire, we can find out the electrical current on
each wire. This is a classical situation in the study of electrical circuit.

(Why do we have arrows on the wires? Well, when we measure electrical currents, if the electricity flow
in the arrow direction, we can declare this to be a “positive current”, and if it flows in the opposite direction,
we can declare this to be a “negative current”.)

Whenever we have a graph, we can draw its incidence matrix M , where each column corresponds to a
vertex, and each row corresponds to an arrow. The (i, j) entry of M is �1 if the i-th arrow starts at the
j-th vertex, 1 if the i-th arrow ends at the j-th vertex, and 0 otherwise.

Now, what linear map does M represents? First of all, we see that M would send a generic input

2

664

u1

u2

u3

u4

3

775

to

2

66664

u2 � u1

u3 � u1

u3 � u2

u4 � u2

u4 � u3

3

77775
. In particular, if the inputs are electrical potentials at each vertex, then the output are their

di↵erences (i.e., voltages) on each wire!

Electrical potentials on vertices Voltages on wiresM

In particular, if we assign electrical potentials on vertices arbitrarily, then Ran(M) is the space of all
possible voltages on wires in this circuit.

On the other hand, Ker(M) is the set of electrical potentials that gives zero voltages everywhere. Huh.

Without any computation, just by physics intuition, you can see that Ker(M) = {

2

664

u
u
u
u

3

775 : u 2 R}, i.e., when
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all electrical potentials are identical. This should be the case as long as my graph for electrical circuit is a
connected graph.

Now, what about the range and kernel of MT ?
(You might notice this formula in physics: voltage times current is power. We have many wires here.

Let v be the vector recording the voltages on these wires, and let c be the vector recording the currents on
these wires, then v · c is the total power of the circuit, a scalar! Hence if M acts on the voltage side, then
MT acts on the current side.)

Let c =

2

66664

c1
c2
c3
c4
c5

3

77775
be a vector recording the electrical currents on each wire. Then note that MTc =

2

664

�c1 � c2
c1 � c3 � c4
c2 + c3 � c5

c4 + c5

3

775. What are these output coordinates? Well, look at the second one. The vertex v2 has wires

e1 flowing into it, and wires e3, e4 flowing out of it, and the second coordinate here is exactly recording that!
In particular, the coordinates record the net inflow of electrical currents at each vertex. (Keep in mind that
each ci could be positive or negative, depending on the direction of the current.) Feel free to verify this
yourself.

Electrical currents on wires Net current inflow on verticesM
T

If you think about this, WITHOUT ouside influence, when the electrical flows are stable, we would
expect each vertex to have zero net inflow, i.e., whatever flows into a vertex, it must then flow out. This is
Kirchho↵ ’s current law , which says that stable currents must be in Ker(MT).

If you compute Ker(MT) (say via Gaussian elimination), this space is in fact spanned by

2

66664

1
�1
1
0
0

3

77775
and

2

66664

0
0
1
�1
1

3

77775
. You can see that the both corresponds to closed loops in the graph (where �1 means we are going

against an arrow). So stable currents simply means currents travels in loops. For example, the vector

2

66664

1
�1
0
1
�1

3

77775

is also in the kernel of MT, and it also corresponds to a loop. (Note that it is the sum of the two loop vectors
listed previously. Geometrically, this also makes sense. The two triangle loops would add up to the square
loop, where the diagonal edge got cancelled, because the two triangle loops travel in opposite directions on
this edge.)

There is also Kirchho↵ ’s voltage law , which states that possible voltages (i.e. elements of Ran(M))
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must add up to zero on closed loops. Indeed, if u =

2

66664

u1

u2

u3

u4

u5

3

77775
2 Ran(M), then Gaussian elimination gives

2

66664

�1 1 0 0 u1

�1 0 1 0 u2

0 �1 1 0 u3

0 �1 0 1 u4

0 0 �1 1 u5

3

77775
!

2

66664

1 �1 0 0 �u1

0 �1 1 0 u2 � u1

0 0 �1 1 u1 � u2 + u4

0 0 0 0 u1 � u2 + u3

0 0 0 0 u2 � u1 + u5 � u4

3

77775
.

So u 2 Ran(M) if and only if u1 � u2 + u3 = 0 and u2 � u1 + u5 � u4 = 0, i.e., it is perpendicular to the

two loop vectors

2

66664

1
�1
1
0
0

3

77775
and

2

66664

�1
1
0
�1
1

3

77775
. Note that these two loop vectors would actually span all loops, i.e., they

span the space Ker(MT).
Wait, we have obtained a funny result here. Elements of Ran(M) are exactly those that are perpendicular

to Ker(MT).
The same relation is also present for Ran(MT) and Ker(M). Given Ran(MT ), the elements of Ran(MT)

are possible net inflows at vertices. However, if currents flow out of a vertex, then they must flow into some

other vertex. So if w =

2

664

w1

w2

w3

w4

3

775 2 Ran(MT), then we should have w1 +w2 +w3 +w4 = 0, i.e., they should be

perpendicular to Ker(M) (which is spanned by

2

664

1
1
1
1

3

775). ,

Our goal for this section, the fundamental theorem, is basically a theorem about relations between these
fundamental subspaces. First of all, by rank-nullity, we already know that dimRan(A) + dimKer(A) = n
and dimRan(AT) + dimKer(AT) = m. What else do we know?

Proposition 5.1.2. A and AT have the same rank.

Proof. Suppose the rank of A is r. Suppose the rank normal form of A is RAC =


Ir⇥r O
O O

�
for invertible

matrices R,C. Taking transpose, we have CTATRT =


Ir⇥r O
O O

�T
=


Ir⇥r O
O O

�
. And since CT, RT are

still invertible, we immediately see that the rank normal form of AT is


Ir⇥r O
O O

�
, and hence its rank is r

as well.

(Note that this is essentially the old statement that “the number of e↵ective equations = the number of
dependent variables”.)

(The porposition above also says the following fact: for a matrix A, if its columns span a space with
dimension r, then its rows span a space with dimension r.)

Remark 5.1.3. Be careful, you cannot say “pick basis and assume that A =


Ir⇥r O
O O

�
. This is becasue if

you change basis arbitrarily, then AT might not corresponds to the transpose anymore.
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Indeed, to go to the range normal form, A and AT must actually use DIFFERENT change of basis. One
needs R and C, while the other uses CT and RT.

So, given an m ⇥ n matrix A with rank r, then r = dimRan(A) = dimRan(AT), dimKer(A) = n � r
and dimKer(AT) = m� r. So we have all the dimensions.

But hey, note that Ran(A) and Ker(A) are NOT in the same space. The former is in the codomain, while
the latter the domain. So in fact Ran(A) and Ker(AT) are both in the codomain of A, while Ran(AT) and
Ker(A) are both in the domain of A. Do the subspaces in the same space have some special relation?

Yes they do. We need to introduce the concept of an orthogonal complement.

Definition 5.1.4. We say subsapces V,W of Rn are orthogonal complements if they are complement as
subspaces, and all vectors in V are orthogonal to all vectors in W .

Proposition 5.1.5. Ran(A) and Ker(AT) are orthogonal complements of each other, and Ran(AT) and
Ker(A) are orthogonal complements of each other.

Proof. It is enough to prove the first statement, because applying the first statement to AT gives the second
one.

Let us first show that they are orthogonal. Intuitively this is obvious. Ker(AT) is made of vectors
perpendicular to all rows of AT, i.e., all columns of A. But Ran(A) is made of vectors that are linear
combinations of these columns. So of course they are orthogonal subspaces.

To be more formal, pick any v 2 Ran(A), say v = Au for some u, and pick any w 2 Ker(AT). Then
vTw = (Au)Tw = uTATw = uT0 = 0. So they are orthogonal subspaces.

Now let us show that they are complements. They are orthogonal, so obviously they have trivial inter-
section. Or to be more rigorous, suppose v 2 Ran(A)\Ker(AT), then v must be orthogonal to itself. Then
vTv = 0, and thus v has zero length. So it must be 0.

But the dimensions of the two subspaces add up to the dimension of the ambient space, so by inclusion-
exclusion principle, their sum IS the ambient space. So they are complements.

More rigorously, if A is m ⇥ n rank r, then dimRan(A) = r while dimKer(AT) = m � dimRan(AT) =
m � r. With trivial intersection, this means dim(Ran(A) + Ker(AT)) = m = dimRm. Since the subspace
has the same dimension with the whole space, we see that the two are the same.

This immediately opens up a lot of interesting properties for orthogonal complements. Unlike regular
complements, the orthogonal complement is unique.

Proposition 5.1.6. For any subspace V of Rn, then V ? = {w | wTv = 08v 2 V } is the only orthogonal
complement of V . In particular, the orthogonal complement always exists and is unique.

Proof. Let v1, . . . ,vk be a basis for V , and let A =
⇥
v1 . . . vk

⇤
(note that A must be n⇥ k with rank k).

Now Ran(A) = V .
But also, v 2 Ker(AT) i↵ ATv = 0 i↵ v is orthogonal to all v1, . . . ,vk i↵ v 2 V ?. So Ker(AT) = V ?.

We see that V, V ? are indeed orthogonal complements.
Now we go for uniqueness. Suppose W is also an orthogonal complement of V . Then on one hand, all

vectors of W are orthogonal to all vectors of V , so W ✓ V ?. On the other hand, since W,V ? are both
complement subspaces to V , they both have dimension n� dim(V ). So they are the same.

Corollary 5.1.7. (V ?)? = V .

Proof. V, (V ?)? are both orthogonal complements of V ?, so by uniqueness we have equality.

For example, the xy-plane and the z-axis in R3 are the unique orthogonal complements of each other.
The orthogonal complement is a MUCH better analogy to the complements of subsets. In particular, we
have the de Morgan law:

Proposition 5.1.8. (V +W )? = V ? \W?, (V \W )? = V ? +W?
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Proof. Pick basis v1, . . . ,va for V and basisw1, . . . ,wb forW . LetA =
⇥
v1 . . . va

⇤
andB =

⇥
w1 . . . wb

⇤
.

So Ran(A) = V,Ran(B) = W,Ker(AT) = V ?,Ker(BT) = W?.
Now we already know sum and intersections are related to block matrices. We have V +W = Ran

⇥
A B

⇤

and V ? \ W? = Ker


AT

BT

�
. Then we immediately see that they are orthogonal complements because

⇥
A B

⇤T
=


AT

BT

�
.

To see the second formula, just take orthogonal complement of the first formula on both sides.

Hope you have fun. You can definitely see how the abstract results on rank-nullity, inclusion-exclusion
principle, and subspace algebra mixes really well with concrete things in Rn such as block matrices and
transpose.

So now we have the complete fundamental theorem of linear algebra (FTLA for short).

Theorem 5.1.9. Given any m ⇥ n matrix A, then Ran(A)? = Ker(AT) and Ker(A)? = Ran(AT), and
dimRan(A) = dimRan(AT).

This is simply a collection of all previous results. We can see graphically here for the matrix A =
0 0 0
0 0 1

�
as the following

Ran(A)
dim=r

Ker(AT)
dim=m�r

0m

Rm

Ker(A)
dim=n�r

Ran(AT)
dim=r

0n

Rn

A

AT

Here are some examples of how FTLA relates to real problems.

Example 5.1.10. Again consider Figure 5.1.1. Here recall that Ker(MT) is the space of currents that
gives zero net inflow at each vertex, i.e., currency that satisfy Kirchho↵’s current law, while Ran(M) is the
space of voltages that sums to zero on closed loops, i.e., voltages that satisfy Kirchho↵’s voltage law. In a
stable case, both laws should be satisfied. The total power of our electrical circuit is the dot product of the
voltage vector and the current vector, which now must be zero, because the two subspaces are orthogonal
complements. Huh.

Why is that? This is because we have no battery in our system. With no battery, the electrical circuit
is essentially “dead”, so there can be no power output.

Suppose on each edge their is a batter providing bi extra voltage to flow in the positive direction. Then
we have a battery vector b. Assume that x is the electrical potential vector and y is the current vector, then
we have b�Mx = Ry, where R is the diagonal matrix whose diagonal entries are the resistence on each wire.

Furtheremore we know that MTy = 0 given Kirchho↵’s current law. So we can solve


R M
MT O

� 
y
x

�
=


b
0

�

to find stable solutions to our system. ,

(The rest of this subsection is entirely optional.)
Let us insert a corollary before we proceed with the last example.

Corollary 5.1.11. Ker(ATA) = Ker(A).
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Proof. Suppose v 2 Ker(A). Then ATAv = AT0 = 0, so v 2 Ker(ATA).
Conversely, v 2 Ker(ATA) means ATAv = 0, which means Av 2 Ker(AT ). So in particular, Av 2

Ker(AT) \ Ran(A) = {0}. So Av = 0, v 2 Ker(A).
Intuitively, the image coming from A would perfectly dodge the kernel of AT. So ATA kills exactly thos

killed by A in the first step, and the second step AT would fail to kill anything new.

Example 5.1.12. (Optional)

Now, block row operation gives


R MG

O �MT
G
R�1MG

�
, and then block column operation gives


R O
O �MT

G
R�1MG

�
.

Note that since resistance are usually all non-zero, R has full rank, i.e., rank(R) = 5. Since diago-
nal entries of R�1 are all positive, we have R�1 = D2 for some diagonal D. Then Ker(MT

G
R�1MG) =

Ker((DMG)T(DMG)) = Ker(DMG) = Ker(MG) because D is bijective. This is spanned by

2

64
1
...
1

3

75 and hence

1-dimensional, so MT
G
R�1MG has rank 4� 1 = 3. So


R MG

O �MT
G
R�1MG

�
is a 9⇥ 9 matrix of rank 8.

Note that

2

666666664

0
...
0
1
...
1

3

777777775

is in the kernel, which has dimension 1, so it in fact spans the kernel. This means our

system, given battery inputs, will have unique solution up to shifting all electrical potential by the same
constant. ,

Example 5.1.13. (Optional)
Let us consider a surprise example from light out puzzle. This also serves as an example of how things

work over the field F2, where we only have coeficient 0, 1 and we think 1 + 1 = 0.
Say we have a single row of five tiles. Each tile is either lit up or light out. Whenever we press a tile,

then this tile and its adjacent tiles change status. At any given time, if we use 1 to represent a lit-up tile
and 0 to represent a tile whose light is o↵, then the status of tiles is a vector in (F2)5. (So we have 25 = 32

possible initial configurations.) For example,

2

66664

1
1
0
1
0

3

77775
means the first, second and forth tile are llit up.

We can press some of the tiles, and this input translates to a vector p 2 (F2)5. For example, p =

2

66664

1
1
0
1
0

3

77775

means we are pressing the first, second and forth tile. Then since each tile when pressed would change the

status of itself and all adjacent tiles, we have a matrix M =

2

66664

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

3

77775
, and the total change of

status would be Mp. If the lights started with status v, then after pressing p, we would end up with status
Mp+ v. We would turn o↵ the light i↵ Mp = �v. Note that over F2, we have 1 = �1 for scalars, so we are
looking to solve p from Mp = v.
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Now, M is not invertible. You may check that M

2

66664

1
1
0
1
1

3

77775
= 0. In fact, gaussian elimination gives rref(M) =

2

66664

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0

3

77775
. So Ker(M) is in fact spanned by

2

66664

1
1
0
1
1

3

77775
.

Now by rank nullity theorem, this means we have dimRan(M) = 5� dimKer(M) = 4. So not all initial
status can be solved. In fact, since our matrix is symmetric, we have Ran(M) = Ran(MT) = Ker(M)? by

FTLA. So a status

2

66664

a
b
c
d
e

3

77775
can be solved i↵ it is “orthogonal” to

2

66664

1
1
0
1
1

3

77775
, i.e., a + b + d + e = 0. This means

among the first, second, forth, fifth lights, only even number of them are lit up. Note that since Ran(M) is
4 dimensional, only 24 = 16 initial status out of |(F2)5| = 25 = 32 possible initial status are solvable.

Furthermore, given any solution p to an initial status, then p+

2

66664

1
1
0
1
1

3

77775
is also an solution. We have exactly

two solutions to any initial status.
Check out the english wikipedia page of “Light Out (Game)”, where they listed the two vectors the span

the kernel of M when there are 5 ⇥ 5 array of tiles. (So the space is (F2)25 instead of (F2)5. For cosmetic
reasons, they write the vectors N1, N2 like matrices, when they are in fact a column vector in (F2)25.) So
any initial status can have 4 solutions, and only 223 initial cases are solvable out of a total of 225. ,

5.2 Inner Product Space

Now abstract vector spaces are sometimes annoying. They have no angle, no dot product, no transpose. We
want these things sometimes. If abstraction is forgetting, then sometimes it seems that we have forgotten
too much.

So we need some intermediate structure. This is inner product space, i.e., an abstract vector space where
you can do “dot product”, yet there is no standard basis.

Definition 5.2.1. An inner product space is an abstract vector space V over R equipped with an inner
product, which is an operation h�,�i that sends two vectors v,w of V into a scalar hv,wi in R, such that

1. (Symmetric) hv,wi = hw,vi for all v,w 2 V .

2. (Bilinear) hau+ bv,wi = ahu,wi+ bhv,wi for all a, b 2 R,u,v,w 2 V . And same thing for the other
side.

3. (Positive Definite) hv,vi � 0 with equality i↵ v = 0.

The inner product here essentially serves as an abstract analogue to the “dot product”. If you think dot
product, then all these properties are obviously needed. The last one, in particular, allows us to define the
length of an abstract vector v in an inner product space as kvk =

p
hv,vi.

So, why is this enough? Remember, a major goal of this is to have angles, because orthogonality is very
useful in many situations (and also required for building FTLA in abstract spaces). Traditionally in Rn, if
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two vectors have angle ✓, then we can work out ✓ from the fact that cos ✓ = v·w
kvkkwk . (Surely you’ve seen

this formula, at least for R2?) So we would to define angles via the formula cos ✓ = v·w
kvkkwk . But for this to

work at all, we need the following famous inequality.

Theorem 5.2.2 (Cauchy-Schwarz Inequality). For any v,w in an inner product space, we have hv,wi2 
hv,vihw,wi, with equality i↵ v,w are colinear.

There are a million proofs of this inequality, so you are very welcome to track them down online. The
english wikipedia has two proofs at least. Here I present my favorite, not because it is simple, but because
it is intuitive.

Definition 5.2.3. We write v//w if one is a multiple of the other. We write v ? w if hv,wi = 0 in our
inner product space.

Lemma 5.2.4. Given any v,w, let Pv(w) be hv,wi
hv,vi v. (We call Pv the projection to v.) Then v//Pv(w)

and v ? w � Pv(w).

Proof. v//Pv(w) is obvious. By definition Pv(w) = hv,wi
hv,vi v is a multiple of v.

Now let us move on to perpendicularity.

hv,w � Pv(w)i = hv,w � hv,wi
hv,vi vi = hv,wi � hv,wi

hv,vi hv,vi = hv,wi � hv,wi = 0.

Where did we get the formula Pv(w) = hv,wi
hv,vi v? Well, we literally borrowed this from the case of Rn,

and we simply swapped the dot products with inner products. And (unsurprisingly) it works in exactly the
same way.

Proof of Cauchy-Schwarz. Intuitively, the angle between v,w can be found by looking at the right triangle
made by w, Pv(w),w � Pv(w). We need all three edges to be “well-defined vectors”, in which case I must
have my well-defined angle. Then Cauchy-Schwarz would be true.

v

w w � Pv(w)

✓

In this setting, “well-defined vectors” just mean they don’t violate the positive definiteness. It turns out
that we only need to check the last one. (This also the edges most related to the measurement of the angle.)
We have

0 hw � Pv(w),w � Pv(w)i

=hw,wi � 2hw,
hv,wi
hv,vi vi+ h hv,wi

hv,vi v,
hv,wi
hv,vi vi

=hw,wi � 2
hv,wi
hv,vi hw,vi+ (

hv,wi
hv,vi )

2hv,vi

=hw,wi � hv,wi2

hv,vi .

Rearrange terms and we are done. It is also easy to see that we have equality i↵ w = Pv(w) i↵ w//v.
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This establishes angles in an inner product space. We say two vectors v,w has angle arccos( hv,wi
kvkkwk ).

Here the range of arccos function is [0,⇡]. It is easy to check that two non-zero vectors have angle zero
i↵ they are in the same direction, angle ⇡ i↵ they are in the opposite direction, and angel ⇡

2 i↵ they are
orthogonal. All is as expected.

If you play some more, you can get more things that you would expect. Here are some optional things
you might want to try or skip.

Proposition 5.2.5 (Triangle inequality). kv +wk  kvk+ kwk

Proof. Square both sides, then compare both sides. You will see that this is just Cauchy-Schwarz in disguise.

kv +wk2 � (kvk+ kwk)2 = hv +w,v +wi � hv,vi � hw,wi � 2kvkkwk = 2hv,wi � 2kvkkwk  0.

The last inequaltiy is due to Cauchy-Schwarz.

Proposition 5.2.6 (Pythagorean Theorem (Gou Gu Ding Li)). kv + wk2 = kvk2 + kwk2 if and only if
v ? w.

Proof. In general, we have

kv +wk2 = hv +w,v +wi = hv,vi+ hw,wi+ 2hv,wi.

Now orthogonality gives hv,wi = 0, so we are done.

Here is a very important corollary of Pythagorean Theorem.

Proposition 5.2.7. If v1, . . . ,vk are mutually orthogonal (i.e. pairwise orthogonal) non-zero vectors in an
inner product space V , then they are linearly independent.

Proof. Suppose
P

aivi = 0. Then 0 = k
P

aivik2 =
P

kaivik2 because the vectors involved are mutually
orthogonal. So 0 =

P
a2
i
kvik2. Now since all kvik2 are positive, we must have all ai = 0.

Here is an alternative proof NOT using Pythagorean theorem. If
P

aivi = 0, we simply take inner
product on both sides with vj . Then we would get ajkvjk2 = 0, hence aj = 0. Since this is true for all j,
we are done again.

Remark 5.2.8. Recall that for a collection of vectors, pairwise independent does NOT imply collective
independence.

However, pairwise orthogonal would indeed imply collective independence. This is amazingly useful.

THe next is not an inequality, but an equality.

Proposition 5.2.9 (Polarization identity). hv,wi = 1
2 (kv +wk2 � kvk2 � kwk2)

Proof. Straightforward to verify.

This identity has an important meaning: it means that any length structure would in fact induce an
angle structure. This has some interesting ramifications for many study of geometry, and also the study of
infinite dimensional spaces, but sadly we do not explore them in this class.

Nevertheless, applying this polariztion identity in the context of dot product, we have some very inter-
esting results.

Lemma 5.2.10. For m⇥ n matrices A,B, if vTAw = vTBw for all v 2 Rm,w 2 Rn, then A = B.

Proof. By assumption we have eT
i
Aej = eT

i
Bej . So A,B have identical entries.

Lemma 5.2.11. For n⇥ n matrices A,B, if vTAv = vTBv for all v 2 Rn, then A = B.
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Proof. Look at this adaptation of the famous polarization identity on inner products.

vTAw =
1

2
[(v +w)TA(v +w)� vTAv �wTAw].

Hence if vTAv = vTBv for all v 2 Rn, then vTAw = vTBw for all v,w 2 Rn. So A = B.

As you have seen here, we have a new way to think about a matrix A. In the past, we have been treating
matrices as linear maps. However, given a matrix A, you can also think of it as a bilinear map that sends
a pair of vectors v,w to the scalar vTAw. The polarization identity is true for all bilinear maps, and hence
we have the results above.

The last result is not very useful in this class, but very useful in real life applications.

Proposition 5.2.12 (Projection minimizes distance). kw�xvk � kw�Pv(w)k for all x 2 R, with equality
if and only if xv = Pv(w). In short, on the line spanned by v, Pv(w) is the closest to w.

Proof. What the proposition is saying is very intuitive. On the line spanned by v, the closest point to the
point w is the projection of w to the line.

v

w shortest distance

Pv(w)

Consider all possible distance from w to the line spanned by v. The square of this distance is, for some
unknown x, kw� xvk2 = hw,wi � 2xhw,vi+ x2hv,vi. Take derivative and find minimum, and we see that

the minimum is reached exactly when x = hw,vi
hv,vi . So we are done.

In fact, plug this in and find minimum, and it would be hw,wi � hv,wi2
hv,vi . Now this minimum is still a

square length, so it is non-negative. Then this would give a proof of Cauchy-Schwartz. (Most textbook uses
this proof.)

Let us see some example of abstract inner product space.

Example 5.2.13. 1. Rn with dot product. Obvious. We also call this inner product space the Euclidean
space .

2. Rn where we define hv,wi = vTDw, and D is a fixed diagonal matrix with positive diagonal entries.

3. In general, if we define hv,wi = vTAw on Rn for some fixed matrix A, then symmetricity of h�,�i
is just the same as the symmetricity of A. Bilinearity is immediate. We say a symmetric matrix is
positive definite if hv,wi = vTAw is positive definite, and therefore an inner product. Some example

is A =


1 2
2 5

�
. You can check that

⇥
x y

⇤ 1 2
2 5

� 
x
y

�
= x2 + 4xy + 5y2 = (x + 2y)2 + y2 � 0, and

with equality i↵ x = y = 0.

4. Consider R4 with D =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

3

775. This matrix is NOT positive definite, because eT4 De4 = �1 <

0. So hv,wi = vTDw is NOT an inner product, merely a symmetric bilinear form . This structure

is still important though. For example, we see that k

2

664

x
y
z
t

3

775k =
p
x2 + y2 + z2 � t2, and this is the length
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structure used for special relativity. In general, spaces with bilinear forms of all kinds are useful and
important. We only study inner product space because it is easier and intuitive.

,

Let us see some more abstract example.

Example 5.2.14. 1. Let V be the space of continuous real functions defined on the interval [0, 2⇡].

Define hf, gi =
R 2⇡
0 f(x)g(x) dx. Check and see that now V is an inner product space. Also check

and see that sin(x), cos(x), sin(2x), cos(2x), . . . are all orthogonal to each other. So we are giving V a
structure where di↵erent frequencies are orthogonal to each other. This is the starting point of Fourier
analysis.

2. Let V be the space of random variables whose value is a random number in the interval [0, 1]. For any
random variable X, we can define its expected value (or average value) as E(X). Then we can define its
variance as Var(X) = E[(X �E(X))2]. This measures how much X vary from being constant. Finally,
we can (using polarization identity) define covariance as Cov(X,Y ) = E[(X �E(X))(Y �E(Y ))]. This
being positive means X,Y are usually large together or small together, i.e., they are most likely to
change in the same direction. This being negative means they are most likely to change in opposite
directions. Hence the name “covariance”. Now, V with covariance is NOT an inner product space.
You can check that Cov is bilinear and symmetric, and Cov(X,X) � 0, but Cov(X,X) = 0 does NOT
imply X = 0. Rather, X could simply be any constant. So close. We say that Cov is NOT positive
definite, but positive semi-definite . It is a semi-inner product , and V with Cov is merely a
semi-inner product space .

3. Nonetheless, people define correlation between two random variables as ⇢ = Cov(X,Y )p
Var(X)

p
Var(Y )

. What is

this? This is the cosine of the angle! Note that ⇢ = 1 if and only if X = kY + b for some k > 0, and
⇢ = �1 if and only if X = kY + b for some k < 0. So basically, in a semi-inner product space, things
behave pretty much the same as an inner product space, as long as you ignore vectors whose length is
zero (constant variables, in this case).

4. Let W be the space of random variables whose value is a random number in the interval [0, 1], with
expected value zero. NOW W and covariance is a genuin inner product space. In statistics, when
we get a bunch of data, often people would like to “center” the data, i.e., substract each data by the
average. Why do this? Because a data is in V which is only a semi-inner product space, but after we
center the data, it now lives in W which is a genuin inner product space.

5. This is just an observation here. Suppose two random variables are INDEPENDENT, then of course
their covariance is zero, i.e., they are orthogonal in the (semi-)inner product structure. Be careful
though, the converse is not true. Zero covariance variables might still be dependent, when the depen-
dence is non-linear. Nevertheless, when you see data that are orthogonal, it does not hurt to pause
and think if they are independent or not.

,

Here is a more interesting example, in lieu of previous discussions on infinite dimenisional spaces in the
last chapter.

Example 5.2.15. This is again an optional example. It aims to further explain why ei in the sequence
space fail to be a basis.

Let us consider space S of all real sequences. Consider ei 2 V where ei is the sequence (0, . . . , 0, 1, 0 . . . )
where the 1 is at the i-th location. We already know that these vectors cannot span RN. What can they
actually span?

Algebraically, only finite linear combinations are allowed. And you can quickly see that finite linear
combinations of these ei must only have finitely many non-zero terms, i.e., they are actually finite sequences.
Let us call this Sfin. This is also an infinite dimensional vector space, and it is strictly smaller than the
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space S. In particular, sequences such as (1, 1
2 ,

1
3 , . . . ) are NOT spanned by these ei, as they have infinitely

many terms.
However, let us consider adding some geometry, by giving a length/angle structure to sequences. For two

sequences (a0, a1, . . . ) and (b0, b1, . . . ), how would you do a “dot product”? Well, one obvious way to do this
is to define h(a0, a1, . . . ), (b0, b1, . . . )i =

P
n2N anbn, simply the infinite analogue of a dot product.

However, consider the sequence (1, 1, . . . ). Then what is the length of this sequence? It is
p
h(1, 1, . . . ), (1, 1, . . . )i =p

1 = 1. Hey! That is bad.
As a result, consider the space `2 of all sequences (a0, a1, . . . ), such that

P
a2
n
< 1. You can verify

yourself that this is indeed a subspace of S, and we can make it an inner product space by using the dot
product above.

Now consider (1, 1
2 ,

1
3 , . . . ) again. It is not a linear combination of those ei. However, we can “approx-

imate” this sequence using elements of Sfin, by looking as the sequences (1, 0, . . . ), (1, 1
2 , 0, . . . ), . . . . In

particular, (1, 1
2 ,

1
3 , . . . ) is a limit of linear combinations of these ei under our new length structure! Indeed,

we can compute and see that

lim
n!1

k(1, 1
2
,
1

3
, . . . )�

nX

k=0

1

k
ekk = lim

n!1

1X

k=n+1

1

k2
= 0.

So even though we cannot obtain all vectors using merely linear combinations, we can obtain all vectors
in `2 using linear combinations and geometry (limits)!

You may also see that sequences such as (3, 1, 4, 1, 5, 9, 2, 6, . . . ) are still NOT obtainable using these ei.
The above limit will fail to converge to zero for this sequence still. `2 is the “geometric span” of these ei,
under our given length/angle structure.

You need to be careful though. Geometry depends on your definition of inner products. For example, let
us now define a new inner product on sequence spaces h(a0, a1, . . . ), (b0, b1, . . . )i =

P
n2N

1
2n anbn. Now you

can verify that sequences such as (3, 1, 4, 1, 5, 9, 2, 6, . . . ) are now also limits of linear combinations of these
ei! The “geometric span” of these ei will be much larger than before. On the other hand, if you define a
new inner product as h(a0, a1, . . . ), (b0, b1, . . . )i =

P
n2N nanbn, then even the sequence (1, 1

2 ,
1
3 , . . . ) will fail

to be a limit of linear combinations of these ei.
The point is this: for infinite linear combinations, convergence depends on geometry, which usually

depends on your definition of inner products. ,

5.3 (Optional) Adjoint: Abstract “transpose”

To conclude this section, let us recall that we have another goal with the introduction of an inner product
structure. I.e., transpose. How to relate transpose to inner products?

Proposition 5.3.1. Given a linear map L : V ! W between inner product spaces, there is a UNIQUE
linear map L⇤ : W ! V such that hLv,wi = hv, L⇤wi. (We call this the adjoint of A.)

Before we prove this, think about what would happen in a Euclidean space (Rn with dot product). There
we see that vTATw = (Av)Tw. So L⇤ is just basically the transpose of L, but generalized into an abstract
setting.

Let us first establish this “transpose” on vectors.

Lemma 5.3.2 (Vector Transpose). Given any linear map ↵ from an inner product space V to R, there is
a UNIQUE vector w such that ↵(v) = hw,vi for all v. We write ↵ = hw,�i (or ↵ = hw|, as physicists
prefer).

(Physisists also like to call h�,�i as a “braket”. So they call this evaluation thing hw| a “bra”, and a
regular vector v a “ket”. They also sometimes write |vi for regular vectors.)

In short, transpose on a vector means “this guy is no longer a vector. Instead, it is now waiting to EAT
another vector.” This duality between linear evaluations and vectors are also sometimes called the (finite
dimensional) Riesz representation theorem, i.e., any linear evaluation can be “represented” by a vector.
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Proof of Lemma. Let V ⇤ be the space of linear maps from V to R. (Check yourself that this is indeed a
vector space.) Define the map h�| : V ! V ⇤ by sending w to hw|, the corresponding linear evaluations. Our
goal is to show that this is bijective.

To see injectivity, suppose hv| is the zero map. Then hv,wi = 0 for all w 2 V . In particular, hv,vi = 0,
so we have v = 0. (Intuitively, only the zero vector can be perpendicular to all vectors.) This shows that
h�| is injective.

Now, note that if n = dimV , then V ⇤ is the space of linear maps from a n-dimensional space to a
1-dimensional space. By picking basis, this is the space of 1⇥ n matrices. So dimV ⇤ = n. But Ran(h�|) is
also n dimensional by rank-nullity, so h�| is surjective.

Proof of proposition. For any w 2 W , consider hL(�),wi : V ! R. This is a linear evaluation! So in fact,
it is hx| for a unique x 2 V . We define L⇤(w) = x in this mannor, so we now have a well-defined map
L⇤ : W ! V . Also we immediately have hLv,wi = hv, L⇤wi by construction.

We only need to show that L⇤ is linear. Note that hL⇤(au + bw),vi = hau + bw, Lvi = ahu, Lvi +
bhw, Lvi = ahL⇤u,vi+bhL⇤w,vi = haL⇤u+bL⇤w,vi, so we see that as linear evaluations we have hL⇤(au+
bw)| = haL⇤u+ bL⇤w|. By injectivity of h�|, we have L⇤(au+ bw) = aL⇤u+ bL⇤w as desired.

Finally, let us show that such L⇤ is unique. Suppose T is another linear map suc that hLv,wi = hv, Twi,
then hTw,vi = hL⇤w,vi for all v,w. So Tw = L⇤w again by injectivity of h�|.

So we have a well-defined concept of “transpose” for maps between inner product spaces. Here are some
very nice corollaries.

Corollary 5.3.3. (A⇤)⇤ = A.

Proof. Note that hv, (A⇤)⇤wi = hA⇤v,wi = hv, Awi. So A, (A⇤)⇤ are both adjoint of A⇤. By the uniqueness
of adjoint, we have (A⇤)⇤ = A.

Corollary 5.3.4. If hv, Awi = hv, Bwi for all v,w, then we have A = B.

Proof. Again they are both adjoint of A⇤.

5.4 Gram Matrices and Cholesky decomposition

We make a bold statement here. We claim that, as a matter of fact, all finite dimensional inner product
spaces are Euclidean. (After picking the right basis, your inner product is actually the same as the dot
product.)

But first let us see a matrix phenomenon.

Example 5.4.1. Consider
⇥
a1 a2

⇤ 1 2
3 4

� 
b1
b2

�
. After calculation, you shall see that this is a1b1 +2a1b2 +

3a2b1 + 4a2b2. Hey, the (i, j)-entry of


1 2
3 4

�
is exactly the coe�cient for aibj . This is NOT a coincidence.

Think about this. When we multiply
⇥
a1 a2

⇤ 1 2
3 4

�
, a1 will multiply entries in the first row, while a2

will multiply entries in the second row. And when we multiply


1 2
3 4

� 
b1
b2

�
, b1 will multiply entries in the

first column, and b2 will multiply entries in the second column. All in all, who will multiply the (i, j)-entry
of the matrix? Well, it is in the i-th row and j-th column, so it is multiplied by ai and bj . This is why the
(i, j)-entry of the matrix ends up as the coe�cient for aibj . ,

Proposition 5.4.2.
⇥
a1 . . . an

⇤
2

64
c11 . . . c1n
...

. . .
...

cn1 . . . cnn

3

75

2

64
b1
...
b2

3

75 =
P

i,j
cijaibj.
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Proof.

⇥
a1 . . . an

⇤
C

2

64
b1
...
b2

3

75 = (
X

i

aie
T
i
)C(

X

j

bjej) =
X

i,j

aibj(e
T
i
Cej).

Here eT
i
Cej is the (i, j) entry of C.

Now let us again look at an inner product space. Given a (finite dimensional) inner product space V ,
it is first and foremost an abstract vector space. So after picking some basis, it is just Rn. How would the
inner product interact with this?

Say v1, . . . ,vn is a basis. Then given any vector in V , say a =
P

aivi and b =
P

bjaj , their inner
product is ha, bi = h

P
i
aivi,

P
j
bjvii =

P
i,j

aibjhvi,vji. It is clear that, in fact, by knowing the values of
hvi,vji for all i, j, we will know the whole inner product!

Let us go further. If you look closely, you might see that

ha, bi =
X

i,j

aibjhvi,vji =
⇥
a1 . . . an

⇤
2

64
hv1,v1i . . . hv1,vni

...
. . .

...
hvn,v1i . . . hvn,vni

3

75
⇥
b1 . . . bn

⇤
.

So if we pick basis and turn all vectors into coordinates, then the inner product is represented by some

symmetric matrix G =

2

64
hv1,v1i . . . hv1,vni

...
. . .

...
hvn,v1i . . . hvn,vni

3

75, called the Gram matrix for this basis. And given

vectors with coordinates v,w 2 Rn, the inner product is just vTGw.

Definition 5.4.3. For any finite dimensional inner product space and any basis v1, . . . ,vn, the corresponding
Gram matrix is the symmetric matrix whose (i, j) entry is hvi,vji.

We have caught a glimps of the important fact: any finite dimensional inner product space, after picking
a basis, becomes simply Rn with exotic inner product hv,wi = vTGw for some nice symmetric matrix G.
Or we can simply write (Rn, G) for short, indicating that the abstract vector space is Rn, but instead of the
dot product, we use the exotic inner product hv,wi = vTGw.

Remark 5.4.4. In case you did not notice this, the Euclidean space (Rn with dot product) is essentially the
case when G is the identity matrix.

Definition 5.4.5. A symmetric matrix S is positive definite if xTSx � 0 with equality if and only if x = 0.

It is obvious that a symmetric matrix G is positive definite if and only if hv,wi = vTGw is indeed an
inner product.

Proposition 5.4.6. For any finite dimensional inner product space and any basis, the corresponding Gram
matrix is positive-definite.

Proof. Trivial by definition of positive definite matrices.

In conclusion, we see that any finite dimensional inner product space, upon picking a basis, is the same
as (Rn, G) for some positive-definite matrix G. The study of inner product spaces is now the study of
positive-definite matrices.

Example 5.4.7. If A is invertible, then AAT, ATA are both positive definite. They are obviously symmetric.
Furthermore, if xTATAx = kAxk � 0 with equality if and only if Ax = 0 if and only if x = 0 (A is invertible).

For a non-zero real number x, we know x2 is positive. The fact that AAT, ATA are both positive-definite
are natural generalizations of this. (In contrast, A2 is not guaranteed to be anything. Pick rotation matrix

by ⇡

2 on R2, and you shall see that


0 �1
1 0

�2
= �I is thoroughly negative.) ,
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Now, suppose we have a symmetric matrix S. How would I know if it is positive definite or not? Let us
see an example first.

Example 5.4.8. Consider A =

2

4
1 2 3
2 6 8
3 8 14

3

5. I claim that A is positive definite, i.e., xTAx � 0 for all x,

with equality if and only if x = 0.

Suppose x =

2

4
x
y
z

3

5. Then first we want to show that xTAx � 0. We have
⇥
x y z

⇤
A

2

4
x
y
z

3

5 = x2 +6y2 +

14z2+4xy+6xz+16yz. To show that this is always non-negative, we may try to complete the squares. First
let us group up everything that is related to x into a square, and we have xTAx = (x+2y+3z)2+2y2+5z2+
4yz. Next, for the rest, let us group everything related to y and have xTAx = (x+2y+3z)2+2(y+z)2+3z2.
Then the only thing left is z2, which is by itself a square. So we see that xTAx � 0, with equality only if
x + 2y + 3z = y + z = z = 0. And this condition can be solved as x = y = z = 0. So indeed, A is positive
definite.

But let us rethink this process one more time. What are we doing when we complete the square? Let
us think about this. Originally, we have variables x, y, z. Now I want to make a linear change of variables,
where x0 = x + 2y + 3z, and y0 = y + z and z0 = z. Then I realize that xTAx = (x0)2 + 2(y0)2 + 3(z0)2 =

⇥
x0 y0 z0

⇤
2

4
1 0 0
0 2 0
0 0 3

3

5

2

4
x0

y0

z0

3

5. So we indeed have a sum of squares.

Observe that

2

4
x0

y0

z0

3

5 =

2

4
1 2 3
0 1 1
0 0 1

3

5

2

4
x
y
z

3

5. In another words, we have U =

2

4
1 2 3
0 1 1
0 0 1

3

5 and D =

2

4
1 0 0
0 2 0
0 0 3

3

5,

such that xTAx = (Ux)TD(Ux). So in fact A = UTDU . The process of completing squares on the
polynomial x2 + 6y2 + 14z2 + 4xy + 6xz + 16yz corresponds to the process of writing A as UTDU . This is
the LDU decomposition of A!

Imagine this. Suppose we want to complete the square. Then we would perform some change of variables
where x, y, z becomes x0, y0, z0 so that xTAx becomes a linear combination of squares of x0, y0, z0 (with positive

coe�cients). This change of variable thing can be achieved as

2

4
x0

y0

z0

3

5 = E

2

4
x
y
z

3

5 for some INVERTIBLE E.

If completion of square can be achieved, then we have xTAx = (Ex)TD(Ex) for some diagonal matrix D
with positive diagonal entries. In particular, we have xTAx = xT(ETDE)x. So in fact A = ETDE.

But what is this E? Any invertible matrix can be thought of as a series of row operations or column
operations. So (E�1)TAE�1 = D, i.e., we are reducing A to a diagonal matrices via “symmetric” row and
column operations! So starting with A, if we add the first column to the second column, then we immediately
add the first row to the second row. So on so forth, until we get a diagonal matrix. If you always do your
reduction top to bottom and left to right, then you end up with A = LDLT.

Think about the following. We start with A =

2

4
1 2 3
2 6 8
3 8 14

3

5. The corresponding polynomial for xTAx is

x2+6y2+14z2+4xy+6xz+16yz. Now we substract the first row from the second row and the first column
from the second column (note that the order does not matter, because (BA)C = B(AC)). Then we end

up with A0 =

2

4
1 1 3
1 3 5
3 5 14

3

5. This corresponds to the transformation x2 + 6y2 + 14z2 + 4xy + 6xz + 16yz =

(x+y)2+3y2+14z2+2(x+y)y+6(x+y)z+10yz. So it works! These “symmetric row+column operations”
are exactly corresponding to the change of variables in the polynomial xTAx! ,

First of all, there is a change of basis formula here.
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Proposition 5.4.9. On an abstract inner product space V , suppose the Gram matrix for the basis B is GB,
and the Gram matrix under the basis C is GC, then we have CT

C!BGBCC!B = GC.

Proof. For any v,w 2 V , we have

hv,wi = vT
BGBwB = vT

CC
T
C!BGBCC!BwC .

We also have
hv,wi = vT

CGCwC .

Since vC ,wC are arbitrary, we have the result CT
C!BGBCC!B = GC .

Now let us example the LDU property of a positive definite matrix. To start, we at least want a positive
definite matrix S to be invertible.

Proposition 5.4.10. Positive definite matrices are invertible.

Proof. If S is not invertible, say x is a nonzero vector in the kernel, then xTSx = 0, so S is not positive
definite.

But we also have another nice property of positive definiteness.

Proposition 5.4.11. If A is positive definite, then all leading principal submatrices are positive definite.

Proof. Let Ak be the k-th LPS. Then xTAkx =
⇥
xT 0T

⇤
A


x
0

�
� 0, with equality if and only if


x
0

�
= 0,

if and only if x = 0.

Remark 5.4.12. In fact all “principal submatrices” are positive definite. We have not defined this term
yet.... But for example, all diagonal entries are positive.

Corollary 5.4.13. If A is positive definite, then it has LU decomposition (in fact LDLT decomposition,
since A is symmetric).

Corollary 5.4.14. A is positive definite if and only if it is invertible with an LDLT decomposition A =
LDLT, and all diagonal entries of D are positive.

Proof. ):
We only need to show that D has positive diagonal entries. Note that the i-th diagonal entry is eT

i
Dei =

((LT)�1ei)TA((LT)�1ei) � 0, and equality cannot hold because (LT)�1ei 6= 0 (L is unit triangular and
thus invertible).

(:
Note that obviously D is positive definite, because xTDx is a positive linear combination of squares of

all coordiates. Now xTAx = (Lx)TD(Lx) � 0, and with equality if and only if Lx = 0. But L is unit
triangular and thus invertible. So Lx = 0 if and only if x = 0.

So how to see if a matrix is positive definite? Well first it needs to be symmetric, which is easy to check.
Then we do Gaussian elimination (which corresponds to an attempt to “complete the squares”) to get the
LDLT decomposition. If we fail to get an LU decompositon (have to swap at some point), then A is NOT
positive definite. If we get the LDLT decomposition, then look at the diagonal entries of D. If they are all
positive, then xTAx as a polynomial is a positive sum of squares, so A is positive definite.

This has an interesting consequence:

Theorem 5.4.15 (Cholesky decomposition). If A is positive definite, then A = LLT for an invertible lower
triangular L.

Proof. We have A = LDLT. Since diagonal entries of D are positve, taking their square roots, we have
diagonal D0 whose square is D. Now A = (LD0)(LD0)T.
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Remark 5.4.16. We previously have seen that if A is invertible, then AAT is positive definite. Now we see
that if G is positive definite, then it is in fact AAT for some invertible A. This is the generalization of the
fact that all positive numbers are squares.

Corollary 5.4.17. Any finite dimensional inner product space is isomorphic to the Euclidean space.

Proof. We know any finite dimensional space is isomorphic to (Rn, G) for some positive definite G. Then
G = LLT for an invertible upper triangular L.

Now we do the change of basis to get a Gram matrix L�1G(L�1)T = I, and we are now isomorphic to
(Rn, I).

Well, as it turned out, finite dimensional inner product spaces are all the same as Euclidean spaces!

Remark 5.4.18. It might now seem like a waste of time to introduce inner product spaces at all. They are
all Euclidean!

However, the point lies in two things. First of all, for infinite dimensional spaces, you have no choice
but to do it abstractly. This involves super important spaces like function spaces and random variable spaces.
And in many cases, your choice of inner product will endow the infinite dimenisonal space with di↵erent
geometry.

Secondly, just like abstract vector spaces allow us to focus on invariant things under a change of basis,
inner product space allows us to focus on invariant things under a change of orthonormal basis. We shall
now study orthonormal basis in the next section.

5.5 Orthonormal Basis

Now, given an inner product space, we know it is isomorphic to a Euclidean space. This means by picking
the right basis, the inner product will BE the dot product. Say q1, . . . , qn is this basis. Then if the identity
matrix is our Gram matrix, we must conclude that kqik = 1 for all i, and qi ? qj whenever i 6= j.

Definition 5.5.1. An orthogonal basis (OGB for short) in an inner product space is q1, . . . , qn where all
vectors are orthogonal to each other.

An orthonormal basis (ONB for short) is an orthogonal basis where, in addition, all vectors are unit
vectors. (I.e., vectors with length one.)

Let us take Euclidean space as an example. The standard basis is obviously a good orthonormal space.
But sometimes we do need other orthonormal basis.

Example 5.5.2. Say I am pushing a box down a slope. Then we have pushing force, friction, normal force
and gravity acting on the box. It is best NOT to choose the horizontal direction and vertical direction as
orthonormal basis. Rather, it is better to choose the direction parallel to the slope and orthogonal to the
slope as orthonormal basis. This way, three out of four forces lies on the coordinate axis, so computations
are easier. ,

A really nice property of ONB is that their coordinates are super easy to find.

Proposition 5.5.3. Given an orthonormal basis q1, . . . , qn of V , then for any v 2 V , we have v =

P
hv, qiiqi. In particular, the coordinate map for the basis is (q1, . . . , qn)

�1 =

0

B@
hq1|
...

hqn|

1

CA that sends each

v 2 V to

2

64
hq1,vi

...
hqn,vi

3

75.

Proof. Suppose v =
P

aiqi. Now for each i, we take inner product with qi on both sides, we have hv, qii = ai
as desired.
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Corollary 5.5.4. If v1, . . . ,vn is an OGB, then for any v 2 V , the coordinates of v for vi is
hv,vii
hvi,vii .

Proof. Let qi =
1

kvikvi, then q1, . . . , qn form an orthonormal basis. So vi =
P

hv, qiiqi =
P hv,vii

hvi,viivi.

Again, keep in minds that hv,vii
hvi,viivi is simply the projection of v to the direction of vi. So essentially, we

are saying that any vector v equals to the sum of its projections into orthogonal directions.

Remark 5.5.5. Recall that physicists sometimes like to write hv| for the linear map that sends each input
w to the output hv,wi.

Given ONB q1, . . . , qn of V , then for any v 2 V , we have

v =
X

hv, qiiqi =
X

|qiihqi|(v) = (
X

|qiihqi|)(v).

Since this is true for all v, we can conclude that
P

|qiihqi|) = I the identity map. This is actually not
something new. Note that under dot product, hqi| is simply qT

i
. Recall that ages ago, we have an example


3
5
4
5

� ⇥
3
5

4
5

⇤
+


� 4

5
3
5

� ⇥
� 4

5
3
5

⇤
= I.

This is exactly an example of the formula
P

|qiihqi|) = I. This represents the process of the decomposition
of a vector v into orthogonal components.

Example 5.5.6. Consider the OGB

2

664

1
1
1
1

3

775 ,

2

664

1
�1
1
�1

3

775 ,

2

664

1
1
�1
�1

3

775 ,

2

664

1
�1
�1
1

3

775. (To make this an ONB, we would need to

divide them all by 2.)

Given a vector, say v =

2

664

1
2
3
4

3

775. To find coordinates with respect to the new basis, we simply take the

inner product (which in this case is simply the dot product). For example, 1
4

⇥
1 1 1 1

⇤

2

664

1
2
3
4

3

775 gives the

coe�cient for the basis vector

2

664

1
1
1
1

3

775. It appears that we simply get the average of 1, 2, 3, 4.

In general, we can see that
2

664

a
b
c
d

3

775 =
a+ b+ c+ d

4

2

664

1
1
1
1

3

775+
a� b+ c� d

4

a+ b+ c+ d

4

2

664

1
�1
1
�1

3

775+
a+ b� c� d

4

2

664

1
1
�1
�1

3

775+
a� b� c+ d

4

2

664

1
�1
�1
1

3

775 .

,

Example 5.5.7. Now is the time to introduce a famous orthogonal basis, the Haar wavelet basis. The basis2

664

1
1
1
1

3

775 ,

2

664

1
�1
1
�1

3

775 ,

2

664

1
1
�1
�1

3

775 ,

2

664

1
�1
�1
1

3

775 is an example of Haar wavelet basis in dimension four. In general, this is an OGB

where each vector only uses ±1 as its coordinates.
Why the name “wavelet”? Well, we have the following correspondence.
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1. The vector

2

664

1
1
1
1

3

775 corresponds to the constant wave, i.e., the function f(x) = 1 for all x.

1 2 3 4 5 6

�2

�1

1

2

Constant function

x

y

2. The vector

2

664

1
�1
1
�1

3

775 corresponds to the wave cos(2x), and we simply sample its value at x = 0, ⇡

2 ,⇡,
3⇡
2 .

1 2 3 4 5 6

�2

�1

1

2

cos(2x)
x

y

3. The vector

2

664

1
1
�1
�1

3

775 corresponds to the wave
p
2 sin(x + ⇡

4 ), and again we simply sample its value at

x = 0, ⇡

2 ,⇡,
3⇡
2 .
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1 2 3 4 5 6

�2

�1

1

2

p
2 sin(x+ ⇡

4 ) x

y

4. The vector

2

664

1
�1
�1
1

3

775 corresponds to the wave
p
2 cos(x + ⇡

4 ), and again we simply sample its value at

x = 0, ⇡

2 ,⇡,
3⇡
2 .

1 2 3 4 5 6

�2

�1

1

2

p
2 cos(x+ ⇡

4 )x

y

As you can see, they are essentially discrete version of waves, where we have some extra constants to
make sure that coordinates are ±1 for these vectors.

Haar wavelet basis is widely used for jpeg image processing. Here we merely take R16 as an example, but
keep in mind that in practice it is usually a much larger space.

Suppose we have 16 pixels in greyscale, so we can represent each pixel by a number, the “grey-ness”.

Then we could use the vector

2

64
a1
...

a16

3

75 to represent the following picture.

a1 a2 a5 a6
a3 a4 a7 a8
a9 a10 a13 a14
a11 a12 a15 a16
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Now suppose the picture takes up too much space! So we want to store less numbers, and maybe the
picture is a little blurry, but we can still recognize the general shapes. Say we “blend” two adjacent pixels

by takining their average. Let bi =
a2i�1+a2i

2 , then we are replacing the picture with

2

64
a1
...

a16

3

75 with

2

6666666664

b1
b1
b2
b2
...
b8
b8

3

7777777775

. The

picture now looks like

b1 b1 b3 b3
b2 b2 b4 b4
b5 b5 b7 b7
b6 b6 b8 b8

You can imagine that our picture is a little blurry now, but when there are many many pixels, then
averaging each pair would have neglegible e↵ect on your picture in general. But what if we still want to
compress the size of the data? Maybe I can again take the average of adjacent bi’s. Let ci =

b2i�1+b2i

2 , then

we are replacing the picture with

2

64
a1
...

a16

3

75 with

2

6666666664

c1
c1
c1
c1
c2
...
c4

3

7777777775

. The picture now looks like

c1 c1 c2 c2
c1 c1 c2 c2
c3 c3 c4 c4
c3 c3 c4 c4

Now the picutre is a lot more blurry, but we saved a lot of data storage. We only need to store four
numbers. If we have many many pixels, you can continue this process for ever to get more and more blurry
pictures with less and less storage need.

With this compression process in mind, let us look at the Haar wavelet basis. In the case of R4, they are

columns c1, c2, c3, c4 of the matrix H4 =

2

664

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

775.

Now given a picture with 4 pixels, say

a1 a2
a3 a4

Then we have decomposition

2

664

a1
a2
a3
a4

3

775 =
a1 + a2 + a3 + a4

4

2

664

1
1
1
1

3

775+
a1 + a2 � a3 � a4

4

2

664

1
1
�1
�1

3

775+
a1 � a2 + a3 � a4

4

2

664

1
�1
1
�1

3

775+
a1 � a2 � a3 + a4

4

2

664

1
�1
�1
1

3

775 .
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Look at the first term a1+a2+a3+a4
4

2

664

1
1
1
1

3

775. This is exactly the picture when I averaged ALL pixels! Now

we only need to store one number, and the picture is too blurry to see anything.
Now look at the first two terms.

a1 + a2 + a3 + a4
4

2

664

1
1
1
1

3

775+
a1 + a2 � a3 � a4

4

2

664

1
1
�1
�1

3

775 =

2

664

a1+a2
2

a1+a2
2

a3+a4
2

a3+a4
2

3

775 .

This is exactly the picture where I averaged the top two pixels and the bottom two pixels!
Now look at the first term and the third term. We have

a1 + a2 + a3 + a4
4

2

664

1
1
1
1

3

775+
a1 � a2 + a3 � a4

4

2

664

1
�1
1
�1

3

775 =

2

664

a1+a3
2

a2+a4
2

a1+a3
2

a2+a4
2

3

775 .

This is exactly the picture where I averaged the left two pixels and the right two pixels!
As you can see, given a picture, we can first write it under the Haar wavelet basis. Then “blur adjacent

pixels” can be done simply by dropping coordiates. The more coordinate you drop, the more blurry your
picture can be.

So how can one construct this Haar wavelet basis in general? One can iterate the process of H2n =
Hn Hn

Hn �Hn

�
. Feel free to check thatH2n would still be symmetric and has orthogonal columns. In particular,

in the 16 pixel case, we have the Haar wavelet basis:

2

6666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1 1 �1
1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1
1 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1
1 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1
1 �1 �1 1 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1
1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1
1 �1 1 �1 �1 1 �1 1 �1 1 �1 1 1 �1 1 �1
1 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1
1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 1 �1 �1 1

3

7777777777775

.

Note that the Haar wavelet basis is NOT ONB, merely OGB. To make it orthonormal, one needs to use
columns of 1p

n
Hn instead. ,

Here we see an interesting matrix Hn whose columns are orthogonal and unit vectors. In general, the
following types of matrices are very important.

5.6 Orthogonal Matrices

From now on, let us focus on the Euclidean space!
Let us do an alternative characterization of these matrices. If v1, . . . ,vn form an ONB, then the inverse

of (v1, . . . ,vn) is the coordinate map, which is

2

64
hv1|
...

hvn|

3

75 as we have seen. Under dot product, the “bra”
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simply means transpose. So we have an interesting discovery. In Rn with the dot product, if the columns of

U =
⇥
v1 . . . vn

⇤
form an ONB, then U�1 =

2

64
vT
1
...
vT
n

3

75 = UT.

Definition 5.6.1. We say an n⇥ n invertible matrix A is an orthogonal matrix if A�1 = AT.

Now, what does it mean to have ATA = I? Suppose A =
⇥
v1 . . . vn

⇤
, then the (i, j) entry of ATA

would be vT
i
vj . So ATA = I implies that columns of A are mutually orthogonal normal vectors. Similarly,

AAT = I implies that rows of A are mutually orthogonal normal vectors.

Proposition 5.6.2. For an n⇥ n invertible matrix A, TFAE:

1. A is orthogonal.

2. Rows of A form an orthonormal basis to the Euclidean space Rn.

3. Columns of A form an orthonormal basis to the Euclidean space Rn.

4. hAv, Awi = hv,wi for all v,w 2 Rn. (Note that the inner product here is just dot product.)

5. kAvk = kvk for all v 2 Rn.

Proof. We are given that A is square. So A�1 = AT i↵ AAT = I i↵ ATA = I. By writing A in columns, we
see that ATA = I i↵ columns of A form ONB. Similarly, by writing A in rows, we see that AAT = I i↵ rows
of A form ONB. So it is already obvious tha the first three statements are equivalent.

Now, if A is orthogonal, then hAv, Awi = vTATAw = vTw = hv,wi. So the first one implies the forth
one. Conversely, if hAv, Awi = hv,wi, then vT(ATA)w = vTIw for all v,w. This means ATA = I.

Finally, the last statement is also equivalent because due to polarization identity, length determines
angle.

In general, orthogonal matrices would map the standard basis to some orthonormal basis. In particular,
above proposition shows that orthogonal matrices as a linear map is exactly a “rigid motion” that preserves
length and angles. (This means we have some rotation+reflection going on.) In particular, we have the
following:

Lemma 5.6.3. If A,B are orthogonal, then AB,A�1 are orthogonal.

Proof. Obviously A�1(A�1)T = A�1(AT)�1 = (ATA)�1 = I. And we have (AB)(AB)T = A(BBT)AT =
AAT = I.

There are alternative proofs. For example, kABvk = kBvk = kvk for all v because A,B are orthogonal.
But then this means AB is orthogonal.

Another interpretation of an orthogonal matrix is the following: they corresponds to change of basis
between orthonormal basis.

Proposition 5.6.4. In an inner product space V , the change of coordinate matrix from an orthonormal
basis to another orthonormal basis is an orthogonal matrix. Conversely, given any orthonormal basis B, then
BU is an orthonormal basis if U is orthogonal.

Proof. WLOG suppose that V is the Euclidean space. Then any orthonormal basis forms an orthogonal
matrix. Say the two orthonormal basis are columns of A,B. Note that both A,B are orthogonal and
therefore invertible. Then because A(A�1B) = B, we see that the basis transition matrix from A to B is
A�1B, and therefore the change of coordinate matrix is just B�1A, which is still orthogonal.

For the “converse” part, say an orthonormal basis are columns of A, then for orthogonal U , AU is still
orthogonal. So the columns of AU still form an orthonormal basis.
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Here is a preview of a future important theorem, that we do not proof at the moment.

Theorem 5.6.5 (Singular Value Decomposition). For any matrix A, we can find orthogonal matrices U, V

such that UAV =


⌃ O
O O

�
where ⌃ is diagonal.

This is a super upgrade from rank normal form, which says there must be some bases to make our map
pretty. Now we see that, in fact, there must be some orthogonal bases to make our map pretty. We can
make our map pretty in a way that is also compatible with the inner product structure of the domain and
codomain.

Remark 5.6.6. In practice, people only perform change of basis using orthogonal matrices, because such
change of basis process would preserve the length of error term.

For example, suppose we have a vector v. Under some basis, we measured it and get its coordinate

2

4
1
2
3

3

5.

However, measurements are never precise. So technically, we have v =

2

4
1
2
3

3

5+ e for some vector e recording

the tiny error.

Suppose now I want to use a new basis. Let A be the change of coordinate matrix, and say

2

4
1
2
3

3

5 is

changed into

2

4
4
5
6

3

5. However, due to the error term, the ACTUAL coordinates of v in the new basis should

be A(

2

4
1
2
3

3

5+ e) =

2

4
4
5
6

3

5+Ae.

If A is an orthogonal matrix, then kAek = kek. In particular, if the initial error is tiny, then after the
change of coordinates, the resulting error is still tiny.

This is not true for non-orthogonal matrices. For example, if A =


1 2
0 1

�
and the error term is e =


0
0.1

�
,

then Ae =


0.2
0.1

�
. The size of error is now kAek =

p
5

10 , whereas the original error has size 1
10 . The size of

error is more than doubled.
For this reason, people NEVER perform non-orthonormal change of basis. We do not want the error

term to be magnified.

Let us conclude this section by some more examples of orthogonal matrices.

Example 5.6.7. Rotation matrices R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
are orthogonal matrices, because it preserves

length.
What about 3D rotations? Any rotation in R3 must be rotating around a line. Suppose we pick an

orthonormal basis q1, q2, q3 such that q1 is the axis of rotation, and we rotate around this by rotating the

plane span(q2, q3) via R✓. Then under this orthonormal basis, our rotation looks like


1 0T

0 R✓

�
.

So, what does this looks like under the original basis, i.e., the standard basis? Since change of coordi-

nate maps are simply arbitrary orthogonal matrices, we are looking at U


1 0T

0 R✓

�
U�1 for some arbitrary

orthogonal matrix U , where U =
⇥
q1 q2 q3

⇤
. Here we first use U�1 = UT =

2

4
qT
1

qT
2

qT
3

3

5 to change coordinates
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from the standard basis to our new orthonormal basis, then use the matrix under our new basis, and finally
use U to change the coordinates back to the standard basis.

All in all, we see that 3D rotations are ALL U


1 0T

0 R✓

�
U�1 for some orthogonal matrix U .

We are going to see structures like BAB�1 a lot. For linear transformations where the domain is the
same as the codomain, and the domain and codomain are required to change basis simultaneously, then we
would always go from A to BAB�1 for some invertible B, i.e., the change of coordinate matrix. ,

So we have figured out all 2D and 3D rotation matrices. What about higher dimensions?

Definition 5.6.8. A Givens rotation is a matrix G✓

ij
whose (i, i), (i, j), (j, i), (j, j) entries form R✓, and

the rest looks exactly like the identity matrix.

Obviously the Givens rotations are rotations. They rotate the xixj-plane while fixing all other coordinate
axis. As a result, their compositions are all rotations. It turns out that this is it. We don’t have enough
time to do this in class though, so we shall leave it at that.

Example 5.6.9. What about reflections, which always preserve the length as well? For example, we know

that


0 1
1 0

�
is an orthogonal matrix and in fact a reflection about the line x = y on R2.

Suppose we want to reflect about a hyperplane with unit normal vector q1. Then we pick any orthonormal
basis q2, . . . , qn for the hyper plane, and then q1, . . . , qn would form an orthonormal basis for Rn. Under
this basis, the reflection would send q1 to �q1, and preserve the rest. So the matrix under this basis is2

6664

�1
1

. . .
1

3

7775
.

As a result, a generic reflection must be U

2

6664

�1
1

. . .
1

3

7775
U�1 for any orthogonal matrix U . Note that

the matrix in the middle is in fact I�2e1eT1 . So a reflection must be U(I�2e1eT1 )U
�1 = U(I�2e1eT1 )U

T =
UUT � 2Ue1eT1 U

T = I � 2uuT, where u is the first column of U , i.e., q1, the unit normla vector to our
hyperplane.

In fact we have already seen this before. The reflection to a hyper plane is exactly I � 2uuT where u is
the unit normal vector. ,

Definition 5.6.10. A Householder transformation is I � 2nnT for some unit vector n. Or abstractly
on an inner product space, it is I � 2|nihn| for some unit vector n.

It is easy to verify that this is indeed an orthogonal matrix. In fact its inverse and transpose are both
itself.

Here is an interesting result that provide some nice intuitions. The proof is optional and not required.

Theorem 5.6.11 (Geometric meaning of an orthogonal matrix). An orthogonal matrix is either a product
of Givens rotations (and thus a rotation it self), or is the product of a series of Givens rotations and a
Householder transformation (and thus a reflection then rotation).

5.7 (Optional) Geometrix meaning of an orthogonal matrix

To see this proof, first we shall need a few lemmas. In the following, by rotation we shall always means a
product of a series of Givens rotations.
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Lemma 5.7.1. If R is a rotation, then R�1,


R O
O I

�
,


I O
O R

�
are still rotations.

Proof. Just verify for all Givens rotations. Then use the fact that inverse matrices of a product is the
product with the inverses with reversed order. And for a product of block diagonal matrices, we can can
simply compute the product on each diagonal block.

Lemma 5.7.2. Given any two vectors v,w 2 Rn of the same length and n � 2, then there is a rotation R
such that Rv = w.

Proof. We proceed by induction. When n = 2, this is obvious.

For generic n, suppose v =


v1
v0

�
. Then by induction hypothesis, I can find R1 a rotation on Rn�1 such

that R1v0 =

2

6664

kv0k
0
...
0

3

7775
. Then we see that


1 0T

0 R1

�
v =

2

666664

v1
kv0k
0
...
0

3

777775
.

Now I find a rotation R2 such that R2


v1
kv0k

�
=


kvk
0

�
. Then


R2 O
O I

�

2

666664

v1
kv0k
0
...
0

3

777775
= kvke1.

So composing the two, we have found a rotation R such that Rv = kvke1. Similarly, we can find a
rotation R0 such that R0w = kwke1. Since the two vectors have the same length, we see that Rv = R0w, so
(R0)�1R is the desired rotation.

Lemma 5.7.3. If H is a Householder transformation, then


1 0T

0 H

�
is a householder transformation.

Proof. Suppose H = In � 2uuT for some unit vector H. We now look at


1 0T

0 H

�
=


1 0T

0 In � 2uuT

�
=

In+1 �

0 0T

0 2uuT

�
= In+1 � 2


0
u

� 
0
u

�T
. And it is easy to verify that


0
u

�
is still a unit vector.

Now we can proceed to prove the theorem. It is of course a proof by induction. Let me write the theorem
again for clarity.

Theorem 5.7.4 (Geometric meaning of an orthogonal matrix). An orthogonal matrix is either a product
of Givens rotations (and thus a rotation it self), or is the product of a series of Givens rotations and a
Householder transformation (and thus a reflection then rotation).

Proof. When n = 1 or n = 2 this is trivial. We proceed by induction.
For generic n, consider any orthogonal matrix Q, and let its first column be q. This is a unit vector. So

we can find a rotation R such that Rq = e1. So RQ =


1 ?
0 ?

�
.

Since RQ is still an orthogonal matrix, its columns must still be orthogonal to each other. In particular,

the upper right block must actually be zero. So we have RQ =


1 0T

0 Q0

�
for some matrix Q0. Further

more, again because RQ is orthogonal,


1 0T

0 Q0

��1

=


1 0T

0 Q0

�T
, and therefore we see that


1 0T

0 (Q0)�1

�
=


1 0T

0 (Q0)T

�
. So we see that Q0 is orthognal and with smaller dimension.
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So by induction, Q0 is either a rotation (in which case Q is a rotation), or a rotation times a Householder
transformation (in which case Q is a rotation times a Householder transformation).

Here is a nice generalization to the a�ne case. We can now understand ALL distance preserving trans-
formations on Rn, even the non-linear ones. We define distance between two vectors v,w to simply be
kv �wk.

Lemma 5.7.5 (Distance ratio and convex linear combinations). In Rn, suppose kv�wk = r. Then for any
0  t  1, the point tv + (1� t)w has distance (1� t)r to the point v, and has distance tr to the point w.

Conversely, if x has distance (1�t)r to the point v and has distance tr to the point w for some 0  t  1,
then x = tv + (1� t)w.

Proof. Note that v � (tv + (1 � t)w) = (1 � t)(v � w), and w � (tv + (1 � t)w) = t(w � v). Hence the
distance ratio is exactly (1� t) to t. Given total distance r between v,w, the rest is obvious.

For the second portion, suppose x has distance (1� t)r to the point v and has distance tr to the point
w for some 0  t  1. Intuitively, this means that x is in the ball around v with radius tr, and also in the
ball around w with radius (1� t)r. But since v,w have a distance of tr+(1� t)r, the two balls have unique
intersection, and then we are done.

Let us do this more rigorously. The triangle inequality kv �wk  kv � xk+ kw� xk achieved equality.
This means the corresponding Cauchy-Schwarz inequality (by squaring both sides and simplify) between
v � x and w � x achieves equality. Hence these two are parallel. In particular, x lies on the line through
the two points v,w. Since we have distance requirement with tr, (1� t)r  r, x must lie on the line segment
between v,w.

If either v�x or w�x is the zero vector, then the statement is trivial. Suppose they are both non-zero.
Let �k(v � x) = w � x for some k � 0. Rearrange and we have x = k

k+1v + 1
k+1w. By the first portion of

our lemma, we see that the distance between x and v should be 1
k+1r. Hence 1� t = 1

k+1 and t = k

k+1 . So
we see that x = tv + (1� t)w.

Theorem 5.7.6 (Classification of isometries on Rn). If f : Rn ! Rn is any map that preserves distance,
i.e., kv�wk = kf(v)� f(w)k, then we must have f(v) = Av+b for some constant vector b and orthogonal
matrix A.

Proof. For any points v,w and any 0  t  1, let us first show that f(tv+ (1� t)w) = tf(v) + (1� t)f(w).
Set r = kv �wk. Then tv + (1� t)w has distance (1� t)r to v, and distance tr to w.
Now we apply the map f , then f(v), f(w) shall also have distance r. The point f(tv + (1 � t)w) must

still have distance (1� t)r to f(v), and distance tr to f(w). But this in turn implies that f(tv+(1� t)w) =
tf(v) + (1� t)f(w).

The lemma below shows that this implies that f(v) = Av+b for some constant vector b and some matrix
A. Note that we must have f(0) = b. In particular, we have

kAxk = kf(x)� bk = kf(x)� f(0)k = kx� 0k = kxk.

So A corresponds to a linear map that preserves distance. Hence it is an orthogonal matrix.

Lemma 5.7.7 (Classification of all a�ne maps). If f : Rn ! Rm satisfies f(tv + (1� t)w) = tf(v) + (1�
t)f(w) for all v,w 2 Rn and all 0  t  1, then f(x) = Ax+ b.

Proof. (Intuitively, an n-dimensional a�ne space is basically Rn, but you are NOT allowed to do linear
combinations in general. You can only perform “convex linear combinations”, which means tv + (1 � t)w
with 0  t  1. An a�ne map is therefore a map that preserves convex linear combinations.)

Set b = f(0), and set g(x) = f(x)� b. Let us show that g is linear, then we are done. To start, we have
g(0) = 0. So far so good. Now let us check scalar multiplications.

For 0  k  1, we have kv = kv + (1� k)0. Hence f(kv) = kf(v) + (1� k)f(0). Rearrange terms and
use the fact that b = f(0), we have f(kv)� b = k(f(v)� b). Hence g(kv) = kg(v).

For k > 1, we have v = 1
k
(kv) + (1� 1

k
)0. Using similar idea to above, we would obtain g(v) = 1

k
g(kv).
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For k < 0, we have 0 = ( 1
1�k

)(kv) + (1 � 1
1�k

)v. Using similar idea to above, we would obtain g(0) =

( 1
1�k

)g(kv) + (1� 1
1�k

)g(v). Rearrange and use the fact that g(0) = 0, we would get g(kv) = kg(v) again.
All in all, we have g(kv) = kg(v) for all k 2 R.
Now let us check vector addition. Consider g(v+w). Note that v+w = 1

2 (2v)+
1
2w. Hence f(v+w) =

1
2f(2v) +

1
2f(2w). Rearrange this, and we get g(v + w) = 1

2g(2v) +
1
2g(2w) = g(v) + g(w). So we are

done.

In short, any distance-preserving transformation on Rn must be a composition of translations, reflections
and rotations.

5.8 (Optional) Rotations and Skew-Symmetric Matrices

These two kinds of matrices are closely related to each other. Let us see how. This is among the best ways
to understand and represent rotations.

Definition 5.8.1. We say a matrix A is skew-symmetric if AT = �A.

Example 5.8.2. If AT = �A, then look at the diagonal entries on the left hand side and the right hand
side. We must conclude that all diagonal entries for A are zero.

So if A is 2⇥ 2 and skew-symmetric, then it can only be something like A =


0 �a
a 0

�
. Note that this is

invertible as long as a 6= 0.

If A is 2 ⇥ 2 and skew-symmetric, then it can only be something like A =

2

4
0 �c b
c 0 �a
�b a 0

3

5. Note that

this NEVER invertible. If a = b = c = 0, then this is the zero matrix. If not, then A

2

4
a
b
c

3

5 = 0, so the kernel

is non-zero. ,

Definition 5.8.3. Given any matrix A, we define the matrix eA to be the series I +A+ A
2

2! + . . . .

This series always converge. However, proving it is beyond the scope of the class. Let us just take it for
granted for now.

Example 5.8.4. Recall that sin(x) = x� x
3

3! +
x
5

5! � . . . , and cos(x) = 1� x
2

2! +
x
4

4! � . . .

Now consider a matrix A =


0 �a
a 0

�
. Note that this is a skew-symmetric matrix. We now have

eA =


1 0
0 1

�
+


0 �a
a 0

�
+

1

2!


0 �a
a 0

�2
+

1

3!


0 �a
a 0

�3
+ . . .

=


1 0
0 1

�
+


0 �a
a 0

�
+

"
�a

2

2! 0

0 �a
2

2!

#
+

"
0 a

3

3!

�a
3

3! 0

#3

+ . . .

=

"
1� a

2

2! + . . . �a+ a
3

3! � . . .

a� a
3

3! + . . . 1� a
2

2! + . . .

#

=


cos(a) � sin(a)
sin(a) cos(a)

�
.

In particular, the exponential matrix for any 2 by 2 skew symmetric matrix is a rotation matrix. ,

Proposition 5.8.5. If AB = BA, then eA+B = eAeB.
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Proof. At an abstract level, the exponential map and its properties are derived from the basic properties
of addition and multiplication. So if we have commutativity, then matrix addition and matrix multiplica-
tion now satisfies all the properties of regular addition and regular multiplication of real numbers. So the
exponential map would exhibit exactly the same behavior as the one for regular real numbers.

To be more rigorous, here is the computational proof.

eAeB =(
1X

i=0

1

i!
Ai)(

1X

j=0

1

j!
Aj)

=
1X

i,j=0

1

i!j!
AiBj

=
1X

i,j=0

Ci

i+j

(i+ j)!
AiBj

=
1X

k=0

1

k!

kX

i=0

Ci

k
AiBk�i

=
1X

k=0

1

k!
(A+B)k

=eA+B .

Can you spot the step that uses AB = BA? (In particular, if AB 6= BA, this computation would be
false at that step.)

Just be careful that in general, eA+B 6= eAeB when AB 6= BA.

Theorem 5.8.6. If A is skew-symmetric, then eA is orthogonal.

Proof. Note that AT = �A, so in particular we have AAT = �A2 = ATA. So eAeA
T

= eA+A
T

= eO = I,
the identity map.

All I need to do now is to show that (eA)T = eA
T

. But this is obvious.

(eA)T = (I +A+
A2

2!
+ . . . )T = I +AT +

(AT)2

2!
+ · · · = eA

T

.

So eA is orthogonal.

Note that eA is in fact always a rotation. And in fact, this goes both ways. If Q is a rotation (no reflection
involved), then Q = eA for some skew-symmetric A. However, these are trickier to prove and we don’t have
the tools to do it yet.

Example 5.8.7. Consider any generic 3 by 3 skew symmetric matrix A =

2

4
0 �c b
c 0 �a
�b a 0

3

5. Note that

A

2

4
a
b
c

3

5 = 0.

Now consider the rotation eA. Applying this to

2

4
a
b
c

3

5, we see that

eA

2

4
a
b
c

3

5 = (I +A+ . . . )

2

4
a
b
c

3

5 =

2

4
a
b
c

3

5 .
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All the A portion of the series would NOT contribute at all, because they multiply

2

4
a
b
c

3

5 to zero. In

particular, eA is a rotation around the line containing

2

4
a
b
c

3

5. (In fact, it is a rotation with radian degree

k

2

4
a
b
c

3

5k. So if

2

4
a
b
c

3

5 has length 2⇡, then eA = I. However, this is much easier to do after we have eigenvalues,

so we don’t prove it here.)
As you can see, in practice, the orthogonal matrices are usually ugly and hard to compute. Those cosines

and sines would give ugly numbers everywhere. However, their “logarithm”, the skew symmetric matrices
are much prettier and intuitive, and the entries would have immediate geometric meanings behind them.

Also note that here we in fact have Av =

2

4
a
b
c

3

5 ⇥ v. So we see that cross product is the logarithm of

rotations. This is why in physics and multivariable calculus, things involving rotations are usually related
to the cross product. ,

5.9 Gram-Schmidt Orthogonalization and QR decomposition

5.9.1 First Perspective: Algorithm to find an orthonormal basis

So far, we are using the existence of an ONB for free. We know they exist, because any inner product space
is isomorphic (as inner product spaces) to the Euclidean space. But how to specifically find one?

In practice, people usually start with a random (non-orthonormal) basis v1, . . . ,vn, and tries to transform
them into an ONB. This is the famous Gram-Schmidt Orthogonalization process.

Example 5.9.1. How can I make a bunch of vectors orthogonal to each other?
Suppose I have a stack of papers, but they are NOT stacked up-right. Rather, they are stacked in a tiled

way, forming a parallelepiped. The three edges are v1,v2,v3, where the first two are edges of a paper, and
the third vector is the direction of how they are stacked.

In particular, although v1,v2 are orthogonal to each other, v3 is currently NOT orthogonal to v1,v2,
and my parallelepiped is NOT a rectangular box.

Now this stack is annoying to carry. So I take the stack, and hit the desk with it on its side. Then I hit
the desk with it on the other side. Now I will have a rectangular box stack, and it is now easy to carry.

When I hit the stack on its v2 side, I am doing a SHEARING (preserving the base and height) to make
sure that v3 is now orthogonal to v1. And then when I hit the stack on the other side, now v3 is also sheared
to be orthogonal to v2. Then I am done. The staking direction is finally orthogonal to the other two vectors.

This is the Gram-Schmidt orthogonalization process. ,

Let us look at another example for more computational detail.

Example 5.9.2. Suppose we only have two vectors v1,v2 spanning a two dimensional inner product space.
To make them orthogonal, we need to shear v2 along the direction of v1 (i.e., adding multiples of v1 to v2),
until it is orthogonal to v1. How much shearing do we need?

Suppose the shearing we need is (v1,v2)


1 k
0 1

�
= (v1,v2+kv1). Then we must have hv1,v2+kv1i = 0.

Solving for k, we see that we need k = � hv1,v2i
hv1,v1i .

So the Gram Schmidt orthogonalization process would transform the basis v1,v2 to the OGB v1,v2 �
hv1,v2i
hv1,v1iv1. To make it ONB, just then divide each vector by its lengh, and we are done. ,
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Proposition 5.9.3. Given any basis v1, . . . ,vn of an abstract vector space, let

w1 =v1

w2 =v2 �
hw1,v2i
hw1,w1i

w1

w3 =v3 �
hw1,v3i
hw1,w1i

w1 �
hw2,v3i
hw2,w2i

w2

...

wn =vn � hw1,vni
hw1,w1i

w1 �
hw2,vni
hw2,w2i

w2 � · · ·� hwn�1,vni
hwn�1,wn�1i

wn�1.

Then w1, . . . ,wn form an OGB. Let qi =
wi

kwik , then q1, . . . , qn form an ONB. (We call this ONB theGram-

Schmidt orthogonalization of our original basis.)

Proof. Let us prove orthogonality by induction. Suppose w1, . . . ,wi are pairwise orthogonal. (The initial
case i = 1 is trivial.)

Then consider wi+1. For any j  i, we have

hwi+1,wji = hvi+1�
iX

k=1

hwk,vi+1i
hwk,wki

wk,wji = hvi+1,wji�
iX

k=1

hwk,vi+1i
hwk,wki

hwk,wji = hvi+1,wji�
hwj ,vi+1i
hwj ,wji

hwj ,wji = 0.

So w1, . . . ,wi+1 are also mutually orthogonal. So by induction, we see that w1, . . . ,wn are mutually
orthogonal.

Finally, since we went from the basis v1, . . . ,vn to the collection w1, . . . ,wn using only shearings (in-
vertible operations), the result must still be a basis. So w1, . . . ,wn is OGB

Remark 5.9.4. Note that we started with vectors v1, . . . ,vn. To proceed, we first make sure that all later
vectors are orthogonal to the first vector. So we have

w1 =v1

v2 �
hw1,v2i
hw1,w1i

w1

v3 �
hw1,v3i
hw1,w1i

w1

...

vn � hw1,vni
hw1,w1i

w1.

Now all later vectors are orthogonal to the first vector. Then we do the shearing to make sure that all later
vectors are orthogonal to the second vector. So we have

w1 =v1

w2 =v2 �
hw1,v2i
hw1,w1i

w1

v3 �
hw1,v3i
hw1,w1i

w1 �
hw2,v3i
hw2,w2i

w2

...
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vn � hw1,vni
hw1,w1i

w1 �
hw2,vni
hw2,w2i

w2.

Now all later vectors are orthogonal to the second vector. So on so forth. This is the process of Gram Schmidt
orthogonalization.

5.9.2 Second Perspective: QR decomposition

Now, take a closer look. When we shear, we are ALWAYS substracting multiples of earlier vectors from

later vectors! For example, in R2, to go from
⇥
v1 v2

⇤
to

h
v1 v2 � hv1,v2i

hv1,v1iv1

i
, we only need to use the first

column to reduce the second column. This corresponds to a column operation that is upper triangular! In

particular,
⇥
v1 v2

⇤
"
1 � hv1,v2i

hv1,v1i
0 1

#
=

h
v1 v2 � hv1,v2i

hv1,v1iv1

i
.

Think of Gram-Schmidt as an series of operations on columns of the invertible matrix A =
⇥
v1 . . . vn

⇤
,

then we are multiplying a series of upper triangular matrices to the right of it, and we get OGB
⇥
v1 . . . vn

⇤
U =⇥

w1 . . . wn

⇤
. Now we divide each column by its length, and we get

⇥
v1 . . . vn

⇤
UD =

⇥
w1 . . . wn

⇤
D =⇥

q1 . . . qn

⇤
where D is the diagonal matrix represending the division of each column by its length. And

the end result here should be an ONB. In particular, the matrix Q =
⇥
q1 . . . qn

⇤
is an orthogonal matrix.

So AUD = Q. We can rearrange this as A = QR where R = D�1U�1 is upper triangular.
So now we get the matrix-decomposition perspective of Gram-Schmidt. (Just like Gaussian elimination

and LU decomposition are essentially the same, Gram-Schmidt and QR below are essentially the same.)

Theorem 5.9.5 (QR decomposition). Let A be any invertible matrix. Then we can find an orthogonal
matrix Q and an upper triangular matrix R such that A = QR. If we require all diagonal entries of R to be
positive, then this decomposition is unique.

Proof. If A is invertible, the columns of A form a basis. The Gram-Schmidt process means we do AU
for some upper triangular U , and now the columns of AU form an orthonormal basis, so Q = AU is an
orthogonal matrix. So A = QU�1 as desired.

Now let us prove uniqueness. Suppose A = Q1R1 = Q2R2 where the diagonal entries of R1, R2 are both
positive. Then Q�1

2 Q1 = R2R
�1
1 . Now the left hand side is an orthogonal matrix, while the right hand side

is an upper triangular matrix with positive diagonal entries. So this matrix M = Q�1
2 Q1 = R2R

�1
1 is both

orthogonal and upper triangular, and has positive diagonal entries. I claim this means M = I, as is shown
in the following lemma.

Lemma 5.9.6 (Orthogonal is the opposite of triangular). If A is both orthogonal and triangular, then it is
in fact diagonal with diagonal entries ±1.

In view of this lemma, one can also think of the QR decompositon as decomposing a matrix into two
“independent” components. Now let us prove this lemma

Proof of the Lemma. Since A is orthogonal, it is invertible. Since it is invertible and triangular, its diagonal
entries are non-zero. So A has unique LDU decomposition.

WLOG suppose A is upper triangular. Let A = DU be the unique LDU decomposition of A where U is
now unit triangular, and D simply records the diagonal entries of A. Then I = ATA = UTD2U . However,
this gives an LDU decomposition of I. But the only LDU decomposition of I is I = III, so U = I and
D2 = I. So we are done.

Remark 5.9.7. The QR decomposition IS the Gram-Schmidt orthogonalization. How to find the QR de-
composition? One way is to first work out Q by Gram Schmidt orthogonalization, then R follows from the
shearing process.
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Example 5.9.8. Suppose we have v1 =

2

664

1
1
1
1

3

775 ,v2 =

2

664

1
1
0
0

3

775 ,v3 =

2

664

2
1
1
0

3

775 ,v4 =

2

664

2
0
0
0

3

775. So we started with

A =

2

664

1 2 4 4
1 2 2 0
1 0 2 0
1 0 0 0

3

775.

We start our shearing. To shear everything in A to be orthogonal to v1, we end up with

A =

2

664

1 1 2 3
1 1 0 �1
1 �1 0 �1
1 �1 �2 �1

3

775

2

664

1 1 2 1
0 1 0 0
0 0 1 0
0 0 0 1

3

775 .

Here the upper triangular matrix is recording my column operations using the first column to reduce all
the columns to the right.

Next we shear the last two columns to be orthogonal to the second column. We end up with

2

664

1 1 2 3
1 1 0 �1
1 �1 0 �1
1 �1 �2 �1

3

775 =

2

664

1 1 1 2
1 1 �1 �2
1 �1 1 �0
1 �1 �1 �0

3

775

2

664

1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1

3

775 .

Finally, we shear the last column to be orthogonal to the third. We end up with

2

664

1 1 1 2
1 1 �1 �2
1 �1 1 �0
1 �1 �1 �0

3

775 =

2

664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3

775

2

664

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

3

775 .

So we have

A =

2

664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3

775

2

664

1 1 2 1
0 1 1 1
0 0 1 1
0 0 0 1

3

775 .

Now normalize these columns, we get the Haar wavelet basis.
All in all, we get the following QR decomposition:

2

664

1 1 2 2
1 1 1 0
1 0 1 0
1 0 0 0

3

775 = (
1

2

2

664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3

775)

2

664

2 2 4 2
0 2 2 2
0 0 2 2
0 0 0 2

3

775 .

,

5.9.3 Third Perspective: Cholesky decomposition

The above proof of QR decomposition and description of Gram-Schmidt orthogonalization is very “algorith-
mic” in nature. They basically goes along the say line of reason and logic of Gaussian elimination. Instead
of using upper rows to kill lower rows, to achieve something triangular, we now use left columns to shear
right columns into orthogonal position. (And thus R is upper triangular.)

However, you are no longer a high school student anymore. The hall mark of a mature learner is to learn
the SAME thing through DIFFERENT persepctives. Everything we do in this class, you can understand
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them as an algorithm (Gram Schmidt), or as a matrix decomposition (QR), or as a change of basis process
between bases, or as a geometric relation of subspaces, or as an induction process on block matrices, or
sometimes even as a mathematical version of physics statements or facts from other sciences.

So now we turn to more perspectives and descriptions and proofs of the Gram-Schmidt process and QR
decomposition.

Let me deliver a fatal blow to your sanity: We have actually proven QR decomposition a long long time
ago!

Alternative proof of QR decomposition. Given an invertible matrix A, then ATA is positive definite. So by
Cholesky decomposition, there is a unique lower triangular matrix L with positive diagonal entries such that
ATA = LLT.

This immediately implies that L�1ATA(L�1)T = I. So we see that A(L�1)T is orthogonal, say Q. Then
A = QLT. We are done.

This proof makes so much sense, because previously, we go from a Gram matrix G to the dot product via
some change of basis. If columns of A are the basis, then ATA is precisely the gram matrix, and the change
of basis implemented by LT gives the orthnormal basis Q whose Gram matrix is now I. The following three
process are the same:

1. The process of going from some arbitrary invertible matrix to an orthogonal matrix. (A = QR)

2. The process of going from some arbitrary basis to an orthonormal basis. (Column view of A = QR.)

3. The process of going from some arbitrary Gram matrix to the identity matrix. (ATA = RTQTQR =
RTR, the Cholesky decomposition.)

5.9.4 Fourth Perspective: Geometry of the subspace chain

Suppose we started with A, and we perform Gram-Schmidt to get Q. However, we are too lazy to record
the shearing process, so we forget to have R. What to do?

Well, recall that the Gram-Schmidt process A = QR is essentially a change of basis process. The i-th
column of R should exactly be the coordinates of the i-th column of A under the basis Q.

Example 5.9.9. If you go from A to Q, but forget to record your column operations. How to find R now?
Well, one can also retroactively solve R from A = QR, which implies that R = Q�1A = QTA.
Writing A,Q in columns v1, . . . ,vn and q1, . . . , qn, we see that the (i, j) entry of R is simply qT

i
vj . For

example, when n = 3, the QR decomposition looks like:

⇥
v1 v2 v3

⇤
=

⇥
q1 q2 q3

⇤
2

4
qT
1 v1 qT

1 v2 qT
1 v3

qT
2 v1 qT

2 v2 qT
2 v3

qT
3 v1 qT

3 v2 qT
3 v3

3

5 .

This is also obvious since qT
i
vj is the i-th coordinate of vj under the orthonormal basis. The i-th column

of R should exactly be the coordinates of the i-th column of A under the basis Q.
Using previous example, you can compute and verify that indeed,

(
1

2

2

664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3

775)

2

664

1 1 2 2
1 1 1 0
1 0 1 0
1 0 0 0

3

775 =

2

664

2 2 4 2
0 2 2 2
0 0 2 2
0 0 0 2

3

775 .

(Here the matrix 1
2

2

664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3

775 is symmetric and orthogonal, so it is its own inverse.)
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Here is a mystery though. Can you see why must the matrix

2

4
qT
1 v1 qT

1 v2 qT
1 v3

qT
2 v1 qT

2 v2 qT
2 v3

qT
3 v1 qT

3 v2 qT
3 v3

3

5 always be upper

triangular? It is not obvious right away. ,

Let us unravel this mystery.

Proposition 5.9.10. Suppose Gram Schmidt brings the basis v1, . . . ,vn to the orthonormal basis q1, . . . , qn.
Then span(v1, . . . ,vi) = span(q1, . . . , qi).

Proof. This comes from the Gram Schmidt shearing process. We created qi only using v1, . . . ,vi, so obviously
span(q1, . . . , qi) ✓ span(v1, . . . ,vi). But since both collections are linearly independent, they have the same
dimension. So we have it.

This immediatly shows that, conversely, vj is a linear combination of q1, . . . , qj , and do not use qj+1, . . . , qn

at all. So its coordinates qT
i
vj when i > 0 are all zero. So

2

4
qT
1 v1 qT

1 v2 qT
1 v3

qT
2 v1 qT

2 v2 qT
2 v3

qT
3 v1 qT

3 v2 qT
3 v3

3

5 is upper triangular.

Remark 5.9.11. If you think carefully, buried beneath this is the fact that the inverse of an upper triangular
matrix is upper triangular. If qi only uses v1, . . . ,vi for each i, then vi only uses q1, . . . , qi for each i.

The observation here also gives us a geometric way to achieve Gram-Schmidt.

Example 5.9.12. Again consider any basis v1,v2,v3 in R3. We can actually find q1, q2, q3 geometrically,
without any calculation!

Here is how. First of all, obviouosly q1 = v1
kv1k . This is easy.

Now q2 must be a linear combination of v1 and v2. So it lies in the plane span(v1,v2). Inside this plane,
we should also pick q2 that is perpendicular to the line span(v1).

Hey! Given a plane and a line inside it, there are ONLY TWO unit vectors in the plane normal to the
line. One is in the same “half-plane” as v2, the other is in the opposite “half-plane”. So q2 must be the one
in the same “half-plane” as v2. This choice is unique.

Now consider q3. It has to lie in the space R3 = span(v1,v2,v3), and it must be orthogonal to the plane
span(q1, q2) = span(v1,v2). Now, in the space, there are ONLY TWO unit vectors orthogonal to the plane,
one in each “half-space”. We let q3 be the one in the same “half-space” as v3.

Then q1, q2, q3 must be the result of Gram-Schmidt. We simply have no other choice in each step. ,

So now we proceed with the subspace version of Gram-Schmidt. As you shall see, the Gram-Schmidt does
NOT depends on the specific vectors v1, . . . ,vn at all. It ONLY depends on the CHAIN of SUBSPACES
they generate.

Proposition 5.9.13. Given a chain of subspaces {0} ⇢ V1 ⇢ V2 ⇢ · · · ⇢ Vn where dimVk = k, then there
is an orthonormal basis q1, . . . , qn such that span(q1, . . . , qk) = Vk. This basis is unique up to sign. (I.e.,
all such orthonormal basis must be ±q1, . . . ,±qn.)

If it helps, just imagine that Vi is span(v1, . . . ,vi) if you like.

Proof. To start, V1 is one dimensional. So pick any unit vector in it and we are done. Note that in an
one-dimensional space, there are only TWO possible choice of unit vectors, and they are negation of each
other. So we get ±q1.

Next, we want to find q2. To do this, we need to find a vector in V2 that is perpendicular to V1. However,
since V2 is a plane and V1 is a line, there are ONLY two unit vectors perpendicular to V1. So we get ±q2.

This goes on until the end. At each step, when we pick qk, we are trying to find a vector in Vk

perpendicular to Vk�1. But since Vk�1 is only one dimension less than Vk, it is a hyperplane in Vk, and has
only two unit normal vectors. So we get ±qk.

One technical lemma is needed here. We prove it below.
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Lemma 5.9.14. Let V be an inner product space with dimension n, and let W be a subspace with dimension
n� 1. Then there are only two unit vectors in V orthogonal to W .

Proof. All vectors perpendicular to W are in W?, which must be one dimensional. Hence W? contains only
two unit vectors.

In short, according to this view, we started with v1, . . . ,vn. And each qk is basically the unit normal
vector of the hyperplane span(v1, . . . ,vk�1) in span(v1, . . . ,vk), and there are only two such vectors. But
since we require A = QR to have R with positive diagonal entries, we are requiring that hqk,vki > 0. So
we see that only one choice of unit normal vector could make this positive, and the other one makes this
negative (the two choices of unit normal vectors are negations of each other). So we choose the positive one.

5.9.5 Fifth Perspective: Parallelotope

What is a matrix? So far, we have several interpretations.

1. We can think of an invertibla matrix A as a basis, by treating its columns as basis vectors.

2. We can also think of any matrix A as a linear map, sending v to Av.

3. We can also think of any matrix A as a bilinear map, sending a pair v,w to vTAw. (If A is furthermore
symmetric and positive definite, then this bilinear map is an inner product.)

4. We can think of an invertibla matrix A as a change of coordinate matrix or basis transition matrix.
So in this sense, A is doing nothing, merely changing the names of objects.

Now let us use a new interpretation. A could represent a parallelotope.

Example 5.9.15. Consider A =


1 2
1 1

�
. We may think of the two column vectors as two edges of a

parallelogram.

What if A =

2

4
1 2 3
4 5 6
7 8 10

3

5? Then A represents a parallelopiped in the space R3.

What about A =

2

4
1 2
3 4
5 6

3

5? Well, we have two edges, and they live in R3. Therefore, this is a parallelogram

in space!
The term parallelotope is the generalization of parallelograms and parallelopipeds. In general, an m⇥n

matrix A can represent an n-dimensional parallelotopes in Rm. ,
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Example 5.9.16. Consider the matrix equation

1 2
0 1

� 
1

1

�
=


1 2
0 1

�
.

Let us interpret the first


1 2
0 1

�
as a linear map, and the other two matrices in the equation as par-

allelograms. Then we are saying that the shearing map


1 2
0 1

�
is sending the unit square


1

1

�
to the

parallelogram


1 2
0 1

�
. Indeed we have

Shearing Map���������!

,

Now, so far we have been focused on the relation between A and Q in the decomposition A = QR,
and think of R as the transformation process (basis transition matrix). What if we think of Q as the
transformation process, and consider A and R as parallelotopes? These two views make a very interesting
comparison.

Example 5.9.17. Suppose A =


1 1
1 2

�
, Q =

"
1p
2

� 1p
2

1p
2

1p
2

#
and R =

p
2 3

2

p
2

0 1
2

p
2

�
. Here you can check that

A = QR, and R is obviously upper triangular with positive diagonal entries, and Q is orthogonal because it
is a rotation by 45 degree counterclockwise.

Now let us treat A as a parallelogram in R2 whose edges are columns of A (and one vertex is at the
origin). Draw this yourself. We see that Q�1A = R. This means, if we apply Q�1 to the columns of A
(edges of your parallelogram), you get columns of R (another parallelogram). In short, if you rotate the
parallelogram by A via Q�1, i.e., clockwise by 45 degree, you get a parallelogram whose first edge is on the
positive x-axis (because R is upper triangular and the first diagonal entry of R is positive), and its also on
the upper half plane (because the second diagonal entry of R is also positive).

In general, you may think of A = QR as such a process. Say n = 3. Imagine that A is a parallelepiped.
We are rotation/reflecting the A parallelepiped to get the R parallelepiped. First we rotate the parallelepiped
so that its first edge is in the positive x-axis. Now we keep this first edge fixed, but we rotate it around
the x-axis so that its second edge is now on the positive xy-plane. Now the “base” of our parallelepiped is
fixed, so we may choose to reflect it or not, so that the third edge is in the positive half space. All these
rotations and reflections are Q�1, and they transform A into a parallelepiped whose three edges are like2

4
positive ⇤ ⇤

0 positive ⇤
0 0 positive

3

5, i.e., R.

Since Q is a rigid motion, the resulting parallelepiped by R has the same shape as A, but the location is
now unique.

This process generalizes to higher dimensions very easily. (The higher dimension versions of a parallelo-
gram or parallelepiped is called a parallelotope.) ,

The idea that Q is a rigid motion transforming the parallelotope A to a parallelotope R turns out to be
VERY IMPORTANT. It turns out that it gives rise to a BETTER way to do Gram-Schmidt than Gram-
Schmidt. (Provide greater numerical stability, i.e., the calculations would NOT magnify error term.) The
idea is to use a series of Householder transformations, i.e., reflections, to go from A to R. Furthermore, since
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we are working on parallelotopes, why restrict ourselves to n-dim parallelotopes? One can in fact look at
n-dimensional parallelotopes in Rm and start doing rigid motions.

The following is a more general version of QR decomposition. However, pay special attention to the
proof, because that is what most computers would actually do to FIND the QR decomposition.

Theorem 5.9.18. Given any m ⇥ n matrix A with m � n, we have QR decomposition A = QR where Q

is m⇥m and orthogonal, and R =


R1

O

�
is an m⇥ n block matrix where R1 is n⇥ n and upper triangular

with NON-NEGATIVE diagonal entries. If A has full rank (i.e., injective), then R1 has positive diagonal
entries.

Proof. Suppose n = 1. Then A is a single vector v, and Q is any orthogonal matrix with first column 1
kvkv,

and R = kvk. All is trivial.
By induction, suppose n > 1. Let a be the first column of A, and find a Householder transformation H

such that Ha = kake1. This is possible due to the lemma below this proof.

Then HA =


ka1k bT

0 An�1

�
. (Geometrically, we perfomed a relfection so that the first edge of the

parallelotope is now on the positive x1-axis.)

Here An�1 had n� 1 columns, so by induction An�1 = Qn�1Rn�1 as desired, where Rn�1 =


R1

O

�
is an

(m� 1)⇥ (n� 1) block matrix where R1 is (n� 1⇥ (n� 1) and upper triangular with non-negative diagonal
entries.

Now consider


1 0T

0 Q�1
n�1

�
HA =

2

4
ka1k bT

0 R1

0 O

3

5. Now the upper portion


ka1k bT

0 R1

�
is n ⇥ n and upper

triangular, with non-negative diagonal entries. So we are done.

Finally, if A has full rank and A = QR, then since Q is invertible, R =


R1

O

�
must also have full rank.

So R1 can only have positive diagonal entries.

Lemma 5.9.19. If kvk = kwk in Rn, then there is a Householder matrix H = I � 2nnT for a unit vector
n such that Hv = w.

Proof. If v = w = 0, pick H = I and we are done. From now on, assume that v,w 6= 0.
Let us first get some intuition. Draw the arrow v and w, and imagine this reflection process. It is obvious

that v �w must be perpendicular to the hyperplane of reflection.
Now we start our proof. Let n = v�w

kv�wk , and set H = I � 2nnT. Then direct computation would yeild
Hv = w. Yay.

Remark 5.9.20. In the end, if you use the formula H = I � 2nnT and the fact that n = v�w
kv�wk , we

have H = I � 2 (v�w)(v�w)T

(v�w)T(v�w) . This is not surprising at all, since we already know that (v�w)(v�w)T

(v�w)T(v�w) is the
projection to the direction v �w.

Note that the proof above is NOT just a proof, but in fact a computationally viable and excellent way
to compute the QR decomposition. We started with a big parallelotope. First we reflect it so that the first
edge is on the positive x1-axis. Then induction means we again perform a reflection, so that the first two
edges are on the positive half of the x1x2-plane. So on so forth, until we are done and get R.

(I would really love to make an animiation showing an example of such process.... But I do not know
how....)

For many cases, when trying to find the QR decomposition, a computer would usually just reflect away.
Orthogonal matrices usually tends to “keep small errors small”. Whereas shearings R might magnify errors.
So applying Q�1 to A to find R is a MUCH better idea, compared with applying R�1 and find Q. By doing
a series of reflections, we can find the QR decomposition of A without enlarge any initial errors.
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Remark 5.9.21. In practice, the traditional Gram-Schmidt would require about 2mn2 addition / substraction
/ multiplication / divisions, and n square root calculations. On the other hand, using a series of Householders
takes about 2mn2 � 2

3n
3 addition / substraction / multiplication / divisions, and n square root calculations.

It is both faster and more stable.
The stu↵ below is super optional! I would strongly advise you to skip it. I add it here for completeness

only.
Let us see how many calculations are involved.
Suppose we are doing regular Gram schmidt. We start with an m ⇥ n matrix

⇥
v1 . . . vn

⇤
. First let

us use the first column to change later columns. First we need to calculate hv1,vii for each i, and this
takes m multiplications and m � 1 additions for each i, hence a total of mn multiplications and (m � 1)n

additions. Then we compute hv1,vii
hv1,v1i for all i 6= 1, which takes n � 1 multiplications (we treat division as a

multiplication). Next we calculate hv1,vii
hv1,v1iv1 for each i and substract this from the i-th column. This takes

m multiplications and m additions for each column, giving a total of m(n� 1) multiplications and m(n� 1)
additions. We used a total of mn + n � 1 + m(n � 1) = 2mn + n � m � 1 multiplications/divisions, and
(m� 1)n+m(n� 1) = 2mn� n�m additions/substractions. Let us just say 4mn calculations for short.

Next we use the second columns to reduce later columns. So we are essentially dealing with a matrix
with m rows and n � 1 columns, so it takes about 4m(n � 1) calculations. By this pattern, we see that
Gram-Schmidt takes a total of 4m(n+ · · ·+1) calculations, which is about 2mn2. Now we have OGB, but to
get ONB, we need to calculate the length, which requires (2m+1)n operations and n square root calculations.
Note that (2m+ 1)n << 2mn2, so we can ignore that for simplicity.

Now let us look at the Householder approach. Given first column v1, first we calculate vT
1 v1, which takes

2m � 1 calculations. Next we take square root to get kv1k, and we compute n = v1 � kv1ke1, which is a
single substraction. (Note that n is not a unit vector, but we shall deal with it later.) So far we have 2m
calculations and one square root operations.

Next, we want to apply H = I � 2nnT

nTn to each column. We can calculate 2
nTn with 2m calculations, and

multiply this to n takes another m calculations.

So the i-th column vi should turn into vi � 2nnTvi
nTn , and the quantity 2n 1

nTn is already pre-calculated.
The dot product nTvi takes 2m � 1 calculations, and multiply this to 2n 1

nTn takes m calculations, and
substract this from vi takes another m. This takes a total of 4m� 1 calculations for each i 6= 1. Hence this
is a total of (4m� 1)(n� 1) calculations.

The whole process so far takes 5m + (4m � 1)(n � 1) calculations, which is about 4mn, and one square
root. Now we have completed our induction step, and we no longer need to touch the first row or the first
column. So we do this to the (m� 1)⇥ (n� 1) lower right matrix left, and this takes about 4(m� 1)(n� 1)
calculations. By induction, we need 4mn+ 4(m� 1)(n� 1) + · · ·+ 4(m� n)(n� n). Compare this with the
previous Gram-Schmidt calculation of 4mn + 4m(n � 1) + · · · + 4m(n � n), and you see where the saving
happened.

A more specific calculation shows that 4mn+ 4(m� 1)(n� 1) + · · ·+ 4(m� n)(n� n) = 4(m� n)(n+
· · ·+ 1) + 4(n2 + · · ·+ 1) = 2(m� n)n2 + 4

3n
3 = 2mn2 � 2

3n
3.

Now, note that for A = Q


R1

O

�
, the lower block of zeros means many rows on the right of Q are NOT

used at all. If we write Q =
⇥
Q1 Q2

⇤
accordingly, we see that A = Q1R1. So we have the following

corollary:

Corollary 5.9.22. Given any m⇥n matrix A with m � n, we have QR decomposition A = QR where Q is
m⇥n matrix with orthonormal columns, and R is n⇥n and upper triangular with positive diagonal entries.

What if you have an m⇥n matrix A with m < n? Then AT has a QR decomposition AT = QR, and we
see that A = RTQT where RT is lower triangular, and QT is still orthogonal. So we have this so-called RQ
decomposition instead.

Furthermore, recall that for Gram-Schmidt, we are working on columns of A from left to right. What if
you do this from right to left? Then you have A = QR where R is lower triangular. In conclusion, you can
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have QR (if m � n) or RQ (if m  n), and R maybe upper or lower triangular. In our class, for simplicity,
we usually just do QR where R is upper triangular.

5.10 Projections and Applications

5.10.1 Algebraic Projections

The study of orthogonality cannot be complete without the study of orthogonal projections, which is our
goal here. However, we take a slight detour and investigate a special property of matrices. This property
will end up surprisingly connected to projections.

Definition 5.10.1. A linear map P : V ! V (i.e., a square matrix) is idempotent if P 2 = P .

Note that P 2 = P immediately implies that P k = P for all positive integer k. (“idem” means “itself”,
and “potent” means “power”. So “idempotent” literally means that its powers are all itself.) However, P
might not be invertible. In fact, most of the time it is not.

Example 5.10.2. If P is invertible, we see that P 2 = P implies P = I. So the only invertible idempotent
matrix is I.

Apart from I, all other idempotent matrices are NOT invertible. Another easy example is the zero matrix
O. We clearly have O2 = O. ,

As will be evident in the next examples, trace is an important aspect of the study of idempotent matrices.

Definition 5.10.3. We define the trace of a square matrix A to be trace(A) =
P

aii, the sum of diagonal
entries of A.

Proposition 5.10.4. trace(AB) = trace(BA) for any m⇥ n matrix A and n⇥m matrix B.

Proof. See homework.

Remark 5.10.5. trace(AB) = trace(BA) means we can “cyclically permute” matrix multiplications while
preserving the trace. For example trace(ABC) = trace(A(BC)) = trace((BC)A) = trace(BCA). (Note that
non-cyclic permutations might change the trace. We do not have trace(ABC) = trace(ACB) in general.

Take A = C�1 =


1 1
0 1

�
, B =


0 0
1 0

�
for example.)

Let us see some examples of idempotent matrices. They are indeed projections!

Example 5.10.6. Consider a diagonal matrix D whose diagonal entries are all 0 or 1. You can also
immediately see that it has D2 = D. In fact, these are the only idempotent diagonal matrices. (Can you see
why? This is essentially due to the fact that x2 = x has only two solutions, x = 0 and x = 1.)

Consider such a matrix, say D =

2

4
1

1
0

3

5. What is this? It will send a generic vector

2

4
x
y
z

3

5 to

2

4
x
y
0

3

5.

So this is a projection to the xy-plane. In fact, consider any diagonal matrix D whose diagonal entries are
0 or 1, then you see that it is a projection to some coordiate-subspaces (i.e., subspaces spanned by some
coordinate axis).

It is obvious that in this case, trace(D) = rank(D) is the dimension of the target space of your projection.
,

Example 5.10.7. Here let us see a non-diagonal example. Consider P =


�0.2 0.4
�0.6 1.2

�
. You can easily verify

that P 2 = P . What does this matrix do?

173



In this case, one can easily see that Ran(P ) is spanned by


1
3

�
. It will map ALL vectors to the direction

of


1
3

�
. Furthermore, you can check that P


1
3

�
=


1
3

�
. In fact, P 2 = P literally means that P fixes its own

range. This has a very “projection” feel to it.
This is what we call an oblique projection . It will project everything to the line y = 3x on the plane

R2, but NOT orthogonally. Rather, every point goes to this line along the direction of


2
1

�
. You can check

in particular that Ker(P ) is spanned by


2
1

�
.

x axis

y axis
Target Line

Compare this with the matrix Q =


0.1 0.3
0.3 0.9

�
. You will again find that Q2 = Q, and Ran(Q) is spanned

by


1
3

�
as well. However, now the kernel is orthogonal to this range, and we have an orthogonal projection .

x axis

y axis
Target Line

Note that we have trace(P ) = trace(Q) = 1, which is the dimension of the target space of our projections.
This is exactly the case of diagonal idempotent matrices!
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Finally, for the matrix P above, consider I�P =


1.2 �0.4
0.6 �0.2

�
. You can easily verify that (I�P )2 = I�P

as well. What does this matrix do?

In this case, one can easily see that Ran(I � P ) is spanned by


2
1

�
, so Ran(I � P ) = Ker(P ). Similarly,

you can verify that Ker(I � P ) = Ran(P ). The matrix I � P projects to exactly what P kills, and it kills
exactly what P projects! it is the “complement projection” of P .

Again, you can verify that trace(I � P ) = 1, which is again the dimension of the target space of this
projections. ,

We are now ready to understand idempotent matrices. On one hand, obviously all (oblique or orthogonal)
projections must be idempotent, because projecting twice is the same as projecting once. On the other
hand, the following proposition states that, as linear maps, idempotent matrices are (oblique or orthogonal)
projections. So the two are the same.

Proposition 5.10.8. If P : V ! V is idempotent, we have the following conclusions:

1. Ran(P ) is the collection of vectors v such that Pv = v.

2. I � P is also idempotent.

3. Ran(I � P ) = Ker(P ) and Ran(P ) = Ker(I � P ).

4. Ran(P ) and Ran(I � P ) = Ker(P ) are complement subspaces. (So P and I � P are projections onto
complement subspaces.)

5. For any v 2 V , then v = Pv+(I �P )v is the unique decomposition such that the first summand is in
Ran(P ) and the second summand is in Ran(I � P ).

Proof. Suppose v 2 Ran(P ), say v = Pw. Then Pv = P 2w = Pw = v. Conversely, if v = Pv, then
obviously v 2 Ran(P ). So Ran(P ) is exactly the collection of fixed points of P .

Now (I � P )2 = I � 2P + P 2 = I � 2P + P = I � P , so I � P is also idempotent.
Note that v 2 Ran(P ) i↵ Pv = v i↵ (I �P )v = 0, so we see that Ran(I �P ) = Ker(P ). Apply this fact

to the idempotent I � P , we get Ker(I � P ) = Ran(I � (I � P )) = Ran(P ).
Now let us show that Ran(P ) and Ker(P ) are complements. If v 2 Ran(P )\Ker(P ), then v = Pv = 0.

So the intersection is zero. On the other hand, the decomposition v = Pv + (I � P )v holds for all v 2 V ,
so Ran(P ) + Ran(I � P ) = V . So Ran(P ) and Ker(P ) = Ran(I � P ) are complement subspaces.

Any decomposition according to complement subspaces must be unique. Hence the decomposition v =
Pv + (I � P )v is unique.

The important takeaway here is that whenever you have an idempotent P , you should always think about
the pair P and I �P . They give you two complement projections. Note that so far, we have NOT used any
inner product structure in our definition of idempotent matrices and the derivation of properties. These are
true for all abstract vector spaces (finite or infinite dimensional), and without an inner product structure,
we cannot di↵erentiate between oblique and orthogonal projections. We simply call them all projections,
and none is preferred over others.

We are missing one last piece of the puzzle. We have seen in previous examples that trace(P ) =
dimRan(P ), it gives the dimension of the subspace we are projecting onto. This is NOT a coincidence.

Proposition 5.10.9. If P is an idempotent square matrix, then trace(P ) = rank(P ).

Proof. Here we shall use the fact that trace(AB) = trace(BA), whose proof is in the homework.
Suppose P is acting on Rn, so it is a square matrix.
If dimRan(P ) = 1, then P is rank one, so P = uvT for some vectors u,v. Furthermore, uvT = P =

P 2 = u(vTu)vT = (vTu)P , so we have vTu = 1. It is easy to see now trace(P ) =
P

viui = vTu = 1.
Now suppose dimRan(P ) = r. Then P = UV where U is n ⇥ r and injective, and V is r ⇥ n and

surjective. Then UV = P = P 2 = UV UV .
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But since U is injective, we have the law of left cancellation for U . So UV = UV UV implies that
V = UV U . Also, since V is surjective, we have the law of right cancellation for V . So V = V UV implies
that Ir⇥r = V U .

So trace(P ) = trace(UV ) = trace(V U) = trace(Ir⇥r) = r. Note that this is essentially the same proof as
above.

Here it might seem a bit surprising that the trace is the rank. Nominally trace seems to be computed
from entries, which are dependent on our choice of basis. But dimRan(P ) is the rank, which is independent
of choice of basis (and also independent of any inner product structure). So could it be that trace is in fact
independent of basis?

Definition 5.10.10. We say two square matrices A,B are similar if we can find invertible C such that
A = CBC�1.

Note that the domain and codomain of a square matrix are the same. If we perform a change of basis
simultaneously, we would result in similar matrices.

For example, consider L : V ! V , and V has basis B, C. Then LC!C = CB!CLB!BCC!B. Note that on
the right side of the equation, the left-most and right-most matrices are inverse of each other. So LC!C and
LB!B are similar matrices.

Now, trace for linear transformations is indeed independent of any choice of basis (and also independent
from inner product structure).

Proposition 5.10.11. If A,B are similar matrices, then they have the same trace.

Proof. We have trace(CAC�1) = trace(C�1CA) = trace(A).

Interpreting C as such a change of basis, then A,CAC�1 are referring to the same linear transformation,
di↵er only by a change of basis. (Recall that a linear transformation is a linear map whose domain and
codomain are the same.) In this sense, trace is really about the underlying linear map, and not about the
nominal matrix.

Let us conclude this section now. A projection is P with P 2 = P , and the subspace it is projecting to is
Ran(P ), and the dimension is trace(P ).

5.10.2 Orthogonal Projection

Previously we study projections without any reference to the inner product structure. Now, with an inner
product structure, we see that most projections are probably oblique projections. However, we are more
interested in orthogonal projections. These are projections that kills things orthogonal to Ran(P ).

Definition 5.10.12. A projection P : V ! V is an orthogonal projection if Ran(P ) ? Ran(I�P ). (I.e.,
Ran(P ) ? Ker(P ).)

The nice thing about orthogonal projections is that they give “best approximation in W” of any vector
v 2 V . This makes them extremely useful.

Proposition 5.10.13. If P : V ! V is an orthogonal projection to W ✓ V , then Pv is the unique vector
in W closest to v. I.e., we have kv �wk � kv � Pvk for all w 2 W , with equality i↵ w = Pv.

Proof. Consider the decomposition v = Pv+(I�P )v. From the geometric meaning, we see that Pv should
be inside W , while (I � P )v 2 Ran(I � P ) = Ker(P ) = Ran(P )? = W?.

Now our goal is to compare v �w and v � Pv. However, note that the vectors v �w,v � Pv,w � Pv
form a triangle. Furthremore, w � Pv is a linear combination of vectors in W , hence it is still in W . On
the other hand, v � Pv = (I � P )v is perpendicular to everything in W . Hence the triangle made of
v �w,v � Pv,w � Pv is a right triangle.

So by Pythagorean theorem, kv �wk2 = kPv �wk2 + k(I � P )vk2 � k(I � P )vk2 = k(v � Pvk2, and
equality holds i↵ kPv �wk2 = 0 i↵ w = Pv.

(This proof is highly geometric. See if you can draw the picture. This is hilariously a geometric proof to
an analytic property of an algebraic operator.)
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We have previously seen that for a subspace, it might have many oblique projections. But this is not the
case any more. Another nicest thing about an orthogonal projection is that it is unique for the subspace.

Proposition 5.10.14. Given a subspace W ✓ V , then there is a unique orthogonal projection P : V ! V
with Ran(P ) = W .

Proof. Uniqueness is guaranteed by the last proposition, since the image of v after orthogonal projection to
W must be the unique vector in W closest to v. Let us show existence.

One idea is to simply define Pv as the unique vector in W closest to v. Then we can manually and
painstakingly verify that P is linear, and P 2 = P , and W = Ran(P ) ? Ker(P ).

Here is another approach. Suppose WLOG that V = Rn. Find any ONB for W , say w1, . . . ,wk. Then
extend this to a full ONB of the whole space w1, . . . ,wn.

For any v 2 V , we have an orthogonal decomposition v = w1wT
1 v + · · · + wnwT

n
v. However, in this

decomposition, the portion w1wT
1 v + · · ·+wkwT

k
v is inside W , while the rest wk+1wT

k+1v + · · ·+wnwT
n
v

is perpendicular to W .
In particular, let P =

P
k

i=1 wiwT
i
, then this is the desired projection.

Let us reformulate the approach above. (Consider this the third proof if you like.) Pick any ONB
Q = (w1, . . . ,wk) for W , and set P = QQT. We aim to show that P is the desired orthogonal projection to
W .

To start, Ker(P ) = Ker(QQT) = Ker(QT) = Ran(Q)? = W?.
Since P is symmetric, we also have Ran(P ) = Ran(PT) = Ker(P )? = (W?)? = W . So far so good.
Finally, note that the (i, j) entry of QTQ is eT

i
QTQej = wT

i
wj . Since columns of Q form ONB, this is

1 if i = j and 0 if i 6= j. Hence QTQ = Ik⇥k. So we have P 2 = QQTQQT = QIk⇥kQT = QQT = P . So P
is the desired orthogonal projection.

Here is an important remark. Compare the following two formula:

1. For a unit vector u, the orthogonal projection to the line spanned by u is the matrix uuT.

2. For an ONB Q for a subspace W , the orthogonal projection to Ran(Q) is the matrix QQT.

It is quite obvious that the projection formula QQT is a generalization of our old formula uuT.
Furthermore, here is something else to be careful. Note that columns of Q do NOT form a basis for the

whole space, merely for a subspace. So Q is not square. If dimW = k, then Q is n ⇥ k and it is injective.
So P = QQT is an n ⇥ n matrix. We alsk know that Ran(P ) = W , hence this matrix has rank exactly k.
So P is NOT invertible when k < n.

However, QTQ would be a k ⇥ k matrix. And in fact, since columns of Q form a basis for W , we have
Ker(Q) = {0}, and hence Ker(QTQ) = Ker(Q) = {0}. So QTQ is always invertible. In fact, as we have seen
in the calculations in the proposition above, we always have QTQ = Ik⇥k.

Let me again stress these two formula. If columns of Q represent an ONB for a subspace W of dimension
k, then

1. QQT is the orthogonal projection to W .

2. QTQ = Ik⇥k.

Now, if P 2 = P , then it is a (possibly oblique) projection. Can we tell which projections are orthogonal?
We can indeed. This turns out to be surprisingly easy.

Proposition 5.10.15. A square matrix P is an orthogonal projection i↵ P 2 = P and PT = P . (I.e.,
orthogonal projection = symmetric projection.)

Note that we implicitly used the inner product structure because we used transpose. And here we are
refering to the dot product as the inner product. For abstract inner product spaces, pick orthonormal basis
and then do this.
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Proof. Suppose P 2 = P and PT = P . Then Ran(P ) = Ran(PT) = Ker(P )?. Done.
Suppose P is an orthogonal projection, then it is QQT as above. Then we can easily verify that P 2 = P

and P = PT.

So orthogonal projections are uniquely defined, easy to identify, and very useful. To make it even better,
we have another formula.

Proposition 5.10.16. Given any subspace W ✓ Rn, let v1, . . . ,vk be a basis, and let A =
⇥
v1 . . . vk

⇤
.

Then the orthogonal projection to W is A(ATA)�1AT.
In general, if A is injective, then A(ATA)�1AT is the orthogonal projection to Ran(A).

Proof. Since A is injective, ATA is also injective. (See previous homework.) But ATA is also square, so it
is bijective.

Columns of A is a basis for W . To find ONB for W , we perform Gram-Schmidt on A, which means we
do QR decomposition A = QR where Q has orthonormal columns and R is upper triangular with positive
diagonal entries. So columns of Q form ONB for W , and R is invertible.

Now

A(ATA)�1AT =QR(RTQTQR)�1RTQT

=QR(RTR)�1RTQT

=QRR�1(RT)�1RTQT

=QQT.

So this is indeed the desired orthogonal projection.

Now the proof above may seem like magic. Let us now try to demystify it by doing the following
comparision of formula.

1. Given a (non-unit) vector v, the orthogonal projection to the line spanned by v is vvT

vTv .

2. Given a matrix A with independent columns, the orthogonal projection to Ran(A) is A(ATA)�1AT.

Look at the denominator of vvT

vTv and the inversed portion of A(ATA)�1AT, you shall see that they are
pretty much the same formula, with the latter generalizing the former.

Remark 5.10.17. In the expression A(ATA)�1AT, why don’t we expand the parenthesis?
If you try, you see that A(ATA)�1AT = AA�1(AT)�1AT = I. Huh, this CANNOT be! What went

wrong?
The failure of this logic lies in the fact that the identity (AB) = B�1A�1 has an ASSUMPTION! Only

for square matrices this is true.
In our case, A is n⇥ k, so you CANNOT use this formula.
In fact, if n = k, then A being injective means it is bijective, Ran(A) = Rn the whole space. Then

projection to the whole space obviously must be I. This is why expanding the parenthesis gives the identity
matrix as our projection.

You can prove that in general, for n⇥ k matrix A, AAT is n⇥ n with rank the same as A, and ATA is
k ⇥ k with rank the same as A. In our case, A has rank k, hence ATA must be invertible, and AAT is not
invertible when k < n.

5.10.3 Applications of orthogonal projections

As we have discussed before, orthogonal projections are highly useful because they gives approximations.
Consider the following example.
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Example 5.10.18. Suppose we want to solve the linear system:
2

4
1 0
0 1
1 1

3

5x =

2

4
2
1

3.001

3

5 .

Oops, we have no solution. But do we declare failure? No we do not. Rather, we declare this to be
FAKE NEWS and we firmly believe that there must be a solution. So what could happen? Well, it DOES

look suspicious. We ALMOST have a solution of x =


2
1

�
, if only that third coordinates of b changes a tiny

little bit. In fact, everything else are integers, why the hell is this coordinate 3.001? Probably due to some
error.

Sometimes we collect data, and try to solve Ax = b. We know there must be a solution, because this
is a real life problem where the solution must exist. However, possibly due to unaccounted noise or minor
errors, it appears our system has no solution. What to do now?

In this case, one should try to find the BEST x, such that Ax is as close as b as possible!
So what could Ax be? Well, it is obviously always in Ran(A). We want the vector in Ran(A) that is

closest to b, i.e., we want to project b orthogonally to the subspace Ran(A).
Luckily we already know how to do this! If A is injective (it usually is in practice), we just need

b0 = A(ATA)�1ATb and solve Ax = b0 instead.
Let us simplify a bit. We have b0 = A(ATA)�1ATb and Ax = b0. This means Ax = b0 = A(ATA)�1ATb.

Since we assumed that A is injective, by left cancellation we have x = (ATA)�1ATb. Yay! We now have a
formula to find this x, so that Ax is as close to b as possible. This is the “closest” to a solution of Ax = b.

Now the formula is actually not that good. To actually calculate x using this formula, you would need to
calculate the inverse of some matrix, which takes a long time to do. Therefore, we can further simplify this
expression to ATAx = ATb instead, and solve this using Gaussian elimination. Finally, no matrix inversion!
Finding x using ATAx = ATb is in fact faster than finding x using x = (ATA)�1ATb. (Also, finding the
inverse of a matrix would usually results in magnifying the error term, if any initial error is involved.)

To sum up, how to find the best approximated solution? Given a system Ax = b which might not have
a solution, we first apply AT to both sides, and then solve ATAx = ATb instead. ,

Definition 5.10.19. Given A, a least square solution to a system Ax = b is the solution to the system
ATAx = ATb.

Why is it called the least square solution? Because that is what orthogonal projection would do.

Proposition 5.10.20. For any linear system Ax = b which may or may not have a solution, then ATAx =
ATb always have a solution. Furthremore, if x0 is a solution, then Ax0 is as close to b as possible.

Proof. First of all, let us show that there is a solution. Note that the right hand side is

ATb 2 Ran(AT) = Ker(A)? = Ker(ATA)? = Ran(ATA).

Hence we can always find some x such that ATAx = ATb. Done.
Now suppose x0 satisfies ATAx0 = ATb. Let us show that Ax0 is the unique vector in Ran(A) closest

to b.
First we perform full rank decomposition A = BC, where B is injective and C is surjective. Next we

perform QR decomposition B = QR. So Q has orthonormal columns and R is invertible. By the lemma
below, we have Ran(A) = Ran(Q), hence the projection to Ran(A) is just QQT.

Now A = QRC, where RC is surjective. Let S = RC for simplicity. Plug in A = QS to ATAx0 = ATb,
we have

STQTQSx0 = STQTb.

This simplifies to
STSx0 = STQTb.

Since S is surjective, ST is injective and has left cancellation. So Sx0 = QTb. Now apply Q on both
sides, we see that Ax0 = QQTb. So our porposition is correct.
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Lemma 5.10.21. For any m ⇥ n matrix A, we do the full rank decomposition A = BC and then QR
decomposition B = QR. Then Ran(A) = Ran(Q).

Proof. Homework. Use definition of surjectivity of C.

The conclusion is this. If you want to solve Ax = b but there is no solution, then simply solve ATAx =
ATb instead. This gives you as close to a solution as possible.

Let me give you a practical example here.

Example 5.10.22. We uses CT scans to find tumor in a person. To simplify the problem, suppose this
person only consists of four pixels, each pixel is a square with unit side length. Each pixel could be bones,
flesh, blood or tumors. See the picture.

x1 x2

x3 x4

3

7

74 6.1

Figure 5.10.1: CT scan decay

Suppose we uses X-rays to go through these pixels, and the strength of the X-ray would decay by 1, 2, 3, 4
units per unit length through bones, flesh, blood and tumors respectively. For example, if the lower left pixel
is a bone and the lower right cell is flesh, then a ray going horizontally through the lower cells would decay
by a total of 1 + 2 = 3 units. And if the upper left cell is blood and the lower right cell is flesh, then a ray
going diagonally from upper left to lower right would decay by a total of

p
2(1 + 3) = 4

p
2 units.

Now suppose the rate of decay in each pixel per unit length is x1, x2, x3, x4, and we uses five X-rays as
shown. The total decay of each ray after measurement, is also shown. Can you figure out what is the content
of each cell?

Our linear system is 2

66664

1 1 0 0
0 0 1 1p
2 0 0

p
2

1 0 1 0
0 1 0 1

3

77775

2

664

x1

x2

x3

x4

3

775 =

2

66664

3
7
7
4
6.1

3

77775
.

If you attempt to solve this directly, you shall see that there is no solution. This is in fact always the
case in practice. Dust in the air, trumbling patients and so on, there are always some noises that will give
rise to inconsistencies.

However, we can try to find the least square solution. We consider the new system

2

664

1 0
p
2 1 0

1 0 0 0 1
0 1 0 1 0
0 1

p
2 0 1

3

775

2

66664

1 1 0 0
0 0 1 1p
2 0 0

p
2

1 0 1 0
0 1 0 1

3

77775

2

664

x1

x2

x3

x4

3

775 =

2

664

1 0
p
2 1 0

1 0 0 0 1
0 1 0 1 0
0 1

p
2 0 1

3

775

2

66664

3
7
7
4
6.1

3

77775
.

This simplifies to 2

664

4 1 1 2
1 2 0 1
1 0 2 1
2 1 1 4

3

775

2

664

x1

x2

x3

x4

3

775 =

2

664

7 + 7
p
2

9.1
11

13.1 + 7
p
2

3

775 .
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Now the matrix on the left is invertible. So we solve for the least square solution, and find out that
x1 ⇡ 0.950, x2 ⇡ 2.075, x3 ⇡ 3.025, x4 ⇡ 4.000. So we see that the four pixels x1, x2, x3, x4 corresponds to
bones, flesh, blood and tumors. The tumor is located in pixel four, the upper right pixel. Problem solved.

Note that the matrix B =

2

664

4 1 1 2
1 2 0 1
1 0 2 1
2 1 1 4

3

775 depends only on the way we positioned our machine. So we are

going to solve Bx = ATb for many di↵erent b again and again. So in practice, it is better to first perform
the LU decomposition of B beforehand, and then solve for the solution according to each patient’s b. ,

Example 5.10.23. Suppose we want to determine how our education e↵ect your income. We collect data
from n people, (x1, y1), ..., (xn, yn), where xi is the number of years of education received by the i-th person,
and yi is the eventual income of this person.

Suppose we believe in a linear model, that education and income should vaguely lies around some line
y = kx+ b. In this case, we aim to find the line that BEST FIT our data. Then I can claim that on average,
an extra year of education shall increase your income by k.

So our model is Y = kX + b + E where k, b are unknown constants and E represent factors other than
education. X,Y here are random variables that represent the years of educations and income of a random
person. How to find the best k, b to fit our data?

Let y =

2

64
y1
...
yn

3

75 and x =

2

64
x1
...
xn

3

75 and u =

2

64
1
...
1

3

75, then ideally, IF the data lies on a line perfectly, we should

have y = kx+ bu. Here y,x,u are all known, and we aim to solve for the unknown k and b.

Rearrange this, we are trying to solve
⇥
x u

⇤ k
b

�
= y, which is a linear system. Now, of course there

are other factors that influences one’s income, so our data CANNOT lies on a line perfectly. So this system
has no solution. What should we do? We go for the LEAST SQUARE solution instead.

So we are looking at the new system


xT

uT

� ⇥
x u

⇤ k
b

�
=


xT

uT

�
y.

This simplifies to P
x2
i

P
xiP

xi n

� 
k
b

�
=

P
xiyiP
yi

�
.

The solution is k =
P

(xi�x)(yi�y)P
(xi�x)2 and b = y � kx, where x = 1

n

P
xi, y = 1

n

P
yi.

Now note that k = Cov(X,Y )
Var(Y ) , and covariance is an “inner product” for random variables. So this is the

projection formula of the random variable Y to the random variable X, wow! (Compare with the formula
hv,wi
hv,vi of projecting w to v.) This surprisingly makes a lot of sense. If we are trying to predict Y via X, the
best we can approximate is to get the projection of Y to X.

You can also check that in this case, E(E) = 0 and Var(E) is minimized under this condition. So the
“error term” is as small as possible.

This is a very simple case of linear regression . ,

Example 5.10.24. Does death penalty discourage murder? It seems logical. But theory must be tested by
data. So let us see a way to test this.

Let X = 1 if a country or a state has death penalty, and X = 0 if a country or a state has no death
penalty. Let Y be the murder rate in a state or a country. Then if you pick many many countries, you get
many many data (x1, ..., xn) and (y1, ..., yn). Here all xi are 0 or 1, while all yi are some real numbers.

Let us fit these data into a line Y = kX + b + E with the best possible k, b and E(E) = 0. Then what
does this mean? Well, if a country has no death penalty, then X = 0, and then we see that the average
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murder rate is b. If a country has death penalty, then X = 1, and then we see that the average murder rate
is b+ k. In particular, k is EXACTLY the e↵ect of death penalty on murder rate.

After collecting data, we can compute k = Cov(x,y)
Var(x) , and b = ȳ� Cov(x,y)

Var(x) x̄. It turned out that, on almost
all the studies conducted, k is positive!!! Oops. It turned out that death penalty is actually associated to a
higher murder rate. That is very counter-intuitive. What happened?

Attempted explanation 1: Correlation is not causality. Maybe it is the other way around: Countries with
higher murder rate is more likely to punish them severely, so maybe high Y value caused X = 1, instead
of X = 1 causing high Y value. Unfortunately, this causality e↵ect can be addressed with better statistic
approach and better ways to collect data. (E.g., looking at countries that changed their death penalty laws,
and compare the murder rate before and after.) To my knowledge, it turned out that even if we strictly
investigate the causality of X on Y , k is STILL positive. So this explanation failed. Death penalty in fact
lead to a higher murder rate.

Attempted Explanation 2: One argument is that death penalty encourage murder because death penalty
is murder in itself. You are killing criminals, sure, but you planned and premeditated and then killed them.
The message you are sending with a death penalty is that it is OK to kill when you have a justified reason.
So people might think it is OK to kill when they feel justified for some reason.

Attempted Explanation 3: There is a minute but non-zero chance that all previous studies are all collec-
tively unlucky, and we simply get the unlucky data. Maybe death penalty do deter murder. Who knows?

Also keep in mind that this is NOT an endorsement to the total revokation of death penalty. There are
other philosophical concerns to think about. (E.g., Immanuel Kant.) ,
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Part III

Coordinate Invariants
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Chapter 6

Determinants

6.1 Introduction

6.1.1 Oriented Area and Oriented Volume

Given a parallelogram in R2, suppose two of its adjacent edges are v =


a
c

�
,w =


b
d

�
. Then instead we shall

focus on the matrix A =


a b
c d

�
.

Our goal here is to find the area of the parallelogram, i.e., Area(v,w) or Area(A). How can we do this?
First let us list some obvious properties of area.

Example 6.1.1. Consider the parallelograms
⇥
v w

⇤
and

⇥
kv w

⇤
in the graph below. Obviously if I

multiply an edge by k, then the area is multiplied by k. So Area(kv,w) = Area(v, kw) = kArea(v,w).

a1 ka1

a2

(a) Scaling

a1

a0
1

a2 a2
a1 + a0

1

(b) Vector Addition

Figure 6.1.1: Vectors and Area

Similarly, consider the case of Area(a1 + a0
1,a2) above. Treating the direction of a2 as “base” and the

perpendicular direction as “height”, you can see that Area(a1 + a0
1,a2) = Area(a1,a2) + Area(a0

1,a2). It
seems to suggect that area is bilinear!

However, that is not the case. The CORRECT formula is Area(kv,w) = Area(v, kw) = |k|Area(v,w),
because area is always positive. And we in fact have Area(a1+a0

1,a2) = Area(a1,a2)±Area(a0
1,a2), where

the sign depends on whether a1,a0
1 are on the same sides of a2 or not. (Can you draws these out?)

So area is NOT bilinear. ,

This is an annoying situation. Area of a parallelogram is almost bilinear, but not truly. This is largely
due to the need for area to be positive, as is very evident in the formula Area(kv,w) = Area(v, kw) =
|k|Area(v,w).

So, if we allow negative area, then problem solved. The “signed” area, or oriented area will be bilinear.
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What is oriented area? Loosely speaking, for each shape, we can “orient” the shape to be clockwise (CW)
or counter-clockwise (CCW). If we give it a CCW orientation, then it will have positive area. And if we give
it a CW orientation, then it will have negative area.

Example 6.1.2. You might have already encountered the concept of oriented area. For example, in calculus,
a definite integral is the area below the curve. But sometimes the curve goes below the x-axis, resuting in a
negative area. See the graph below.

x
⇡

2

y

⇡

y = cosx

+

�

Figure 6.1.2: Oriented Area

In some sense, you can use the “clockwise” and “counterclockwise” to tell orientation. For example, if
we go along the positive x-axis, you will see that we are going counterclockwise around the positive region,
and clockwise around the negative region. A very informal intuition is to assume that the boundary of your
region is oriented clockwise (CW) or counterclockwise (CCW), where a CCW oriented region has positive
area, and a CW oriented region has a negative area. ,

So now let us see how this oriented area could be calculated. Given two v,w 2 R2, we use det(v,w)
or det

⇥
v w

⇤
to denote the oriented area of the corresponding parallelogram, where we go along the edge

vector v first, and then go along w from the end point of v to the end point of v +w. This will give us a
clear idea about whether the orientation is CW or CCW.

In particular,
⇥
v w

⇤
and

⇥
w v

⇤
both represent the same parallelogram, but with opposite orientation.

Now here are some properties of oriented area.

1. (Normalized) First of all, the unit square going CCW should have area 1. I.e., we want det(e1, e2) =
det(I) = 1.

2. (Bilinear) We do this because we want the oriented area to be bilinear. I.e., we want det(au+bv,w) =
a det(u,w) + b det(v,w).

3. (Anti-symmetry) If we swap the two edges, it is the same parallelogram but with reversed orientation.
I.e., we want det(v,w) = � det(w,v).

Note that these properties immediately implies two interesting results:

1. (Flat parallelogram has no area) Swapping the two vectors gives det(v,v) = � det(v,v), which implies
that det(v,v) = 0. Indeed, if the two edges of the parallelogram coincide, then the area must be zero.
In fact, conversly, if we have bilinearity and the fact that det(v,v) = 0, then we can also deduce that
det(v,w)+det(w,v) = det(v+w,v+w)�det(v,v)�det(w,w) = 0, so we have antisymmetry. Note
that we essentially used the polarization identity here.

2. (Shearing preserves area) We have det(v +w,w) = det(v,w) + det(w,w) = det(v,w).

Now, to calculate det(A), we can try to swap/scale/shear columns of A, and det(A) should change

accordingly. This gives us an idea to calculate this. For A =


a b
c d

�
, assuming we do not see zero in the

denominators below (I.e., d 6= 0 and ad� bc 6= 0), then we have

186



det(A) = det


a b
c d

�
= det


a� bc

d
b

0 d

�
= det


a� bc

d
0

0 d

�
= (a� bc

d
)d det


1 0
0 1

�
= ad� bc.

This process corresponds to shearing a parallelogram until the two edges are on the coordinate axis. See
the graph below, where A =

⇥
a1,a2

⇤
,
⇥
b1, b2

⇤
,
⇥
c1, c2

⇤
are the matrices in the first three steps of the above

calculation.

a1

a2 = b2

b1 = c1

c2

Figure 6.1.3: Column Shearing and Area

Definition 6.1.3. Given a 2⇥ 2 matrix A =


a b
c d

�
, we define det(A) = ad� bc.

You can now easily verify that this satisfy all the desired relations. I.e., this is INDEED a well-defined
oriented area.

Now we have tackled the two-dimensional case of parallelograms, what about parallelepipeds? Can we
define an oriented volume?

Example 6.1.4. My heart is on my left side. You can rotate me, shear me, stretch me, walk me around,
throw me over the moon, and my heart will always on my left side. If a person has his/her heart on the
right side, then this person must not be me, right?

But one day, I lookd into a mirror. The person in the mirror will have his/her heart on the right side.
As we can see, the orientation is reversed. ,

Now, there are arguments that one can think of 3D orientations as “inward” and “outward”. Also, you
can imagine the orientation refers to “positive mass” and “negative mass”, which is sometimes used to solve
some problems in physics. I myself think of the positive volume as something in the REAL world, and
negative volume as something in a MIRROR world. Feel free to do these things if it helps. However, as we
move on into higher and higher dimensions, we will lose sight of our ability to do this. At this point, it is
better to revert back to the basic of WHAT IS AN ORIENTED VOLUME.

Again, we want oriented volume to to satisfy analogous properties as oriented area. Given three vectors
in R3, we can imagine that they form a parallelepiped. Then we want the following properties:

1. (Normalized) We want det(e1, e2, e3) = det(I) = 1.

2. (Multilinear) We want det(au+ bv,x,y) = a det(u,x,y) + b det(v,x,y), and the same for the second
column and for the third column.

3. (Alternating) If we swap the two edges, it is the same parallelepiped but with reversed orientation.
I.e., we want det(u,v,w) = � det(u,w,v), and the same thing if we swap any pair of edges in general.

The first one is trivial. The second one can be seen geometrically. Treating the parallelogram (x,y) as the
base, and the orthogonal direction as height, you shall see that det(u+ v,x,y) = det(u,x,y) + det(v,x,y)
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and det(ku,x,y) = k det(u,x,y). For the third one, it is easier to understand with an example. Consider
the parallelepiped (e1, e2, e3). Reflect this about the plane x = y in R3, and you will get the parallelepiped
(e2, e1, e3). In general, swapping a pair of edges means doing some reflection.

Again, note that these properties immediately implies two interesting results:

1. (Flat parallelepiped has no volume) If two vectors among u,v,w are the same, then there is no volume
and det(u,v,w) = 0.

2. (Shearing preserves volumn) We have det(u+ v,v,w) = det(u,v,w).

Using these ideas, we can establish the formula. Note that the formula is a lot uglier and not nice at all.

Definition 6.1.5. Given a 3⇥ 3 matrix A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5, we define det(A) = a11a22a33 + a12a23a31 +

a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31.

There are many smart ways to memorize this formula, but honestly there is no need. Such methods
are usually for 3⇥ 3 matrices only, so using them has the danger of doing higher dimensional determinants
wrong.

We can go on similarly, and in general, given vectors v1, . . . ,vn 2 Rn, then the determinant of them
det(v1, . . . ,vn) is the oriented n-dimensional volumn of the corresponding n-dimensional parallelotope. We
may also think of the input vectors as columns, forming an n⇥ n square matrix A, and talk about det(A).

But the four dimension determinant formula will have 24 terms in the determinant. In general, the
determinant of n⇥ n matrices will have n! terms. Instead, this is how we define determinants.

Definition 6.1.6. We define an n⇥ n determinant to be a function det : Rn ⇥ · · ·⇥ Rn ! R with n input
vectors from Rn, such that

1. (Identity) det(I) = 1.

2. (Multiplinear) det(v1, . . . ,vn) is linear on each input vi.

3. (Alternating) If we swap the i-th input vi and the j-th input vj for any i 6= j, then the determinant is
negated.

Theorem 6.1.7. For each n, determinant exists and is unique.

We do the proof of this theorem later. For now, let us focus on some more intuitions.

Example 6.1.8. Suppose A is not invertible. Then columns of A are linearly dependent, i.e., they would fail
to span Rn as expected, and would only span some smaller dimensional thing. As a result, the n-dimensional
oriented volume of A would be zero. So det(A) = 0. ,

Example 6.1.9. Suppose we have a diagonal matrix D. Then as a parallelotope, all edges are orthogonal
to each other! So the area is very easy: it is simply the product of all side lengths, i.e., all the diagonal
entries of D.

We can generalize this a bit more. Consider an upper triangular matirx, say U =


a b
0 c

�
. Taking the

first edge as “base” which has length a, then the height is exactly c. So the area is exactly ac. Here b does
not matter at all, because it e↵ects neither the base nor the height. So det(U) = ac.

What about U =

2

4
a b d
0 c e
0 0 f

3

5? Taking the first two edges as “base”, we see that the base area is ac, while

the height is f . So the volume is det(U) = acf .
You can probably see immediately that for any triangular matrix T , then det(T ) is the product of diagonal

entries.
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Similarly, consider a block diagonal matrix M =


A O
O B

�
where A,B are square. Then the A portion

and the B portion are orthogonal to each other. It is not hard to see that we have det(M) = det(A) det(B).

In fact, it is also not hard to see that det


A C
O B

�
= det(A) det(B) as well. Taking A portion as “base”,

then the corresponding height is exactly det(B), and C is irrelavant. ,

6.1.2 Volume Scaling Factor

So far, by thinking of a square matrix A as an n-dimensional parallelotope in Rn, we realized that if we
do column operations, AE, then det(A) and det(AE) are related. Swapping columns would negate the
determinant, shearing columns will preserve the determinant, and finally, scaling columns will scale the
determinants. This subsection is devoted to row operations, det(EA).

But again, let us try to give it a meaning. Given a square matrix A, you may think of it as a linear
transformation A : Rn ! Rn. Given a parallelotope B =

⇥
v1 . . . vn

⇤
, then AB =

⇥
Av1 . . . Avn

⇤
is

the image of the original parallelotope after the transformation A.
So here is the big question: in general, how would A changes volumes of parallelotope? What is det(AB)

det(B) ?
Let me spoil the answer first: It is always a constant, independent of the input parallelotope B. A would
simply change all parallelotope volume by the same factor. This is the volume scaling factor of A, and let
us write it as �(A). For examlpe, rotations will always have a volume scaling factor of 1, and reflections will
always have a volume scaling factor of �1.

Let us see some examples here.

Example 6.1.10. Suppose we have a parallelogram, say
⇥
a1 a2

⇤
=


0 �0.8
1 0.4

�
. We can try to apply

shearings Sk =


1 k
0 1

�
, scalings


k 0
0 1

�
or swapping P =


0 1
1 0

�
to it. As you can see from the graph

below, when we apply S�1, C2, P to it, the area is changed by a fixed factor. Shearing again preserves the
oriented area, swapping preserves the absolute area but changed the orientation, and finally scaling just scale
the area.

a1

a2

Ska1

Ska2

(a) Shearing

a1 = Cka1

a2
Cka2

(b) Scaling

Line of Reflection
a1

a2
Pa1

Pa2

(c) Swap

Figure 6.1.4: Row Operations and Area

Note that these row operations give an interesting contrast to column operations. For example, if we
compare det(A) with det(AE) where E is a shearing, then we are shearing one edge of the parallelogram
along the direction of another. However, if we are comparing det(A) with det(EA), then we are shearing the
whole coordinate charts. In our case, the entire y-axis is sheared in the direction of the x-axis by our linear
transformation E, and the parallelogram simply changes with it.

In these sense, the E of AE are applying changes to the edges of the parallelogram A, where as the E of
EA are applying changes to the whole R2, and A simply changes along. If we use four matches to enclose
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a parallelogram A on a paper, then AE is trying to move/stetch/rotate the matches, while EA is trying to
move/stetch/rotate the whole paper.

Alternatively, if you think of E of EA as a change of coordinate process, then the underlying parallelogram
is in fact unchanged, and we are simply looking at A through a di↵erent perspective, e.g., squint our eyes, tilt
our heads, apply a distorting mirror, these sort of things. And A will end up appearing to have a di↵erent
area from before. The change from A to EA is nominal but not essential. In contrast, AE means we are
essentially changing the parallelogram we are studying.

If these discussions only serves to confuses you, then you are also welcome to just understand AE and
EA in terms of column/row operations.

But either way, the pattern is preserved. Shearing fixes the oriented area, scaling scales the area, and
swapping flips the orientation. These are true for both EA and AE. And we have �(Sk) = 1, �(Ck) =
k, �(P ) = �1. ,

So in the case of elementary matrices, they indeed have a corresponding volume scaling factor, indepen-
dent of the input parallelotope. What about matrices in general?

Now recall that, given any invertible matrix A, it is the product of many elementary matrices, A =
E1 . . . Ek. As a result, we see that

det(AB) = det(E1 . . . EkB) = �(E1) det(E2 . . . EkB) = · · · = �(E1) . . . �(Ek) det(B).

In particular, we see that �(A) =
Q

�(Ei). As you can see, this depends ONLY on A, and NOT on B at all.

Example 6.1.11. Suppose A =


2 0
1 1

�
. Let us calculate �(A).

Note that A =


2 0
0 1

� 
1 0
1 1

�
. The right matrix preserves the area, while the left matrix scale the area

by 2. So �(A) = 2. ,

What if A is not invertible? Then Ran(A) is less than n-dimensional. So any input B, AB will have zero
n-dimensional volume. So �(A) = 0. Either way, we see that each linear map has a unique fixed volume
scaling factor.

Definition 6.1.12. For each n ⇥ n matrix A, we define its volumn scaling factor �(A) to be the number
such that, for any input parallelotope B, det(AB) = �(A) det(B). (I.e., the linear map A scales the volumn
by �(A) always.)

Now what is this �(A)? Note that, since AB as a linear map means we do B and then do A, obviously
�(AB) = �(A)�(B).

Corollary 6.1.13. �(AB) = �(A)�(B).

Proof. For any parallelotope C, we have det(ABC) = �(A) det(BC) = �(A)�(B) det(C). Since this is true
for all C, by definition �(AB) must be the constant �(A)�(B).

For any elementary matrix E, �(AE) = �(A)�(E) by definition. This immediatly implies the following:

1. Taking E as a swapping, we see that swapping columns of A will negate �(A).

2. Taking E as a scaling, we see that scaling columns of A will scale �(A).

3. Taking E as a shearing, we see that shearing columns of A will scale �(A).

4. Obviously �(I) = 1, as the identity map would not change anything.

These looks oddly suspicious! They are exactly the defining properties of determinant!

Proposition 6.1.14. �(A) = det(A).
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Proof. We have �(AB) = �(A) det(B) by definition of the volume scaling factor. Taking B = I, we see that
�(A) = det(A).

So as a function on square matrices, the determinant is the same as the volume scaling factor. (Intuitively
this is also obvious. To find the volume scaling factor, simply check out what would happen to a unit cube.
The map A send the unit cube I to the parallelotope A, so �(A) = det(A).)

Finally, we also have an interesting property.

Proposition 6.1.15. det(A) = det(AT).

Proof. Suppose A is not invertible. Then both A,AT are not invertible, so det(A) = 0 = det(AT).
If A is invertible, then we can reduce A to I through a series of column operations. But then we can do

the corresponding row operations to AT, and it will be reduced to IT = I.
Since these operations determines the determinant, we see that det(A) = det(AT).
To be more detailed, if A = E1 . . . Ek for elementary matrices E1, . . . , Ek, then AT = ET

k
. . . ET

1 . Since
det(Ei) = det(ET

i
) for all elementary matrices, we have det(A) =

Q
det(Ei) =

Q
det(ET

i
) = det(AT).

So now we have an alternative understanding of the determinant. We can think of det(A) as the n-volume
of the n-parallelotope A, or as the volume scaling factor of the linear map A. But the latter perspective
gives us the following two very interesting additional properties of the determinant.

1. det(AB) = det(A) det(B). This is obvious and natural from the volume scaling factor perspective.

2. det(A) = det(AT). This is because row operations and column operations do the same thing to det(A).

It is also very interesting if we combine this with some of our previous knowledges.

Example 6.1.16. Consider the LDU decomposition A = LDU . Here L and U are unit triangular, so their
determinants are both one. So det(A) = det(D). If you think about this, U,L means we are shearing the
edges and also shearing the space, until we end up with a parallelotope D whose edges are on the coordinate
axes. All these shearings preserves volume, so det(A) = det(D) is simply the product of all edge lengths of
D, i.e., all diagonal entries of D. (In some textbooks, i.e., Gilbert Strang, diagonal entries of D in the LDU
decomposition is called the pivot values for A. This is because L�1A gives the row echelon form DU where
pivots will be the corresponding diagonal entries of D.)

Now consider the QR decomposition A = QR. Q here is a rotation/reflection, so its volume scaling factor
must be det(Q) = ±1. R is an upper triangular matrix with positive diagonal entries, so det(R) > 0. So
in this sense, we have det(A) = det(Q) det(R), where det(R) is the absolute volumn of the parallelotope A,
and det(Q) is the orientation of A. ,

Remark 6.1.17. Note that, A not only scales the volume of any input parallelotope by det(A). In fact ANY
shape in Rn, after transformation by A, will have its n-dimensional volume scaled by det(A). (To see this,
chop up the shape into infinitesimal tiny parallelotopes, and take limit. This is a very standard argument in
calculus.)

This fact is crutial in multivariable calculus. In regular calculus, we integrate
R
f(x)dx, and here dx

intuitively refers to a infinitesimal tiny arrow in the direction of positive x-axis. We add up all the tiny
vectors f(x)dx, and the result is

R
f(x)dx.

In multivariable calculus, we integrate
R
f(x, y)dxdy, and here dxdy intuitively refers to an oriented

parallelogram made by tiny vectors dx and dy. So we add up all the tiny oriented area f(x, y)dxdy, and the
result is

R
f(x, y)dxdy

Suppose we are doing
R
f(2x + y, y)dxdy, and we want to do a change fo variable into dzdy where

z = 2x + y. Then dz = 2dx + dy is a tiny arrow in the


2
1

�
direction, and the resulting dzdy will have

a di↵erent oriented area from dxdy. Note that the map A =


2 0
1 1

�
is exactly the linear transformation

that changes the parallelogram dxdy to dzdy. This means dzdy = det(A)dxdy = 2dxdy. So we haveR
f(2x+ y, y)dxdy =

R
f(z, y)( 12dzdy). If you miss the factor 1

2 , then your calculation is wrong.
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6.2 Permutation Issue

Now all discussions so far depends on the existance and uniqueness of the concept of higher dimensional
oriented volume. In lower dimensions, we can work it out and simply produce a formula for det(A). But for
higher dimensions, we need to do this more rigorously. We want to rigorously define “oriented volume” in
any dimension.

Example 6.2.1. Say we have an oriented 4-parallelotope
⇥
v1 v2 v3 v4

⇤
. Now

⇥
v4 v1 v3 v2

⇤
de-

scribes the same parallelotope, but does it have the same orientation as before, or the opposite orientation?
Well, we need to check the number of swaps. One might do

⇥
v1 v2 v3 v4

⇤
!

⇥
v4 v2 v3 v1

⇤
!

⇥
v4 v1 v3 v2

⇤
.

So we see that two swaps are needed. So they should have the same orientation.
But hold on a second! What if I do permutations di↵erently? What if by some other way of swapping

things, I go from
⇥
v1 v2 v3 v4

⇤
to

⇥
v4 v1 v3 v2

⇤
wiht odd number of swaps, hence they would have

di↵erent orientation? Then we would have a contradiction at hour hand. The whole concept of oriented
volume would collapse and become total nonesense.

Luckily, that may never happen. For example, let us do a di↵erent series of swaps. One might have

⇥
v1 v2 v3 v4

⇤
!

⇥
v3 v2 v1 v4

⇤
!

⇥
v3 v2 v4 v1

⇤
!

⇥
v4 v2 v3 v1

⇤
!

⇥
v4 v1 v3 v2

⇤
.

Then we have four swaps, still even. ,

So, how is this “orientation” thing defined? It seems to be someting induced by reflections. Consider a
swapping matrix P , which is supposed to change orientations. Given a permutation matrix P , if it is done
via an even number of swaps, then it should preserve orientation. If it is done via an odd number of swaps,
then it should negate the orientation. This motivates us to do the following definition:

Definition 6.2.2. A permutation is called an even permutation if it is the composition of even number
of swaps. A permutation is called an odd permutation if it is the composition of odd number of swaps.

Our goal is to rigorously show that, each permutation must be either even, or odd, but not both. This is
the very fundation of orientation. Without this fact, then orientation could not ever be consistently defined.
We now do this via some super fun diagrams.

Lemma 6.2.3. Any permutation is the composition of swaps.

Proof. There are many many ways to do this. However, here we give a proof based on diagrams, and we
merely provide an example here. You should be able to generalize this yourself.

Suppose a permutation sends 1, 2, 3, 4, 5 to 2, 4, 1, 5, 3. We can use the diagram below to denote this:

1 1

2 2

3 3

4 4

5 5
.

Did you see the crossings? Now, we repreduce these crossings via swaps, in the following way:
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1 1

2 2

3 3

4 4

5 5
.

As you can see, we have decomposed a permutation into a series of swaps. It is easy to generalize this to
any permutation.

Lemma 6.2.4. The identity permutation can only be the composition of even number of swaps, but not odd
number of swaps.

Proof. Suppose we decompose the identity permutation into a series of swaps. For illustration purpose, you
can look at the following diagram:

1 1

2 2

3 3

4 4

5 5
.

Note that the composition is identity means each path goes ends up at the same number as where they
started. I claim that for any such diagram, we must have an even number of “crossings” in total.

For example, consider the blue path from 2 to 2 and the yellow path from 3 to 3. Since the yellow path
started below the blue path and ends up below the blue path, whenever it “crosses above”, it must eventually
“crosses back down”. So the number of crossings between the blue path and the yellow path is even. (If you
like, this is like a discrete version of intermediate value theorem in calculus.)

But the same is true for any pair of paths here. So the total number of crossings must be even. So the
identity can only be the composition of even numbers of swaps.

Theorem 6.2.5. A permutation must be either even or odd, but not both.

Proof. Suppose P = P1 . . . Ps = Q1 . . . Qt is the decomposition of the permutation P into swaps P1, . . . , Ps

or swaps Q1, . . . , Qt. Then I = PP�1 = P1 . . . PsQt . . . Q1. (Here note that the inverse of a swap is itself.)
So the identity permutation is the composition of s+ t numbers of swaps. But then s+ t must be even, so
s, t must be both even or both odd.

As a result, orientation is well-defined. For the purpose of later use, let us do one last definition.

Definition 6.2.6. For a permutation P , we define its sign sign(P ) to be 1 if P is even, and �1 if P is odd.
So if P is the composition of k swaps, then sign(P ) = (�1)k.
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Note that many traditional Chinese textbook often refers to a concept called “inversion number”, which
refers to the number of inersections in our diagrams.

You should NOT focus on the number of intersections (i.e., inversion numbers). The numbers themselves
are utterly useless. Only the parity (i.e., even or odd) matters.

Remark 6.2.7. (Optional)
The above method is in fact NOT how people study permutations most of the time. A more useful concept

is cycle decomposition. This is hard to establish for beginners, but in practis it is both easy to compute and
easy to use.

Suppose our permutation sends 1, 2, 3, 4, 5 to 2, 3, 1, 5, 4 respectively. Then this means we have a loop
1 ! 2 ! 3 ! 1 and a loop 4 $ 5, or “cycles”. Cycle decomposition means we think of our permutation as
disjoint loops (cycles) like these. It is a fact that the cycle decomposition of a permutation must exist and be
unique. (Can you see this? We may also return to this after we studied eigenvalues.)

Cycle decompositions are very easy to find. Say we pick 1, and we keep applying our permutation, and
eventually it will goes back to 1, and we found a cycle. We do this for each input, and we can quickly find
all cycles. (As you can see, we can do cycle decomposition as fast as simply reading the permutation.)

Now, if a permutation has a cycle decomposition into cycles of length c1, . . . , cp, then (
P

ci)� p is even
i↵ the permutation is even, and this is odd i↵ the permutation is odd. (Can you see why?) For super super
large permutations, the diagrams will be an unreadable mess, and cycle decomposition is much more superior.

6.3 Uniqueness and Existence of Determinants

Definition 6.3.1. We define a function det : Mn⇥n ! R to be a determinant function if it is multilinear
(linear in each column), alternating (swapping two columns will negate value), and normalized (det(I) = 1).

Note that we are going to write det(v1, . . . ,vn) sometimes, and this simply means det(A) where A =⇥
v1 . . . vn

⇤

You can interpret the determinant function as n-dimensional oriented volume, or as volume scaling factor,
it does not matter. Our goal is to show that this exist and is unique. So we can simply say “the determinant”
instead of “a determinant function”.

But before we show that it exists, let us see some examples of what is NOT a determinant.

Example 6.3.2. A multilinear function is NOT linear (unless there is only one input). For example, in
R2, det(3A) 6= 3det(A). Rather, it is 9 det(A). We CANNOT just pull out the common factor 3 from the
MATRIX. Rather, we have to pull out the common factor 3 from EACH COLUMN, and thus we pulled out
two 3’s instead.

So linear functions like trace are NOT determinants.
Nevertheless, there are some behavioral analogies. For example, a linear combination of multilinear

functions are still multilinear. For example, If f, g are multilinear, then (f + g)(u+ v,w) = f(u+ v,w) +
g(u+ v,w) = f(u,w) + f(v,w) + g(u,w) + g(v,w) = (f + g)(u,w) + (f + g)(v,w). ,

Example 6.3.3. Consider the function f : Mn⇥n ! R with f such that f(A) = a11a22 . . . ann, i.e., it sends
any matrix to the product of diagonal entries. This is multilinear. Let us just prove that it is linear in the
first column. We have

f(

2

6664

b11 + c11 a12 . . . a1n
b21 + c21 a22 . . . a2n

...
...

. . .
...

bn1 + cn1 an2 . . . ann

3

7775
)

=(b11 + c11)a22 . . . ann

=b11a22 . . . ann + c11a22 . . . ann
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=f(

2

6664

b11 a12 . . . a1n
b21 a22 . . . a2n
...

...
. . .

...
bn1 an2 . . . ann

3

7775
) + f(

2

6664

c11 a12 . . . a1n
c21 a22 . . . a2n
...

...
. . .

...
cn1 an2 . . . ann

3

7775
).

You can esily verify the rest. However, this is NOT alternating. Indeed, f(I) = 1, but for any non-identity
permutation matrix P , since it will fail to preserve all index, some diagonal entry will be zero. So f(P ) = 0,
whereas we should have det(P ) = 1 for even permutations and �1 for odd permutations.

Note that this is a start though. Note that if we set fP (A) = f(AP ) for a fixed permutation P , then fP
is also multilinear because P merely permute the columns.

Suppose we set g(A) =
P

P
fP (A). For example, over R3 we have

g(u,v,w) = f(u,v,w) + f(u,w,v) + f(v,w,u) + f(v,u,w) + f(w,u,v) + f(w,v,u).

This is a linear combination of multilinear functions fP for all P , and hence multilinear. However, it is
NOT alternating. Rather, it is symmetric. As you can see, permuting columns in g would NOT change the
value. What if we want something alternating? We would have to define g di↵erently. Suppose we define

g(u,v,w) = f(u,v,w)� f(u,w,v) + f(v,w,u)� f(v,u,w) + f(w,u,v)� f(w,v,u).

Then this shall be alternating as desired. So the desired function is g(A) =
P

P
±fP (A), where we add

this for even permutations, and substract this for odd permutations. ,

Theorem 6.3.4. The determinant function exists.

Proof. Let us start with any non-zero multilinear function f : Mn⇥n ! R. Say pick f such that f(A) =
a11a22 . . . ann, i.e., it sends any matrix to the product of diagonal entries.

Now, obviously this f is NOT a determinant function, because it is not alternating. What should we do
then? WE FORCE IT!

We define a new function fP as fP (A) = f(AP ) for each permutation P . Let sign(P ) be 1 if P is an
even permutation, and �1 if P is an odd permutation. Set g(A) =

P
P
sign(P )fP (A).

What have I done? Well, since each fP is still multilinear, their linear combination is also multilinear. Fur-
thermore, if S is a swap, then g(AS) =

P
P
sign(P )fP (AS) =

P
P
sign(P )fPS(A) = �

P
P
sign(PS)fPS(A) =

�
P

P 0 sign(P 0)fP 0(A) = �g(A). Here we set P 0 = PS and used a change of index for the sum. So g is
multilinear and alternating.

Now what about normalized? Well, check out g(I). Note that f(I) = 1 and fP (I) = 0 as long as P is
not the identity permutation. So g(I) = f(I) = 1. So we are done.

Remark 6.3.5. A philosophy remark here. The initial multilinear function f does not actually matter much.
Pick any f , and define g =

P
sign(P )fP . Then g must be multilinear and alternating. If g(I) = 1, then it

is the determinant and we are done. If g(I) 6= 1, 0, then define h = 1
g(I)g, and it will be the determinant.

The only potential trouble is if g(I) = 0. If that happens, then you need to pick a di↵erent f .

Corollary 6.3.6 (Leibniz formula of determinants, i.e., the “big formula”). A formula for a determinant
function is det(A) =

P
�
sign(�)a�(1),1 . . . a�(n),n. Here � ranges over all permutations on the index set

{1, 2, ..., n}, and ai,j is the (i, j) entry of A.

Proof. Just pick f(A) =
Q

aii and construct g as before.

So we have established existence. Note how unwieldly this formula is. For n ⇥ n matrices, we have n!
terms. Oof! Don’t memorize this, and don’t ever use this formula, unless you have to. Also, don’t let your
computer compute this formula, if you don’t want your computer to burn itself out. This takes forever to
compute.

The only point of this formula is to show that determinants DO exist. Now a more practical approach
of determinant lies in the fact that it is unique, which we now prove.
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Theorem 6.3.7. The determinant function is unique.

Proof. Suppose f, g are two determinant functions. Suppose f(A) = g(A) for some A. Then since AE is
simply doing corresponding column operations on A, and since f, g are both alternating and multilinear,
therefore we have f(AE) = g(AE).

But we have f(I) = 1 = g(I). By applying a series of column operations, I can get to any invertible
matrix from I. So we have f(A) = g(A) for all invertible A.

If A is not invertible, then AE will have first column zero for some E. (One column is the linear
combination of others. Shear this column into zero using other columns, then swap it to the left.)

By multilinearity, we have f(AE) = 0 = g(AE). So f(A) = g(A) as well.

Here is an alternative way to get the big formula. It is less conceptual and more computational. But
the idea is simple: the big formula is simply this: write all inputs as linear combinations of standard basis
vectors, and use multilinearity to expand everything!

Example 6.3.8. Consider det(A) where A =


a b
c d

�
. We have

det(A) =det(


a
c

�
,


b
d

�
)

=det(ae1 + ce2, be1 + de2)

=ab det(e1, e1) + ad det(e1, e2) + bc det(e2, e1) + cd det(e2, e2)

=ad� bc.

Again, as you can see, we get the big formula by simply expanding everything using multilinearity. ,

Let us now do an alternative proof of the Leibniz formula.

Alternative proof of Leibniz formula. Let ak be the k-th column of A, and let ai,j be the (i, j) entry of A.
Then ak =

P
n

ik=1 aik,keik for each k.
Now

det(A) =det(a1, . . . ,an)

=det(
nX

i1=1

ai1,1ei1 , . . . ,
nX

in=1

ain,nein)

=
X

(i1,...,in)

ai1,1 . . . ain,n det(ei1 , . . . , ein).

Now, if a tuple (i1, . . . , in) have repeated indices, then det(ei1 , . . . , ein) = 0. If there is no repeated
indices, then (i1, . . . , in) is a permutation of (1, . . . , n), and thus it corresponds to some permutaiton P , and
det(ei1 , . . . , ein) = det(P ) = sign(P ).

Hence we have

det(A) =
X

(i1,...,in)

ai1,1 . . . ain,n det(ei1 , . . . , ein)

=
X

P

sign(P )aP (1),1 . . . aP (n),n.

Here P ranges over all possible permutations, and P (k) is the number that P would permute k to.

So here is an important conclusion: whatever the big formula can do, you can also do by simply using
multilinearity. The big formula is nothing more than the ultimate expression after using multilinearity on
everything. Multilinearity is enough. We shall almost NEVER use the big formula!
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Example 6.3.9. We have the 3⇥ 3 determinant formula

det

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5 = a11a22a33 + a12a23a31 + a13a32a21 � a11a23a32 � a13a22a31 � a12a21a33.

Can you see which term corresponds to which permutation? ,

Example 6.3.10. We have the 2 ⇥ 2 determinant formula det


a b
c d

�
= ad � bc. So the area of the

parallelogram is the di↵erence between the area of two squares. Can you prove this statement using high
school planar geometry? (Hint: geometrically speaking, multilinearity means, for example, we should do
a
c

�
=


a
0

�
+


0
c

�
. As a result, the parallelogram would break down into (the sum or di↵erence of) two

parallelograms. Now shear these parallelograms ultil they are rectangles.) ,

6.4 Base, Height, Cofactor Expansion

Example 6.4.1. Given a 3⇥ 3 matrix A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5, we have

det(A) = a11a22a33 + a12a23a31 + a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31.

Boy this is ugly. However, let us try to establish some pattern here. For example, let us take all the
terms involving a11. Then we see a11(a22a33 � a23a32). This is exactly a11 times the determinant of the
lower right block! We shall in this section generalize this to all matrices and all entries.

Basically, for aij , the corresponding coe�cient for aij is (�1)i+j det(Aij), where Aij is the submatrix of
A by removing the i-th row and j-th column. ,

Our goal is to achieve the following: we want to arrange the big formula for det(A) as

det(A) = aij(Blahblah) + (Other stu↵ that does not involve aij).

In short, we want to figure out what terms in the big formula would involve the entry aij . For this
purpose, let us also use a concept from calculus.

Definition 6.4.2. Given a function of many variables, say f(x, y, z), the partial derivative @

@x
f means hold-

ing the other variables constant, and take derivative with respect to x. I.e., @

@x
f(x, y, z) = limdx!0

f(x+dx,y,z)�f(x,y,z)
dx .

Example 6.4.3. Say f(x, y) = x2y. Then @

@x
f = 2xy and @

@y
f = x2.

For determinant, we have n2 variables a11, a12, . . . , ann. Above we showed that for 3 ⇥ 3 matrix A,
@

@a11
det(A) = a22a33 � a23a32. Basically, suppose we have

det(A) = aij(Blahblah) + (Other stu↵ that does not involve aij).

Then @

@aij
det(A) is exactly the “Blahblah” portion.

In terms of calculus, we shall later show that @

@aij
det(A) = (�1)i+j det(Aij). Calculus aside, the intuition

is the answer to the following question: How would a particular entry aij influence det(A)? The answer is
via all the entriess NOT in the same column and NOT in the same row.

This makes sense, considering how the big furmula works. Each term of the big formula uses exactly
one entry in each row and each column. So all the entries in the same row would NEVER be multiplied to
produce a term, and the same for all entries in the same column. Their contributions to the determinant
are “disjoint”. ,
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Definition 6.4.4. For a matrix A, we use Aij to denote the submatrix of A by removing the i-th row and
j-th column. Then we call cij = (�1)i+j det(Aij) the (i, j) cofactor of A.

In particular, the matrix C whose (i, j) entry is cij is the cofactor matrix of A.

Remark 6.4.5. The name “cofactor” is like this: in the big formula det(A) = a11a22a33 + a12a23a31 +
a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31, what terms have factor a11? Then these terms make up
a11(a22a33 � a23a32) or a11c11. Hence c11 is the “cofactor” to the factor a11.

Lemma 6.4.6. @

@a11
(det(A)) = det(A11) = c11.

Proof. Suppose B is the matrix obtained by increasing the (1, 1) entry of A by a tiny bit dx. We want to
see how det(A) changes into det(B).

Note that A,B di↵er only in the first column. If A has first column a, then B has first column a+dxe1.
So

det(B) = det(a+ dxe1, rest) = det(a, rest) + det(dxe1, rest) = det(A) + det(dxe1, rest).

In particular, we see that det(B) � det(A) = det(dxe1, rest) = det


dx ?
0 A11

�
. This is block upper

triangular, so this is dx det(A11) = c11 dx.

So @

@a11
(det(A)) = limdx!0

det(B)�det(A)
dx = c11.

Proposition 6.4.7 (How entries e↵ect determinant). @

@aij
(det(A)) = (�1)i+j det(Aij) = cij.

Proof. Let Pi be the permutation matrix that (as row operation) send indices 1 to 2, 2 to 3, ..., i � 1 to
i, and then i to 1. All other indices are fixed. Let Pj be defined similarly but as a column operation. Let
B = PiAPj .

Then by interpreting these permutation matrices as row permutations and column permutations, one can
directly verify that the (1, 1) entry of B, b11, is exactly aij , and the submatrix B11 is exactly Aij .

Now det(Aij) = det(B11) =
@

@b11
(det(B)) = @

@aij
(det(PiAPj)) = det(Pi)

@

@aij
(det(A)) det(Pj). Here the

last equality is because det(Pi), det(Pj) are constants, so we can simply take them out of the derivative.
Now Pi has i � 1 crosses in its diagram, and Pj has j � 1 crosses in its diagram, so we see that

det(Pi) det(Pj) = (�1)i+j�2 = (�1)i+j . Here we use i + j instead of i + j � 2 because it looks prettier.
Hence, det(Aij) = (�1)i+j @

@aij
(det(A)).

You should loosely interpret above proposition as this: the formula for determinant is det(A) = aijcij +
other stu↵, where “other stu↵” do not use the entry aij at all. Putting these together, we would have a new
formla for determinant.

Example 6.4.8.

det(A) =a11a22a33 + a12a23a31 + a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31

=a11(a22a33 � a23a32) + a21(�a12a33 + a13a32) + a31(a12a23 � a13a22)

=a11c11 + a21c21 + a31c31.

Basically, each term in the big formula for det(A) must uses one entry in the first column. And if a term
uses ai1, then it is a term contained inside ai1ci1. ,

Theorem 6.4.9 (Laplace expansion). Fix an index k. Then det(A) = a1kc1k + · · ·+ ankcnk (expansion via
the k-th column), and similarly det(A) = ak1ck1 + · · ·+ aknckn (expansion via the k-th row).

Proof. Look at the Lebniz formula. Each term must be has exactly ONE of a1k, . . . , ank as a factor. (Since
each term only contains a single entry from the k-th column). In particular, by taking common factors, we
can write det(A) = a1k(stu↵) + a2k(stu↵) + · · ·+ ank(stu↵), and all the “stu↵” here only uses entries NOT
on the k-th column (since the one on the k-th column is already picked).

Now by taking partial derivatives, we see that @

@aik
(det(A)) is exactly the “stu↵” after aik, and we have

@

@aik
(det(A)) = cik. So we are done.
The expansion via rows is the same as the expansion via columns.

198



Example 6.4.10. In general, the Laplace expansion would reduce the calculation of a single n ⇥ n deter-
minant to the calculation of n determinants of (n� 1)⇥ (n� 1) determinants. For examlpe, we have

det

2

4
1 2 3
4 5 6
7 8 9

3

5 = 1⇥ det


5 6
8 9

�
� 4⇥ det


2 3
8 9

�
+ 7⇥ det


2 3
5 6

�
.

Note the sign here are alternating. Be careful not to mess it up.
Now this in general did not save too many time. It is merely doing the big formula in a more organized

way. However, sometimes it will save you some time.

For examlpe, consider det(A) = det

2

664

0 1 2 3
0 4 0 0
5 6 7 8
0 9 10 11

3

775. By doing Laplace expansion in the first column,

we have det

2

664

0 1 2 3
0 4 0 0
5 6 7 8
0 9 10 11

3

775 = 5det

2

4
1 2 3
4 0 0
9 10 11

3

5 . This is nice because the first column has many ze-

ros. Keep picking rows and columns with many zeros, and we can expand along the second row and get

�20 det


2 3
10 11

�
= 160.

But let us do this again by using the big formula directly. Then you shall immediately see that this again.
Recall that, in the big formula, each term only uses, and must use exactly ONE entry from each column

and each row. Now loot at det

2

664

0 1 2 3
0 4 0 0
5 6 7 8
0 9 10 11

3

775. If a term in the big formula wants to be non-zero, then

it MUST use the 5. There is no other non-zero alternatives. Similarly, the term MUST also use 4 in the
second row. There is no other alternative.

Now since a nonzero term must use the 5 in the first column and the 4 in the second row, the rest is like

det

2

664

� � 2 3
� 4 � �
5 � � �
� � 10 11

3

775. The dashed out portion does not matter, because NO NONZERO TERM will use

them ever. They might as well all be zero. Now, since a non-zero term must already picked 5 and 4 here,
there are only two possibilities left: pick 2 and 11, or pick 3 and 10.

So the two non-zero terms are 5⇥4⇥2⇥11 and 5⇥4⇥3⇥10. Be careful of the sign, which comes from the

position of these entries. So we have det(A) = 5⇥4⇥2⇥11 det

2

664

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3

775+5⇥4⇥3⇥10 det

2

664

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

3

775.

The first permutation matrix can be done in 1 swap, while the second can be done in 2 swaps. So we have
det(A) = �5⇥ 4⇥ 2⇥ 11 + 5⇥ 4⇥ 3⇥ 10 = 160.

As you can see, there is a clear equivalence between Laplace expansion and the big formula. Laplace
expansion is simply grouping terms in the big formula by common factors. Intuitively, Laplace expansion is
nothing more than doing the big formula in a more organized fashion.

Here is something else to think about, if you like. At least how many zeros do you need for a 4 ⇥ 4
matrix, to guarantee that all terms in the big formula are zero? (Answer is 4, and they must all lie on the
same column or same row.)

Let us do this YET AGAIN. When we say “the non-zero terms must pick 5 in the first column”, and
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thereby simplifying the determinant det

2

664

0 1 2 3
0 4 0 0
5 6 7 8
0 9 10 11

3

775 into det

2

664

0 1 2 3
0 4 0 0
5 0 0 0
0 9 10 11

3

775. Hey, this is just a column

operation! We can then do a row operation using the second row to shear others, and get det

2

664

0 0 2 3
0 4 0 0
5 0 0 0
0 0 10 11

3

775.

And we get the results again.
See? Ultimately, the big formula is just multilinearity. So any fancy argument using the big formula

must ultimately be the same as some column/row operations.
Let us do this YET YET AGAIN. Consider some row/column swaps as

det

2

664

0 1 2 3
0 4 0 0
5 6 7 8
0 9 10 11

3

775 = (�1)3 det

2

664

5 6 7 8
0 1 2 3
0 9 10 11
0 4 0 0

3

775 = (�1)4 det

2

664

5 8 7 6
0 3 2 1
0 11 10 9
0 0 0 4

3

775 .

Now note that this is block upper triangular, with blocks
⇥
5
⇤
,


3 2
11 10

�
,
⇥
4
⇤
. So the answer is (�1)4 ⇥

5⇥ 4⇥ det


3 2
11 10

�
= 160. As you can see, why were we able to utilize the zero entries so e↵ectively? It is

precisely because these zeros allow us to make things block upper triangular, which reduced the calculation
of a big determinant to be simplified into a smaller determinant.

If the zeros are smartly arranged, so that you cannot get block triangular things no matter how you
permute, then none of the above methods would have worked. ,

Recall that the Leibniz formula (big formula) is basically just writing all columns in the standard basis,
and expand everything using multilinearity. And afterwards, by grouping terms in the big formula via
common factors along a column or a row, we have the Laplace expansion.

So multilinearity = Leibniz formula = Laplace expansion. They are simply describing the same structure
in di↵erent perspectives. The first one is the perspective of linear algebra. The Leibniz formula is from the
perspective of permutation theory. And the Laplace expansion is in fact a geometric perspective.

Proposition 6.4.11 (Laplace expansion is base times height). Consider a square matrix A =
⇥
a1 . . . an

⇤

and its cofactor matrix C =
⇥
c1 . . . cn

⇤
. Then aT

i
cj is 0 if i 6= j and det(A) if i = j. The same is true

for rows.
In particular, ci is perpendicular to a1, . . . ,ai�1,ai+1, . . . ,an. And the length kcik is exactly the (n�1)-

dimensional absolute volume of the (n� 1)-dimensional parallelotope (a1, . . . ,ai�1,ai+1, . . . ,an) in Rn.

Proof. We already know that aT
i
ci = det(A). Now, suppose we have i 6= j, and we aim to show that

aT
i
cj = 0.
Let us prove the case when j = 1 and i 6= 1. Imagine the Laplace expansion for the following two

matrices.
A =

⇥
a1 a2 . . . an

⇤
.

B =
⇥
ai a2 . . . an

⇤
.

To both matrices, if we perform the Laplace expansion along the first column, the cofactors are actually
identical! Therefore we have det(A) = aT

1 c1 and det(B) = aT
i
c1.

On the other hand, clearly B has repeated column. So det(B) = 0. Hence we see that c1 ? ai.
So we are done. We see that cj is perpendicular to a1, . . . ,aj�1,aj+1, . . . ,an, i.e., perpendicular to the

“base”. Then Volumn = |det(A)| = |aT
j
cj | = kProjection of aj to cjkkcjk = height ⇥ kcjk. So we see that

kcjk = “Base Area”.
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Corollary 6.4.12 (Big Formula for Inverse Matrix). CTA = ATC = det(A)I. In particular, if A is
invertible, then its inverse is A�1 = 1

det(A)C
T. Note that this gives a formula for the inverse.

Proof. The (i, j) entry of CTA is cT
i
aj . So we are done.

Example 6.4.13. Suppose A =


a b
c d

�
. Then the cofactor matrix is C =


d �c
�b a

�
. And the inverse is

A�1 = 1
ad�bc


d �b
�c a

�
.

Intuitively, the cofactors are the “entries of inverse transpose, but without denominator”. ,

The formula here may sounds nice, but it is actually too slow to compute. Each entry of C is a deter-
minant, and you would have to calculate forever. Our old approach, i.e., Gaussian elimination on

⇥
A I

⇤
,

would find A�1 much faster.

Corollary 6.4.14 (Cramer’s rule). Suppose A is invertible. Then the unique solution to Ax = b is a vector

whose i-th coordinate is xi = det(Ai)
det(A) , where Ai is a matrix obtained by replacing the i-th row of A by b.

Note that this gives a formula for the solution of the linear system. (Too ugly to be useful though. Gaussian
elimination is much faster.)

Proof. Let us simply prove the formula for x1. The rest are the same.
ConsiderA =

⇥
a1 a2 . . . an

⇤
andA1 =

⇥
b a2 . . . an

⇤
. Then det(A1) = det

⇥
x1a1 + · · ·+ xnan a2 . . . an

⇤
=

det
⇥
x1a1 a2 . . . an

⇤
by shearing columns. Then we have det(A1) = x1 det

⇥
a1 a2 . . . an

⇤
=

x1 det(A). So we are done.
There is also a more geometric proof (with essentially the same idea). Note that as parallelotopes, A,A1

share the same “base” made of a2, . . . ,an. So the ratio of determinant is simlpy the ratio of height. So the
key is to compare how a1 contribute to the height, and how b contribute to the height.

Now height is the portion perpendicular to the base, i.e., perpendicular to a2, . . . ,an. If b = x1a1 +
· · ·+ xnan, then x2a2 + · · ·+ xnan does NOT contribute to the height at all, because this is parallel to the
base. Only x1a1 component of b would contribute. So the height of A1 is x1 times the height of A. So we
are done.

Remark 6.4.15. The big formula for determinant, inverse matrix, and solutions for linear system are ALL
useless for computational purpose. There are too many terms, and too many additions and multiplications
to do. It is usually MUCH faster to use Gaussian elimination for all of them.

However, the importance lies in perspectives. How would an entry contribute to the determinant? How
would zero entries help simplify the determinant? How does parallelotopes has to do with solving linear
systems? THESE are the main takeaways.

6.5 (Optional) Generalized Pythagorean theorem and Cauchy-
Binet formula

Note that in the discussions above, we have essentially solved a geometric problem.

Corollary 6.5.1 ((n� 1)-dimensional parallelotope in Rn). Suppose we have an (n� 1)-dimensional paral-
lelotope in Rn, whose edges form an n⇥ (n� 1) matrix A. Let Ai be the square matrix obtained by removing
the i-th row of A. Then the (n� 1)-dimensional (absolute) volumn is

pP
det(Ai)2.

Proof. Consider adding an arbitrary column x to the left of A to get an n ⇥ n square matrix B. Then the
(n � 1)-parallelotope is the “base” of B using all but the first columns. Let c1 be the first column of the
cofactor matrix of B, then kc1k is our desired results.

Now c1 has coordinates ± det(Ai). So we are done.
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Note that Ai is obtained by deleting the i-th coordinate of all edges of the parallelotope. So they are
projection image of A. For example, if n = 3 and A represent some parallelogram, then A1 is the projection
to yz-plane.

Corollary 6.5.2 (Generalized Pythagorean Theorem). Given a right tetrahedron (a “corner of the walls”,
i.e., three adjacent edges of it are mutually orthogonal to each other), the squared area of the oblique face is
the sum of the squared area of the right-triangle faces.

Any flat shape in R3, say it has area S, and its “shadows”, i.e., projections to the three coordinate planes,
has are Sxy, Syz, Szx, then S2 = S2

xy
+ S2

yz
+ S2

zx
. (However, this is only true for flat shapes, i.e., entirely

contained in an a�ne 2-dimensional space. Surfaces with a curvature will fail to have this.)
(You can easily see generalizations of this in higher dimensions. But the proof relies on Cauchy-Binet

formula, which is poven below.)

However, in comparison, here is an interesting result.

Proposition 6.5.3 (k-dimensional parallelotope in Rn). Consider a k-dimensional parallelotope in Rn

(inner product is dot product), with edges forming a matrix A =
⇥
a1 . . . ak

⇤
. Then the k-dimensional

(absolute) volumn is
p
det(ATA).

Proof. Let W = Ran(A) and pick an orthonormal basis for W?, Q =
⇥
qk+1 . . . qn

⇤
. Now all these

vectors are unit vectors, mutually orthogonal, and all orthogonal to the parallelotope represented by A. As
a result,

⇥
A Q

⇤
is an n-dimensional parallelotope whose n-dimensional absolute volumn is the same as the

k-dimensional absolute volume of A.

So this is |det
⇥
A Q

⇤
| =

q
det

⇥
A Q

⇤T
det

⇥
A Q

⇤
=

q
det(

⇥
A Q

⇤T ⇥
A Q

⇤
) =

s

det


ATA ATQ
QTA QTQ

�
.

Now QTQ = I because Q has orthonormal columns. Furthermore, ATQ = (QTA)T = O, because all

columns of Q are orthogonal to the parallelotope A. So our expression simplifies to

s

det


ATA O
O I

�
=

p
det(ATA).

Putting the two together, this hinted at a much stronger formula.

Theorem 6.5.4 (Cauchy-Binet Formula). Say A is an n ⇥ k matrix with n � k. Then det(ATA) =P
det(A0)2, where A0 is any k ⇥ k square submatrix of A, and we are summing all such possible suqare

submatrices.
Taking polarization identity, we in fact has det(ATB) =

P
det(A0) det(B0) where the sum is over all

CORRESPONDING k ⇥ k square submatrices A0, B0 of A,B.

Proof. It turned out that it is easier to prove det(ATB) =
P

det(A0) det(B0). Think of both sides as taking
the input

⇥
A B

⇤
. Then both sides are multilinear in columns. So, by expanding everything in terms of

standard basis vectors, we only need to prove the case when all columns are some standard basis vector.
In this case, if A has repeated columns, it is easy to verify that both sides are zero. So suppose A has

distinct columns. (Since columns of A are standard basis vectors, this means A is a permutation matrix.)
Now note that swapping columns of A gives a minus sign on both sides, so it does not change the validity of
the formula. On the other hand, simultaneously changing rows of A and B, then both sides are preserved
as well.

So WLOG by swapping columns of A, and simultaneously swapping rows of A and B, we can assume

that A =


Ik
O

�
. Say B =


B1

B2

�
. Then both sides are det(B1), so the statement is true.

This concludes the generalizations of Pythagorean theorem into all dimensions. Given a k-dimensional flat
shape in Rn, then (k-dimensional volumn of this shape)2 is the sum of all (k-dimensional volumns of its shadows on a k-dimensional coordinate subspace)2,
over all possible k-dimensional coordinate subspaces. Here, coordinate subspaces refers to subspaces spanned
by the cooridnate axes.

202



6.6 (Optional) Determinant Tricks

6.6.1 Block eliminations

So, how to actually compute determinants? The answer is as always: Gaussian elimination. I mean, this is
the source of all computations. How to solve Ax = b? Gaussian elimination. How to find LU decomposition?
Gaussian eliminations. How to find QR decomposition? Do Gaussian elimination on ATA.

Given a matrix A, we do Gaussian elimination, which is equivalent to PA = LDU . Then det(A) =
sign(P ) det(D), because L,U are unit triangular. det(D) is just the product of diagonal entries, because
it is a rectangular parallelotope. Note that you don’t have to restrict yourself to row opertions though. If
needed, column operations are just fine.

Just keep in mind: shearings preserve determinant, scalings scale determinants, and swappings NEGATE
the determinant. The last one is easy to forget sometimes. You can do rows or columns as you see fit.

Example 6.6.1. Consider the matrix

2

4
1 1 0
2 2 1
0 2 0

3

5. We cab swap the first row and the third row, then swap

the first column and the secod colume. So we have

det

2

4
1 1 0
2 2 1
0 2 0

3

5 = � det

2

4
0 2 0
1 1 0
2 2 1

3

5 = det

2

4
2 0 0
1 1 0
2 2 1

3

5 .

This is now lower triangular, so the determinant is 2. ,

In general, if you see no obvious clue about what to do, then Gaussian elimination is (as always) your
best bet. Do NOT apply the big formula, because it would then take forever (unless we are facing some
super special matrices). And in practice, no one ever use the big formula.

Now, recall that the funcation of column/row operations to simplify determinant is the fact that det(AB) =
det(A) det(B). As a result, we can in fact use block operations to simply determinants. We have the follow-
ing:

1. Block shearings preserve determinants as det


I A
O I

�
= 1.

2. Block scalings scale determinants as det


A

I

�
= det(A).

3. Block swaps might or might NOT change the sign. We have det


Im

In

�
= (�1)mn.

The last one might needs some justification. We want to move the m last columns to the left. The first
of the m last columns, swap one by one to the left, needs a total of n swaps. Then the next one needs a total
of n swaps as well. So on so forth for all m of them. So we performed a total of mn swaps. Alternatively,

draw the diagram for


Im

In

�
and see that the m parallel lines going up right would intersect ALL the n

parallel lines going down right so we have a total of mn intersections.
Here is a nice application.

Proposition 6.6.2. For any m⇥n matrix A and an n⇥m matrix B, det(Im+AB) = det(In+BA). Note
that the suqare matrix on the left and on the right might have DIFFERENT sizes.

Proof. My favorite proof is via eigenvalues, which not only makes this trivial and also proves much more.
But we do not have that yet. So instead here is a fancy proof using block matrix.

When you have an m ⇥ n matrix and an n ⇥ m matrix, how would you put them into a single block

matrix? You don’t have much option but to do


In B
A Im

�
.
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Now by block row-shearing, we have det


In B
A Im

�
= det


In B
O Im �AB

�
= det(Im � AB), and by

column-shearing we have det


In B
A Im

�
= det


In �BA B

O Im

�
= det(In �BA). So we have det(Im �AB) =

det(In �BA). Replace A by �A and we are done.

Corollary 6.6.3. In + AB is invertible i↵ Im + BA is invertible. In particular, I + uvT is invertible i↵
1 + vTu 6= 0.

As cool as this corollary is, it su↵ers from the fact that it is redundant. The core of the argument is

the LDU block decomposition. However, the LDU block decomposition of


In B
A Im

�
already tells you that

In + AB is invertible i↵ Im + BA is invertible, in fact it gives you the FORMULA for finding the inverses,
i.e., the Sherman-Morrison formula.

Nevertheless, both det(Im +AB) = det(In +BA) and the Sherman-Morrison formula is used mainly for
ONE thing: low rank perturbations. If you realize that the n⇥n determinant you are working on is “almost”
some nice matrix, where the di↵erence has rank k which is small, then formula det(I +AB) = det(I +BA)
might reduce the computation of an n⇥ n determinant to a k ⇥ k determinant. Let us see some examples.

Example 6.6.4. Consider A =

2

66664

1 + a1b1 a1b2 . . . a1bn

a2b1
. . .

. . .
...

...
. . .

. . . an�1bn
anb1 . . . anbn�1 1 + anbn

3

77775
. Find the determinant.

(Note that there is a tedious method of doing fancy row/column operations, and then set up inductions,
and then find the generic formula. Try yourself if you want some mental exercise/torture.)

When we do mathematics, or science in general, it is VITAL to NOT ignore your first instinct and
intuitions. Capture the fleeting glimps of genius perspective in your mind, and identify the related tools
from that perspective, and the solution will be natural.

Think about this. If only all the ones on the diagonals are GONE, then our matrix would be

2

64
a1b1 . . . a1bn
...

. . .
...

anb1 . . . anbn

3

75.

This determinant is easy: it is zero (when n > 1). Because it has rank 1: all its columns are parallel! In
fact, let a, b be the obvious vector recording those ai, bi, then this matrix is abT.

In particular, A = I + abT. It is close to identity, where the di↵erence has rank one. Time to use the
formula det(I +AB) = det(I +BA)! We have det(A) = det(I + abT) = 1 + bTa = 1 +

P
aibi. Done. ,

Example 6.6.5. Consider A =

2

66664

1 + a1 + b1 a1 + b2 . . . a1 + bn

a2 + b1
. . .

. . .
...

...
. . .

. . . an�1 + bn
an + b1 . . . an + bn�1 1 + an + bn

3

77775
. Find the determinant.

(Note that there is a tedious method of doing fancy row/column operations, and then set up inductions,
and then find the generic formula. This is even worse than last one.)

Think about this. If only all the ones on the diagonals are GONE, then our matrix would be

2

64
a1 + b1 . . . a1 + bn

...
. . .

...
an + b1 . . . an + bn

3

75.

This determinant is easy: it is zero (when n > 2). Because it has rank 2: all its columns are spanned by

a,u, where a =

2

64
a1
...
an

3

75 and u =

2

64
1
...
1

3

75.
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In fact, let b =

2

64
b1
...
bn

3

75, then this matrix is
⇥
a u

⇤ uT

bT

�
.

In particular, A = I +
⇥
a u

⇤ uT

bT

�
. It is close to identity, where the di↵erence has rank two. Time to

use the formula det(I +AB) = det(I +BA)!

We have det(A) = det(I +
⇥
a u

⇤ uT

bT

�
) = det(I2 +

⇥
uT bT

⇤ a
u

�
) = det


1 + uTa uTu
bTa 1 + bTu

�
=

(1 +
P

ai)(1 +
P

bi)� n
P

aibi. Done.
If you would like some statistical interpretation, note that we can further expand via (1 +

P
ai)(1 +P

bi) � n
P

aibi = 1 + nE(a) + nE(b) � n2(E(ab) � E(a)E(b)) = 1 + nE(a) + nE(b) � n2Cov(a, b). So the
degree one terms record the expected value, while the degree two term record the covariance. ,

Example 6.6.6. This is a tough example. Many beginners will bang their head against this using row and
column operations, hoping to find some magical operations or magical Laplace expansion, or hoping to set
up induction, and all to no avail.

Consider A =

2

66664

a1 b . . . b

b
. . .

. . .
...

...
. . .

. . . b
b . . . b an

3

77775
. You may try to do some operations and inductions, but the inductive

formula would end up as det(An) = (an � b) det(An�1) + b
Q

n�1
i=1 (ai � b). The generic solution is NOT easy

to work out from this (albeit possible).
Instead, think about this. Wouldn’t it be nice if we have a matrix where all entries are b? Then the

answer is probably just zero, due to all the repeating columns. Similarly, if there are no b and all we had
are the diagonal entries, then this is also nice, since determinant of a diagonal matrix is easy.

Capture this intuition and capitalize on this intuition. Our observation is essentially that our matrix A

is rank one away from diagonal. Let D =

2

64
a1 � b

. . .
an � b

3

75 and u =

2

64
1
...
1

3

75. Then A = D+ buuT. Since

A and D di↵er by a small rank, this means it is time for the formula det(Im �AB) = det(In �BA).
Suppose ai 6= b for all i, i.e., D is invertible. Then det(A) = det(D + buuT) = det(D) det(I +

(bD�1u)uT) = det(D)(1 + uT(bD�1u)) = [
Q
(ai � b)](1 + b

P 1
ai�b

). Done. In particular, we reduced
our calculation of n⇥ n determinants to 1⇥ 1 determinants.

What if some ai = b happens? Note that in the formula [
Q
(ai � b)](1 + b

P 1
ai�b

), the denominators are

“fake” , since once multiplied by
Q
(ai � b), each summands of 1+ b

P 1
ai�b

would be clear of denominators.
So it is in fact the same formula. Say ak = b. Then the only summand without factor (ai � k) would be
b
Q

i 6=k
(ai � b), and this is the answer.

Of course, if some ak = b, in fact it is easy to use row operations to make it upper triangular where the
diagonals are simply the factors of b

Q
i 6=k

(ai � b). I’ll leave that method to you. ,

Let me iterate again: the esssense of structural relation between I+AB and I+BA is a rank perturbation.
Suppose we want to study an n⇥n matrix X, and we don’t know how. However, it looks close to some nice
matrix Y , say X � Y has rank k. Then X � Y = UV for some n⇥ k matrix U and k ⇥ n matrix V . Then
X = Y +UV = Y (In+(Y �1U)V ). And we can utilize the relation between In+(Y �1U)V and Ik+V Y �1U .
And now we have reduced the study of X, some n ⇥ n matrix, to the study of Ik + V Y �1U , some k ⇥ k
matrix.

Example 6.6.7. Let us prove again that A�1 = 1
det(A)C

T, without talking about the geometry of paral-
lelopipes at all.

Consider @

@aij
det(A). In essense, we are interested in det(A + dxeieTj ), i.e., what would happen to the

determinant if we increase the (i, j) entry a bit. Note that this is a rank one di↵erence from A.
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So we have det(A + dxeieTj ) = det(A) det(I + dxA�1eieTj ) = det(A)(1 + dxeT
j
A�1ei). In particular,

@

@aij
det(A) = limdx!0

det(A+dxeie
T
j )�det(A)

dx = limdx!0
det(A) dxeT

j A
�1ei)

dx = det(A)eT
j
A�1ei.

But we also know that this is cij . So we see that cij = det(A)eT
j
A�1ei, i.e., the (i, j) entry of

det(A)(A�1)T. So C = det(A)(A�1)T, from which we see that A�1 = 1
det(A)C

T. ,

Here is one final super interesting application.

Theorem 6.6.8 (Derivative of the determinant near identity is trace). Let fA(t) = det(I + tA). Then
f 0
A
(0) = trace(A).

Proof. We go from I gradually towards I + tA. How to do this gradually? We do this one rank at a time.
(One column at a time.)

Say A =
⇥
a1 . . . an

⇤
. Then A =

P
aieTi , this way we write A as a sum of n matrices of rank 1. (Can

you see why?)
Now when t is infinitesimally small, we see that

Q
(I+taieTi ) = I+t

P
aieTi +t2(stu↵) = I+tA+t2(stu↵),

where t2 would be too small to be relevant. So det(I + tA) = det(
Q
(I + taieTi )) + t2(stu↵) when t is

infinitesimally small. (Note that the determinant is just a big polynomial in the entries, so the extra terms
using t2 entries would ALL have factor t2.)

Note that det(
Q
(I+taieTi )) =

Q
(det(I+taieTi )) =

Q
(1+teT

i
ai) =

Q
(1+taii) = 1+t trace(A)+t2(stu↵).

So all in all, we have det(I + tA) = 1 + t trace(A) + t2(stu↵). Taking derivative at t = 0, our result is
obvious.

Note that we did NOT use ANY property of trace other than its definition as the sum of diagonals. So
in fact this gives a super cool proof that trace(AB) = trace(BA).

Proposition 6.6.9. trace(AB) = trace(BA). In particular, this implies that trace(XAX�1) = trace(A),
i.e., trace is invariange under change of basis.

Proof. Consider det(I + tAB) = det(I + tBA). Take derivative and done. This is my personal favorite
proof. (And in fact this explains what trace and determinants are, from the perspective of Lie group and
Lie algebra, though they are outside the scope of this class.)

6.6.2 Shear and Expand and Induction

This is the most traditional strategy to tackle any hard and tricky determinant problem. You do row and
column operations to generate as much zero entries as possible. Hopefully these zeroes will concentrate, and
when they concentrate in some row or in some column, you expand along that row or that column.

Sometime, this expansion allows you to reduce some n ⇥ n determinant into some (n � 1) ⇥ (n � 1)
determinant, and then you can use induction.

Example 6.6.10. Consider an n⇥ n matrix An =

2

66664

1 �1

1
. . .

. . .
. . .

. . . �1
1 1

3

77775
. What is det(An)?

Let us do Laplace expansion alongthe first column. Then we see that

det(An) = 1 det(An�1) + 1(� det


�1 O

An�2

�
) = det(An�1) + det(An�2).

In particular, if we think of the det(An) as a sequence for increasing n, then each term is the sum of
previous two terms. Sounds familiar? This is the same induction scheme for the famous Fibbonacci sequence.

Furthermore, det(A1) = 1 and det(A2) = 2. Hence this sequence goes like 1, 2, 3, 5, 8, 13, . . . . It is indeed
the Fibbonacci sequence.

If you have hardcore skills in working out sequences using mathematical induction, the you can find a

formula. We have det(An) =
�
n+1�(1��)n+1

p
5

where � = 1+
p
5

2 is the golden ratio. ,
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Example 6.6.11. Consider detA where A =

2

66664

a1 b . . . b

c
. . .

. . .
...

...
. . .

. . . b
c . . . c an

3

77775
, where b 6= c. Note that the case when

b = c is solved previously using the formula det(I +AB) = det(I +BA).
This determinant is notoriously tricky for beginners. Here I did NOT present the fastest solution.

However, this is a faithful implement of the strategy lined out above. The purpose of doing this problem
is NOT the result or speed, but rather on the strategy itself. I will intentionally try to AVOID magical
row/column operations that simplify this at various places.

You see, the obvious direction to go is to, say, take the second to last column and substract this from the

last column. This gives

2

6666664

a1 b . . . b 0

c
. . .

. . .
...

...
...

. . .
. . . b 0

c . . . c an�1 b� an�1

c . . . c c an � c

3

7777775
.

Now we have a concentration of zeros on the last column, so we expand. This gives us:

detA = (an � c) det

2

66664

a1 b . . . b

c
. . .

. . .
...

...
. . .

. . . b
c . . . c an�1

3

77775
+ (�1)(b� an�1) det

2

6666664

a1 b . . . b b

c
. . .

. . .
...

...
...

. . .
. . . b b

c . . . c an�2 b
c . . . c c c

3

7777775
.

Now the first term here is clearly a good set up for induction. What about the second term here?

LetAk =

2

66664

a1 b . . . b

c
. . .

. . .
...

...
. . .

. . . b
c . . . c ak

3

77775
andBk =

2

6666664

a1 b . . . b b

c
. . .

. . .
...

...
...

. . .
. . . b b

c . . . c ak b
c . . . c c c

3

7777775
. We have det(An) = (an�c) det(An�1)+

(an�1 � b) det(Bn�2). Let us first figure out the Bk portion of this formula.
Again use the second to last column of Bk and substract this from the last column. Then we see that

det(Bk) = det

2

6666664

a1 b . . . b 0

c
. . .

. . .
...

...
...

. . .
. . . b 0

c . . . c ak b� ak
c . . . c c 0

3

7777775
= (ak � b) det(Bk�1).

This set up the induction nicely. So we have det(Bk) = (ak�b) det(Bk�1) = (ak�b)(ak�1�b) det(Bk�2) =

· · · = [
Q

k

i=1(ai � b)] det(B0). Note that B0 =
⇥
c
⇤
. So det(Bk) = c

Q
k

i=1(ai � b).
Go back to An, we have det(An) = (an � c) det(An�1) + (an�1 � b) det(Bn�2) = (an � c) det(An�1) +

c
Q

n�1
i=1 (ai� b). Now ideally, one must be able to deduce the generic formula from this inductive formula. In

parctice, while doable, this is a bit annoying and lengthy. So instead, we cheat by using symmetry.
Note that det(An) = det(AT

n
), yet the di↵erence between An and AT

n
is simply swapping b, c. As a result

of this symmetry, if we have det(An) = (an � c) det(An�1) + c
Q

n�1
i=1 (ai � b), we must symmetrically have

det(An) = (an � b) det(An�1) + b
Q

n�1
i=1 (ai � c). Now use (an � b) times the first equation minus (an � c)

times the second equation, we obtain the equation (c� b) det(An) = c
Q

n

i=1(ai � b)� b
Q

n

i=1(ai � c).
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In particular, if b 6= c, then we are done. We have det(An) =
c

c�b

Q
n

i=1(ai � b) + b

b�c

Q
n

i=1(ai � c). ,

Note that this example here cannot be done via low rank perturbations, since the b portion and c portion
are both triangular with almost full rank.

Here is another very tough one.

Example 6.6.12. Consider the matrix A =

2

66664

a 1

n
. . .

. . .
. . .

. . . n
1 a

3

77775
. Find the determinant. (This is the notorious

Kac-Sylvester matrix.)
This is seriously annoying, even with all the zero entries. Say if you expand along the last row, then you

shall see that you FAIL to set up an induction, because the 1 through n and n through 1 anti-symmetric
pattern here.

The magic trick is this. Consider say n = 5 for illustration purppose. We have

2

6666664

a 1
5 a 2

4 a 3
3 a 4

2 a 5
1 a

3

7777775
.

Now, we add the i-th row to the (i � 2)-th row, (i � 4)-th row and so on, for all i. We do these row
operations in the order of increasing i. E↵ectively, it is as if we are going from A to EA for the matrix

E =

2

66666664

1 0 1 . . . ·
. . .

. . .
. . .

...
. . .

. . . 1

. . . 0
1

3

77777775

, where the values alternate between 1 and 0 for this upper triangular matrix E.

After all these row shearings, we end up with EA =

2

6666664

a 5 a 5 a 5
5 a 5 a 5 a

4 a 5 a 5
3 a 5 a

2 a 5
1 a

3

7777775
.

This looks neat, yes?
Next, we do E�1 as a column operation, and go from EA to EAE�1. In terms of operations, it means

we substract the i-th column from the (i+2)-th column, (i+4)-th column, and so on, for all i. We do these
column operations in the order of increasing i.

This way all the extra a’s introduced by shearing will cancel out, we end up with

2

6666664

a 5
5 a

4 a 1
3 a 2

2 a 3
1 a

3

7777775
.

Note that this is block lower triangular. So det(A5) = (a2 � 52) det(A3) = (a+ 5)(a� 5) det(A3).
By induction, you can see that det(An) = (a+n)(a�n) det(An�2) = (a+n)(a+n�2) . . . (a�n+2)(a�n).

For example, for A5 the determinant is (a+ 5)(a+ 3)(a+ 1)(a� 1)(a� 3)(a� 5).
Note that, essentially, we doing det(EAE�1), and as a linear transformation, EAE�1 is merely A after

a change of basis! Indeed, for any invertible X, then det(XAX�1) = det(X) det(A) det(X)�1 = det(A). So
just like trace is invariant under a change of basis, determinant is also invariant under a change of basis.
And similar matrices must always have the same determinant.
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In essence, E�1 is a basis on which the linear map A has slightly better behavior. We change basis, and
induction appear. ,

6.6.3 Polynomial Interpretation, Interpolation and the Vandermonde Matrix

One niche use of the determinant is to show that a matrix is invertible. However, bear in mind that MOST
of the time it is easier to simply look at the kernel. Nevertheless, the following case is both interesting and
useful later.

Example 6.6.13. Two points determines a line. Three points determines a parabola p(x) = a+ bx+ cx2.
In general, you can imagine that n+ 1 points can determine a polynomial of degree n. Can we prove this?

Consider an unknown parabola p(x) = a+ bx+ cx2. Suppose we know that p(1) = 2, p(2) = 3, p(3) = 4,
let us find the unique parabola through them. Then we have a linear system

a+ b+ c =2

a+ 2b+ 4c =3

a+ 3b+ 9c =4.

Write this in matrix form, and we have

2

4
1 1 1
1 2 4
1 3 9

3

5

2

4
a
b
c

3

5 =

2

4
2
3
4

3

5 .

So, to find a, b, c, it is enough to solve this system using Gaussian elimination. Note that the matrix here
is really nice. As a linear map, it sends “coe�cients” of a polynomial to “evaluations” of the polynomial at
the given points. So, given evaluations p(1) = 2, p(2) = 3, p(3) = 4, to solve the unknown coe�cients is the
same as doing the inverse of this linear map. ,

Definition 6.6.14. The Vandermonde matrix is Vn+1 =

2

6664

1 a1 . . . an1
1 a2 . . . an2
...

...
. . .

...
1 an+1 . . . an

n+1

3

7775
for some chosen constants

a1, . . . , an+1 2 R.

Example 6.6.15. Let V be the space of polynomials of degree at most n. This is an (n+1) dimensional space.

Pick any x1, . . . , xn+1 2 R, then we can build a linear map E : V ! Rn+1 such that E(p) =

2

64
p(x1)

...
p(xn+1)

3

75.

This process is secretly linear. Even though p(x) is probably NOT linear in x, but the expression p(x) is
linear in p. What I mean is, given two polynomials p, q, then (ap+ bq)(x) = ap(x) + bq(x).

Now, if E is a linear map, what is the matrix for E? Well, pick basis 1, x, x2, . . . , xn for V , and pick the
standard basis for Rn+1.

The image for E(1) is

2

64
1
...
1

3

75. The image E(xk) is

2

64
xk
1
...

xk
n+1

3

75 for each k. So all in all, the matrix for E is

2

6664

1 x1 . . . xn
1

1 x2 . . . xn
2

...
...

. . .
...

1 xn+1 . . . xn
n+1

3

7775
.

As you can see, the Vandermonde matrix is precisely the linear map E. ,
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Theorem 6.6.16 (Polynomial Interpolation Theorem). Given any distinct inputs x1, . . . , xn+1 and corre-
sponding outputs y1, . . . , yn+1, there is a UNIQUE polynomial p(x) of degree at most n such that p(xi) = yi
for all i.

Proof. Suppose the unknown polynomial is p(x) = a0 + a1x+ · · ·+ anxn. Then let V be the Vandermonde
matrix for x1, . . . , xn+1, we have

V

2

64
a0
...
an

3

75 =

2

64
y1
...

yn+1

3

75 .

So we have unique solution if and only if V is invertible.
We do this by showing that the determinant is non-zero. Look at the lemma below.

Proposition 6.6.17. det(Vn) =
Q

i<j
(aj � ai). In particular, if all ai are distinct, then Vn is invertible.

Proof. We give two proofs.
The first proof is traditional. To find detVn+1, going from RIGHT to LEFT, we smartly replace each

column ci by ci � an+1ci�1. (Yeah, this is NOT a typo. We meant to write an+1 here.) These are all
shearings and they preserve the determinant. (The total column action here is equivalent to multiplying2

66664

1 �an+1

. . .
. . .
. . . �an+1

1

3

77775
to the right of Vn+1.)

Then magically, we now only need to calculate det

2

66666664

1 (a1 � an+1) a1(a1 � an) . . . an�1
1 (a1 � an)

...
...

. . .
. . .

...
...

...
. . .

. . .
...

1 (an � an+1) an(an � an+1) . . . an�1
n

(an � an+1)

1 0 0
... 0

3

77777775

.

Now expand along the last row (or consider non-zero terms in the big formula), we see that this is

(�1)n+1 det

2

64
(a1 � an+1) a1(a1 � an) . . . an�1

1 (a1 � an)
...

. . .
. . .

...
(an � an+1) an(an � an+1) . . . an�1

n
(an � an+1)

3

75.

Take out common factors, we have (�1)n+1(a1�an+1) . . . (an�an+1) det

2

6664

1 a1 . . . an�1
1

1 a2 . . . an�1
2

...
...

. . .
...

1 an . . . an�1
n

3

7775
=

Q
1in

(an+1�

ai) detVn. Hey! By induction (and the base case is very trivial), we have

detVn+1 = [
Y

1in

(an+1 � ai)][
Y

1i<jn

(aj � ai)] =
Y

1i<jn+1

(aj � ai).

Well, this is not easy to think of, but it gets the job done. Now let me show you my favorite proof.
Recall that, according to the big formula, det(Vn) is simply a big polynomial on the variables a1, . . . , an.

What are its factors?
Note that, if ai = aj , then the i-th row and j-th row of Vn would coincide, so we would have det(Vn) = 0.

This means that the polynomial aj � ai is a factor of the polynomial det(Vn) for all i 6= j. (In fact, since we
already know the answer, these are ALL the factors. HAHAHA!)

In particular, we see that
Q

i<j
(aj�ai) is a factor of det(Vn). Now each term in the big formula of det(Vn)

has a total degree of 1 + 2+ · · ·+ (n� 1) = 1
2n(n� 1), which is EXACTLY the degree of

Q
i<j

(aj � ai). So
we have det(Vn) = k

Q
i<j

(aj � ai).
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Now check the coe�cient of the term a2a33 . . . a
n�1
n

in both sides.
Q

i<j
(aj � ai) can only reach this term

by always pick aj in each factor. det(Vn) can only reach this term by picking the diagonal entries. So we
see that both coe�cients are one. Hence k = 1 and we are done. (On the product side, this is obvious. On
the determinant side, this term can only come from the diagonal.)

Polynomial interpolation is the major reason we bother with the Vandermonde matrix. (Another reason
is the study of eigenspaces in later chapters.) Now that we have its determinant, it is time to find its inverse.
How to find V �1

n
e1, for example? (I.e., how to find the first column of V �1

n
.)

Given any distinct inputs a1, . . . , an, we want to find the UNIQUE polynomial p(x) of degree at most
n � 1 such that p(ai) = 0 for all i 6= 1 and p(a1) = 1. Then x � ai for all i 6= 1 should be a factor of this
polynomial.

Consider the polynomial
Q

i 6=1(x� ai). It has degree n� 1, and takes value 0 on a2, . . . , an, and it takes

value
Q

i 6=1(a1�ai) at a1. So let p(x) =
Q

i 6=1(x�ai)Q
i 6=1(a1�ai)

, and we are done. (Note the similarity in ideas with the

second proof of the Vandermonde determinant! Finding factor polynomials is the essense of this problem.
Column operations work, but not as elegant, because it is not the essense of the problem.)

Proposition 6.6.18 (Lagrange Interpolation). Given any distinct inputs a1, . . . , an+1 and corresponding
outputs b1, . . . , bn+1, then the UNIQUE polynomial p(x) of degree at most n is p =

P
bkpk, where pk(x) =Q

i 6=k(x�ai)Q
i 6=k(a1�ai)

.

The coe�ents of pk are the entries of V �1
n+1. They are not pretty, and it is usually easier to do abstractly

via polynomials.
One can go even further to get the more general Hermite interpolation, though that will require Jordan

canonical form, and thus outside of current ability yet.

6.6.4 A determinant game

This game is proposed by a Putnam mathematical contest. Suppose Alice and Bob are playing a game. We
have an n⇥ n matrix with unfilled entries. Alice and Bob take turns to fill out the entries. Say if Alice goes
first, she can fill out a number in an entry. Then Bob can go, and fill out another number in another entry.
The game ends when the matrix is filled.

Now if the game ends with an invertible matrix, then Alice wins. If the game ends with determinant
zero, the Bob wins. Suppose Alice goes first, and n = 2020, who has the winning strategy?

Proposition 6.6.19. If n is even and Alice goes first, then Bob always win.

Proof. If Alice write a number in the first or second column, then Bob write the same number in the same
row but in the second or first column, respectively. If Alice write a number outside of the first and second
columns, then Bob also fill out an arbitrary entry outside of the first and second columns.

This way, Bob can guarantee that the first two column of the resulting matrix is always the same. So
Bob wins.

Now, this will NOT work if n is odd. In that case, there would be an ODD number of entries outside
of the first and second columns. So if Alice keep playing outside of the first two columns, then Bob would
eventually be forced to go first in the first and second column as there is nowhere else to play. Thus this
strategy would not work.

However, Bob might still win with some other strategies.

Proposition 6.6.20. If n = 3 and Alice goes first, then Bob always win.

Proof. Note that we can permute the rows and columns at all time without changeing the invertibility of
the matrix. So WLOG suppose Alice played in the upper left corner. If Alice fill it by zero, then Bob can
fill a zero below. Then Alice must fill the last entry in the first column by a non-zero number, else she would
loose by Bob filling out the first column with all zeros. Next Bob can fill out the zero at the center, and
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Alice has no choice but to block at the center-right entry, else lose by a central row of zeros. Then Bob can
fill out the last of the upper 2 ⇥ 2 block, so that this entire block is zero. This 2 ⇥ 2 block of zeros would
force the matrix to have rank one, and hence determinant zero. Bob wins.

Obviously Alice is better o↵ playing a non-zero number to start with. Suppose the first step of Alice is
non-zero in the upper left corner. Now, by wisdom granted to us via the tic-tac-toe game, Bob’s winning

strategy is to fill out the center entry by zero, thus we have

2

4
a1

0

3

5. Note that, from here on out, Alice

CANNOT allow a row of zeros or a column of zeros. The tic-tac-toe feeling is strong now.
Now Alice play next. Afterwards Bob can keep filling out zeros to force a 2⇥ 2 block of zeros, and Alice

has no choice but to block rows or columns on the way. This 2⇥ 2 block of zeros would force the matrix to
have rank one, and hence determinant zero. Specifically, we have the following four possibilities, where the
subscript indicates the order of steps. Alice will play a1, a2, . . . , a5 while Bob will only play zeros, 01, . . . , 05.

The four possibilities are (up to taking transpose)

2

4
a1 a3 a5
a2 01 04
a4 02 03

3

5 ,

2

4
a1 a3 a5
a4 01 03
a2 02 04

3

5 ,

2

4
a1 04 03
a3 01 02
a5 a2 a4

3

5 ,

2

4
a1 03 04
a3 01 02
a5 a4 a2

3

5 .

However, Bob do not always win. For example, if n = 1, obviously Alice would win. The generic case
when n is odd is still unknown. I have no idea about who might win the n = 5 game. (But I think playing
only zeros is no longer a viable strategy for Bob.)

What if Bob plays first? Then if n is odd, Bob can just fill out some entry outside of the first and second
columns, and then resume the copy-cat strategy to win.

What if n is even and Bob goes first? I have no clue yet. You might want to try the easy case when
n = 2, 4.
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Chapter 7

Eigenstu↵

7.1 Introduction

Eigenvalues first started as a vital piece of dynamics. Think about the following example.

Example 7.1.1. Suppose we are studying in the famous Terribly Happy University (THU for short). Stu-
dents are generally in two romantic status: single, or in a relationship.

If a student is single, since everyone is so happy, suppose 30% will be in a relationship next month.
However, 70% shall remain single. If a student is in a relationship, then suppose 90% shall remain in the
relationship next month, while 10% will break up and become single.

Single this month Single next month

In relationship this month In relationship next month

70%

30%

10%

90%
.

Now as months go by, what would happen in this dynimical system?

Say we started with x students single and y students in a relationship. Write this as a vector x0 =


x
y

�
.

Then next month, we shall have a distribution of x1 = Ax0, where A =


0.7 0.1
0.3 0.9

�
. Can you see why?

And then the next month, we shall have a distribution of x2 = Ax1. As months go by, we are basically
applying A again and again iteratively. So our question is now this: what is the limiting behavior of the
sequence x0, Ax0, A2x0, . . . ?

Say x0 =


1
0

�
, i.e., 100% of the students are single initially. Then calculation yields the sequence as

(rounding to the forth digit after the decimal point):

1
0

�
,


0.7
0.3

�
,


0.52
0.48

�
,


0.412
0.588

�
,


0.3472
0.6528

�
,


0.3083
0.6917

�
,


0.2850
0.7150

�
,


0.2710
0.7290

�
,


0.2626
0.7374

�
,


0.2576
0.7424

�
,


0.2545
0.7455

�
,


0.2527
0.7473

�
....

As you can see, the sequence seems to be converging to x1 =


0.25
0.75

�
. Eventually, 75% of the students

are in a relationship, and only 25% of the students will remain single.
Is there a better and more rigorous way to find x1? Yes there is! If x1 is indeed the stable equilibrium,

then we should have Ax1 = x1. In particular, x1 2 Ker(A � I). Now A � I =


�0.3 0.1
0.3 �0.1

�
, and its
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kernel is spanned by


1
3

�
, which shows that 25% of the students are single in the equilibrium. We find our

limiting behavior right away!

Not only so, we can also find the speed of convergence. Suppose our current distribution is


0.25 + x
0.75� x

�

for some x. Then A


0.25 + x
0.75� x

�
=


0.25 + 0.6x
0.75� 0.6x

�
. As you can see, the deviation is shrunk by a factor of 0.6,

wow!

In particular, if we started with


0.25 + x
0.75� x

�
, then next month we would have


0.25 + 0.6x
0.75� 0.6x

�
, and next

month we would have


0.25 + 0.62x
0.75� 0.62x

�
. The deviation would shrunk exponentially towards zero.

Let us sum up the phenomina here. First of all, we can observe that

A


1
3

�
=


1
3

�
,

A


1
�1

�
=0.6


1
�1

�
.

Both of these have significant meanings. The first one describes the eventual equilibrium must be in this

direction. The second one tells us how we would converge to this equilibrium: in the direction of


1
�1

�
, and

the speed is governed by the value 0.6.
To sum up, the solutions to Ax = �x completely describe ALL info we need for this dynamical system.

,

We’d better give this beautiful info names. They are called eigenstu↵.

Definition 7.1.2. For a matrix A, if Ax = �x for some � 2 R and some nonzero vector x, then we call �
an eigenvalue of A, and x an eigenvector of A for the eigenvalue �.

Why do we require x here to be non-zero? Mainly because if we allow the zero vector, then A0 = �0 for
all �. These solutions are entirely trivial and useless.

Now, a major point of eigenstu↵ is to help us understand the behavior of A,A2, A3, . . . . In some very

nice cases, this is very easy to do. For example, if A is diagonal say


a

b

�
, then obviously Ak is done

by simply raising the diagonal entries to the corresponding power, i.e.,


ak

bk

�
. But for a generic A, say

A =


0.7 0.1
0.3 0.9

�
, how can we obtain a formula for calculating Ak? This is where eigenstu↵ come in to help.

They help describe the “dynamics” behind the linear transformation A.

Example 7.1.3. Suppose x1, . . . ,xn is a basis of Rn and they are also eigenvectors of A, say Axi = �ixi.
One might call this an eigenbasis of Rn for A.

Then in particular we have A
⇥
x1 . . . xn

⇤
=

⇥
�1x1 . . . �nxn

⇤
=

⇥
x1 . . . xn

⇤
2

64
�1

. . .
�n

3

75.

Let X =
⇥
x1 . . . xn

⇤
,⇤ =

2

64
�1

. . .
�n

3

75, then we see that AX = X⇤, and A = X⇤X�1. Hey!

If you remember, structures such as X⇤X�1 refers to a change of basis for a linear transformation. In
particular, it means that if we change basis from the standard basis to the eigenbasis, then A will change
into a diagonal matrix ⇤.

214



This is indeed the case. If we pick x1, . . . ,xn as the new basis, then Axi = �ixi says exactly that A is
diagonal in this new basis.

So, how to study A? We first go into this new basis. Now our linear map is represented by a diagonal

matrix ⇤, and its k-th power is simply ⇤k =

2

64
�k
1

. . .
�k
n

3

75. Powers of a diagonal matrix is super easy to

do! Now we change back to the standard basis, and we see that Ak = X⇤kX�1 = X

2

64
�k
1

. . .
�k
n

3

75X�1.

Alternatively, one might also compute directly via Ak = X⇤X�1X⇤X�1 . . . X⇤X�1. Note that all the
X and X�1 in the middle will cancel out, and we have Ak = X⇤kX�1.

Alternatively, I also enjoy this lovely diagram below, which make things quite clear.

Rn Rn ... Rn

Rn Rn ... Rn

⇤

X

⇤

X

⇤

X

A A A

For example, in our previous case of A =


0.7 0.1
0.3 0.9

�
, we see that


1
3

�
is an eigenvector for the eigenvalue

1, and


1
�1

�
is an eigenvector for the eigenvalue 0.6. Since the two linearly independent vectors span R2, this

immediately imply that


0.7 0.1
0.3 0.9

�
=


1 1
3 �1

� 
1

0.6

� 
1 1
3 �1

��1

. (Calculate and see that this is indeed

correct.)
We also immediately obtain the formula


0.7 0.1
0.3 0.9

�k
=


1 1
3 �1

� 
1

0.6

�k 
1 1
3 �1

��1

=


1 1
3 �1

� 
1

0.6k

� 
1
4

1
4

3
4 � 1

4

�
=


1
4 + 3

4 (0.6
k) 1

4 � 1
4 (0.6

k)
3
4 � 3

4 (0.6
k) 3

4 + 1
4 (0.6

k)

�
.

Thus we have obtained a direct formula for Ak.

Finally, let us calculate A1 = limk!1 Ak =


1
4

1
4

3
4

3
4

�
. What is this? This is the oblique projection to the

line in the direction


1
3

�
along a kernel direction of


1
�1

�
. ,

This technique is called the similarity diagonalization of A.

Definition 7.1.4. We say square matrices A,B are similar if we can find an invertible X such that
A = XBX�1. (I.e., A,B only di↵er by a change of basis.)

If A is similar to a diagonal matrix, then we say that A is diagonalizable.

Proposition 7.1.5. A square matrix A is diagonalizable if and only if eigenvectors of A span the whole
domain.

Proof. If eigenvectors of A span the whole domain, then we can pick some of them to form a basis, and thus
A is diagonalizable as shown in the example above. We only need to prove the other direction now.

Suppose A = XDX�1 for some invertible X =
⇥
x1 . . . xn

⇤
and diagonal D =

2

64
d1

. . .
dn

3

75. Then

AX = XD, which means Axi = dixi. Since X is invertible, all these xi are nonzero, so they are all
eigenvectors. Again since X is invertible, they span the whole space.
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Now, most of the matrices are diagonalizable. (Exceptions exist but rare.) Then our goal is simple: how
to find these eigenvalues and eigenvectors?

Proposition 7.1.6. � is an eigenvalue of A if and only if A��I is not invertible, if and only if det(A��I) =
0, if and only if det(�I �A) = 0.

And eigenvectors for the eigenvalue � are exactly non-zero vectors of Ker(A� �I).

Proof. Just look at definition.

Example 7.1.7. Again consider the matrix A =


0.7 0.1
0.3 0.9

�
. If x is an eigenvalue, then we should have

det(xI �A) = 0.

Now det(xI �A) = det


x� 0.7 �0.1
�0.3 x� 0.9

�
= x2 � 1.6x+0.6. So as you can see, x is an eigenvalue if and

only if x2 � 1.6x+ 0.6 = 0. Solving this gives x = 1 or x = 0.6. So the only eigenvalues for A are 1 and 0.6.
,

So the standard procedure goes like this: for our n ⇥ n matrix A, consider det(A � xI). This is some
polynomial in x with degree n. Solve det(A � xI) = 0, then solutions to this polynomial equation are
EXACTLY the eigenvalues.

Once we have the eigenvalues, for each eigenvalue �, we find eigenvectors by solving Ker(A � �I) using
Gaussian elimination.

Definition 7.1.8. The characteristic polynomial of an n⇥n square matrix A is det(xI�A), a polynomial
in x of degree n. We usually write this polynomial as pA(x).

Note that det(xI �A) = (�1)n det(A� xI). Our ultimate goal is to check if A� xI is invertible or not,
so this sign does not matter. We use det(xI � A) so that xn will have a positive coe�cient. If you choose
det(A � xI) and n is odd, then your xn will have coe�cient �1, which is a bit ugly, but ultimatelty does
not matter.

Proposition 7.1.9. The roots of characteristic polynomial of A are exactly the eigenvalues of A.

Proof. det(xI �A) = 0 if and only if A� xI is not invertible if and only if Av = xv has a non-zero solution
if and only if x is an eigenvalue.

To illustrate this strategy, let us look at an example of non-diagonalizable matrices.

Example 7.1.10. Consider shearing E =


1 1
0 1

�
. The characteristic polynomial is very simple, it is (x�1)2.

So the only eigenvalue is 1.
However, Ker(E � I) is spanned by e1. So the ONLY eigenvectors of E are multiples of e1.
In this case, eigenvectors of E fails to span R2. E is NOT diagonalizable. In general, all shearings fail to

be diagonalizable. ,

Now, this strategy works. And almost ALL textbook will teach you to use this strategy. However, this
strategy is bogus when n � 5. Why? Because there is no algebraic formula to solve a polynomial of degree
5 or more. (In practice, a 3⇥ 3 matrix will already yields a degree three polynomial, and finding those roots
will be a headache already.)

In fact, the reality is the opposite. How would a computer nowaday find roots of a polynomial p(x)? The
computer would build a matrix whose characteristic polynomial is p(x), then use other methods (variants
or improvements of the iterated QR algorithm) to approximate eigenvalues, thus finding approximated
roots of p(x). Oh the irony.

Nevertheless, as long as we are dealing with square matrices of dimension at most 4, we can use the
traditional strategy as desired. Luckily, most problems we face in this class will have n  4.
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7.2 Intuitions on Eigenstu↵

Sometimes, we can tell the eigenstu↵ by sight. Here are some examples, which shall further help us under-
stand the intuitions behind the eigenstu↵.

Example 7.2.1 (Eigenstu↵ by sight). Sometimes there are some obvious properties among entries, and they
in fact indicates eigenstu↵ right away.

Consider A =


1 4
2 3

�
. Note how each row adds up to 5? If you apply A to


1
1

�
, you will exactly add up

each row of A and get


5
5

�
, so this is an eigenvector for the eigenvalue 5. ,

Proposition 7.2.2. If each row of a matrix A adds up to the same number �, then � is an eigenvalue of

A, and

2

64
1
...
1

3

75 is an eigenvector for this eigenvalue.

What if each column of A adds up to the same number, say �? Then we can actually also conclude that
A has eigenvalue �.

Proposition 7.2.3. A and AT share the same eigenvalues. In fact, they share the same characteristic
polynomial.

Proof. Note that pA(x) = det(xI � A) = det(xI � AT) = pAT(x), where the middle equality is true since
determinant is invariant under transpose. So A and AT share the same characteristic polynomial, and thus
they also share the same eigenvalues.

Corollary 7.2.4. If each column of a matrix A adds up to the same number �, then � is an eigenvalue of
A. (But the eigenvectors are harder to see now.)

In many applications, such as our dynamical system before, each column of the matrix represents some
probability distribution. Therefore, entries in each column will add up to 1. So 1 will always be an eigenvalue
for such a matrix. But if the system is evolving via a matrix A and A has eigenvalue 1, then A has a nonzero
eigenvector v. So Av = v, our system must have an equilibrium!

Definition 7.2.5. A square matrix is a Markov matrix if all entries are positve, and each column adds up
to 1. (These are exactly the matrices describing some probabilistic evolutions.)

Proposition 7.2.6. A Markov matrix must have an eigenvalue 1.

Proof. Duh.

For Markov matrices, finding eigenvectors for the eigenvalue 1 is very important. This corresponds to
finding the equilibrium of the system. Here is another application of this.

Example 7.2.7. Do you know how google works?
Given a key word, there are many many webpages containing that key word. How can we rank these

pages in order, so that the “best” or “most relevant” page comes up on top?
In the pre-google time, search engines do very stupid things, like rank them alphabetically.... And there

are also certain search engines that rank pages according to how much these pages pay them, like certain
search engine that shall remain unnamed, but you probably have a candidate in mind.

Another way to rank them is to rank according to the number of visits. Surely the most visited website
is the “best” result for your search, yes? However, there are some pitfalls. For example, the number of visits
are highly volatile. They change every second! It takes a tremendous amount of work and money to keep
track of this, and it might also slow down the search process. We want something that is more stable, yet
also indicative of the quality of the webpages.
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And one day, two young guys named Larry Page and Sergey Brin (the founders of google) came up with
a brilliant idea. This idea started google, and its e�ciencies, stabilities and speed was far more superior to
all other search engines. It immediately beat all competitors and grew into a super company.

So what is this billion dollar idea? This is called the Page rank algorithm. The internet is connected,
with webpages linked to one another. So the basic idea is this:

1. If a website is linked to by many many other website, then this website must be important.

2. If some important website links to your website, then this makes your website important.

3. However, if a website is linked to many many many other websites, then it will fail to transfer much
importance to each of these individual websites.

Consider the following cases, where we have four websites v1, v2, v3, v4, v5, and they are linked to each
other as in the graph below. Suppose these websites have importance x1, x2, x3, x4, x5. Then v3 lends weights
to both v1, v5, so each of v1, v5 would get 1

2x3 importance from v3. So on so forth, so we have this graph.

v1 v2

v3 v4

v5

x1

x2

1
3x4

1
3x4

1
3x4

1
2x3

1
2x3

x5

Figure 7.2.1: Graph G of websites

The idea is that your importance equal to the total importance received. For example, the importance of
v1 is x1, and the total importance received is 1

2x3+
1
3x4+x5, so we want x1 = 1

2x3+
1
3x4. Then collectively,

we see that our importance x =

2

64
x1
...
x5

3

75 must be solved by this:

2

66664

0 0 1
2

1
3 1

1 0 0 0 0
0 0 0 1

3 0
0 1 0 0 0
0 0 1

2
1
3 0

3

77775
x = x.

So we are looking for an eigenvector x for the eigenvalue 1 of our matrix. Note that this is a Markov
matrix, so such an eigenvector must exist. Then the page rank algorithm would simply list the websites from
the most important (largest xi) to the least important (smallest xi).

In this cases, one solution is x =

2

66664

6
6
2
6
3

3

77775
. So we put v1, v2, v4 up top in the search result, as they are the

most important, then we list webpage v5, and finally we list webpage v3, which is the least important.
(As you can probably see from the graph, v4 is probably some “search engine” website, which is important

and has link to almost everyone, but lends little weight to each. v1 is probably some authority website that
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every one links to. And v2 is some remote website that is hard to reach, but yet very valuable since v1 only
links to v2. Here v3, v5 are not important. v5 basically just says “yeah just go check out v1”. v3 is even less
useful, as it links to an unhelpful site v5 other than v1.) ,

Above we have focused on the algebra side of the intuition. Now let us turn to geometry. What does it
mean geometrically that Ax = �x? This means the linear transformation of A would FIX this line spanned
by x.

Example 7.2.8. Suppose all entries of a 2⇥2 matrix A are positive. I claim that A has a positive eigenvalue
whose eigenvector spans a line through the first-third quadrants.

(And A has another eigenvector which spans a line through the second-forth quadrand, with positive
eigenvalue if det(A) > 0, and negative eigenvalue if det(A) < 0, and zero eigenvalue if det(A) = 0. I shall
not prove these things in the parenthesis though, which is similar but more tedius. Determinant matters
here because they indicate whether your map preserves or reverse orientation.)

How can I see this? Let us say A =


1 2
2 1

�
.

Image in the domain, we have a ray shooting from the origin in the direction of


0
1

�
. Now this ray rotates

clockwise, sweeps through the entire first quadrant, and ends up in the direction of


1
0

�
.

Now these are happening in the domain of A. If we map these to the codomain, then in the codomain

my ray will start in the direction of A


0
1

�
=


2
1

�
, then it will sweep counter-clockwise and end up in the

direction of A


1
0

�
=


1
2

�
.

Figure 7.2.2: Sweeping Rays, input = blue and output = red.

Now look at both of these sweeping process in R2 simultaneously, and we see that somewhere the input
ray and the output ray must meet. (This is a variant of the intermediate value theorem in calculus.) This is
a line fixed by A, and hence vectors on this line are eigenvectors of A. Since the fixed ray stays in the first
quadrant, the eigenvalue must be positive.

Note that det(A) is negative here. In particular, it is an orientation reversing linear map. As a result,
the input clockwise movement becomes a counter-clockwise movement in the output. ,

I shall mention the following theorem without proof. (We don’t use it in this class.) But surely you can
imagine how it is true. The proof is basically just a high dimensional version of intermediate value theorem.

Theorem 7.2.9 (Perron-Frobenius Theorem). If all entries of an n⇥n matrix A are positive, then A must
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have a positive eigenvalue � > 0, and an eigenvector x =

2

64
x1
...
xn

3

75 for � such that all xi > 0. (So it is a

“positive eigenvector”.)

Finally, let us see some geometric examples.

Example 7.2.10. Consider a reflection in R3, say about the plane x+y+ z = 0. Note that a normal vector

is n =

2

4
1
1
1

3

5, and thus this reflection is A = I � 2nnT

nTn = I � 2
3nn

T =


1
3 � 2

3
� 2

3
1
3

�
.

Now, we can in fact find all eigenvectors using only the geometric intuition, without any computation.
Obviously our map A will reflect n, so n is an eigenvector for the eigenvalue �1. Furthermore, any non-zero
vector on the plane x+y+z = 0 are preserved, so they are all eigenvectors for the eigenvalue 1. Finally, it is
geometrically obvious to see that there are no more fixed lines. All other lines will be reflected to a di↵erent
line. So we are done.

In particular, pick any two vector v,w on the plane x+ y+ z = 0, then n,v,w form a basis of R3 made

of eigenvectors of A. As a result, A is diagonalized under this basis into

2

4
�1

1
1

3

5. ,

Example 7.2.11. Let us now think about rotations R✓ on R2. Suppose ✓ is NOT a multiple of ⇡. Then
since every line is rotated, there is no fixed line. In particular, R✓ will have NO eigenvalue.

However, there is no need to despair. Consider the matrix R =


0 �1
1 0

�
. The characteristic polynomial

is x2 + 1. So even though it has no REAL root, it has two COMPLEX roots, ±i.

Consider R � iI =


�i �1
1 �i

�
, you can see that the kernel is spanned by


1
�i

�
. Indeed, you can check

that R


1
�i

�
= i


1
�i

�
.

Similarly, eigenvalues for �i is


1
i

�
. (You can get this by imitating the strategy above, or you can simply

take complex conjugates on R


1
�i

�
= i


1
�i

�
.)

Eitherway,


1
�i

�
,


1
i

�
form a basis for R2. So we have R = XDX�1 where X =


1 1
�i i

�
, D =


i

�i

�
.

We say that R is NOT diagonalizable over R, but IS diagonalizable over C.
It seems that in certain cases, complex matrices are unavoidable. Previously, we have been completely

focused on real matrices. But now, we have to deal with complex matrices. ,

As such, now is a very good time to take a detour to look at complex linear algebra.

7.3 Complex Numbers

As we can see above, even if we only want to study real matrices, complex nubmers would still pop up
as eigenvalues and eigenvectors. Here let us quickly consider what is a complex number, and how would
complex linear algebra look like. We assume that the readers have a basic familiarty for complex numbers.
Nevertheless, we list the basic definition and calculation rules here.

Definition 7.3.1. The set of complex numbers is the set C = {a + bi : a, b 2 R} where we define complex
addition and complex multiplication as

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,
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(a+ bi)(c+ di) = (ac� bd) + (ad+ bc)i.

Here a+ c, b+ d, ac� bd, ad+ bc are all calculations of real numbers.

So in short, a complex number is a REAL linear combination of 1 and i, and we require i2 = �1. You can
easily verify that complex addition and multiplication are commutative and associative, and we have law of
distribution, and so on. We also have the formula �(a+ bi) = �a� bi, and (a+ bi)�1 = ap

a2+b2
� bp

a2+b2
i.

These allow us to do substractions between complex numbers, and divisions when the divider is non-zero.
Everything is verifiably nice.

Here are some final bits of definitions.

Definition 7.3.2. Given a complex number a+bi, we define its real part as Re(a+bi) = a, and its imaginary
part as Im(a+bi) = b. (Note that traditionally we use b, not bi.) We also define its absolute value (or modulus
or norm or length or magnitude.... it’s alll the same to me) as |a+bi| =

p
a2 + b2, and its complex conjugate

is a+ bi = a� bi.

Now, this traditional definition of complex numbers seems artificial and a bit surreal. What does i even
mean? How would such a system exist? Let us observe some interesting comparisons.

Complex Numbers Special 2⇥ 2 matrices

Elements a+ bi


a �b
b a

�

Addition (a+ bi) + (c+ di) = (a+ c) + (b+ d)i


a �b
b a

�
+


c �d
d c

�
=


a+ c �b� d
b+ d a+ c

�

Multiplication (a+ bi)(c+ di) = (ac� bd) + (ad+ bc)i


a �b
b a

� 
c �d
d c

�
=


ac� bd �ad� bc
ad+ bc ac� bd

�

Real part Re(a+ bi) = a 1
2 trace


a �b
b a

�
= a

Absolute value |a+ bi|2 = a2 + b2 det


a �b
b a

�
= a2 + b2

Complex conjugate a+ bi = a� bi


a �b
b a

�T
=


a b
�b a

�

Motivation i2 = �1


0 �1
1 0

�2
= �I.

The point is this: even though complex numbers might look “unreal”, they are actually part of our
everyday life. You can simply think of 1 as the identity map I, and think of i as rotation counter-clockwise
by 90 degree, then a complex number is simply a linear combination of the two. As far as calculations go,

a+ bi is usually easier to work with. But as far as interpretations go,


a �b
b a

�
tells you the meaning behind

this complex number.
So as we can see, a complex number is basically a linear combination between the identity map and the

“rotation by 90” map. In fact, all rotations of R2 are closely related to complex numbers.

Example 7.3.3. Consider R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
. Clearly this corresponds to cos ✓ + i sin ✓. You can also

see that these are precisely the unit complex numbers, i.e., complex numbers with absolute value one. It
is in general a very good intuition to think of unit complex numbers as representations of rotations.

Consider kI =


k 0
0 k

�
. This corresponds to the complex number k, which is purely real. So a purely real

number as a complex number would represent the “stretch everything” map, where we stretch everything
by a factor of k.
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Now consider a generic complex number a + bi. The corresponding linear map is


a �b
b a

�
. Now both

columns have the same length
p
a2 + b2. If we divide by this length, then

"
ap

a2+b2

bp
a2+b2

#
would be a unit vector.

Set ap
a2+b2

= cos ✓ and bp
a2+b2

= sin ✓ for some theta, we see that


a �b
b a

�
=

p
a2 + b2 p

a2 + b2

�
R✓.

In short, a complex number a+ bi as a linear map would mean a rotation map then a “stretch all” map.
We have a + bi =

p
a2 + b2(cos ✓ + i sin ✓), where the rotation amount ✓ is determined by the direction of

a
b

�
, and the stretching factor is determined by the absolute value. ,

The decomposition a+bi =
p
a2 + b2(cos ✓+i sin ✓) is the famous polar decomposition of complex numbers.

It corresponds to decomposing the linear map


a �b
b a

�
into a stretching and a rotation. To better write

this, we need some extra notational convention.

Definition 7.3.4. For a complex number z, we define ez = 1 + z + z
2

2! +
z
3

3! + . . . .

In general, for a square matrix A, we define eA = I +A+ A
2

2! + A
3

3! + . . . .

We shall use the fact that ez and eA always converge, without any proof. The proof is pure analysis and
has nothing to do with linear algebra.

Lemma 7.3.5. ei✓ = cos ✓ + i sin ✓, and e

2

40 �✓
✓ 0

3

5

= R✓. For any two complex nubmers z, w 2 C, we have
ez+w = ezew.

Proof. Direct calculations. Recall that sin(x) = x� x
3

3! +
x
5

5! � . . . , and cos(x) = 1� x
2

2! +
x
4

4! � . . .

Now consider a matrix A =


0 �a
a 0

�
. Note that this is a skew-symmetric matrix. We now have

eA =


1 0
0 1

�
+


0 �a
a 0

�
+

1

2!


0 �a
a 0

�2
+

1

3!


0 �a
a 0

�3
+ . . .

=


1 0
0 1

�
+


0 �a
a 0

�
+

"
�a

2

2! 0

0 �a
2

2!

#
+

"
0 a

3

3!

�a
3

3! 0

#3

+ . . .

=

"
1� a

2

2! + . . . �a+ a
3

3! � . . .

a� a
3

3! + . . . 1� a
2

2! + . . .

#

=


cos(a) � sin(a)
sin(a) cos(a)

�
.

Corollary 7.3.6 (Euler identity). ei⇡ = �1.

As far as I’m concerned, I think the Euler identity is neither surprising nor mysterious. It simply means
that on R2, rotating things by 180 degree is the same as negating everything.

Corollary 7.3.7 (Polar decomposition). For any complex number z, there are unique real numbers r > 0
and 0  ✓ < 2⇡, such that z = rei✓.

Remark 7.3.8. If we think of complex numbers as 2 by 2 matrices as before, then z = ei✓r in fact corresponds
to a QR decomposition.
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Now we have understood almost everything about complex numbers. The next property, however, is the
most important. It is why we bother.

Theorem 7.3.9 (Fundamental Theorem of Algebra). Any complex polynomial p(x) of degree n has n roots
counting multiplicities. (E.g., we say (x � a)3(x � b)2 has a root a with multiplicity 3, and a root b with
multiplicity 2. So counting multiplicity, the roots are a, a, a, b, b, five in total.)

Given an n ⇥ n matrix, its characteristic polynomial is some degree n polynomial. The roots of this
polynomial are exactly the eigenvalues of your matrix. However, the fundamental theorem of algebra would
then reveal that there are exactly n roots (counting multiplicities). Hence an n ⇥ n matrix would always
have exactly n eigenvalues (counting algebraic multiplicities, which we shall define later).

Let us see some examples of this. For n = 2, we shall study some matrices and see that they all have
two (potentially complex) eigenvalues. Further, the complex eigenvalues are indicative of what your matrix
is trying to do.

Example 7.3.10. Consider A =


3 3
1 5

�
. Then the characteristic polynomial is x2 � 8x+12. The roots are

exactly 2 and 6, so these are your eigenvalues. Ker(A � 2I) = Ker


1 3
1 3

�
= span(


3
�1

�
), and Ker(A � 6I)

is spanned by


1
1

�
. (Note that each row adds up to six.)

In short, we have a diagonalization A =


3 1
�1 1

� 
2

6

� 
3 1
�1 1

��1

.

Note that both eigenvalues are purely real. What does real complex numbers do? They stretch. Our

matrix indeed stretch in the


3
�1

�
direction by a factor of 2, and stretch in the


1
1

�
direction by a factor of

6. At this stage, you should be able to visualize the geometric action of this linear map on R2. ,

Example 7.3.11. Consider R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
. Then the characteristic polynomial is (x�cos ✓)2+sin2 ✓.

The roots are exactly cos ✓± i sin ✓, or e±i✓. As you can see, the matrix is doing rotation, and its eigenvalues
are unit complex numbers, which also represent rotations.

Diagonalization here is R✓ =


1 1
�i i

� 
ei✓

e�i✓

� 
1 1
�i i

��1

. ,

7.4 Complex Linear Algebra

Now moving forward, we shall need to do a lot of complex matrix stu↵. In general, most of the things are
exactly like before. The most important one is matrix multiplication.

Example 7.4.1. As a simple example, we have


1 i

1 + i 1� i

� 
i

2 + i

�
=


1⇥ i + i⇥ (2 + i)

(1 + i)⇥ i + (1� i)⇥ (2 + i)

�
=


�1 + 3i

2

�
. As you can see, such things are exactly as before.

As an optional side note, just like we can think of a + bi as the real matrix


a �b
b a

�
, we can similarly

think of complex vectors or matrices as “block matrices” with real entries. For example, the same equation
above may be written as 2

664

1 0 0 �1
0 1 1 0
1 �1 1 1
1 1 �1 1

3

775

2

664

0 �1
1 0
2 �1
1 2

3

775 =

2

664

�1 �3
3 �1
2 0
0 2

3

775 .

And you can see that everything works just the same.
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In particular, if you seek geometric intuitions on complex vectors, you can think of each complex vector
with n coordinates as “a pair of real vectors with 2n coordinates”. ,

While doing these, keep in mind of the following: if someting requires only linear structure, but NO inner
product strucutre, then all formulas are exactly the same as the real case. These includes:

1. Matrix multiplications.

2. Matrix inversions.

3. Gaussian Elimination.

4. Rank-Nullity Theorem. (dimRan(L) + dimKer(L) = dimdom(L).)

5. Trace and determinant formula. (And anything that is similarity-invariant, i.e., invariant under an
arbitrary change of basis. Here for example we have trace(XAX�1) = trace(A), det(XAX�1) =
det(A).)

6. Eigenstu↵, characteristic polynomial, diagonalizability, etc. (All are similarity-invariant.)

Example 7.4.2. Keep in mind that for trace and determinant, the block matrix analogy does not work,
even though all the formula are the same.

For example, consider A =


1 i

1 + i 1� i

�
. Then the trace is 2� i. However, the corresponding real block

matrix

2

664

1 0 0 �1
0 1 1 0
1 �1 1 1
1 1 �1 1

3

775 cannot have a complex trace, since all entries are real. The trace of this real

block matrix is in fact always 2Re(trace(A)).
Similarly, det(A) = 1(1� i)� i(1 + i) = 2� 2i, while the corresponding real block matrix can only have

real determinant since all entries are real. In fact, the real block matrix should always have a determinant
of | det(A)|2.

I shall leave the verification of these correspondences to you. ,

However, the inner product structure (and therefore transpose) is now vastly di↵erent. For the matrix
a �b
b a

�
, taking transpose would send it to


a b
�b a

�
. This corresponds to sending the complex number

a+ bi to its complex conjugate a� bi.

Example 7.4.3. Consider the complex matrix A =


1 i

1 + i 1� i

�
. Its corresponding real block matrix is

2

664

1 0 0 �1
0 1 1 0
1 �1 1 1
1 1 �1 1

3

775.

Now if we take transpose on the real matrix, we would get

2

664

1 0 1 1
0 1 �1 1
0 1 1 �1
�1 0 1 1

3

775. This corresponds to the

complex matrix


1 1� i
�i 1 + i

�
, which is the transpose then complex conjugate of A.

In summary, when we do transpose to real matrices, the analogous operation on complex matrices should
be transpose conjugate. ,

Definition 7.4.4. Given a complex matrix A, we define its adjoint to be A⇤ = AT, where the bar indicates
that we are taking complex conjugates on each entry.
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Definition 7.4.5. Given v,w 2 Cn, we define the dot product between them to be v⇤w.

Example 7.4.6. Consider v =


1
i

�
. Then vTv = 1 + (�1) = 0. Clearly this should NOT be the length

squared of the vector!

If we have v =


z
w

�
, then in fact v⇤v =

⇥
z w

⇤ z
w

�
= zz + ww = |z|2 + |w|2. This now makes much

more sense to be the length squared of the vector. ,

Example 7.4.7. In general, what does it mean for two complex vectors to be perpendicular?

Suppose v =


1
i

�
,w =


1
�i

�
. You can easily calculate and see that v⇤w = 0. So these two complex

vectors are perpendicular.

In real block form, v corresponds to

2

664

1 0
0 1
0 �1
1 0

3

775 while w corresponds to

2

664

1 0
0 1
0 1
�1 0

3

775. As you can see, ALL

FOUR columns are mutually orthogonal. This is what it means to be complex orthogonal. ,

There are other analogous thing to do. Consider these definitions.

Definition 7.4.8. 1. A complex matrix A is unitary if A⇤ = A�1. (This is analogous to real orthogonal
matrices.)

2. A complex matrix A is Hermitian (or self-adjoint as physicists prefer) if A⇤ = A. (This is analogous
to real symmetric matrices.)

3. A complex matrix A is skew-Hermitian (or skew-adjoint) if A⇤ = �A. (This is analogous to real
skew-symmetric matrices.)

We also have this analogous theorem.

Theorem 7.4.9. If A is an m ⇥ n complex matrix. Then Ran(A)? = Ker(A⇤) and Ker(A)? = Ran(A⇤).
Here orthogonality is in the sense of complex dot product.

7.5 (Optional) Fundamental Theorem of Algebra

Here I present my personal favorite proof, using topology.
Consider the polynomial p(z) = zn. Then p : C ! C is a (non-linear) map from the plane to the plane.

What is its behavior?
Intuitively, if z represents some rotation, then zn simply rotate n times the original amount. This is the

guiding intuition for all the analysis below.
Suppose in the domain, we are looking at a big circle of radius R, centered at the origin. And we let a

point z walk around this circle ONCE, counter-clockwise. What would happen to p(z) in the codomain?
Let z = Rei✓, and we are increaing ✓ from 0 to 2⇡. Then p(z) = Rnei(n✓), where ✓ goes from 0 to 2⇡. It

is not hard to see that p(z) in the codomain would walk around a big circle of radius Rn, centered at the
origin, n times! p(z) is moving much faster than z, with n times the angular speed of z.

Now consider a generic polynomial p(z) = zn+lower degree terms. Here we assume the leading coe�cient
is 1 for simplicity. Now, if I pick a super super large R, then for any z on the big circle of radius R, centered
at the origin, it will have a super super large absolute value |z| = R. In particular, |zn| = Rn will be much
much larger than any lower degree terms. We would e↵ectively have p(z) ⇡ zn for all these z on the big
circle of radius R, centered at the origin.

So this big circle of radius R in the domain is approximately mapped to some big circle of radius Rn

around the origin n-times. Since this is just an approximation, the actual image of the circle will have some
minor perturbations caused by the lower degree terms. But they should be minor if R is super super large.
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All in all, if in the domain we pick the big circle of radius R, then its image is some curve winding around
the origin n-times, approximately a big circle of radius Rn.

Now, let us gradually shrink R towards the origin. As R is shrinked to the origin, its image in the
codomain would shrink towards a single point p(0). Since its image is a curve winding around the origin
n-times, when it shrinks to a single point, it shall SWEEP THROUGH the origin n-times.

So, inside the disc of radius R around the origin in the domain, we have n inputs z with p(z) = 0.

7.6 Algebraic multiplicity and Schur Decomposition

Important: Without specification, everything in this section is over C. Entries are allowed to be complex,
coordinates are allowed to be complex, and so on, unless specifically mentioned.

Just like polynomials can have repeated roots, matrices can have repeated eigenvalues. We use the name
multiplicity to refer to the number of times they are repeated. Let us first study algebraic multiplicity.

Given an eigenvalue � of a matrix A, whose characteristic polynomial is pA(x), then we know � is a root
of pA. However, roots of a polynomial have multiplicities. For example, (x� 1)3(x� 2)4 has seven roots, 1
with multiplicity 3 and 2 with multiplicity 4.

Definition 7.6.1. The algebraic multiplicity of an eigenvalue � of A is the multiplicity of � as roots of the
characteristic polynomial pA(x). (Later we shall have another concept called geometric multiplicity, which
shall be di↵erent.)

Example 7.6.2. Consider A =

2

664

1
1

1
2

3

775. Clearly det(xI �A) = (x� 1)3(x� 2).

We say A has eigenvalues 1, 1, 1, 2 counting algebraic multiplicity. We also say that A has eigenvalues
1, 2 NOT counting algebraic multiplicity. ,

Proposition 7.6.3. If A is n⇥n, then it has n eigenvalues (counting algebraic multiplicities). Equivalently,
if �1, . . . ,�k are eigenvalues of A NOT counting algebraic multiplicity, then the sum of algebraic multiplicities
is

P
ma(�i) = n.

Furthermore, if these eigenvalues are �1, . . . ,�n counting algebraic multiplicity, then pA(x) =
Q
(x��i).

Proof. This is simply the fundamental theorem of algebra. Each polynomial has at most n roots.

The concept of multiplicities allows us to look at the eigenstu↵ of a matrix globally, and in fact would
produce some amazing results.

Proposition 7.6.4. Given an n ⇥ n matrix A, let �1, . . . ,�n be the eigenvalues (counting algebraic multi-
plicity). Then trace(A) =

P
�i and det(A) =

Q
�i.

Let us see the 2⇥ 2 case before the formal proof.

Example 7.6.5. Consider A =


a b
c d

�
. Then xI � A =


x� a �b
�c �d

�
. So the characteristic polynomial is

(x�a)(x�d)� bc = x2� (a+d)x+ad� bc = x2� trace(A)x+det(A). On the other hand, if the eigenvalues
are �1,�2, then the characteristic polynomial should also be (x � �1)(x � �2) = x2 � (�1 + �2)x + �1�2.
Compare the two, and we are done.

Note that this is essentially Vieta’s formula, which relates the roots of a polynomial (eigenvalues of your
matrix) with the coe�cients of a polynomial (calculated from entries of your matrix). ,

Proof. Say A =
⇥
a1 . . . an

⇤
. Then det(xI�A) = det(xe1�a1, . . . , xen�an). Now we expand everything

using multilinearity.
Note that to get contribution to the term xn�1, we must pick all but one of the xei. As a result, in the

expansion, the coe�cient for xn�1 is det(�a1, xe2, . . . , xen)+ · · ·+det(xe1, . . . , xen�1,�an) = �a11� · · ·�
ann = � trace(A). However, this is also �

P
�i by Vieta’s formula. So we are done.
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Similarly, consider the constant term in the expansion of det(xI � A) = det(xe1 � a1, . . . , xen � an).
Then we must avoid ALL xei. So we have constant term det(�a1, . . . ,�an) = (�1)n det(A). However, this
is also (�1)n

Q
�i by Vieta’s formula. So we are done.

Alternative proof. These proofs are just for fun. Suppose pA(x) = xn + an�1xn�1 + · · ·+ a0.
Since pA(x) = det(xI � A), therefore pA(0) = det(�A) = (�1)n det(A). On the other hand, pA(0) =

a0 = (�1)n
Q

�i by Vieta’s formula. Hence we are done.
Now consider f(t) = det(I + tA). Then f(� 1

x
) = det(I � 1

x
A) = 1

xn det(xI � A) = 1
xn pA(x) = 1 +

an�1

x
+ · · · + a0

xn . Therefore, by setting t = � 1
x
, we see that f(t) = 1 � an�1t + an�2t2 � · · · + (�1)na0tn.

So f 0(0) = �an�1 =
P

�i by Vieta’s formula. On the other hand, we know f 0(0) = trace(A). So we are
done.

Example 7.6.6. Consider


2 �1
�2 3

�
. Since each row adds up to 1, we see that 1 is an eigenvalue. Since the

trace is 5, we see that the other eigenvalue is 4. Done. Such techniques are very helpful to speed calculate
the eigenvalues of small matrices. ,

Here is also a handy corollary.

Corollary 7.6.7. A is invertible i↵ it has no zero eigenvalue.

Proof. A is invertible i↵ det(A) 6= 0 i↵
Q

�i 6= 0 i↵ all �i 6= 0.

In fact, by similar methodology (but more complicated computations), we can prove the following. I
obmit the proof here since the computations are a bit too messy.

Definition 7.6.8. A k principal submatrix of A is any k ⇥ k submatrix whose diagonal is on the diagonal

of A. (Note that a submatrix does NOT have to be a block. For example,

2

4
1 2 3
4 5 6
7 8 9

3

5 has three principal

submatrices


1 2
4 5

�
,


5 6
8 9

�
and


1 3
7 9

�
, whose diagonal is indeed on the diagonal of the original matrix.)

Theorem 7.6.9. The coe�cient for xn�k in pA(x) is exactly (�1)kSk, where Sk is the sum of determinants
of all k principal submatrices of A.

By generalized Vieta’s formula, this is also (�1)k
P

1i1<···<ikn
�i1 . . .�ik , sum of all possible products

of k of the roots.
So in particular, we have Sk =

P
1i1<···<ikn

�i1 . . .�ik .

Remark 7.6.10. Given an n⇥n matrix A, then its only n⇥n principal submatrix is A itself. So Sn = det(A).
Its 1⇥ 1 principal submatrices are the diagonal entries. So S1 = trace(A).
You can see that the above theorem is a generalization of the result we have proven.

Let us see some examples both utilizing trace(A) =
P

�i and det(A) =
Q

�i, and some examples of the
weird theorem above.

Example 7.6.11. Consider A =

2

4
�1 1 1
�4 3 2
�4 1 4

3

5. What are the eigenvalues? How to diagonalize this matrix?

Well, note that each row adds up to one. So one eigenvalue is 1. We also have trace(A) = 6 and
det(A) = 6.

Suppose the eigenvalues are 1,�2,�3, then �2 + �3 = 5 and �2�3 = 6. We see that the two unknown
eigenvalues must be 2 and 3.
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Calculate Ker(A � �I) with � = 1, 2, 3 via Guassian elimination, we have eigenvector

2

4
1
1
1

3

5 for the

eigenvalue 1, eigenvector

2

4
1
2
1

3

5 for the eigenvalue 2, and eigenvector

2

4
1
2
2

3

5 for the eigenvalue 3. These three

vectors form a basis, so we have found our diagonalization:

A =

2

4
1 1 1
1 2 2
1 1 2

3

5

2

4
1

2
3

3

5

2

4
1 1 1
1 2 2
1 1 2

3

5
�1

.

Now, let us consider the 2⇥ 2 principal submatrices. We have

S2 = det


�1 1
�4 3

�
+ det


�1 1
�4 4

�
+ det


3 2
1 4

�
= 1 + 0 + 10 = 11.

On the other hand, we have

�1�2 + �2�3 + �1�3 = 1⇥ 2 + 2⇥ 3 + 1⇥ 3 = 11.

Indeed, the two are the same. In fact, you can verify that the characteristic polynomial is indeed
pA(x) = x3 � 6x2 + 11x � 6. The value of S1 (trace), S2, S3 (determinant) corresponds to the three
coe�cients. ,

Example 7.6.12. For triangular matrices, this correspondence is even better.

Consider A =

2

4
1 1 1
0 2 1
0 0 3

3

5. What are the eigenvalues? How to diagonalize this matrix?

Well, note that each row adds up to three. So one eigenvalue is 3. The first column indicates that
Ae1 = e1, so one eigenvalue must be 1. Finally, the trace is 6, so the last eigenvalue must be 6� 1� 3 = 2.

Calculate Ker(A � �I) with � = 1, 2, 3 via Guassian elimination, we have eigenvector

2

4
1
0
0

3

5 for the

eigenvalue 1, eigenvector

2

4
1
1
0

3

5 for the eigenvalue 2, and eigenvector

2

4
1
1
1

3

5 for the eigenvalue 3. These three

vectors form a basis, so we have found our diagonalization:

A =

2

4
1 1 1
0 1 1
0 0 1

3

5

2

4
1

2
3

3

5

2

4
1 1 1
0 1 1
0 0 1

3

5
�1

.

Now, let us consider the 2⇥ 2 principal submatrices. We have

S2 = det


1 1

2

�
+ det


2 1

3

�
+ det


1 1

3

�
= 1⇥ 2 + 2⇥ 3 + 1⇥ 3 = 11.

On the other hand, we have

�1�2 + �2�3 + �1�3 = 1⇥ 2 + 2⇥ 3 + 1⇥ 3 = 11.

Indeed, the two are the same. You can even see that the three principal submatrices in this case corre-
sponds perfectly with pairs of eigenvalues! This is an amazing thing that should always happen to triangular
matrices. ,
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Note that the key here lies on the structure of triangular matrices. Let us extrapolate the result here:

Proposition 7.6.13. If A =


B ?
O C

�
, then the characteristic polynomials have the relation pA(x) =

pB(x)pC(x).

Proof. This is a direct corollary of the similar results on the determinants of block triangular matrices.

Corollary 7.6.14. If A is triangular, then its eigenvalues (counting algebraic multiplicity) are exactly the
diagonal entries.

As a result, for a triangular matrix such as A =

2

4
1 1 1
0 2 1
0 0 3

3

5, it is perfectly clear now why its 2 ⇥ 2

principal submatrices are in perfect correspondence with pairs of eigenvalues: because each 2 ⇥ 2 principal
submatrix takes a pair of diagonal entries!

At this stage, it is very clear that triangular matrices are super amazing. Their determinant is easy,
their eigenvalues are easy, everything is easy. Don’t you wish that all matrices are triangular? Well.... Wish
granted!

Theorem 7.6.15 (Schur Decomposition). For any square matrix A, let its eigenvalues be �1, . . . ,�n counting
algebraic multiplicity, in any prescribed order. Then one can find an invertible matrix X such that A =
XTX�1 where T is upper triangular, and the diagonal entries of T are exactly �1, . . . ,�n in the desired
order.

Furthermore, we can take X to be a unitary matrix.

In short, for any matrix, you can change basis and make it triangular. Furthermore, if needed, you can
restrict it to an orthonormal change of basis!

Proof. First pick any eigenvector for the eigenvalue �1, say x1 6= 0. WLOG, we can pick x1 to be a unit
vector.

Extend x1 into a basis (or orthonormal basis), then these vectors as columns would form a matrix X1,
where the first column of X1 is x1. (Note that X1 will be a unitary matrix as well.)

Now consider a change of basis to this new basis X1, resulting in X�1
1 AX1. Note that since Ax1 = �1x1,

the first basis vector is sent to �1 times itself. Therefore, after this change of basis, X�1
1 AX1 =


�1 ?
0 An�1

�

for some (n� 1)⇥ (n� 1) matrix An�1.
(Equivalently, observe that X�1

1 AX1 = X�1
1 A

⇥
x1 ?

⇤
= X�1

1

⇥
�1x1 ?

⇤
=

⇥
�1e1 ?

⇤
.)

Either way, now apply mathematical induction on the dimension n of A. The n = 1 case is trivial.
For generic n, we can assume that the n � 1 case is already done. Therefore, we can assume that An�1 =
Xn�1Tn�1X

�1
n�1 for some unitary Xn�1. Furthermore, since the eigenvalues of An�1 are exactly �2, . . . ,�n,

we can make sure that the diagonal entries of Tn�1 are exactly these values in the desired order by induction
hypothesis.

So we have A = X1


1

Xn�1

� 
�1 ?
0 Tn�1

� 
1

X�1
n�1

�
X�1

1 . So we are done.

Remark 7.6.16. Note that for most of our purpose, it is enough to have A = XTX�1 for any invertible
X. The fact that we can furthermore choose X to be unitary is not important for our class at the moment.
However, in terms of computation stability, this is HUGE. It means this factorization A = XTX�1 will
NOT magnify errors.

Currently, if you ask a computer to find roots of a polynomial p(x), it will attempt to first build a matrix
A whose characteristic polynomial is p(x), and then perform the Schur decomposition A = XTX�1, and
then read the diagonal entries of T .
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Both diagonalization and triangularization tries to do the same thing: we attempt to find a basis, so
that after the change of basis, our matrix looks prettier (and therefore easier to compute with). In this
sense, diagonalizations are the better version. Triangular matrices are of course much uglier than diagonal
matrices.

However, the advantage is two-fold. First, for diagonalization A = XDX�1, the matrix X might not be
unitary, and error terms might be magnified severly. For triangularization, this is not a problem since X is
unitary. Second, some matrices do NOT have diagonalizations. But ALL matrices have triangularizations.
The universality is in itself a huge advantage already.

Example 7.6.17. Suppose A has eigenvalues �1, . . . ,�n counting algebraic multiplicity, then A = XTX�1

where T =

2

64
�1 ⇤ ⇤

. . . ⇤
�n

3

75.

Then A2 = XTX�1XTX�1 = XT 2X�1, where T 2 =

2

64
�2
1 ⇤ ⇤

. . . ⇤
�2
n

3

75 where the star portion might

change in ugly manner, but the diagonal portion is still nice. In particular, we see that A2 has eigenvalues
�2
1, . . . ,�

2
n
counting algebraic multiplicity. You can imagine that, for Ak, the eigenvalues would be �k

1 , . . . ,�
k
n

counting algebraic multiplicity.
Now consider A2 + A, which is a polynomial in A. Since A = XTX�1 and A2 = XT 2X�1, we can see

that A2 + A = X(T 2 + T )X�1 where T 2 + T =

2

64
�2
1 + �1 ⇤ ⇤

. . . ⇤
�2
n
+ �n

3

75. So the eigenvalues for A2 + A

are �2
1 + �1, . . . ,�2

n
+ �n counting algebraic multiplicity. ,

Proposition 7.6.18. If A has eigenvalues �1, . . . ,�n, then for any polynomial p(x), the matrix p(A) has
eigenvalues p(�1), . . . , p(�n). (For example, A+kI would have eigenvalues �1+k, . . . ,�n+k. And A2 would
have eigenvalues �2

1, . . . ,�
2
n
.)

Proof. Write A = XTX�1. Then p(A) = Xp(T )X�1. Since T is triangular with diagonal entries �1, . . . ,�n,
we see that p(T ) is still triangular with diagonal entries p(�1), . . . , p(�n). So we are done.

Here is an optional alternative proof without use Schur decomposition. It is a purely algebraic manipu-
lation of the characteristic polynomial.

Optional Proof. Warning: This proof is ugly and not that illuminating. But serious math lovers should know
that this is possible.

It is very easy to see that p(�i) is indeed an eigenvalue for p(A). If Av = �iv, then it is easy to verify that
Akv = �k

i
v. Since p(A) is a linear combination of powers of A, we see that p(A)v = p(�i)v. The di�culty

here lies in the algebraic multiplicity. To show that, one has to attack the characteristic polynomial.
Consider det(�I � p(A)) for some fixed �. What is �I � p(A)? This is simply another polynomial of A!

This is the most vital observation. Let q(t) = � � p(t). By the fundamental theorem of linear algebra, we
have q(t) = k

Q
(t� ti) for some complex values k, t1, . . . , tn. So we have

det(�I � p(A)) = det(q(A)) = kn
Y

det(A� tiI) = (�k)n
Y

i

pA(ti).

Now use the fact that pA(x) =
Q
(x� �j), we see that

(�k)n
Y

i

pA(ti) = (�k)n
Y

i,j

(ti � �j) =
Y

j

(k
Y

i

(�j � ti)) =
Y

j

q(�j) =
Y

j

(�� p(�j)).

This is true for all �. So det(�I � p(A)) =
Q

j
(� � p(�j)). In particular, the characteristic polynomial

has roots p(�j) as desired.
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By similar arguments (either by Schur decomposition or by characteristic polynomial manipulation), one
can see the following:

Proposition 7.6.19. If A has eigenvalues �1, . . . ,�n, then AT has the same set of eigenvalues. And if A
is invertible, then A�1 has eigenvalues ��1

1 , . . . ,��1
n

.

Example 7.6.20. The fact that p(A) has eigenvalues p(�) is very convenient when analyzing eigenvalues of
A.

For example, suppose A2 = A, i.e., the (oblique) projection matrices. What are the possible eigenvalues
of such a matrix?

We have A2 � A = 0. Therefore, if � is an eigenvalue of A, then �2 � � must be an eigenvalue for
A2 �A = O, so we have �2 � � = 0. This implies that � = 0 or 1.

So all eigenvalues of A are either 0 or 1. Indeed, a projection does two things: kill Ker(A) and preserve
Ran(A). Ker(A) is exactly the eigenspace for 0, while Ran(A) is exactly the eigenspace for 1. ,

Example 7.6.21. Consider a Householder reflection H. As a reflection, we must have H2 = I. In particular,
eigenvalues of H must have �2 = 1. As a result, � = ±1. Indeed, the eigenspace for 1 is the hyperplane of
reflection, while the eigenspace for �1 is the normal direction of the hyperplane, which shall be reflected by
H via Hn = �n. ,

There is a common theme behind both examples. Any polynomial that kills A would determine the
eigenvalues of A. These eigenvalues then in turn determines the behavior of A. So in many cases, if you
want to study linear maps with certain behavior, you can just specify some polynomial p(x) and consider all
matrices that satisfy this polynomial via p(A) = 0. As we have see here, A2 = A gives (oblique) projections,
while A2 = I would actually give you all (oblique) reflections. If you want the orthogonal versions, you can
further require some condition between the matrix and its transpose (or adjoint in case of complex matrices).
For example, by requiring A = AT for real matrices, then A2 = A would give you orthogonal projection, and
A2 = I would give you orthogonal reflection.

Remark 7.6.22. This remark is completely optional.
How to perform a Schur decomposition? If you know all the eigenvalues already, then this is super easy.

Just look at the proof and figure it out from there. However, if you do not know the eigenvalues of A, how
would you do this?

One famous algorithm is the iterated QR-algorithm. Today computers usually use some variants or
improved version of it. The idea is this:

1. Set A0 = A, and perform QR decomposition A0 = Q0R0.

2. Set A1 = R0Q0, and perform QR decomposition A1 = Q1R1.

3. Set A2 = R1Q1, and perform QR decomposition A2 = Q2R2.

4. ....

5. R1 would probably converge to T in the Schur decomposition A = XTX�1.

(This does not always converge. The precise condition is annoying to state clearly. However, in practice,
most of the time it should work.)

What is the idea of this? Well, consider these calculations.

1. AQ0 = Q0R0Q0 = Q0Q1R1.

2. AQ0Q1 = Q0Q1R1Q1 = Q0Q1Q2R2.

3. ....

4. A(Q0 . . . Qk) = (Q0 . . . Qk+1)Rk+1.

Let Xk = Q0 . . . Qk. Then you see that AXk = Xk+1Rk+1 where Xk is orthogonal (or unitary in the
complex case). Taking limit k ! 1, we see that AX1 = X1R1, and hence A = X1R1X�1

1 where X1 is
unitary and R1 is upper triangular. Done.
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7.7 Geometric multiplicity and diagonalization

Last section is mostly designed towards eigenvalues. However, to achieve diagonalization, we also need
eigenvectors, which are the goal for this section.

Given an eigenvalue � for a matrix A, then by definition there must be eigenvectors for this eigenvalue,
i.e., some non-zero v such that Av = �v. In particular, Ker(A � �I) 6= {0}. We can generally think of
Ker(A� �I) as the space of “� eigenvectors” (with the exception of 0 in it).

Definition 7.7.1. Given an eigenvalue � for a matrix A, its eigenspace is Ker(A � �I). (This is also
exactly made of the zero vector and all eigenvalues for �.)

We say the geometric multiplicity of � is dimKer(A� �I).

Intuitively, geometric multiplicity measures how many eigenvectors you have for this eigenvalue.
Now, if we want A to be diagonalizable, we want eigenvectors of A to span the whole domain. This means

we want the sum space
P

Ker(A� �I) to be the whole space. In particular, we hope that dim(
P

Ker(A�
�I)) = n.

This sum space is not that easy to study. However, let us show that in fact dim(
P

Ker(A � �I)) =P
dimKer(A � �I). In this sense, we only need to check if the geometric multiplicity adds up to n. The

phenomenon here is independent subspaces.

Definition 7.7.2. For subspaces W1, . . . ,Wk of V , we say they are linearly independent if, for any w1 2
W1, . . . ,wk 2 Wk, then

P
wi = 0 implies all wi are 0.

Example 7.7.3. Recall that on R2, the x-axis, the y-axis and the line x = y are pairwise independent, but
collectively NOT independent. In particular,


1
0

�
+


0
1

�
+


�1
�1

�
= 0,

this violates the linear independence condition. Indeed, in this case dim
P

Wi = 2 while
P

dimWi = 3.
In contrast, in R3, the three coordinate axes are independent subspaces. If we have

2

4
a
0
0

3

5+

2

4
0
b
0

3

5+

2

4
0
0
c

3

5 = 0,

then we must have a = b = c = 0. Indeed, in this case dim
P

Wi =
P

dimWi = 3. ,

Let us first establish linear independence among subspaces.

Proposition 7.7.4. For subspaces W1, . . . ,Wk of a vector space V , the following are equivalent:

1. The subspaces are linearly independent.

2. If B1, . . . ,Bk are bases for W1, . . . ,Wk respectively, then
S
Bi is a basis for

P
Wi.

3. dim(
P

Wi) =
P

dimWi.

Proof.
Downward implications:
Suppose the subspaces are linearly independent, and we have bases B1, . . . ,Bk forW1, . . . ,Wk respectively.

Let us first show that
S
Bi is linearly independent. Suppose some linear combination of vectors in

S
Bi gives

the zero vector. Then we have

Linear Combination(
[

Bi) =0

Linear Combination(B1) + · · ·+ Linear Combination(Bk) =0.
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Now, note that each Linear Combination(Bi) is some vector in Wi. So by linear independence of sub-
spaces, this implies that each Linear Combination(Bi) is zero. However, Bi is also linearly independent.
Hence all coe�cients are zero.

As a result, we see that
S
Bi is linearly independent. Since it also trivially span

P
Wi, it must be a basis

for
P

Wi.
Now dim

P
Wi = |

S
Bi| =

P
|Bi| =

P
dimWi. Here absolute value symbol means “the number of

elements”.
Upward implications:
Suppose dim

P
Wi =

P
dimWi, and we have bases B1, . . . ,Bk for W1, . . . ,Wk respectively. Then we

have dim
P

Wi =
P

dimWi =
P

|Bi| � |
S
Bi|. Yet we obviously have

S
Bi spanning

P
Wi. Hence

dim
P

Wi = |
S
Bi| and

S
Bi is a basis for

P
Wi.

We can also see that
P

|Bi| = |
S
Bi|, hence these sets B1, . . . ,Bk are disjoint.

Now suppose we have w1 2 W1, . . . ,wk 2 Wk such that
P

wi = 0. Now for the basis
S

Bi, each
wi is a linear combination of vectors in Bi, so

P
wi is a linear combination of vectors in

S
Bi. But this

linear combination is equal to 0, hence all coe�cients are zero. In particular, wi must be the zero linear
combination of vectors in Bi. So wi = 0.

Remark 7.7.5. There are other equivalent conditions as well. For example, for independent subspaces, the
intersection of Wi with the sum of the other subspaces must be zero. This is another necessary and equivalent
condition, even though we do not need this.

Next, we shall see that eigenspaces are all independent.

Remark 7.7.6. Eigenspaces for di↵erent eigenvalues clearly have zero intersection. If v 2 Ker(A � �I) \
Ker(A� µI), then Av = �v and Av = µv. Therefore �v = µv. Hence either v = 0, or � = µ.

However, this is merely “pairwise independence”, which is not enough for collective independence.

Proposition 7.7.7. Suppose A has eigenvalues (NOT counting algebraic multiplicity) �1, . . . ,�k, and let
V1, . . . , Vk be corresponding eigenspaces. Then these spaces are linearly independent.

Proof. Pick non-zero vi 2 Vi for each i. Let us show that v1, . . . ,vk are linearly independent.
Suppose

P
aivi = 0. What can we do? Since Avi = �ivi, we can try to repeatedly applying A to this

equation. This would yeilds the following system of equations:

a1v1 + . . . +akvk = 0

a1�1v1 + . . . +ak�kvk = 0

a1�
2
1v1 + . . . +ak�

2
k
vk = 0

...

a1�
k�1
1 v1 + . . .+ak�

k�1
k

vk = 0.

Writing in terms of matrices we have

⇥
a1v1 . . . akvk

⇤

2

6664

1 �1 . . . �k�1
1

1 �2 . . . �k�1
2

...
...

. . .
...

1 �k . . . �k�1
k

3

7775
= 0.

Note that the right matrix is a Vandermonde matrix. Since �1, . . . ,�k are eigenvalues WIHTOUT
counting algebraic multiplicities, they are all distinct. Therefore this Vandermonde matrix is invertible. So⇥
a1v1 . . . akvk

⇤
= O. As a result, since all vi are non-zero, we have ai = 0 for all i. So these vectors are

linearly independent.
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Remark 7.7.8. The idea behind this proof is called the power method. Recall that we started our study
of eigenvalues EXACTLY by trying to study sequences like v, Av, A2v, . . . . Therefore, in many computa-
tional applications, people usually compute the sequence A,A2, A3, . . . and then extrapolate eigenvalues or
eigenvalue behaviors.

This is also the second major use of Vandermonde matrix.
In some sense, the very motivation of eigensut↵ come from the study of A,A2, A3, . . . . It is not surprising

that iterations are crucial for many parts of eigenstu↵.

We now come to the meat of this section.

Corollary 7.7.9. An n⇥ n matrix A is diagonalizable i↵ its geometric multiplicities mg(�) add up to n.

Proof. Note that dim(
P

Vi) =
P

dimVi is the sum of geometric multiplicity. So if the geometric multiplici-
ties add up to n, then

P
Vi is the whole domain. So the whole domain is spanned by eigenvectors, and we

have A diagonalizable.
The other direction is simply the reverse of the deductions above.

Now compare the two multiplicities.
P

ma(�i) = n always, while
P

mg(�i) might or might not be n.
If the eigenvectors fail to span the whole domain, then they shall span some subspace, so we in fact haveP

mg(�i) < n in that case. Geometric multiplicities seems to be smaller or equal to algebraic multiplicities.
This is indeed the case.

Theorem 7.7.10. Let � be an eigenvalue of A. Then mg(�)  ma(�). I.e., for each eigenvalue, geometric
multiplicities are less than or equal to the algebraic multiplicities.

Proof. Let V ✓ Rn be the eigenspace for � with dimension m = mg(�). Pick a basis v1, . . . ,vm, and extend
this into a basis for the whole space. Then in this new basis, our matrix A changes into B = X�1AX for
some invertible X.

Now consider the first m columns of B. Since Avi = �vi for all 1  i  m, we see that Bei = �ei for all

1  i  m. So B =


�Im⇥m ?

O B1

�
.

Consider the characteristic polynomial, and use the upper triangular block structure, we see that det(xI�

B) = det


(x� �)Im⇥m ?

O xI �B1

�
= (x� �)mpB1(x). Here pB1(x) is the characteristic polynomial of B1.

In particular, we see that � is a root of the characteristic polynomial of B at least m times. Finally, since
A,B di↵ers only via a change of basis, they have the same characteristic polynomial, same eigenvalues and
same algebraic multiplicity.

As a more computational write-up of the same proof, we have

AX =A
⇥
v1 . . . vm X1

⇤

=
⇥
�v1 . . . �vm Y1

⇤

=
⇥
v1 . . . vm X1

⇤ �Im⇥m ?
O B1

�

=X


�Im⇥m ?

O B1

�
.

So X�1AX =


�Im⇥m ?

O B1

�
, and hence the characteristic polynomial of A contains factor (x��)m.

In some sense, algebraic multiplicity cares only about the result of a triangularization (Schur decompo-
sition). In contrast, geometric multiplicity cares only about the result of a potential diagonalization. In
particular, let us now conclude this venture into a criteria for diagonalizability.

Theorem 7.7.11 (Criteria for diagonalizability). A matrix A is diagonalizable if and only if for each
eigenvalue �, its algebraic multiplicity equals to its geometric multiplicity.
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Proof. Note that
P

mg(�) 
P

ma(�) = n. So the left hand side equal to n i↵ equality holds i↵ ma = mg

for all �.

In particular, why does diagonalizability fail? It is because of DEFECTIVE eigenvalues.

Definition 7.7.12. An eigenvalue is defective if its geometric multiplicity is STRICTLY smaller than its
algebraic multiplicity.

Example 7.7.13. Consider an upper triangular matrix. Then the algebraic multiplicity only cares about
the diagonal entries. The rest could be whatever. However, if the entries above the diagonal are too bad,
your matrix might NOT be diagonalizable. Then you would fail to have enough geometric multiplicity.

The most important example to keep in mind is


1 1
0 1

�
. Its only eigenvalue is 1, with algebraic multiplicity

2 and geometric multiplicity 1. (Can you compute this geometric multiplicity yourself?)

In general, we can look at a Jordan block , which is J� =

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775
. This is the MOST

DEFECTIVE case possible, where the algebraic multiplicity of the only eigenvalue � is n, while the geometric
multiplicity is 1. ,

Remark 7.7.14. For matrix that cannot be diagonalized, we can in fact always “Jordanize”, which is as
close to diagonal as possible. For any square matrix A, we can always find decomposition A = XJX�1 where
J is block diagonal, and each diagonal block is a Jordan block. This matrix J (also called the Jordan canonical
form of A) is unique up to the permutation of these diagonal blocks. In particular, A is diagonalizable if and
only if its Jordan canonical form is diagonal.

We do not prove it here though.

Now that the most defective case is dealt with, let us look at the opposite case. This is a very useful
scenario.

Definition 7.7.15. An eigenvalue is simple if its algebraic multiplicity is 1.

Proposition 7.7.16. A simple eigenvalue cannot be defective. In particular, if all eigenvaleus of A are
simple, then A is diagonalizable.

In other words, if all n eigenvalues of A are distinct, then A is diagonalizable.

Proof. Note that by definition, an eigenvalue �must have corresponding non-zero eigenvectors. Its eigenspace
has dimension at least 1. So mg(�) is at least 1.

If the eigenvalue � is simple, then 1  mg(�)  ma(�) = 1. So we must have mg = ma.

Corollary 7.7.17. If a triangular matrix has distinct diagonal entries, then it is diagonalizable.

Let us see some examples to get a better computational idea on diagonalization. In practice, one com-
putational way to get diagonalization for computers is to first find the Schur triangularization, and then
diagonalize using row/column operations.

Example 7.7.18. Consider

2

4
1 4 5
0 2 6
0 0 3

3

5. How can we diagonalize it?

Let us try the shearing

2

4
1 k

1
1

3

5

2

4
1 4 5
0 2 6
0 0 3

3

5

2

4
1 �k

1
1

3

5 =

2

4
1 4 + k 5 + 6k
0 2 6
0 0 3

3

5. (Think in terms of

row and column operations to compute faster.) So by setting k = �4, we see that our original matrix is

similar to

2

4
1 0 �19
0 2 6
0 0 3

3

5.
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Next we try

2

4
1

1 k
1

3

5

2

4
1 0 �19
0 2 6
0 0 3

3

5

2

4
1

1 �k
1

3

5 =

2

4
1 0 �19
0 2 6 + k
0 0 3

3

5. By setting k = �6, we are now

at

2

4
1 0 �19
0 2 0
0 0 3

3

5.

Finally, we try

2

4
1 k

1
1

3

5

2

4
1 0 �19
0 2 0
0 0 3

3

5

2

4
1 �k

1
1

3

5 =

2

4
1 0 �19 + 2k
0 2 0
0 0 3

3

5. Set k = 19
2 , and we are

done. Indeed A can be diagonalized.

Set X =

2

4
1 4

1
1

3

5

2

4
1

1 6
1

3

5

2

4
1 � 19

2
1

1

3

5 =

2

4
1 4 29

2
1 6
1

3

5. Then the process above shows that

X�1AX =

2

4
1

2
3

3

5, so A = X

2

4
1

2
3

3

5X�1. In particular, A has eigenvalues 1, 2, 3, and the corre-

sponding eigenspaces are spanned by eigenvectors that are corresponding columns of X, respectively. (Note
that since mg = ma = 1, all eigenspaces are one-dimensional.)

In contrast, recall that

2

4
1 1

1 1
1

3

5 cannot be diagonalized. If we try shearing, we would typically have

2

4
1 k

1
1

3

5

2

4
1 1

1 1
1

3

5

2

4
1 �k

1
1

3

5 =

2

4
1 1 k

1 1
1

3

5. There is no way to kill the (1, 2) entry, and the cancel-

lation is precise due to the (algebraically) repeated eigenvalues.
This gives a computational intuition about why algebraically repeated eigenvalues are crucial for defec-

tiveness. Intuitively, for a triangular matrix, to kill the (i, j) entry using row/column operations, we usually
need the (i, i) eigenvalue and (j, j) eigenvalue to be di↵erent. ,

Now, let us combine the two multiplicities and have some applications.

Example 7.7.19. Consider again

2

6664

1 + a1b1 a1b2 . . . a1bn
a2b1 1 + a2b2 . . . a2bn
...

...
. . .

...
anb1 anb2 . . . 1 + anbn

3

7775
. What is its determinant?

Let us do this by finding the eigenvalues. Then it is enough to find the eigenvalues ofA =

2

6664

a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn
...

...
. . .

...
anb1 anb2 . . . anbn

3

7775
.

Note that this matrix has rank at most 1, so dimKer(A) is at least n� 1. In particular, 0 is an eigenvalue
of A with geometric multiplicity at least n� 1. This in turn implies that 0 also has algebraic multiplicity at
least n� 1.

So, since A has n eigenvalues in total (counting algebraic multiplicity), and we already know that n� 1
of them are all zero. We just need to find the last one. But since trace(A) =

P
aibi, we see that the last

one is simply
P

aibi. So A has eigenvalue 0, . . . , 0,
P

aibi.
Now our goal is to find det(I +A). Note that A+ I has eigenvalues 1, . . . , 1, 1+

P
aibi, so det(I +A) =

1 +
P

aibi. Done. ,

Example 7.7.20. Consider again

2

6664

1 + a1 + b1 a1 + b2 . . . a1 + bn
a2 + b1 1 + a2 + b2 . . . a2 + bn

...
...

. . .
...

an + b1 an + b2 . . . 1 + an + bn

3

7775
. What is its determinant?
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Let us do this by finding the eigenvalues. Then it is enough to find the eigenvalues ofA =

2

6664

a1 + b1 a1 + b2 . . . a1 + bn
a2 + b1 a2 + b2 . . . a2 + bn

...
...

. . .
...

an + b1 an + b2 . . . an + bn

3

7775
.

Note that this matrix has rank at most 2, so dimKer(A) is at least n� 2. In particular, 0 is an eigenvalue
of A with algebraic multiplicity at least n� 2.

So, since A has n eigenvalues in total (counting algebraic multiplicity), and we already know that n� 2
of them are all zero. We just need to find the last two. Let them be �1,�2. How to find them?

From trace we easily have �1 + �2 = trace(A) =
P

ai +
P

bi. This corresponds to the coe�cient of the
xn�1 term in the characteristic polynomial. However, let us look at the coe�cient of the xn�2 terms. This
gives

P
i<j

�i�j = S2, where S2 is the sum of all 2 ⇥ 2 principal minors of A. Note that since all but two
eigenvalues are zero, the left hand side is in fact simply �1�2, the product of the only two non-zero eigenvalues.

And the right hand side is
P

i<j
det


ai + bi ai + bj
aj + bi aj + bj

�
=

P
i<j

[(ai + bi)(aj + bj) � (ai + bj)(aj + bi)] =
P

i<j
(aibj + biaj � aibi � ajbj).

Now our goal is to find det(I+A). Note that A+I has eigenvalues 1, . . . , 1, 1+�1, 1+�2, so det(I+A) =
(1 + �1)(1 + �2) = 1 + (�1 + �2) + �1�2 = 1 +

P
ai +

P
bi +

P
i<j

(aibj + biaj � aibi � ajbj). Done.

For aethetic purpose, one might want to further simplify by
P

i<j
(aibj+biaj�aibi�ajbj) =

1
2

P
i,j
(aibj+

biaj � aibi � ajbj), since the cases of i < j and i > j are symmetric, and the terms when i = j are all zero.
Then this further simplify to 1

2

P
i,j
(aibj +biaj �aibi�ajbj) =

1
2 ((

P
ai)(

P
bi)+(

P
ai)(

P
bi)�n(

P
aibi)�

n(
P

aibi)) = (
P

ai)(
P

bi)� n
P

aibi.
Then we have det(I +A) = 1 +

P
ai +

P
bi + (

P
ai)(

P
bi)� n

P
aibi. ,

7.8 Limit and Conquer

Suppose A is diagonalizable, say A = XDX�1. Then we have a very nice formula Ak = XDkX�1 and more
generally p(A) = Xp(D)X�1, which are all easy to calculate. What if A is NOT diagonalizable? It turned
out that we can still calculate p(A) with some formula. Except that derivatives are now involved.

Example 7.8.1. For a diagonal matrix D =

2

64
d1

. . .
dn

3

75, then we have Dk =

2

64
dk1

. . .
dk
n

3

75. Therefore,

for any polynomial p(x), note that p(D) is a linear combination of powers of D. Therefore we can easily

verify that in fact p(D) =

2

64
p(d1)

. . .
p(dn)

3

75.

Now consider a non-diagonalizable matrix, a Jordan block J =


2 1
0 2

�
. Even though this matrix is NOT

diagonalizable, consider Jt =


2 1
0 2 + t

�
. Now for t 6= 0, then all eigenvalues of Jt would be simple. So Jt is

diagonalizable for t 6= 0. In particular, even though J is NOT diagonalizable itself, it is a limit of diagonal
matrices.

Now for t 6= 0, we have Jt =


1 1

t

1

� 
2

2 + t

� 
1 � 1

t

1

�
. As a result, we see that

p(Jt) =


1 1

t

1

� 
p(2)

p(2 + t)

� 
1 � 1

t

1

�
=


p(2) p(2+t)�p(t)

t

p(2 + t)

�
.

Hey! That looks like a derivative formula.
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Now take limit t ! 0, we see that p(J) =


p(2) p0(2)

p(2)

�
. This is true for all polynomial p(x). (Note that

lim p(Jt) = p(lim Jt) = p(J) because p is continuous. Algebraically, continuity means “it commute with the
limit operator”.) ,

Remark 7.8.2. In fact, the argument above extends to all analytic functions. (An analytic function is a
function that equal to its own Taylor expansion.)

Suppose f(x) is a function with Taylor expansion. Then f(x) is a limit of polynomial functions. Hence

f(D) for D =

2

64
d1

. . .
dn

3

75 is f(D) =

2

64
f(d1)

. . .
f(dn)

3

75. This gives us a way to define f(A) in general.

If A = XDX�1, we simply define f(A) = Xf(D)X�1, since the X,X�1 portion are simple changing the
basis.

One can then use the same proof to see that f(


2 1
0 2

�
) =


f(2) f 0(2)
0 f(2)

�
. For example, e

2

42 1
0 2

3

5

=

e2 e2

0 e2

�
.

This idea of proving easy cases, and then extend by continuity is a very standard strategy, and in fact very
useful everywhere. We are doing linear algebra, so everything is linear or at worst polynomial. So everything
is continuous. This makes taking limit very easy to impliment. Here are two optional lemmas you might be
interested in. The results is more important than the proof. The proof is a standard mathematical technique
about tiny perturbations.

Lemma 7.8.3. For any square matrix A, it is the limit of a sequence of matrices An with distinct eigenvalues.
(In particular, all An are diagonalizable since all eigenvalues are simple.) We may also require that all An

are invertible.

Proof. Consider the Schur decomposition A = QUQ�1. Say U =

2

64
�1 ⇤ ⇤

. . . ⇤
�n

3

75. We aim to perturb

the diagonal entries of U a bit, to get matrices with distinct eigenvalues. Let At = QUtQ�1 where Ut =2

64
�1 + t ⇤ ⇤

. . . ⇤
�n + nt

3

75. Obviously limt!0 At = A. We only need to show that for small enough non-zero t,

all At have distinct eigenvalues.
Let g be the smallest non-zero gap between eigenvalues of A. (E.g., if A has eigenvalues 1, 1, 4, 6, 6, 6,

then g = 2.) I claim that for all 0 < |t| < g

2n , At has distinct eigenvalues.
Indeed, eigenvalues of At must be �1 + t, . . . ,�n + nt. For any i 6= j, if �i = �j , then �i + it 6= �j + jt

due to |t| > 0. If �i 6= �j , then the gap |�i � �j | is non-zero and therefore at least g. So we have

|(�i + it)� (�j + jt)| � |�i � �j |� i|t|� j|t| � g � i|t|� j|t| > 2nt� nt� nt = 0.

Hence �i + it 6= �j + jt as well. Either way, At has distinct eigenvalues and thus is diagonalizable.
(Intuitively, if g is smallest gap, and 2nt < g, then for all �i,�j with a gap, then the total perturbation

is it+ jt  2nt < g, which is not enough to fill in this gap.)
If you want all At to be invertible as well, then you can again let g be the smallest non-zero gap, both

between eigenvalues of A and between non-zero eigenvalues of A and zero. Then the same proof works in
the same way.

So, sometimes to prove some generic theorem about continuous things, we may simply assume that our
matrices are diagonalizable or invertible or both, and prove the special case. Then we take limit, and we
would have obtained all cases.
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As an application, consider the following proof.

Theorem 7.8.4. Say n > k. For any n⇥ k matrix A and k ⇥ n matrix B, then pAB(x) = xn�kpBA(x). In
particular, AB and BA have the same eigenvalues and the same algebraic multiplicity, with the exception of
the eigenvalue 0. AB has n� k more zeros as eigenvalues than BA.

Note that det(I + AB) = det(I + BA) is a very simple corrolary of the fact here. If we add identity,
then we see that I +AB has n� k more ones as eigenvalues than I +BA, and otherwise they have identical
eigenvalues. Taking product, and we are done.

Proof. We prove the theorem by first proving it for invertible A, then proving it for square A,B, and then
prove the general case when A,B are rectangular.

A is invertible: If A is invertible, then A(BA)A�1 = AB. So AB and BA are similar, and we are done.
A is NOT invertible: Consider A+ tI. Since A has finitely many eigenvalues, by choosing really tiny

t, we can make sure that eigenvalues of A+ tI are ALL non-zero. So A is the limit of invertible matrices At.
Now since AtB and BAt have identical characteristic polynomial, by taking limit, AB and BA will have the
same characteristic polynomial.

A,B are NOT square: We add zero columns to A and obtain A0 =
⇥
A O

⇤
, a square matrix, and add

zero rows to B and obtain B0, a square matrix. Note that A0B0 = AB while B0A0 =


BA

O

�
.

Since A0B0 and B0A0 have the same characteristic polynomial, we see that pAB(x) = xn�kpBA(x).

As you can see, each step is trivial. This is a very fundamental relation between AB and BA, and in
turn, between I + AB and I + BA. Everything that we’ve done previously, like trace(AB) = trace(BA) or
det(I +AB) = det(I +BA) are all corollaries of this.

We now end this section with the all powerful Cayley-Hamilton theorem.

Proposition 7.8.5. The process of sending n⇥ n matrices A to the complex number pA(A) is continuous.

Proof. The coe�cients of pA(x) are (�1)kSk, which is some polynomials in entries of A. So all coe�cients
of pA(x) depends on A continuously. So in the calculation of pA(A), we are adding or multiplying things
that all depends on A continuously. Therefore this is a continuous process.

Theorem 7.8.6 (Cayley-Hamilton). We have pA(A) = O for any square matrix A.

Proof. If A is diagonalizable, then A = XDX�1 where the diagonal entries of D are the eigenvalues. Then
pA(A) = XpA(D)X�1. However, pA(D) simply applies pA to the eigenvalues, which are roots of pA. So
pA(D) = O. So pA(A) = O.

Now suppose A is NOT diagonalizable. Pick a sequence An of diagonalizable matrices An such that
A = limAt.

So pA(A) = lim pAn(An) = limO = O.

There are many theoretical consequence of Cayley-Hamilton. Here is one:

Corollary 7.8.7. If A is invertible, then there is a polynomial p(x) such that A�1 = p(A).

Proof. Consider pA(x). Since det(A) 6= 0, the constant term of pA(x) is non-zero. So pA(x) = xq(A) + c for
some c 6= 0 and some polynomial q(x).

Now since pA(A) = O, we see that Aq(A) + cI = O. Rearrange terms, and we have A�1 = � 1
c
q(A).

Done.

Here is an even more powerful version.

Corollary 7.8.8. If p(A) = O for some polynomial p(x) with degree d, then for any polynomial q(x),
q(A) = r(A) for some polynomial r(x) with degree strictly less than d.
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Proof. For any polynomial q(x), perform polynomial division, and we have q(x) = a(x)p(x) + r(x) for some
polynomial a(x) and remainder r(x). Hence r(x) has degree strictly less than the degree of p(x), and
q(A) = a(A)p(A) + r(A) = r(A).

Since we always have pA(A) = O, we see that for any n⇥nmatrix A, we only need to consider polynomials
of A with degree at most n� 1. No higher degree polynomials of A is ever needed.

Example 7.8.9. Suppose A2 = A, show that I +A is invertible and find its inverse.
How to do this? Well, since eigenvalues of A must satisfy �2 = �, we see that � = 0, 1. So eigenvalues of

A are 0 or 1. Therefore, eigenvalues of I +A are 1 and 2, and in particular I +A is invertible.
Now inverse of I+A must be some polynomial of I+A, which is in term some polynomial of A. However,

A2 = A, so any polynomial of A must be a0I + a1A.
If a0I+a1A is the inverse, then we have I = (I+A)(a0I+a1A) = a0I+(a0+2a1)A. So we want a0 = 1

and a0 + 2a1 = 0, which gives a0 = 1 and a1 = � 1
2 . So we have (I +A)�1 = I � 1

2A. ,

Here is a slightly more complicated example.

Example 7.8.10. Suppose A3 +A2 +A+ I = O, show that 2A+ I is invertible and find its inverse.
How to do this? Well, since eigenvalues of A must satisfy �3 + �2 + �+ 1 = 0, we see that � = �1, i,�i.

So eigenvalues of A are �1, i,�i. Therefore, eigenvalues of 2A + I are �1, 1 + 2i, 1 � 2i, and in particular
2A+ I is invertible.

Now inverse of 2A + I must be some polynomial of 2A + I, which is in term some polynomial of A.
However, A3 +A2 +A+ I = O, so any polynomial of A must be a0I + a1A+ a2A2.

If a0I + a1A+ a2A2 is the inverse, then we have

I = (2A+I)(a0I+a1A+a2A
2) = a0I+(2a0+a1)A+(2a1+a2)A

2+(2a2)A
3 = (a0�2a2)I+(2a0+a1�2a2)A+(2a1�a2)A

2.

So we want a0 � 2a2 = 1, 2a0 + a1 � 2a2 = 0 and 2a1 � a2 = 0, which gives a0 = � 3
5 , a1 = � 2

5 and
a2 = � 4

5 . So we have (2A+ I)�1 = � 3
5I �

2
5A� 4

5A
2. ,

So you always have only finitely many coe�cients to consider, and can always attempt at something like
the example above. In fact, for any function f with converging Taylor expansion, then f(A) = r(A) for some
polynomial r(x) with degree strictly less than d.

Example 7.8.11. For A =


2 1
0 2

�
, we have eA =


e2 e2

0 e2

�
= e2A� e2I. ,

7.9 (Optional) Classification of 2⇥ 2 real matrices

Since we were studying real matrices, here are the most important properties of them.

Proposition 7.9.1. If A is a real square matrix, then any complex eigenvalues would come in conjugate
pairs, with same algebraic and geometric multiplicities, and their corresponding eigenvectors are also in
conjugate pairs.

Proof. If Av = �v, then Av = �v, and hence Av = �v. The rest is easy verifications along similar lines.

Proposition 7.9.2. If a real square matrix A has a real eigenvalue, then we can find real eigenvectors for
the eigenvalue. Furthermore, real eigenvectors would span the (complex) eigenspace of �.

Proof. Note that if Av = �v, then Av = �v. Since both A and � are real, we see that Av = �v. As a result,
both v,v are eigenvectors for �. Then 1

2 (v + v), 1
2i (v � v) are real eignevectors for � and their span would

contain v.
In particular, not only � has real eigenvectors, we also see that real eigenvectors are enough to span the

eigenspace.
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Another interesting but less important fact happen when n is odd.

Proposition 7.9.3. If A is an n⇥ n real square matrix, and n is odd, then A must have a real eigenvalue
(and hence with corresponding real eigenvectors).

Proof. Note that pA(x) is a polynomial of odd degree. In particular, it is easy to see that limx!1 pA(x) = 1
while limx!�1 pA(x) = �1. By intermediate value theorem, somewhere we must be able to find a real �
with pA(�) = 0.

Corollary 7.9.4. Any 3-dimensional rotation must have an axis of rotation. (In fact, this is true for all
odd-dimensional rotations.)

Proof. Let this rotation be R, which would be an orthogonal matrix with determinant 1. Then suppose it has
an eigenvalue �. Say Rv = �v. However, since R is an orthogonal matrix, we have kvk = kRvk = |�|kvk,
so we see that all eigenvalues must be complex numbers with absolute value 1.

In particular, eigenvalues of R are conjugate pairs of non-real numbers with absolute value 1, and some
�1 and some 1. Now since R is a rotation, it preserves orientation, so the product of all its eigenvalues are
1. But the conjugate pairs of complex eigenvalues must multiply to 1, so we see that R must have even
numbers of eigenvalue �1.

Now let us count. R has n eigenvalues in total, and n is odd. R must have even numbers of non-real
eigenvalues, and even numbers of �1, so it seems that it must have an odd number (hence non-zero number)
of eigenvalues 1. In particular, R has eigenvalue 1. And the corresponding real eigenvector must be an axis
of rotation.

Here let us attempt to classify the behavior of all 2⇥ 2 real matrices. We finally have enough tools to do
so. Throughout this subsection, suppose A is a 2⇥ 2.

Example 7.9.5. Suppose A is NOT invertible. If A has rank 0, then obviously the only case is A = O.
Now suppose A has rank 1.

Then the eigenvalues of A are 0,�. Suppose � 6= 0. Then A has distinct eigenvalues and thus diagonal-

izable. So A = XDX�1 where D =


�

0

�
. In particular, ( 1

�
A)2 = 1

�
A. So A is a multiple of some oblique

or orthogonal projection.
As a side note, trace(A) = 0 + � = � 6= 0 in this case.
If � = 0, yet A 6= O, so we see that A is NOT diagonalizable. By Schur decomposition, we see that

A = QTQ�1 for some orthogonal matrix Q, where T =


0 a
0 0

�
= ae1eT2 for some non-zero a. Also note

that


0 a
0 0

�
=


a

1

� 
0 1
0 0

� 
1
a

1

�
. So all these matrices are similar to


0 1
0 0

�
. The matrix


0 1
0 0

�
does

this: it sends the y-axis to the x-axis, and it sends the x-axis to the origin. It is also funny that A 6= O but
A2 = O.

As a side note, trace(A) = 0 in this case.
In summary we have the following classification:

1. If A has rank zero, then A = O.

2. If A has rank one and trace(A) 6= 0, then A is a multiple of oblique or orthogonal projection.

3. If A has rank one and trace(A) = 0, then A is similar to the Jordan block


0 1
0 0

�
.

,

Now we are ready to study the invertible matrices. Note that in this case, A will have two non-zero
eigenvectors �1,�2. And furthermore, we have trace(A) = �1 + �2 and det(A) = �1�2. In particular, the
trace and determinant of A completely determines the eigenvalues!

For the moment, let us assume that det(A) = 1. So A would preserve area. First we study rotation like
behavior, which would obviously preserve area.
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Example 7.9.6 (Elliptic rotations). If A has non-real eigenvalues, then note that these eigenvalues come
in conjugate pairs. So the two eigenvalues must be �,�. Also note that, by premises, �� = 1, so � is a unit
complex number.

Now by polar decomposition, we must have � = ei✓ = cos ✓ + i sin ✓ for some ✓. Furthermore, since this
should NOT be purely real, we have |cos ✓| < 1. For the record, we can see that in this case |trace(A)| =
|2 cos ✓| < 2

Now since our eigenvalues are non-real, they are conjugate pairs, and thus they are distinct, so A is

diagonalizable. So A is similar to


ei✓

e�i✓

�
. However, the matrix R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
is also similar to


ei✓

e�i✓

�
. Hence A is similar to R✓.

Note that R✓ is a simple rotation. You can think of the plane R2 as made of concentric circles around
the origin, and R✓ simple rotates all these circles by the same amount.

If we change basis and get A, then A would be an “elliptic rotation”. You can think of the plane R2 as
made of concentric ellipses around the origin, and A simple rotates all these ellipses simultaneously.

What is the speed of this rotation? It turns out that di↵erent points on the ellipse will be rotated with
di↵erent speed, depending on how close they are to the origin. It is actually a version of Kepler’s second law
of planetary motion, where the area swept in unit time should be the same. Note the fact that det(A) = 1,
so A should preserve area. In particular, the triangle made by v, Av and the triangle made by Av, A2v
should have the same area, and so on. This can help us determine the speed of rotation induced by A. ,

We are now left with the cases where the eigenvalues are both real. Suppose they are distinct.

Example 7.9.7. Suppose the eigenvalues are distinct. Since their product is 1, they are �, 1
�
where � 6= ±1.

Note that in this case, we necessarily have |trace(A)| > 2. Let us assume in this case that � > 0, so both
eigenvalues are positive.

Since the two eigenvalues are distinct, A = XDX�1 with D =


�

1
�

�
. So A after a change of basis

becomes D. What is the geometric behavior of this D?

Note that D


x
y

�
=


�x
1
�
y

�
. In particular, it would fix the product of the coordinates! As you can imagine,

it will slide points along hyperbolas such as curves xy = k in R2. These hyperbolas are “orbits” of D.
After a change of basis, A would become a “hyperbolic rotation”. Let v,w be a basis of R2 made of

eigenvectors of A, and consider all hyperbolas with these two lines as asymptotes. Then A simply slide each
point along the hyperbola it lies on.

What is the speed of this rotation? Again, since det(A) = 1, Kepler’s second law of planetary motion
applies. The triangle made by v, Av and the triangle made by Av, A2v should have the same area, and so
on. This can help us determine the speed of rotation induced by A.

What if we started with � < 0? Then we can apply the analysis above to �A. Hence A is the negation
of a hyperbolic rotation. You may think of it as A = �B where B is the hyperbolic rotation. So A would
perform a hyperbolic rotation and then negate the outcome vector. ,

Now we are left with the case where the two eigenvalues are real and identical. We have obvious candidates
like ±I. However, there is also another special linear map of this case that preserve area, i.e., shearing.

Example 7.9.8. The two eigenvalues must be �1 = �2 = 1 or �1 = �2 = �1. Note that in this case, we
have |trace(A)| = 2.

If A is diagonalizable with identical eigenvalues, then A = XDX�1 where D = ±I. But then we would
have A = ±I. So these are the only possibility in this case.

Suppose A is NOT diagonalizable. Then A = QTQ�1 for some triangular T . Suppose �1 = �2 = 1, then

we have T =


1 k
0 1

�
, so A after a change of basis is a shearing transformation.

What if �1 = �2 = �1? Then again, we simply apply the arguments above to �A. So A = �B where B
is a shearing transformation. ,
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We have now covered all cases. Let us make a summary.

Proposition 7.9.9. If det(A) = 1, then the geometric behavior of A is exactly one of the following, char-
acterized by trace.

1. (trace(A) > 2) Sliding points along hyperbolas with common asymptotes.

2. (trace(A) = 2) Either A = I or A is a shearing along some direction.

3. (|trace(A)| < 2) Rotations around concentric ellipses of the same eccentricity.

4. (trace(A) = �2) Either A = �I or A is a shearing along some direction then negation.

5. (trace(A) < �2) Sliding points along hyperbolas with common asymptotes, and then negation.

Note that the case |trace(A)| < 2 is sometimes called elliptic, and the case |trace(A)| > 2 is sometimes
called hyperbolic, for obvious reason. A less intuitive name is that the case of trace(A) = ±2 is some-
times called parabolic. (This is because the parabola is an intermediate state between the ellipses and the
hyperbolas.)

Now what if det(A) 6= 1? We have two scenarios. Let us focus now on the case of positive determinant.
Suppose det(A) > 0. Then let t =

p
det(A), we have det( 1

t
A) = 1. So 1

t
A is one of the cases above. In

particular, A = tB for some B in one of the cases above. A is basically B and then a uniform scaling.

Example 7.9.10. If B is an elliptic rotation and t > 1, then A will “spiral out”. For each application of A,
you shall rotate, and then uniformly scale outward. Repeatedly apply A, and you will see all points spiraling
away from the origin. Reversely, if 0 < t < 1 in this case, then you shall see a spiral in process instead. Note
that this is the case of non-real eigenvalues with trace(A)2 < 4 det(A) ,

Example 7.9.11. Suppose B is a hyperbolic sliding (i.e., with positive eigenvalues). Note that this corre-
sponds to the case where A is diagonalizable with distinct eigenvalues. Suppose that both eigenvalues are
positive.

Then we have A = XDX�1 with D =


�1

�2

�
. If we have 0 < �1,�2 < 1, then A will shrink everything

towards the origin. The origin is like a “sink” where everything would flows towards. If �1,�2 > 1, then
A will now push everything away from the origin. The origin is like a “source” where everything pours
outwards.

If one eigenvalue is larger than 1, while the other is less than 1, then the picture is similar to a hyperbolic
sliding, even though the orbits are not necessarily hyperbolas. The origin is called a “saddle” point, where
points would flow in through one eigen-direction, and yet pushed away along another eigen-direction.

The intermediate state, where one eigenvalue is exactly 1, means we have a line of fixed points, and we
stretch or shrink along the other direction, depending on whether the other eigenvalue is larger than or less
than 1. The geometric behaviors are a bit like the process of opening doors or closing doors.

Finally, the case when A has negative eigenvalues are simply above process and then negation. ,

We are again left with the cases of identical real eigenvalues. If B = ±I, then A is also a multiple of
identity, and this case is trivial. So let us now look at the case when B is a shearing, or alternatively, when

A is similar to some


� 1

�

�

Example 7.9.12. Consider the case A =


� 1

�

�
where � = 100. Then we can think of A as two process:

first we perform a tiny shearing


1 1

100
1

�
, and then we scale everything by 100.

First imagine that the imput is a vector in a direction above but close to the negative x-axis. Then since
the y-component is tiny, shearing should e↵ect very little of it. Yet the scaling should e↵ect it greatly and
move it towards the upper left. As a result, the vector would move towards its upper left.
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However, also because A


x
y

�
is parallel to


x+ 1

100y
y

�
, the vector is slowly but surely turning clockwise.

Eventually, once the vector is turned past the y-axis, then both the shearing and the scaling would push it
to the right, and the vector would just go faster and faster right ever since.

This phenomena is called a degenerate source. All points are pushed away, but the direction of push is
somewhat spiral, somewhat asymptotic.

In general, suppose A has identical positive eigenvalues but is NOT diagonalizable. When det(A) > 1, its
behavior would be some degenerate source as shown. When det(A) < 1, then it would be some degenerate
sink, which spirals in. Finally, when det(A), then this is just a regular shearing.

If A has negative eigenvalues, then A is the above process and then negation. ,

We have one last, case, the case when det(A) < 0. Note that in this case, pA(x) is a degree two polynomial
with negative constant coe�cient, and hence it always have distinct real roots, one positive and one negative.
In particular, A MUST be diagonalizable.

Consider


�1

�2

�
where �1 > 0,�2 < 0. This is essentially


1

�1

�
and then we stretch or shrink a

bit in each axis. So all such matrices must be (maybe oblique) reflection and then some stretches.

7.10 Linear Di↵erential Equations

7.10.1 Di↵erential Equations with only One Function

Example 7.10.1. What is the solution to f 0(x) = f(x)? Consider the di↵erential operator D, which is
linear. We are trying to find Df = f , which would be eigenvectors of D for eigenvalue 1. ,

As you can see, taking derivative is a linear operator. To study this operator D, obviously we need to
understand its eigenvalues and eigenvectors. Well, guess what? We do.

Proposition 7.10.2. Let D be the derivative operator. Then any complex number � 2 C is an eigenvalue
of D with geometric multiplicity one. Its eigenspace is spanned by e�x.

Proof. This is a basic calculus class result.

Before moving on, recall that if Av = �v, then it is very easy to verify that p(A)v = p(�)v for all
polynomial p(x).

Example 7.10.3. Consider the harmonic osciliator. Say your position is f(t), then we know mf 00(t) =
�kf(t). However, suppose that we also have frictions proportional to your speed. Then now we have
mf 00(t) = �bf 0(t)� kf(t). Then the di↵erential equation is mf 00 + bf 0 + kf = 0 for some positive constants
m, b, k. What is the solution?

Let us assume m = 1, b = 3, k = 2. Then f 00 + 3f 0 + 2f = 0. Let p(x) = x2 + 3x + 2, then naturally
p(D)f = 0. So we are trying to find eigenvectors for the eigenvalue 0.

Now p(�1) = p(�2) = 0. So since e�x and e�2x are eigenvectors of D for the eigenvalues �1 and �2
respectively, it turned out that they are both eigenvectors of p(D) for the eigenvalue p(�1) = 0 = p(�2).
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I state without proof here that for any polynomial p of degree d, then any eigenspace of p(D) is complex
d dimensional. So the solution to our di↵erential equation is the span of e�x and e�2x.

So our harmonic osciliator with friction in this case behaves like ae�t + be�2t and the limit as t ! 1 is
0. So eventually we stopped moving at the origin. ,

Proposition 7.10.4. Let D be the derivative operator. For any polynomial p of degree d, then any eigenspace
of p(D) is d dimensional.

Proof. Check out some odinary di↵erential equation class for this proof.

With this idea, you should be able to almost solve all di↵erential equations that looks like p(D)f = 0.
If you see f 000 + 6f 00 + 11f 0 + 6f = 0? NO PROBLEM. The roots for p are 1,2,3, so all solutions are linear
combintions of ex, e2x, e3x. As long as all the roots of p are distinct, we can find all solutions to di↵erential
equations this way.

Let us check out another case. This allow us to handle complex eigenvalues with better grace.

Example 7.10.5. Now suppose we have no friction, so we have f 00+f = 0. Then p(D)f = 0 for p(x) = x2+1,
and the roots for p are ±i. The two eigenvectors are eit and e�it, and they are both eigenvectors for p(D)
for the eigenvalue 0. Any solution must look like zeit +we�it for some complex numbers z, w. But how can
I find all real solutions?

Well, note that the (complex) span of eit, e�it is the same as the (complex) span of cos t, sin t. So the
answer is simply all real linear combinations of cos t, sin t.

Alternatively, note that p(D)eit = 0 means that p(D) cos t + ip(D) sin t = 0, so p(D) cos t = 0 and
p(D) sin t = 0.

Finally, note that the solutions are all periodic. Indeed, if there is no friction, then the osciliator would
simply bounce forever, in a periodic manner. ,

Techniques here are vaid, as long as p(D)f = 0 and the polynomial p(x) have distinct roots. What if
p(x) has repeated roots?

Example 7.10.6. Consider any potential solution to (D2 � 2D+ I)f = 0. Since the roots of p(x) are both
1, we see that ex is an eigenvector with eigenvalue 0. However, since our polynomial has degree two, the
solution space is suppose to be two dimensional. What could another basis vector be?

This could be xex. You can feel free to verify that indeed D2 � 2D + I would kill this function. This is
NOT an eigenvector, but a generalized eigenvector , which we shall discuss next semester. ,

7.10.2 (Optional) Eigenspace of p(A) and p( d

dx)

In last subsection, we claim that if p has degree n, then Ker(p(D)) would have dimension n for the di↵erential
operator D. Why is that?

Lemma 7.10.7. dimKer(Ak)  k dimKer(A). Here A can be any abstract linear transformation.

Keep in mind of the example where A =


0 1
0 0

�
. Note that A first kill the entire x-axis, while sending

everyone else to the x-axis, setting up to be killed in the next application of A. So A2 = 0, which is also
easy to see computationally.

Note that, informally, dimKer(A) is how many things A would kill in one step. If this is known, then
how many thing would A kill in k steps? Well, intuitively, Ak would kill k dimKer(A) stu↵. However, since
there might be “repetitive kill”, we see that dimKer(Ak)  k dimKer(A) in general.

Proof. Note that A : Ker(An+1) ! Ker(An) is a pullback relation, i.e., if Av 2 Ker(An), then A will kill Av
in n steps, and hence A will kill v in n+ 1 steps.

Now use the pull back dimension formula, we have dimKer(An+1) = dim(Ker(An)\Ran(A))+dimKer(A) 
dimKer(An) + dimKer(A).

Then by induction, it is easy to see that dimKer(Ak)  k dimKer(A).
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Lemma 7.10.8. If p(x) and q(x) has greatest common factor g(x), then we can find polynomials a(x) and
b(x) such that a(x)p(x) + b(x)q(x) = g(x).

Proof. Search for the name “Euclidean algorithm”. There is a highly similar statements for integers.

Proposition 7.10.9. If p(x) and q(x) has no common root, then Ker(p(A)q(A)) = Ker(p(A)) + Ker(q(A))
and Ker(p(A))\Ker(q(A)) = {0}. In particular, we have dimKer(p(A)q(A)) = dimKer(p(A))+dimKer(q(A)).

Proof. Obviously q(A)v = 0 or p(A)v = 0 would both imply p(A)q(A)v = 0. So we have Ker(p(A)) +
Ker(q(A)) ✓ Ker(p(A)q(A)).

Now since p(x) and q(x) has no common root, therefore we can find a(x), b(x) such that a(x)p(x) +
b(x)q(x) = 1. In particular, v = a(A)p(A)v + b(A)q(A)v. So if p(A)q(A)v = 0, we see that a(A)p(A)v 2
Ker(q(A)) and b(A)q(A)v 2 Ker(p(A)). So v 2 Ker(p(A))+Ker(q(A)). We have established that Ker(p(A)q(A)) =
Ker(p(A)) + Ker(q(A)).

Now let us show that they have trivial intersection. Suppose v 2 Ker(p(A))\Ker(q(A)). Note that again
we have v = a(A)p(A)v + b(A)q(A)v = 0+ 0 = 0. So we are done.

Theorem 7.10.10. Suppose p(x) =
Q
(x � �i)mi is a factorization into distinct roots �i with multiplicity

mi. Then dimKer(p(A)) =
P

Ker(A� �iI)mi 
P

mi Ker(A� �iI).

Proof. Just combine previous results.

Corollary 7.10.11. dimKer(p( d
dx )) is exactly the degree of p.

Proof. Since all eigenspaces of d
dx are one-dimensional, we see that dimKer(p( d

dx )) =
P

dimKer( d
dx �

�iI)mi 
P

mi, which is the degree of p.
We now just need to show that dimKer( d

dx � �iI)mi is indeed mi. We already know that it is at most
mi, so we just need to find mi linearly independent vectors in it. The answer is e�ix, xe�ix, . . . , xmi�1e�ix.
So we are done.

7.10.3 Linear Systems of Di↵erential Equations

Example 7.10.12. I take a bottle of milk out of the fridge, and put it into a bowl of hot water to warm it
up. Let us say that at time t, the temperature of the milk is M(t) and the temperature of the water is W (t)
Then we have M 0(t) = a(W (t)�M(t)) and W 0(t) = b(M(t)�W (t)), where a, b are some positive constants
to be determined. How to solve this system?

We have two functions,M(t),W (t). We also have the following descriptions:

(
M 0(t) = �aM(t) + aW (t)

W 0(t) = bM(t)� bW (t)

So in fact we have


M 0(t)
W 0(t)

�
=


�a a
b �b

� 
M(t)
W (t)

�
. ,

Example 7.10.13. Say we want to solve f 000 + 6f 00 + 11f 0 + 6f = 0. Let g = f 0, and h = f 00. Then we

have

2

4
f 0

g0

h0

3

5 =

2

4
0 1 0
0 0 1
�6 �11 �6

3

5

2

4
f
g
h

3

5. So a high order linear di↵erential equation becomes a first order linear

system of di↵erential equations.

(Also be mindful of the fact that the matrix

2

4
0 1 0
0 0 1
�6 �11 �6

3

5 is EXACTLY thetranspose of the com-

panion matrix for the polynomial x3 + 6x2 + 11x+ 6.) ,

How to solve these systems? We are trying to solve v0 = Av. If f 0 = kf , then the solution is ekxf(0).
So I can make the following guess: If v0(t) = Av(t), then the solution is probably related to eAt, which is a
matrix. I claim that the solution should be eAtv(0).

In particular, if the initial conditions are arbitrary, then eAtv(0) could be anything in Ran(eAt), i.e.,
some linear combinations of columns of eAt. So the solution space to v0(t) = Av(t) is simply Ran(eAt).
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Proposition 7.10.14. For any diagonal matrix D, the solution space to d
dxv = Dv is Ran(eDt). In fact,

the solution is eDtv(0) where v(0) is some arbitrary initial value.

Proof. Say D = diag(a, b). Then the system reads f 0 = af and g0 = bg. So we know the solution is that f

is a multiple of eat and g is a multiple of ebt. So


f
g

�
is a linear combination of columns of


eat 0
0 ebt

�
= eDt.

Now plut in t = 0 to the equation v(t) =


eat 0
0 ebt

� 
x
y

�
, we see that v(t) =


eat 0
0 ebt

�
v(0).

Proposition 7.10.15. For a diagonalizable matrix A = BDB�1, the solution space to v0(t) = Av(t)is
Ran(eAt). In fact, the solution is eAtv(0) where v(0) is some arbitrary initial value.

Proof. Set w(t) = B�1v(t). Then BDw(t) = (Bw(t))0 = Bw0(t). Here B comes out of the derivative
because it is constant. Since B is also invertible, we have Dw = w0. Hence the solution space to w is
Ran(eDt).

Now v = Bw. Hence the solution space to v is Ran(BeDt) = Ran(BeDtB�1) = Ran(eAt). Here the first
equality is true because B�1 is invertible and does not e↵ect the codomain at all.

The statement is still true for non-diagonalizable A, but we don’t prove it here.

Example 7.10.16. In real life, many couples behave in a periodic way. They are very sweet with each other
for a while, and they argue and fight for a while, and then they are sweet again, and then they fight again.
In short, their romantic relation exhibit a periodic behavior. What are some possible explanations?

Say two person A and B are romantically involved. The love of A for B is f(t), a function of time, and
the love of B for A is g(t), a function of time. Now assume that A is a normal person. To a normal person,
the more you are loved, the more you love the other. So f 0(t) is proportional of g(t). Say f 0(t) = g(t).
Assume that, unfortunately, B is a very unappreciative person. The more you love B, then more B takes
you for granted. Then more you ignore B, the more B is obssessed with you. So g0(t) is proportional to
�f(t), say g0(t) = �f(t).

Then


f 0

g0

�
=


0 1
�1 0

� 
f
g

�
. So the solution space is Ran(e

2

4 0 1
�1 0

3

5t

).

Now


0 1
�1 0

�
= ( 1

�2i


1 1
i �i

�
)


i 0
0 �i

� 
�i �1
�i 1

�
. So e

2

4 0 1
�1 0

3

5t

is in fact ( 1
�2i


1 1
i �i

�
)


eit 0
0 e�it

� 
�i �1
�i 1

�
,

which is

"
eit+e�it

2
eit�e�it

2i

� eit�e�it

2i
eit+e�it

2

#
=


cos t sin t
� sin t cos t

�
.

So there are constants a, b such that f(t) = a cos t + b sin t and g(t) = �a sin t + b cos t. As you can see,
they are periodic. ,

7.10.4 (Optional) Non-linear Romantic Dynamics

Even for non-linear di↵erential equations, linear algebra is still a very powerful tool. To see this, let us first
try to have a slightly more realistic dynamic model for romantic relations.

Example 7.10.17. Again let f(t), g(t) be the love the two person A,B have for each other. What is f 0(t)?
Well, we know it should be proportional to g(t), where the proportion is positive if A is appreciative, and
negative if A is non-appreciative, and 0 if A love B but does not really care if B loves back or not. So let us
say A has an appreciativeness of kA and B has an appreciativeness of kB .

On the other hand, our energy is finite. Your love for another person cannot be infinity, because you
don’t have that much energy. For each person, there might be an ideal amount of love L, and if your love
for another person is more than L, you will start to feel tired and emotionally drained. Let us say the ideal
amount of love for A and for B are LA and LB . Then f 0(t) should be proportional to LA � f(t) and g0(t)
should be proportional to LB � g(t).
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So our model is this:


f 0(t)
g0(t)

�
=


kAg(t)(LA � f(t))
kBf(t)(LB � g(t))

�
. In a healthy relation, we hope that lim f(t) = LA

while lim g(t) = LB . In an indi↵erent relation, we have lim f(t) = lim g(t) = 0. In an unhealthy relation,
lim f(t) and lim g(t) fail to exist because they are both periodic. ,

In general, a non-linear system is like this:


f 0(t)
g0(t)

�
=


h1(f(t), g(t))
h2(f(t), g(t))

�
. Then in particuylar, given a pairs

of values of f and g, we can calculate f 0 and g0. In short, IF WE ALEADY KNOW where we are, then we
know the direction we are moving to. This gives us a vector field.

Example 7.10.18. (Draw pictures of some vector fields. Electromagnetic fields and so on.) ,

A generic vector field may have many behaviors, but what is important are the fixed points of this
vector field. It could be a sink, a source, or a saddle, or neither. How can we study this behavior?

A fixed point, or an equilibrium, is a point on the fg-plane where if you start there, you never move. So
you are looking for (f, g) values that makes f 0 = g0 = 0. So this is like solving the values for f and g from
h1(f, g) = 0 and h2(f, g) = 0.

Recall that in one-variable calculus, to find a local max or local min of a function f(x), we first find
critical points by looking at the information in the first derivative, to solve f 0(x) = 0. Then AT THESE
CRITICAL POINTS, we try to look at their second derivative to classify their behavior. It turned out that
we can do the same thing here. This is the Hartman-Grobman Theorem.

We try to solve f 0 = g0 = 0 to find all “critical points”, or equilibriums. Then at these points, we try
to look at their second order derivative to classify their behavior. Recall that f 0 = h1 and g0 = h2, so the
second order derivatives for f and g are the derivatives for h1 and h2. You will have to look at the matrix"

@h1
@f

@h1
@g

@h2
@f

@h2
@g

#
.

Example 7.10.19. Consider a highly simplified case. Say v0(t) =


h1(v)
h2(v)

�
, and for each point v =


f(t)
g(t)

�
,

we have constant

"
@h1
@f

@h1
@g

@h2
@f

@h2
@g

#
= A. What do we have?

Note that if we have constant

"
@h1
@f

@h1
@g

@h2
@f

@h2
@g

#
= A, then the vector function h(v) =


h1(v)
h2(v)

�
will have

constant derivative. In particular, it is easy to guess and verify that h(v) = Av.
As a result, we see that v0(t) = h(v) = Av(t). So the solution is eAtv(0).
In particular, if the second derivative of your evolution is A, then locally, vectors would flow around your

critical point in approximately the same way vectors flow according to the linear map eA.
Now note that eA is a real 2⇥ 2 matrix with positive eigenvalues. By our previous classification, we can

obtain the following diagram.
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detA

Poincaré Diagram: Classification of Phase Portraits in the (detA,TrA)-plane

TrA

�=0 �=0: detA= 1
4 (TrA)2

saddle

sink source

spiral sink spiral source

center

line of stable fixed points line of unstable fixed points

degenerate sink degenerate source

uniform
motion

,

Example 7.10.20. Critical points for our romantic relation system are (f, g) = (0, 0) and (f, g) = (LA, LB).

The second derivative matrix is


�kAg kA(LA � f)

kB(LB � g) �kBf

�
. So at (LA, LB), this second derivative matrix

is


�kALB 0

0 �kBLA

�
. So the two eigenvalues are exactly �kALB and �kBLA, both are real, and the

eigendirctions are horizontal and vertical. Also note that LA and LB are by assumption positive.
So if both kA, kB are positive, then this is a sink. It attracts everyone around. So two appreciative

person are likely to be attracted to their ideal love limits. If kA, kB are both negative, this is negative. So
two unappreciative person are repelled by their love limits, and they may never work out. Finally, if kA, kB
have di↵erent sign, then this is a saddle. It will attract from the eigendirection for positive k-value and repel
from the eigendirection for the negative k-value. It seems to promote periodic behavior.

And at (0, 0), this second derivative matrix is


0 kALA

kBLB 0

�
. So if kA, kB have the same sign, then we

have two real eigenvalues of distinct signs, and we have a saddle at the origin. If kA, kB have distinct signs,
then we have two imaginary eigenvalues and trace zero, and so we tend to rotate around the origin. ,

Example 7.10.21. Let us specifically analyze the case when kA > 0 and kB > 0. Hopefully, we are always in
a relation that is mutually appreciative. Then (LA, LB) is a sink, while (0, 0) is a saddle, with an attracting
eigendirection in the 1st-3rd quadrant and a repelling eigendirection in the 2nd-4th quadrant. Draw the
picture to see some flows. As you can see, there seems to be some curve through the origin, above which we
will always be attracted to our ideal love limit, and below which we will be repelled to mutual hatred.

This curve has an equation of LA
kA

( f(t)
LA

�ln |1� f(t)
LA

|) = LB
kB

( g(t)
LB

�ln |1� g(t)
LB

|). I call this the confession line.
Suppose you are an appreciative person, and you are secretly in love with another appreciative person. Then
should you confess your love and start your romance? Well, if you two are above the confession line, then even
if the other person does not love you back, you should still go ahead and confess, because EVERYTHING
above the confession line will eventually be attracted to the mutual ideal love limits. However, if you two are
below the confession line, then hold it for the moment, because your confession would only result in eventual
mutual hatred.

Just as a side note, the curve along which your love will evolve is always LA
kA

( f(t)
LA

� ln |1 � f(t)
LA

|) =
LB
kB

( g(t)
LB

� ln |1 � g(t)
LB

|) + C for some constant C. The direction of your evolution depends on the critical
point situation.
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Take a look at any curve above the confession line. There is a valuable lesson here. Suppose you are
trying to persue someone, and you know you two should be above the confession line, then don’t give up!
Look at the place where your curve intersect with the x or y axis. This is the moment where your love to the
other person dropped to the bottum. This is your darkest moment, then moment of despair. But LOOK,
this is also exactly the moment where the other person finally starts to like you. This is not chicken soup
for the soul. This is mathematics. ,

Example 7.10.22. What if both kA and kB are negative? Then (LA, LB) is repelling, and (0, 0) is a saddle,
attracting along some direction in the 1st-3rd quadrant, and repelling along some direction of the 2nd-4th
quadrant. The solution curves are still LA

kA
( f(t)
LA

� ln |1� f(t)
LA

|) = LB
kB

( g(t)
LB

� ln |1� g(t)
LB

|) + C.
Drawing some solution curves, you see that the curves are almost IDENTICAL with the two positive

k-value case, except that all directions are negated. And invariabley, it will end up with one person, say
A, extremely hate the other, and the other, say B, wierdly reached the ideal love limit, since B loves to be
hated. I think it is safe to conclude that two unappreciative person would never be together. ,

Example 7.10.23. What if we have an appreicative person A and an unappreciative person B? Then
(LA, LB) is a saddle attracting in the horizontal direction and repelling in the vertical direction. And (0, 0)
is a swirling point. The relation would behave in a clockwise and periodic manner. The solution curves still
have the same equations though, LA

kA
( f(t)
LA

� ln |1� f(t)
LA

|) = LB
kB

( g(t)
LB

� ln |1� g(t)
LB

|) + C.
Let us start from the point where your periodic curve intersect with the negative f -axis. At this moment,

the jerk B start to have an interest in A, while A hates B. Then B started to persue A, and after a long
persuing process, B eventually mananged to get A’s love back. Very shortly after, there will be a sweet
spot where the two are almost close to their ideal love limit. They will probably get married at that point.
However, immediately after marriage, the jerk B, being the jeriest jerk, starts to lose interest in A. Very
shortly after, our curve intersect with the f -axis agiain, marking the point where A completely lose interest
in B. This is probably the point where A started cheating on B. Now A is still in love with B, and in fact
the love of A for B is at maximum at this moment. So A will desperately try to cling on to B, to win B’s
love back. But this just annoys B extremely and speed up the process of B hating A. After a very long
and mutually painful process, our curve eventually hit negative g-axis, marking the spot where the two no
longer love each other. In most cases, they get a divorce and never see each other again.

In some cases some couples manage to stay married. Oh boy, then they will only get to torture themselves
over and over agian with a very tiny sweep period and very very long period of mutual hatred. I mean, why
bother? And the sweeter the sweet time is, the longer the mutual hatred will be, as can be seen from these
orbiting curves. ,

To sum up, if f 0 = h1(f, g) and g0 = h2(f, g), you can find critical points by solving h1 = h2 = 0, and

you can classify your critical points as sources or sinks or stu↵ by looking at the eigenstu↵ of

"
@h1
@f

@h1
@g

@h2
@f

@h2
@g

#
.

7.11 Spectral Theorem

7.11.1 Spectral Theorem for Normal Matrices

Remark 7.11.1. (Optional) This is just to explain the name of “spectral theorem”.
Given any system, say a single hydrogen atom, physicists would use a linear operator H to describe its

evolution (usually the Hamiltonian operator). Each state of the system is described by some function, and
H is a linear map acting on these functions.

If one intends to study potential orbits of the electrons, then we are seeking states that are stable under
the evolution, i.e., eigenvectors (or eigenfunctions) of H. If Hf = �f , then f is an orbit, and the eigenvalue
� is the corresponding energy state of this orbit.

So when electrons change orbit, it will change energy and therefore emit a light with certain frequence
(i.e., certain color). These are called the spectrum of the hydrogen atom.
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As you can see, this ultimately depends on the eigenvalue. As a result, people usually use the name
“spectrum” to refer to the set of possible eigenvalues of a matrix or operator, and people usually use the
name “spectral theorem” to refer to a big theorem governing the structures of eigenvalues and eigenvectors.
The diagonalization A = XDX�1 is also sometimes called a spectral decomposition.

In this section we shall study the fundamental eigen structure of normal matrices. First let us see some
examples.

Example 7.11.2. Consider P =


1 0
2 0

�
. It has trace one and determinant zero, so the eigenvalues are 0 and

1 (distinct) and therefore the matrix can be diagonalized as D =


1

0

�
. Since D2 = D, we see that P 2 = P .

This is an oblique projection. Indeed, the eigenspace for the eigenvalue 1 is Ker(P�I) = Ker(I�P ) = Ran(P )

according to properties of projections, and this is spanned by


1
2

�
. The the eigenspace for the eigenvalue 0

is Ker(P ) obviously spanned by


0
1

�
. So the two eigenspaces are NOT orthogonal.

But if we have P =


0.1 0.3
0.3 0.9

�
, then since P 2 = P = PT, this is an orthogonal projection. The eigenspace

for eigenvalue 1 is Ker(P � I) = Ker(I � P ) = Ran(P ), which is orthogonal to Ker(P ) the eigenspace for
the eigenvalue 0.

This is not a singular occurence. You can also verify this: if H2 = I, it is an (oblique) reflection, and it is
an orthogonal projection if and only if H = HT. Note that the “mirror” or the reflection is Ker(H � I), the
set of fixed points, while the direction of reflection is Ker(H + I), the set of vectors v such that Hv = �v.
So the two eigenspaces are orthogonal if and only if H is symmetric.

But this is not a phenomenon to symmetric matrices alone. Consider


0 �1
1 0

�
. We have


0 �1
1 0

�
=


1 1
�i i

� 
i

�i

� 
1 1
�i i

��1

.

As you can see, the eigenspace for i is spanned by


1
�i

�
and the eigenspace for �i is spanned by


1
i

�
.

These two complex vectors are orthogonal as well. ,

So, what kinds of matrices would have orthogonal eigenspaces? It seems like we need A to have some
relation to AT, or in the case of complex matrices, we need A to have some relation to A⇤. Now we can have
our definition.

As a side note, since we are interested in orthogonal eigenspaces, throughout this section we need inner
product structure. We shall always assume that our space is Rn or Cn with the usual dot product as the
inner product structure.

Definition 7.11.3. A matrix is normal if AA⇤ = A⇤A.

This includes real symmetric matrices, real skew-symmetric matrices, real orthogonal matrices, complex
Hermitian matrices, complex skew-Hermitian matrices and complex unitary matrices. There are also normal

matrices that are none of these special cases, such as


2 �3
3 2

�
.

Now, the following lemma is the key reason why these matrices are so nice: its eigenstructure respect the
complex conjugate.

Lemma 7.11.4. If A is normal and Av = �v, then A⇤v = �v.

Proof. If Av = �v, then (A� �I)v = 0. Note that we must utilize the inner product structure here. So we
rewrite the equation as k(A� �I)vk = 0, and then v⇤(A� �I)⇤(A� �I)v = 0.

251



Now comes the use of normality. Since AA⇤ = A⇤A, we have a commutativity (A � �I)⇤(A � �I) =
A⇤A� �A� �A⇤ + ��I = AA⇤ � �A� �A⇤ + ��I = (A� �I)(A� �I)⇤.

As a result, 0 = v⇤(A� �I)⇤(A� �I)v = v⇤(A� �I)(A� �I)⇤v = k(A� �I)⇤vk = k(A⇤ � �I)vk. So we
see that (A⇤ � �I)v = 0, and A⇤v = �v.

Lemma 7.11.5. If T is a (complex) upper triangular matrix and T is normal, then T is diagonal.

Proof. Suppose the upper left entry of T is �, so we have T =


� ⇤
0 T 0

�
. Then since T is upper triangular, we

have Te1 = �e1. Then T ⇤e1 = �e1, and therefore taking adjoint we have e⇤1T = �e⇤1 = �eT1 . This implies
that the first row of T is �eT1 .

In particular, we have T =


� 0T

0 T 0

�
.

Now T 0 is an upper triangular normal matrix of smaller size. So we are done by induction.

We are now ready for the big theorem.

Theorem 7.11.6 (Spectral Theorem for Normal Matrices). If A is normal, then we can find unitary U and
diagonal D such that A = UDU⇤ = UDU�1.

In particular, A is always diagonalizable, there is an orthonormal basis made of eigenvectors of A, and
all geometric multiplicities are equal to corresponding algebraic multiplicities.

Proof. Consider a Schur decomposition A = UTU⇤. Then AA⇤ = A⇤A implies that TT ⇤ = T ⇤T . But then
this means T is triangular and normal, and therefore diagonal. So we are done.

Since A is diagonalizable, the domain Cn of A can be decomposed as the direct sum of the eigenspaces
of A. In fact, these eigenspaces must be mutually orthogonal! This is already evident from the spectral
theorem above, but you can also enjoy the following independents proof.

Corollary 7.11.7. If A is normal, then its eigenspaces are mutually orthogonal.

Proof. Let us show that eigenspaces are mutually orthogonal. Suppose Av = �v and Aw = µw where
� 6= µ.

Now v⇤(Aw) = µv⇤w. On the other hand, (v⇤A)w = (A⇤v)⇤w = (�v)⇤w = �v⇤w. Since µ 6= �, we
have no choice but to conclude that v ? w.

Remark 7.11.8. Note that the requirement of being normal is necessary and su�cient for the spectral
theorem here. Suppose A = UDU⇤ for some unitary U . Then A⇤ = UD⇤U⇤, and AA⇤ = UDU⇤UDU⇤ =
UDD⇤U⇤. Since diagonal matrices commutes with each other, we have DD⇤ = D⇤D. So AA⇤ = UDD⇤U⇤ =
UD⇤DU⇤ = A⇤A. So A is normal.

Example 7.11.9. Let V be the space of periodic smooth real functions with period 2⇡. We make it an
inner product space via the inner product hf, gi =

R 2⇡
0 f(x)g(x) dx, i.e., we integrate the product over a

single period.
Now, consider the derivative operator D = d

dx . (If you are familiar with integration by parts, skip this
paragraph.) One of the most important property of the derivative is the product rule or Leibniz rule, i.e.,

D(fg) = (Df)g + f(Dg). By integration, we would obtain fg|b
a
=

R
b

a
Df(x)g(x) dx +

R
b

a
f(x)Dg(x) dx.

This technique is called integration by parts. Namely, if one attempt to do integration of a productR
b

a
Df(x)g(x) dx, then one can integrate one factor function while di↵erentiating the other factor function,

and have
R
b

a
Df(x)g(x) dx = (fg)|b

a
�
R
b

a
f(x)Dg(x) dx.

Now take integration from 0 to 2⇡, and note that fg is periodic and thus (fg)|2⇡0 = 0. So we have
hDf, gi = �hf,Dgi. If you think of hDf, gi as (Df)Tg = fTDTg, and think of the right hand side �hf,Dgi
as �fTDg, we see that DT = �D. So the di↵erentiation operator is skew-symmetric.

In practice, many physical phenomena (heat, wave, etc.) are related to the second derivative. Then we
have (D2)T = (DT)2 = (�D)2 = D2, so this would be a symmetrix operator.
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In particular, eigenspaces ofD2 are orthogonal. So you immediately see that, for example, sinx, sin(2x), . . .
are all orthogonal because they are eigenvectors of D2 for di↵erent eigenvalues. (I.e., for integers m 6= n, we

must have
R 2⇡
0 sin(nx) sin(mx) dx = 0.)

(Optional) It is also fun to do this directly but with the same idea as above, i.e., di↵erent eigenvalues
lead to �vTw = µvTw, which means vTw = 0. For integers m 6= n, we have

Z 2⇡

0
sin(nx) sin(mx) dx = � 1

n
cos(nx) sin(mx)|2⇡0 �m

Z 2⇡

0
cos(nx) cos(mx) dx = �m

Z 2⇡

0
cos(nx) cos(mx) dx.

But similarly we have

Z 2⇡

0
sin(nx) sin(mx) dx = � 1

m
sin(nx) cos(mx)|2⇡0 �n

Z 2⇡

0
cos(nx) cos(mx) dx = �n

Z 2⇡

0
cos(nx) cos(mx) dx.

So since m 6= n, all must be zero. ,

Now let us move on to specific matrices. First we consider real symmetric or complex Hermitian matrices.

Proposition 7.11.10. If A = A⇤, then all eigenvalues are real. If A is a real matrix and A = AT, then
furthermore, the spectral decomposition A = QDQ�1 can be made so that Q,D are both real matrices. (So
Q is real orthogonal and D is real diagonal.)

Proof. For all normal matrices, we know if Av = �v, then A⇤v = �v. However, if furthermore A = A⇤, then
in fact we also have A⇤v = Av = �v. Since an eigenvector v must be non-zero, we must have � = �.

Now if A is real and symmetric, then immediately we see that A is diagonalizable and all eigenvalues are
real. So all eigenspaces are spanned by real vectors, and they are all orthogonal to each other. By picking an
orthonormal basis for each eigenspace, together they form an orthonormal basis for Rn made of eigenvectors.
Say this basis is the real orthogonal matrix Q. Then A = QDQ�1.

Remark 7.11.11. Note that this is a necessary and su�cient condition. Conversely, if A = QDQ�1 for
unitary Q and real diagonal D, then A⇤ = QD⇤Q�1 = QDQ�1 = A, so A is Hermitian. And if Q is real
orthogonal, then A is also real, and thus symmetric.

Let us consider the geometric implication of this. Most of the matrices are diagonalizable. Therefore,
they are scalings along eigendirections.

Example 7.11.12. Consider A = XDX�1 where D = diag(2, 3) and X =


1 1
0 1

�
. Then A would stretch

in the x-axis direction by a factor of 2, and stretch in the x = y direction by a factor of 3. (If you are curious,

it will repel points along curves ln|y| = ln 3
ln 2 ln|x � y| + k, or via parametrization


x(t)
y(t)

�
=


a2t + b3t

b3t

�
for

constants a, b.)
Note that the two direction of stretching are NOT perpendicular. We are stretching along an oblique

frame of reference. However, in the case of normal matrices, X would be unitary or in the real case orthogonal.
This means we are stretching along some orthogonal frame of reference.

In particular, consider the e↵ect of A on a unit circle. We are stretching the circle in the x-axis direction

by a factor of 2, and stretch in the x = y direction by a factor of 3. Since the vectors e1,u = 1p
2


1
1

�
are on

the original circle, after the action of A, the vectors 2e1, 3u are on the resulting ellipse. You can draw the
unique ellipse centered around the origin through points ±2e1,±3u. Note that e1,u are NOT the direction
of the major-axis and the minor-axis of the resulting ellipse (because they are oblique).

Consider a symmetric operation A = QDQ�1 where Q is orthogonal, and D = diag(2, 3). Then we are
stretching along an orthogonal fram of reference. In particular, the two eigendirections are EXACTLY the
directions of the major-axis and the minor-axis, and the lengths of the resulting ellipse is EXACTLY the
eigenvalues of A. (Because that is how much A stretches.)

In short, A = QDQ�1 means the geometric action of A is rotation–coordinate stretch–rotation back. ,
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7.11.2 (Optional) Other special cases of spectral theorem

We are mainly concerned with unitary matrices, skew-Hermitian matrices, real orthogonal matrices and real
skew-symmetric matrices.

Proposition 7.11.13. If U is a unitary matrix, then all its eigenvalues are unit complex numbers. In
particular, U = QDQ�1 where Q is unitary and D is diagonal with diagonal entries dk = ei✓k .

Proof. Again note that U is normal, so Uv = �v if and only if U⇤v = �v. However, U⇤ = U�1. As a result,
we see that ��1 = �, so � is a unit complex number.

Remark 7.11.14. Note that this is also necessary and su�cient. If D =

2

64
ei✓1

. . .
ei✓n

3

75 and U = QDQ⇤

for some unitary Q, then U�1 = QD�1Q⇤ = QD⇤Q⇤ = U⇤. So U is unitary.

Geometrically, a unitary matrix means up to an orthogonal change of variable, we simply rotate the
complex number in each coordinate in their respective complex plane.

For the real case, we have an even better result.

Lemma 7.11.15. If A is real and normal, and A(v + iw) = �(v + iw) for real vectors v,w and non-real
eigenvalue �, then we have kvk = kwk,v ? w.

Proof. Say A(v + iw) = �(v + iw) for real vectors v,w and non-real eigenvalue �. Then since A is real, by
taking complex conjugate, we have A(v � iw) = �(v � iw).

However, since eigenspaces for distinct eigenvalues are mutually orthogonal, and � 6= �, hence 0 =
(v + iw)⇤(v � iw) = kvk2 � kwk2 � 2i(w⇤v). Then the real part and imaginary parts must both be zero,
and we see that kvk = kwk,v ? w.

Theorem 7.11.16. If A is real orthogonal, then we have A = QDQ�1 where Q is real orthogonal, and D
is real block diagonal where each diagonal block is either 1 ⇥ 1 with value ±1, or it is some 2 ⇥ 2 rotation
matrix R✓.

Proof. If all eigenvalues of A are ±1, then since all eigenvalues are real, A = UDU⇤ for unitary U and real
diagonal D. So, taking adjoint, we have A⇤ = UD⇤U⇤ = UDU⇤ = A. But A is also real, so it is real
symmetric. So, we can perform A = QDQ�1 with real orthogonal Q and real diagonal D where the diagonal
entries are ±1. So we are done.

Suppose this is not the case. Then A has an eigenvalue � 6= ±1. Since A is unitary, |�| = 1, and hence �
cannot be real. But A is also a real matrix, so complex eigenstu↵ come in pairs!

Say A(v+ iw) = �(v+ iw) for real vectors v,w. By previous lemma, we have kvk = kwk,v ? w. So let
us scale v,w simultaneously so that they are now unit vectors.

Since v,w are unit mutually orthogonal vectors, we can complete them into an orthogonal basis for
Rn, and as columns they form an orthogonal matrix X. Also since A(v + iw) = �(v + iw), by setting
� = cos ✓ + i sin ✓, we can deduce that A

⇥
v w

⇤
=

⇥
v w

⇤
R for some rotation matrix R. As a result.

AX = X


R O
O A1

�
. The rest is standard induction.

Consider the implication of this. It gives a complete description of the geometric behavior of an orthogonal
matrix A. It means we can decompose the whole space into mutually orthogonal planes which A would rotate
independently, and then a subspace of points fixed by A, and finally a subspace of points reflected by A.

However, note that


�1

�1

�
can also be thought of as a rotation. So we have the following result:

Corollary 7.11.17. If A is orthogonal and det(A) = 1, then A simply rotates mutually orthogonal planes
independently. If det(A) = �1, then A would first rotates mutually orthogonal planes independently, and
then reflect along a direction orthogonal to all the planes of rotation.

In particular, an orthogonal matrix is either a rotation, or a rotation plus reflection.
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Now let us move on to the skew-Hermitian case. They are intuitively the opposite of being Hermitian.

Proposition 7.11.18. If A is skew-Hermitian, then all eigenvalues are purely imaginary.

Proof. Same old same old. Since A is normal, Av = �v if and only if A⇤v = �v. But since A⇤ = �A, we
see that � = ��, so � has no real part.

Remark 7.11.19. This is again necessary and su�cient, and the proof is trivial.
Also note that if A is skew-Hermitian, then all diagonal entries of A must be purely imaginary because

A⇤ = �A. In particular, consider


ai

ai

�
for real a. This is NOT a Hermitian matrix, because the diagonal

is not real. This is in fact Skew-Hermitian, depsite the apparent look of symmetricity.

If A is a skew-symmetric matrix, then its eigenvalues are precisely pairs of conjugate purely imaginary
numbers, so we can have the following fact.

Corollary 7.11.20. If A is an n⇥ n real symmetric matrix, and n is odd, then A is NOT invertible.

Proof. A has an odd number of eigenvalues, but all the non-real eigenvalues come in pairs. So A must have a
real eigenvalue. However, the only number that is both real and purely imaginary is 0. So A has eigenvalue
0.

Note that the skew-Hermitian matrix


ai

�ai

�
is similar to the real matrix


0 �a
a 0

�
.

Proposition 7.11.21 (Darboux basis). If A is real skew-symmetric and invertible, then we have A =

Q


O �D
D O

�
Q�1 for some real orthogonal Q and invertible diagonal D.

Proof. Suppose all eigenvalues of A are zero. Then since A is also diagonalizable, we must have A = O and
the whole statement is trivial.

Suppose we have some non-zero eigenvalues. Suppose A(v + iw) = �(v + iw) for real vectors v,w and
non-zero �. Then � cannot be real. So kvk = kwk,v ? w. So let us scale v,w simultaneously so that they
are now unit vectors.

Since v,w are unit mutually orthogonal vectors, we can complete them into an orthogonal basis for Rn,
and as columns they form a real orthogonal matrix X. Also since A(v + iw) = �(v + iw), by setting � = ai

for a real a, we can deduce that A
⇥
v w

⇤
=

⇥
v w

⇤
R for R =


0 a
�a 0

�
. As a result. AX = X


R O
O A1

�
.

Now by induction, X�1AX is now

2

664

a
�a

�D
D

3

775. Permute the second block row and third block

row, while permuting the second block column with the third block column, we see that P�1X�1AXP =2

664

a
�D

�a
D

3

775, and we are done. Note that a permutation matrix P is real orthogonal.

The most fascinating aspect of a skew symmetric matrix, however, lies in its connection to rotations.

Proposition 7.11.22. If A is skew-Hermitian, then eA is unitary. Conversely, if B is unitary, then B = eA

for some skew-Hermitian A.

Proof. Say A is skew-Hermitian. Then A = Q

2

64
a1i

. . .
ani

3

75Q⇤. Then eA = Q

2

64
ea1i

. . .
eani

3

75Q⇤ will

have unit complex eigenvalues, and hence this is unitary.
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Conversely, if B is unitary, then B = Q

2

64
ea1i

. . .
eani

3

75Q⇤, and thus the skew-Hermitian A =

Q

2

64
a1i

. . .
ani

3

75Q⇤ would yield eA = B.

The case is a bit trickier for the real matrices.

Lemma 7.11.23. det(eA) = etrace(A)

Proof. Let x1, ..., xn be eigenvalues for A. Then ex1 , . . . , exn are the eigenvalues of eA.
So, det(eA) =

Q
exi = e

P
xi = etrace(A).

Proposition 7.11.24. If A is real skew-symmetric, then eA is orthogonal with determinant 1, i.e., a rotation.
Conversely, if B is a real orthogonal matrix with det(B) = 1, i.e., a rotation, then B = eA for some skew
symmetric A.

Proof. If A is real, by the formula of exponentiation we see that eA is also real. Since A is skew-Hermitian,
eA is real and unitary, i.e., real orthogonal. Finally, det(eA) = etrace(A) = e0 = 1, this is because all diagonal
entries of A must be zero, courtesy of AT = �A.

Conversely, if B is real orthogonal with det(B) = 1, then QBQT is block diagonal where each block is
either 1 ⇥ 1 with value 1, or some 2 ⇥ 2 rotation matrix. (Note that pairs of �1 on the diagonal is also a
rotation matrix, and there is no left out �1 eigenvalues, because det(B) = 1.)

Now each rotation matrix R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�
is the exponentiation e

2

40 �✓
✓ 0

3

5

. So we are done.

Example 7.11.25. Sometimes it is much more geometric to consider the logarithm of a rotation, i.e., the

skew-symmetric matrices, rather than the rotation matrix. For a quick example, e

2

40 �✓
✓ 0

3

5

=


cos ✓ � sin ✓
sin ✓ cos ✓

�
,

so the skew-symmetric matrix tells you immediately the angle of rotation, whereas the actual rotation matrix
looks like a big mess with ugly values coming from sines and cosines.

Consider the skew-symmetric matrix A =

2

4
0 �c b
c 0 �a
�b a 0

3

5. What is the rotation eA? Well, let v =

2

4
a
b
c

3

5.

Then first of all you should notice that Av = 0. As a result, eAv = e0v = v. So v is the axis of rotation!
Now how much is this rotation? Consider the eigenvalues of A, which should be ✓i,�✓i, 0 for some real

✓. Then the eigenvalues of eA are e✓i, e�✓i, 1, so eA is a rotation by ✓. So we just need to find out what ✓ is.

Now consider the sum of 2⇥2 principal minors of A, which gives (✓i)(�✓i) = det


0 �c
c 0

�
+det


0 b
�b 0

�
+

det


0 �a
a 0

�
= a2 + b2 + c2 = kvk2. In particular, ✓ = ±kvk.

So the direction of v gives the axis of rotation, while the length of v gives the amount of rotation. ,

7.11.3 Definiteness

Here is also an important application.

Definition 7.11.26. Given a Hermitian matrix A, we say it is positive definite if v⇤Av � 0 with equality
if and only if v = 0. (Can you see why v⇤Av must be real?)

We can have a bunch of similar definitions.
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Definition 7.11.27. Given a Hermitian matrix A,

1. we say it is negative definite if v⇤Av  0 with equality if and only if v = 0.

2. we say it is positive semidefinite if v⇤Av � 0.

3. we say it is negative semidefinite if v⇤Av  0.

4. we say it is indefinite if v⇤Av could be positive for some v and negative for some other v.

The definition is not new in itself. We have already studied positive definite symmetric matrices when
we study inner product spaces. However, we now have a new criterion.

Corollary 7.11.28. A Hermitian matrix is positive definite if and only if all eigenvalues are positive.

Proof. Suppose A is Hermitian. Note that v⇤Av = v⇤QDQ⇤v = w⇤Dw, here w = Q⇤v. Now if w =

2

64
w1
...
wn

3

75,

then w⇤Dw =
P

�i|wi|2.
So if all eigenvalues of A are positive, then v⇤Av = w⇤Dw =

P
�i|wi|2 � 0, with equality if and only

if all wi = 0, if and only if w = 0, if and only if Q⇤v = 0. Note that Q is unitary, and hence invertible, so
equality happens if and only if v = 0. So A is positive definite.

Conversely, suppose some eigenvalues of A are NOT positive. Say Av = �v for some v 6= 0 and �  0.
Then v⇤Av = �kvk2  0, so A is NOT positive definite.

To put this side to side with previous result on positive definiteness, we see that the followings are all
equivalent:

1. A is positive definite.

2. All eigenvalues of A are positive.

3. All pivots are positive, i.e., A has LDU decomposition A = LDL⇤ and the diagonal entries in D are
all positive.

4. All leading principal submatrices are positive definite.

5. All leading principal submatrices have positive determinant.

6. All principal submatrices are positive definite.

7. All principal submatrices have positive determinant.

8. We have a lower triangular invertible L with A = LL⇤.

9. We have A = BB⇤ for invertible B.

The equivalence between the first three are the most important. The others are not really important.
(Except for maybe the last two, as they provide a nice analogy between the positiveness of XX⇤ and of x2

for real numbers.)
Similar statements is true for all other (semi)definiteness. For example, the followings are all equivalent:

1. A is positive semi-definite.

2. All eigenvalues of A are non-negative.

3. All pivots are non-negative, i.e., we have LDU decomposition A = LDL⇤ and the diagonal entries in
D are all non-negative.
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4. All leading principal submatrices are positive semi-definite.

5. All principal submatrices are positive semi-definite.

6. (Determinants of leading principal matrices are no longer useful. Say


0

�1

�
, then the leading

principal minors are all zero (non-negative), yet it is NOT positive semi-definite. It is in fact negative
semidefinite, because all pivots are  0.)

7. All principal matrices have non-negative determinants.

8. We have a lower triangular L with A = LL⇤. (But we allow L to be non-invertible.)

9. We have A = BB⇤ for B. (But we allow B to be non-invertible.)

Beware that determinants of leading principal submatrices are no longer useful.

Remark 7.11.29. (Optional)
Note that the LDU decompositions for positive semi-definite matrices are a bit tricky. We previously know

that when A is INVERTIBLE, then LDU decomposition exists if and only if all leading principal matrices
are invertible. Here A could have non-invertible leading principal submatrices. What do we do? We have to
start over.

The proof goes like this. Suppose the upper left entry of A is non-zero. Then A =


a v⇤

v A1

�
=


1 0⇤
1
a
v I

� 
a 0⇤

0 A1 � 1
a
vv⇤

� 
1 1

a
v⇤

0 I

�
. Since A is positive semi-definite, therefore


a 0⇤

0 A1 � 1
a
vv⇤

�
is pos-

itive semi-definite, and therefore the lower right block is still positive semi-definite, and therefore if it has
LDU decomposition, then we can then deduce a corresponding LDU decomposition for A.

If a = 0, then I claim that v = 0. Suppose not, let us show that A is NOT positive semi-definite. Pick

any w 2 Cn�1 such that v⇤w = �1. Then consider
⇥
1 tw⇤⇤A


1
tw

�
= �2t+ t2w⇤A1w. Let t be closer and

closer to zero from the positive side, then the t2 term would be ignorable and this would be negative.

So if a = 0 and A is positive semi definite, we in fact have A =


0 0⇤

0 A1

�
and A1 is positive semi-definite.

So again by induction we are done.

For the negative cases, the short answer is that A is negative definite if and only if �A is positive definite,
and the same for semi-cases. For example, the followings are all equivalent:

1. A is negative definite.

2. All eigenvalues of A are negative.

3. All pivots are negative. I.e., we have LDU decomposition A = LDL⇤ and the diagonal entries in D
are all negative.

4. The k⇥ k leading principal submatrix is negative definite if k is odd, and positive definite if k is even.

5. All k ⇥ k principal submatrices are negative definite if k is odd, and positive definite if k is even.

6. The leading principal matrices have alternating determinant signs, i.e., the k ⇥ k leading principal
matrix has determinant with sign (�1)k.

7. All k ⇥ k principal matrices have determinant with sign (�1)k.

8. We have a lower triangular invertible L with A = �LL⇤.

9. We have A = �BB⇤ for invertible B.
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For the negative semidefinite cases, the followings are all equivalent:

1. A is negative semi-definite.

2. All eigenvalues of A are non-positive.

3. All pivots are non-positive. I.e., we have LDU decomposition A = �LDL⇤ and the diagonal entries in
D are all non-positive.

4. All leading principal submatrices are negative semi-definite.

5. All principal submatrices are negative semi-definite.

6. (The determinant of leading principal matrices are no longer useful.)

7. All k ⇥ k principal matrices have non-positive determinant for odd n, and non-negative determinant
for even n.

8. We have a lower triangular L with A = �LL⇤. (But we allow L to be non-invertible.)

9. We have A = �BB⇤ for B. (But we allow B to be non-invertible.)

Finally, for the indefinite case, the followings are all equivalent:

1. A is indefinite.

2. Some eigenvalues of A are positive and some are negative.

3. Either A has no LDU decomposition, or A = LDL⇤ where the diagonal entries of D contains both
positive and negative values.

In particular, if A is Hermitian but has NO LDU decomposition, then it is indefinite.
Let us see some interesting applications.

Example 7.11.30. Given a twice di↵erentiable function f : R ! R, how to find a local maximum or
minimum? We have the following traditional approach.

1. Solve f 0(x) = 0 to find critical points, say we find out that f 0(x0) = 0.

2. If f 00(x0) > 0, then x = x0 is a local minimum.

3. If f 00(x0) < 0, then x = x0 is a local maximum.

4. If f 00(x0) = 0, then we failed and have no clue what would happen.

Now consider a twice di↵erentiable function f : R2 ! R, say f(x, y) = (x + y + 2)4 + x2 + y2. Note
that its graph would be some surface in R3. How to find a local maximum or minimum? Note that f has
two partial derivatives @f

@x
, @f

@y
: R2 ! R, both are functions with two variables. In our example, we have

@f

@x
(x, y) = 4(x+ y)3 + 2x and @f

@y
(x, y) = 4(x+ y)3 + 2y.

Then we see that f has four second derivatives, because @f

@x
has two derivatives and @f

@y
has two derivatives.

We write these as @
2
f

@x2 ,
@
2
f

@x@y
, @

2
f

@y@x
, @

2
f

@y2 . Here the notation @
2
f

@x@y
means we take the y-derivative first, and

then we take the x-derivative. And the notation @
2
f

@x2 means we take the x-derivative twice.

Then they form a matrix, the Hessian of f , H(f) =

"
@
2
f

@x2
@
2
f

@y@x

@
2
f

@x@y

@
2
f

@y2

#
. In our case, we have H(f)(x, y) =


12(x+ y)2 + 2 12(x+ y)2

12(x+ y)2 12(x+ y)2 + 2

�
. Hey, this is a real symmetric matrix!

Indeed, your future calculus class would show you that for all real continuously twice-di↵erentiable f , we

always have @
2
f

@x@y
= @

2
f

@y@x
, so H(f) is always symmetric.

Now to find local minimum or local maximum, we do the following approach. (The proof is higher
dimensional Taylor expansion, which should be in your future calculus class.)
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1. Solve @f

@x
= @f

@y
= 0 to find critical points, say we find out that one critical point is x = x0, y = y0.

2. If H(f) at x = x0, y = y0 is positive definite, then x = x0 is a local minimum.

3. If H(f) at x = x0, y = y0 is negative definite, then x = x0 is a local maximum.

4. If H(f) at x = x0, y = y0 is other cases, then we failed and have no clue what would happen.

In our case, solving @f

@x
= @f

@y
= 0 gives x = y = 0, so this is the only critical point. At this point,

H(f) =


2 0
0 2

�
is positive definite. So we have a local minimum. ,

7.11.4 (Optional) Some multivariable calculus

These stu↵ should be covered in any multivariable calculus. However, since they are related to our class, I
will put the proof here to be more self-contained.

Theorem 7.11.31. For any continuously twice di↵erentiable function f : Rn ! R, let rf =

2

64

@f

@x1

...
@f

@xn

3

75, so it

is a continuously di↵erentiable function rf : Rn ! Rn. Let Hf be the Hessian of f , so it is a continuous
function Hf : Rn ! Mn⇥n.

If for some x0 2 Rn, we have rf(x0) = 0 and Hf(x0) positive/negative definite, then x0 is a local
minimum/maximum of f .

Proof. In lack of calculus materials, this proof is somewhat conceptual and non-rigorous.
Say n = 2 and we are looking at a function f(x, y). Then first we increase x by a tiny bit, and our

one-variable calculus knowledge tell us that f(x+dx, y) = f(x, y)+dx@f

@x
(x, y)+ 1

2 dx
2 @

2
f

@x2 (x, y) for dx ! 0.
(Obviously we are ignoring infinitesimals of degree 3 and above, so we treat things such as dx3 as zero.)

Now we increase y by a tiny bit. The left hand side is f(x+dx, y+dy). On the right hand side, we have
three terms.

The first term is f(x, y + dy) and it can be simplified to f(x, y) + dy @f

@y
(x, y) + 1

2 dy
2 @

2
f

@y2 (x, y).

The second term is dx@f

@x
(x, y + dy), and it can be simplified to dx@f

@x
(x, y) + dx dy @

2
f

@y@x
(x, y).

Finally, the last term is 1
2 dx

2 @
2
f

@x2 (x, y+dt), and it can be simplified to 1
2 dx

2 @
2
f

@x2 (x, y)+
1
2 dx

2 dy @
3
f

@y@x2 (x, y).
But the new extra term here has infinitesimal degree 3, so we ignore it. Hence this term is actually unchanged.

All in all, if the input changes from (x, y) to (x, y) + (dx, dy), the out put is

f(x+dx, y+dy) = f(x, y)+dx
@f

@x
(x, y)+dy

@f

@y
(x, y)+

1

2
dx2 @

2f

@x2
(x, y)+dx dy

@2f

@y@x
(x, y)+

1

2
dy2

@2f

@y2
(x, y).

Now use the fact that @
2
f

@y@x
= @

2
f

@x@y
, we can simplify above into the following version of higher dimensional

Taylor expansion approximation, assuming dx ! 0.

f(x+ dx) = f(x) + (rf(x))T dx+
1

2
dxT(Hf(x)) dx.

So if rf(x) = 0, this simplifies to f(x + dx) = f(x) + 1
2 dx

T(Hf(x)) dx. This will always be larger
than f(x) if 1

2Hf(x) is positive definite, and this will always be smaller than f(x) if 1
2Hf(x) is negative

definite.

As an extra remark, the idea here also proved @
2
f

@y@x
= @

2
f

@x@y
by itself. On one hand, we have

f(x+dx, y+dy) = f(x, y)+dx
@f

@x
(x, y)+dy

@f

@y
(x, y)+

1

2
dx2 @

2f

@x2
(x, y)+dx dy

@2f

@y@x
(x, y)+

1

2
dy2

@2f

@y2
(x, y).
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But on the other hand, by symmetry we also have

f(x+dx, y+dy) = f(x, y)+dx
@f

@x
(x, y)+dy

@f

@y
(x, y)+

1

2
dx2 @

2f

@x2
(x, y)+dx dy

@2f

@x@y
(x, y)+

1

2
dy2

@2f

@y2
(x, y).

Hence we indeed have @
2
f

@y@x
= @

2
f

@x@y
.

Alternatively, consider the following exposition for some more intuitions on this fact.

Example 7.11.32. Given a function on two variables f(x, y), it does not has a single derivative function.
Rather, it has partial derivatives. Its first derivatives are @f

@x
, @f

@y
. Sometimes in calculus people would write

this as a vector rf =

"
@f

@x
@f

@y

#
, called the gradient of f .

What about the second derivatives? Each of the partitial derivative has two further partial derivatives.

So we have four second derivatives, i.e., @
2
f

@x2 ,
@
2
f

@y2 ,
@
2
f

@x@y
, @

2
f

@y@x
. Here @

2
f

@x@y
= @

@x
(@f
@y

). Sometimes in calculus

people would write this into a matrix H(f) =

"
@
2
f

@x2
@
2
f

@y@x

@
2
f

@x@y

@
2
f

@y2

#
, called the Hessian of f . This matrix would

record all second order di↵erential information about f .
However, an amazing phenomenon here is the fact that, when the function is continuously twice di↵er-

entiable, then H(f) is ALWAYS a symmetric matrix!

For example, consider f(x, y) = x2exy. Then @
2
f

@y@x
= @

@y
(2xexy + x2yexy) = 2x2exy + (x2exy + x3yexy) =

3x2exy + x3yexy, while @
2
f

@x@y
= @

@x
(x3exy) = 3x2exy + x3yexy. Indeed, the mixed derivatives are the same.

We do not provide a full proof here, but merely gives an intuition as to why this happens. Consider the
graph of f(x, y), which is some surface in R3. Suppose I am standing on this surface. Say I extend my arms
on the x direction and lay my arm on the surface, then the slope of my arm records the value of @f

@x
at my

location.
Now, I keep my arm in the x direction, and I walk in the y direction. Since my arm is laid on the surface,

my arm’s slope will change up and down depending on how the surface flows. In particular, if I walk in the

y direction, the change in my x-directional arm’s slope would be @
2
f

@y@x
.

Say @
2
f

@y@x
> 0. Then as I walk in the y-direction, my arm would raise, which indicates that in some

positive x and positive y direction, there is a bump, which would raise my arm.
Now suppose I lay my arm in the y direction and walk in the x direction. Then the SAME bump in the

positive x and positive y direction would again raise my arm. So we have @
2
f

@x@y
= @

2
f

@y@x
> 0 because it is

caused by the very same bump.
(Note that the assumptions that f is continuously twice di↵erentiable is crutial. It means locally the

function can be approximated by degree 2 polynomials, i.e., approximately some paraboloids where there is
only one bump or pit. Multiple bumps or pits in the positive x and positive y direction would cause this
symmetricity to fail.)

Here is also an alternative intuition. Suppose we start with f(v). Consider a super tiny square with
vertices a = v, b = v + dse1, c = v + dte2,d = v + dse1 + dte2. Now you can also see that one should

have ds dt @
2
f

@x@y
= (f(d)� f(b))� (f(c)� f(a)) = f(a) + f(d)� f(b)� f(c). However, we can also see that

ds dt @
2
f

@y@x
= (f(d)� f(c))� (f(b)� f(a)) = f(a) + f(d)� f(b)� f(c). So the two are the same.

Eitherway, we see that the Hessian of a matrix is always symmetric. From the analysis above, you might
also notice that H(f) is crucial in analysing the curvature of surfaces, which is very important in geometry
or general relativity, which states that gravity is just curvature in space. ,

7.12 Singular Value Decomposition

We now go back to the world of the real numbers. No more complex numbers. Futhermore, everything
in this section should be about linear maps, not linear transformations. I.e., we think of the domain and
codomain as DIFFERENT spaces. So we don’t have to change basis simultaneously.
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7.12.1 Introduction

Recall that for any linear map A : Rn ! Rm, we can always change basis so that RAC =


Ir⇥r O
O O

�
, where

r is the rank of A. Now, suppose we only want to perform orthonormal change of basis. Can we still do this?
The Singular Value Decomposition (SVD) is doing exactly this.

Theorem 7.12.1. For any m ⇥ n real matrix A, we can find m ⇥m real orthogonal matrix U and n ⇥ n

real orthogonal matrix V such that A = U⌃V T, where ⌃ =


D O
O O

�
and D is a real r ⇥ r diagonal matrix

with positive diagonal entries, and r is the rank of A.

In the introduction section, we do not prove this theorem. But first of all, let us get some perspective
about why this is useful and important, even for square matrices.

Example 7.12.2. Given a 2⇥ 2 matrix A, we know A would map circles in R2 into ellipses. However, what
is the resulting eccentricity fo these ellipses?

We have already seen that when A = XDX�1 with X =


1 1
0 1

�
, D =


2

3

�
, then the unit circle would

be mapped to an ellipse whose major half-axis has length > 3 and minor half-axis has length < 2. Where is
the direction and length of the major half-axis and the minor half-axis?

Suppose now we have a decomposition A = U⌃V T, note that in this case, ⌃ is a genuin diagonal matrix.
Now the U, V are both rotations or reflections, and ⌃ is a stretching along the coordinate axis. So V T would
do nothing to the unit circle. Then ⌃ would stretch the unit circle along coordinate axis to get an ellipse.
Finally U rotate/reflect the ellipse. As a result, it is very easy to see that the half-axis lengths are exactly
the diagonal entries of ⌃. These values are called the singular values of A. As you can see, eigenvalues do
NOT define the shape of the resulting ellipse. Only singular values could define their shapes.

A related question is this: suppose I squeeze a ping pong ball in several directions, where will the ping
pong ball most likely crack? This is slightly more complicated, but the idea is similar: the forces are not
necessarily orthogonal, but their combined action will push the ping pong ball to deform into elliptic shape
(ellipsoid). Singluar value decomposition will help us identify the shape of this ellipsoid, and the shape of
deformation would tell us where the ping pong ball would crack. ,
Example 7.12.3. The singular value decomposition is also related to other decompositions.

Suppose we have A = U⌃V T for a square matrix A. Writing this decomposition as A = (U⌃UT)(UV T).
This is called a polar decomposition, since U⌃UT must have real (and in fact non-negative) eigenvalues, and
UV T must have eigenvalues that are unit complex numbers. This is also a matrix analogue of the complex
number polar decomposition z = rei✓. ,

Now let us finally consider this decomposition from a rank perspective. In many applicaitions of linear
algebra, it is veru beneficial to write a rank r matrix as the sum of r matrices of rank one.

Example 7.12.4. Consider the France map. If we use number 1 for blue, 2 for red, and 0 for white, then

the France map is something like M =

2

64
1 . . . 1 0 . . . 0 2 . . . 2
...

. . .
...

...
. . .

...
...

. . .
...

1 . . . 1 0 . . . 0 2 . . . 2

3

75. If such a matrix is m ⇥ n,

then we would need to store mn numbers in the computer.

However, note that such a matrix must have rank one. We must have M = uvT where u =

2

64
1
...
1

3

75 and

v =
⇥
1 . . . 1 0 . . . 0 2 . . . 2

⇤
. And to store u,v, we only need m + n numbers. This way, we

saved a lot of memory space in our computer!

Consider the Benin flag. If 3 is green and 4 is yellow, then the 2⇥3 Benin flag would look like


3 4 4
3 2 2

�
.

In general, them⇥n version of this flag always have rank 2, and we have


3 4 4
3 2 2

�
=


3 0 0
3 0 0

�
+


0 4 4
0 2 2

�
,
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the sum of two rank one matrices. Since each rank one matrix must be uvT for some u,v, we see that we
only need to store 2(m+ n) numbers instead of mn numbers.

In general, for an m⇥ n matrix with rank r, we do not store mn numbers in the computer. Rather, we
would only store r(m+ n) numbers.

You can also check out the Greece flag, which has rank three. I have not found any rank four flag yet, so
please let me know if you find any. Finally, the Chinese flag and the American flag both have infinite rank.
,

The example above does not involve SVD yet. However, you can think of SVD as the best rank one
decomposition.

Consider the nature of SVD for an m ⇥ n matrix A = U⌃V T. Suppose U =
⇥
u1 . . . um

⇤
, V =

⇥
v1 . . . vn

⇤
, and ⌃ =

2

6664

�1

. . .
�r

O

3

7775
for nonzero �1, . . . ,�r. Since U, V are invertible, it is easy to

see that A has rank exactly r. Furthermore, A =
P

�iuivT
i
. So essentially, we are decomposing A into a

linear combination of rank one matrices.
Furthremore, consider any two such rank one matrices, say �iuivT

i
,�jujvT

j
for any i 6= j. Then we would

have ui ? uj and vi ? vj by construction. So the two rank one matrices are “as orthogonal to each other as
possible”. So SVD is decomposing A into a linear combination of ”mutually orthogonal” rank one matrices!

7.12.2 The fundation of SVD

How can we obtain the singular value decomposition? Again, note that A is NOT necessarily square.

Let us do some backward observation. Suppose A = U⌃V T is possible, with ⌃ =

2

6664

�1

. . .
�r

O

3

7775
.

We usually assume that �1 � · · · � �r > 0.
A very important observation is that ATA = V⌃T⌃V T. Note that ⌃T⌃ is diagonal and square, and V is

orthogonal, so this is in fact the spectral decomposition for the symmetric matrix ATA. So to get V , you can

simply find all eigenvectors for ATA and you are done. Furthermore, we have ⌃T⌃ =

2

6664

�2
1

. . .
�2
r

O

3

7775
.

So these �1, . . . ,�r in ⌃ are simple the square roots of the non-zero eigenvalues of ATA. Fortunately, we
know ATA must always be positive semidefinite, so the square roots are all real.

In short, the spectral decomposition of ATA will give you both ⌃ and V . Similarly, the spectral decom-
position of AAT will give you both U and ⌃. Is this enough to find the whole SVD? Well, there is one more
missing ingredient.

Example 7.12.5. Consider A =


1

1

�
and B =


1

1

�
. Then AAT = BBT and ATA = BTB. However,

A,B are di↵erent matrices with di↵erent SVD.
In particular, in terms of rank decomposition, the SVD of A is A = e1eT1 + e2eT2 , while the SVD for B

is B = e2eT1 + e1eT2 . As you can see, the U portion and V portion of the SVD for A and B uses the same
columns, but their MATCHING is di↵erent.

AAT tells you what columns U should have, and ATA tells you what columns V should have, but they
give no information on how to order these things to match each other. It turns out that the order of columns
for U, V are very important. Recall the decomposition A =

P
r

i=1 �iuivT
i
, where the ui,vi are in fact paired

up. So the order of columns of U and of V must MATCH each other. ,
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A very interesting observation is that we also see that ATA and AAT has the same positive eigenvalues
�2
1 , . . . ,�

2
r
. Can you see why without SVD? (Hint: How are the eigenvalues of AB and BA related? Note

that one matrix is m⇥m and the other is n⇥ n, they do not have the same amounts of eigenvalues.)

Definition 7.12.6. A singluar value � > 0 for A is the square root of a non-zero eigenvalue of ATA or
AAT.

Given an m ⇥ n matrix A, we say v 2 Rn is a right singular vector if it is an eigenvector for ATA.
(This is related to the V in A = U⌃V T, hence it is “right”.)

We say it is a singular vector of A for the singluar value � > 0 if it is an eigenvector of ATA for the
eigenvalue �2.

We say u 2 Rm is a left singular vector if it is an eigenvector of AAT. (This is related to the U in
A = U⌃V T, hence it is “left”.)

We say it is a singular vector of A for the singluar value � > 0 if it is an eigenvector of AAT for the
eigenvalue �2.

How to work out the correspondence between the left and right singular vectors?
Again let us do some backward deduction. Consider Avi. Since all other vj are orthogonal to vj , via the

decomposition A =
P

r

i=1 �iuivT
i
we see that in fact Avi = �iui for i  r. So actually vi gives us ui right

away when i  r. Similarly, we can also see that uT
i
A = �ivT

i
.

Lemma 7.12.7 (Ping Pong of left/right singular vectors). If v is a right singular vector of A for the singular
value �, then Av is a left singular vector of A for the singular value �.

If u is a left singular vector of A for the singular value �, then ATu is a right singular vector of A for
the singular value �.

Proof. Suppose v is a right singular vector for the singular value �. Now (AAT)(Av) = A(ATAv) =
A(�2v) = �2Av. Hence Av is a left singular vector of A for the singular value �. The other statement is
proven similarly.

Lemma 7.12.8. For a right singular vector v for the singular value �, kAvk = �kvk. If v1,v2 are orthogonal
right singular vectors, then Av1, Av2 are orthogonal left singular vectors.

Proof. For a right singular vector v for the singular value �, kAvk2 = vTATAv = �2vTv.
If v1,v2 are orthogonal right singular vectors, then hAv1, Av2i = vT

1 (A
TAv2) = �2vT

1 v2 for some � > 0.
Since v1,v2 are orthogonal, the calculation above gives zero.

Theorem 7.12.9 (Singular Value Decomposition). For any real m⇥n matrix A of rank r, we can find m⇥m
orthogonal matrix U =

⇥
u1 . . . um

⇤
, and n ⇥ n orthogonal matrix V =

⇥
v1 . . . vn

⇤
, and “diagonal”

m⇥ n matrix ⌃ =

2

6664

�1

. . .
�r

O

3

7775
with positive �1, . . . ,�r, such that A = U⌃V T.

Here ui is a left singular vector for singular value �i for i  r, and ui is in Ker(AT) if i > r. Similarly,
vi is a right singular vector for singular value �i for i  r, and vi is in Ker(A) if i > r.

Proof. Since eigenvalues of ATA which are all non-negative, and ATA have the same rank as A, let us
order the eigenvalues from large to small as �2

1 � · · · � �2
r
> 0. Then we have spectral decomposition

ATA = V DV T where V is orthogonal and D is diagonal, with diagonal entries �2
1 , . . . ,�

2
r
, 0, . . . , 0. And

columns of V are right singular vectors by definition.
Let ui = 1

�i
Avi for all i  r. Now we have mutually orthogonal unit vectors u1, . . . ,ur, we extend

this arbitrarily to an orthonormal basis for the codomain Rm. So now we have u1, . . . ,um, and U =⇥
u1 . . . um

⇤
is an orthogonal matrix.

Now A
⇥
v1 . . . vr vr+1 . . . vn

⇤
=

⇥
�1u1 . . . �rur O

⇤
= U⌃. So AV = U⌃. So we are

done.
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Alternative proof. This proof is a bit more elegant, but lacks some finesse.
Again start by performing any spectral decomposition ATA = V DV T. Then we see that (AV )T(AV ) =

D. In particular, columns of AV are mutually orthogonal. Then by a generalized version of QR decomposi-
tion, we have AV = U⌃ where U is orthogonal and ⌃ is “diagonal” as desired. (We obmit this proof of the
generalized QR decomposition. It is strikingly similar to the last proof....)

Remark 7.12.10. Note that u1, . . . ,ur are all in Ran(A) since ui =
1
�i
Avi, and ur+1, . . . ,um are all in

Ker(AT).
Given that the two subspaces are orthogonal complements, and given their dimensions, it is not hard to

see that u1, . . . ,ur in fact form an orthonormal basis for Ran(A), while ur+1, . . . ,um form an orthonormal
basis for Ker(AT).

The same thing is true for vi and the subspaces Ran(AT),Ker(A). In particular, SVD means simultane-
ously finding the BEST orthonormal basis for ALL subspaces related to A.

A common geometric interpretation of SVD is this: A = U⌃V T means A is rotation, then stretch, and
the rotation. However, here is another one.

Corollary 7.12.11 (Polar decomposition). For any square matrix A, we have A = SQ where S is symmetric
positive semi-definite and Q is orthogonal.

Proof. A = U⌃V T = (U⌃UT)(UV T).

This is akin to z = rei✓ for complex numbers, where r � 0 and ei✓ is unit complex. Recall that a symmetric
matrix is just a stretch along orthogonal frames. So the geometric action of A is simply a rotation, and
the stretch along orthogonal frams (where the stretching factors are the singular values, and the stretching
directions are columns of U). In particular, we have the following.

Corollary 7.12.12. If an n ⇥ n matrix A acts on a unit n-dim sphere, the result is an n-dim ellipsoid
whose half-axes have length the same as singular values of A, and the direction of these axes are the same
as columns of U for the SVD A = U⌃V T.

In this sence, if we are thinking of A as a linear transformation, then usually U is more prominent in its
interpretation.

Example 7.12.13. Consider a Ping Pong ball squeezed by 10 di↵erent forces. Where on the ball would
crack first?

Well, under these 10 forces, the Ping Pong ball would be “deformed”, and the location with the most
deformation would be the most likely to crack. The deformed Ping Pong ball could imaginably be some
ellipsoid, and the location with most deformation could be determined by the direction of the half-axes of
the ellipsoid. As you can imagine, this must be related to SVD some how!

Skipping some details on mechanical analysis involving stress tensor, if the 10 forces are F 1, . . . ,F 10,

then we can set A =
h

F 1p
kF 1k

. . . F 10p
kF 10k

i
. The SVD for A would yeild these half-axes and the amount

of corresponding deformation.
Now instead of a Ping Pong ball under pressure, imagine your head, which is under pressure due to all

the classes you are taking. The math class, the science class, the literary class, they each gives you some
di↵erent pressure. Which class would you most likely fail? I don’t know, but I’m sure SVD is involved in
this somehow. ,

We finally end this section with a WARNING: While the singular values and singular vectors are all well
defined for A, the decomposition of SVD might NOT be unique. Consider I = UIUT for any orthogonal
matrix U . We see that the U portion is arbitrary.
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7.12.3 (Optional) Pseudo Inverse

Given A = U⌃V T, where ⌃ =


D O
O O

�
is an m⇥n matrix and D is invertible and diagonal, then we define

⌃+ =


D�1 O
O O

�
which is n⇥m, and we define A+ = V⌃+UT to be the pseudo-inverse of A.

Proposition 7.12.14. AA+ is the orthogonal projection to Ran(A).

Proof. Note that AA+ = U⌃⌃+UT, and ⌃⌃+ =


Ir O
O O

�
is an m⇥m square diagonal matrix. Therefore

AA+ is obviously symmetric, and (AA+)2 = U(⌃⌃+)2UT = U⌃⌃+UT = AA+. So this is an orthogonal
projection.

We also see that U represents a change of basis in the product U⌃⌃+UT, and ⌃⌃+ =


Ir O
O O

�
means

a truncation taking only the first r coordinates. So, AA+ is a projection to span(u1, . . . ,ur) = Ran(A).

A very nice aplication is the following. Given a subspace V of Rn, each vector v 2 V originally has n
coordinates, because it in Rn. However, once we find a basis for V , then v as a vector of V will now have k
coordinates under this basis. What is the transition map?

Corollary 7.12.15. Suppose we have a subspace V in Rn spanned by linearly independent v1, . . . ,vk 2 Rn.
Then for any w 2 V , its coordinate under the basis v1, . . . ,vk of V is A+w, where A =

⇥
v1 . . . vk

⇤
.

Proof. If w 2 V , then w = AA+w, so w is the linear combination of columns of A according to coe�cients
A+w.

7.12.4 Low Rank Approximation

Consider the rank one decomposition induced by SVD, A =
P

r

i=1 �iuivT
i
. Recall that we order the singular

values so that �1 � · · · � �r > 0. Intuitively, you can think of these �iuivT
i
as components of A. Obviously,

�1u1vT
1 is the most important component, and �2u2vT

2 is the second most important component, and so on.
Finally, the orthogonality between these components means they are recording some independent aspects of
A.

Example 7.12.16. Suppose I have a bunch of data to store in the computer. The data are in the form of
an m ⇥ n matrix A, say maybe it is a gray-scale picture. Then I would need to store mn numbers in the
computer. But I do not have enough data storage to store these many numbers. What should I do?

As we have noted before, if A have a small rank r, then any rank one decomposition A =
P

xiyT
i
will

store A using only r(m+ n) numbers. This is super good when r is tiny.
What if A have big rank? Then to store everything, you have no choice but to store all mn numbers.

However, maybe we can find a low rank matrix B, such that B is super close to A, and store B instead?
The information in A will be lost somewhat, but B should give a good approximation, and it needs much
less space to store.

This is the problem of low rank approximation. Fix a small integer k. Given any matrix A, we want to
find the best rank k matrix that is “closest” to A. What is the answer?

Well, here is the answer. If the SVD gives A =
P

r

i=1 �iuivT
i
, then the best rank k approximation isP

k

i=1 �iuivT
i
. (Recall that we order the singular values so that �1 � · · · � �r > 0. So we are simply taking

the largest k rank one components of SVD, and we are done.)
Say you are preparing for an exam. There is a lot to memorize, but your memory is finite and probably

not enough. What should you do? Ideally, you should perform SVD on all the materials to be memorized,
and memorize only the rank one components corresponding to the largest few singular values. This would
allow you to most e�ciently approximate all the materials given your limited memory capacity. If your
teacher tells you some “key points” to memorize in the textbook, those are probably �1u1vT

1 , the most
important portion to memorize.
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Also notice how orthogonality is the key to e�ciency. If you memorize two sentences that are essentially
saying the same thing, then you wasted some memory space. The orthogonality of SVD guarantees that
each �iuivT

i
contains totally independent informations from others, so there is no waste whatsoever. ,

Now, we want to find the best low rank matrix that is closest to A. But how to measure closeness? One
common way is the Frobenius norm.

Definition 7.12.17. Given two m ⇥ n real matrices A,B, we can perform their inner product such that
hA,Bi =

P
aijbij, i.e., this is simply entry-wise “dot product”. Then the Frobenius norm of the matrix A

is simply kAkF =
p
hA,Ai.

Lemma 7.12.18. hA,Bi = trace(ATB), and kAk2
F
= trace(ATA).

Let us have another application of low rank approximation: lines of best fit.

Example 7.12.19. Consider data points


x1

y1

�
, . . . ,


xn

yn

�
on the plane R2. Find the best line to fit the data.

Now previously, we have a least square method, which is trying to find the best k, b to minimize
P

(yi �
kxi � b)2. In short, we are minimizing the vertical distance to the line. The least square is used when we
are trying to PREDICT y using x, hence vertical distance to the line is more important.

However, sometimes we are not really interested in prediction, and we only want to look at correlation.
So I want to minimize the orthogonal distance to the line. This is called the line of best fit . What
should I do then?

First we shift the data so that the average values are E(x) = E(y) = 0, i.e., my data is centered around
the origin. This way, I just need to find the best line through the origin to fit the data.

Consider any line through the origin L. Then given data points A =
⇥
p1, . . . ,pn

⇤
which is a 2⇥n matrix,

we can project each point orthogonally to L, and obtain results B =
⇥
q1, . . . , qn

⇤
. Since each point pi is

projected to the point qi on L, we see that the orthogonal distance from the points in A to the line L isP
kpi � qik2 = trace((A � B)T(A � B)) = kA � BkF . So this is simply the Frobenius distance between A

and B.
Also note that since all qi lies on the same line L through the origin, B has parallel columns, and it

has rank one. So in short, to find the best line L, I just need to find the best rank one matrix B such that
kA�BkF is as small as possible. B should be a best rank one approximation to A.

So, if the SVD gives A =
P

r

i=1 �iuivT
i
, the best rank one approximation is �1u1vT

1 , so this is what B
should be. L = Ran(B) so it is spanned by u1. We have found our line of best fit.

Now suppose the data points are A =
⇥
p1, . . . ,pn

⇤
but the points are now in R3. Again suppose

E(x) = E(y) = E(z) = 0. How to find the line of best fit? Again you just need the best rank one
approximation of A. What if you want to find a plane to best fit the data? Well, you just need the best
rank two approximation of A.

So this is why SVD is super important in statistics. ,

7.12.5 Matrix norms and proofs of low rank approximation

We now provide the proof for low rank approximation. First, let us introduce another matrix norm, which
is also super useful, especially in physics

Consider a linear map A acting on the unit circle. This means we have an input u, some unit vector, and
we are interested in Au. Since we know the result is an ellipse, how to find the length of the major half-axis
of the ellipse? Essentially, we are asking ourselves how to find maxkAuk.

Definition 7.12.20. Given a matrix A, its operator norm is kAk = maxv 6=0
kAvk
kvk = maxkuk=1kAuk. In

particular, this is the maximal output-input length ratio.

This is called a norm for a reason. For example, here is the triangle inequality:

Lemma 7.12.21. kA+Bk  kAk+ kBk.
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Proof. For any unit vector u, we have k(A+B)uk = kAu+Buk  kAuk+ kBuk  kAk+ kBk. Since this
is true for all k(A+B)uk, it is also true for their maximum value kA+Bk.

The main advantage of this norm over the Frobenius norm is that it can be easily generalized to infinite
dimensional settings. This is especially useful in physics.

Now, we are interested in the output-input length ratio kAvk
kvk . If you square this, this is vT

A
T
Av

vTv . This is
called a Rayleigh quotient.

Definition 7.12.22. Given a symmetric matrix S, a Rayleigh quotient is a quotient vT
Sv

vTv for some v.

Proposition 7.12.23. The Rayleigh quotient of S is always between the largest eigenvalue of S and the
smallest eigenvalue of S.

Proof. a  vT
Sv

vTv  b for all v
if and only if avTv  vTSv  bvTv for all v,
if and only if vT(aI � S)v  0  vT(bI � S)v for all v,
if and only if aI � S is negative semidefinite and bI � S is positive semidefinite,
if and only if all eigenvalues of S are between a and b.

Now we connect the operator norm to singular values.

Proposition 7.12.24. The operator norm of A is its largest singular value �1.

Proof. Since kAv1k = �1kv1k, we see that kAk � �1.

For any v 6= 0, kAvk2

kvk2 = vT
A

T
Av

vTv  �1(ATA) = �2
1 . So kAk  �1.

Alternative proof. First you can prove that kUAV k = kAk, because orthogonal matrices preserve length.
Now we do SVD and have kAk = kU⌃V Tk = k⌃k. Now ⌃ is a very specific matrix and you can simply
calculate directly.

As a notation, we shall now use kAk and �1(A) interchangably, as they refer to the same thing.

Corollary 7.12.25. Let A acts on an n-dimensional sphere, then the resulting high dimensional ellipsoid
has major half-axis length �1. (Note that depending on A being injective or not, the resulting ellipsoid might
NOT be n dimensional.)

Remark 7.12.26. From the ellipsoid result, one can also see the following: If, instead of looking at
max kAvk

kvk , we look at maxv?v1

kAvk
kvk where v1 is the right singular vector for �1, then we would get �2,

i.e. the largest length in the cross section perpendicular to the major half-axis of the ellipsoid. This can be
generalized for all singular values.

Here is a related potential application of Rayleigh quotient.

Example 7.12.27. How to find the maximum and minimum of 2x2+4xy+5y2

x2+y2 , given that x, y are not both
zero?

Well, set S =


2 2
2 5

�
, then this is a Rayleigh quotient for S. Since S has eigenvalues 1, 6, this Rayleigh

quotient must be between 1 and 6. ,

Now we go for low rank approximation.

Definition 7.12.28. Suppose the SVD of A gives A =
P

r

i=1 �iuivT
i
. The rank k truncated SVD of A

for k  r is Ak =
P

k

i=1 �iuivT
i
.

As we shall see Ak will minimize both the operator norm and the Frobenius norm of A�Ak. We do the
operator norm first.
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Proposition 7.12.29. Among the set of rank k matrices, Ak is one of the closest to A in terms of operator
norm. Specifically, kA�Bk � �k+1(A) for all m⇥n rank k matrices B, and kA�Akk reaches this minimal
value.

(Here �k+1(A) refers to the k + 1-th singular value of A, and if A is rank k, �k+1(A) = 0.)

Proof. That Ak gives kA�Akk = �k+1(A) is obvious.
If k = r, then the statement is trivial as Ak = A. Let us assume k < r.
(Before the formal proof process, let us do some analysis. We want to show that kA�Bk � �k+1(A). To

achieve this, we need to find a unit vector x such that k(A�B)xk � �k+1(A). So given fixed B, we want to
pick unit vector x to make Ax and Bx to be as far away as possible. As B has low rank, Bx is very likely
to be zero, in which case we just want kAxk to be as large as possible. This would happen if x is a mixture
of the singular vectors of A for large singular values.)

To the formal proof now. Suppose A =
P

r

i=1 �iuivT
i
, where the singular values are ordered from large

to small as usual. Let Vk+1 =
⇥
v1 . . . vk+1

⇤
, so these are singular vectors of A for the (k + 1) largest

singular values. Obviously dimRan(Vk+1) = k + 1, as all these singular vectors are orthonormal.
On the other hand, Ker(B) = n � rank(B) = n � k. So by inclusion-exclusion principle for subspaces,

dim(Ker(B) \ Ran(Vk+1)) � 1. So we pick x to be a unit vector in Ker(B) \ Ran(Vk+1).
Now Bx = 0, and k(A � B)xk = kAxk. If x = a1v1 + · · · + ak+1vk+1, then Ax = �1a1u1 +

· · · + �k+1ak+1uk+1. Since these ui are orthonormal, we see that kAxk =
q
�2
1a

2
1 + · · ·+ �2

k+1a
2
k+1 

q
�2
k+1a

2
1 + · · ·+ �2

k+1a
2
k+1 = �k+1

pP
a2
i
.

However, since x is a unit vector, and x = a1v1 + · · ·+ ak+1vk+1 for orthonormal vi, therefore
P

ai =
kxk2 = 1. So we are done.

Now we move on to Frobenius norm, which is also related to singular values.

Proposition 7.12.30. kAk2
F
=

P
�2
i
.

Proof. kAk2
F
= trace(ATA), which is the sum of eigenvalues of ATA.

We have already shown that Ak is the best rank k approximation to A in the operator norm. Let us now
show that it is also the best rank k approximation to A in the Frobenius norm.

Lemma 7.12.31 (Generalized triangle inequality for the operator norm). If A = B+C, then �i(B)+�j(C) �
�i+j�1(A). (Note that the regular triangle inequality is the case when i = j = 1.)

Proof. Let Bi�1, Cj�i be the corresponding rank approximation in the operator norm. Then �i(B) =
�1(B�Bi�1),�j(C) = �1(C�Cj�1). So by the regular triangle inequality of operator norm, �i(B)+�j(C) =
�1(B �Bi�1) + �1(C � Cj�1) � �1(B + C �Bi�1 � Cj�1) = �1(A�Bi�1 � Cj�1).

However, Bi�1 + Cj�1 is a rank i + j � 2 matrix. So by the rank approximation for operator norm,
�1(A�Bi�1 � Cj�1) � �1(A�Ai+j�2) = �i+j�1(A). So we are done.

Proposition 7.12.32. Among the set of rank k matrices, Ak is one of the closest to A in terms of Frobenius
norm. Specifically, kA � BkF �

P
n

i=k+1[�i(A)]2 for all m ⇥ n rank k matrices B, and kA � Akk reaches
this minimal value.

(Here �i(A) refers to the i-th singular value of A, and if A is rank r, �i(A) = 0 for all i > r.)

Proof. Consider the decomposition A = B + (A� B). Then �i(B) + �j(A� B) � �i+j�1(A). Since B has
rank k, we see that for i = k + 1, �i(B) = 0, and hence �j(A�B) � �i+j�1(A) = �j+k(A).

Now kA�BkF =
P

n

j=1[�j(A�B)]2 �
P

n

j=1[�j+k(A)]2 = [�k+1(A)]2 + · · ·+ [�n(A)]2.
Finally, this minimum is reached when B = Ak.

In fact, for all norms defined in terms of singular values, then the operator norm would provide a control
over that norm.
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7.12.6 Principal Component Analysis

Example 7.12.33. Suppose we want to do facial recognition. Given a person’s face, we can store all
information about this face into a big list of numbers, i.e., a very high diemnsional vector f . So each face is
now a vector in the “face space”, which is just Rm for some very big m.

Now to build a facial recognition process, we need to first start by collecting data. Say we collected the
face of n people for very large n. Now we have f1, . . . ,fn 2 Rm for large m,n. These data can fit into a
matrix A =

⇥
f1 . . . fn

⇤
. What do we do next?

Next we want to identifa major features of a face. For example, “nose” is a major feature, “eyes” are
also a major feature. To see if two faces are the same, we can compare the nose, compare the eyes, and so
on. If enough major features are similar, then we say the two face are the same.

Think about the meaning of this. This means we are decomposing each face f into various features.
Since we are doing this for each f i, this means we are decomposing A into a sum of matrices A =

P
Ai,

where each Ai represent some feature. Furthermore, since “nose” would typically involve less pixels than
the whole face, each feature matrix Ai would have a low rank. So we are attempting to decompose A into a
sum of low rank matrices. By comparing faces using only the most important features, we are hoping that
A1 + · · ·+Ak for some small k would give a good approximation to the whole matrix A.

You can see now how SVD comes in. The best way to do this is via A =
P

r

i=1 �iuivT
i
. Here we

decomposed A into matrices with the smallest rank possible (rank one), and these “features” are all mutually

“independent” (orthogonal to each other), and furthermore, a truncation
P

k

i=1 �iuivT
i
is the BEST rank k

approximation of A. These features might not have nice interpretations such as “nose”, but they are the
most e�cient way to capture the essense of A while using minimal rank.

So to do facial recognition, we can perform A = U⌃V =
P

r

i=1 �iuivT
i
. Here columns of U are also in

Rm, and they are called “eigenfaces” sometimes, since they are eigenvectors of AAT. You can even draw
them out. These ui form an orthonormal basis for the face space Rm, and for each f 2 Rm, then f would be
some linear combination of them. Since f = UUTf , you can see that the coordinates under the orthonormal
basis is just ui. This is akin to breaking down a face into “features”, and note that from u1 to um, we are
going in the order of decreasing importance of features.

So fix some small k. Given two faces f1,f2, you can simply compare the first k coordinates of
UTf1, U

Tf2. If these coordinates are close enough, then all the most important features are close enough,
so we can declare them to be the same face.

Note that V here is less important. It records information about how to combine the input faces f i into
features, and it has little consequence in application.

For more on facial recognition using SVD, check out this paper. ,

Example 7.12.34. I came across this application in the textbook by Gilbert Strang. The information here
is written in this paper published in nature.

In short, for each person, we can write a list of number to represent this person’s genetic information,
i.e., some vector p. So if we collect the genetic information of many people, and use these vectors as
columns to form a matrix, we get A0. Then we center the data (substract each column by the average of all
columns, and now each row has average zero). Thus we obtain A =

⇥
p1 . . . pn

⇤
, and perform SVD for

A = U⌃V =
P

r

i=1 �iuivT
i
.

Here the two most principal components to explain A (the genetic variation data set) are �1u1vT
1 and

�2u2vT
2 . Here u1,u2 would be the most important genetic “features” to explain genetic variation. What

are the meanings of v1,v2?
Note that uT

1 A = �1vT
1 by definition of a left singular vector, yet we also have uT

1 A =
⇥
uT
1 p1 . . . uT

1 pn

⇤
.

So the amount of genetic feature u1 contained by the i-th person is exactly the i-th coordinate of �1vT
1 .

Suppose we ignore ALL other genetic features than the first two. Then the genetic variation of each
person would only need two coordinates, and thus each person becomes a point in R2, and they are columns

of


�1vT

1

�2vT
2

�
. Graph these points in R2, and we recover something like a map of Europe. (Note that the paper

in question only gathered genetic data in Europe.) Check out the paper for a graph of this comparison.
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This means that the most important rank 2 factor influencing genetic variations is approximately the
geological location of the person. This makes a lot of sense. If you sample the gene of someone in France, with
great probability this person will be of French descent, and this person will most likely have the corresponding
genetic variations common to French people.

Think about a study about coronavirus policy. Is lockdown an e↵ective method? If you study this by
collecting data from di↵erent countries, then your result could be misleading. Say one country locked down,
while the other remained open, and we observed a di↵erence in the spread of the virus. Does this imply
lockdown is e↵ective? Not by itself. If a person’s genetic information e↵ects the spreading of the virus, and
geography explains the genetic variation, then what you have detected might be genetic variations caused
by geography.

Therefore, a rigorous study must try to “correct” the data against this confounding factor. ,

7.13 Classification of Quadratic surfaces

(This section should have been right next to definiteness of symmetric matrices. However, since it is the
most optional, I put it last in case I have no time and need to skip it.)

Previously, given a square matrix A, we think of it as a linear transformation (domain = codomain). In
particular, a change of basis would induce a change in matrix into X�1AX for some invertible X. In this
section, we try something di↵erent. Let us think of A as a bilinear form.

Definition 7.13.1. A bilinear form is a function f : Rn ⇥ Rn ! R such that f(�,v) is linear and f(v,�)
is also linear. More specifically, we have f(au+ bv,w) = af(u,w) + bf(v,w) for the first input, and same
for the second input.

Proposition 7.13.2. We have f(v,w) = vTGw for a matrix G whose (i, j) entry is f(e1, ej). (So it is a
Gram matrix.)

Proof. Simply use bilinearity to expand v,w in terms of the standard basis, and we are done.

Proposition 7.13.3. Suppose we perform a change of basis, so that vnew = Xvold for invertible X. Then
for the bilinear form with Gram matrix A, we have Aold = XTAnewX.

Proof. The bottom line is that vT
new

Anewwnew = vT
old

Aoldwold. Now substitute in vnew = Xvold, we see
that vT

old
XTAnewXwold = vT

old
Aoldwold for all vold,wold 2 Rn. So we have Aold = XTAnewX.

In particular, the change of basis formula for matrices are now di↵erent. If the matrix A represent a
bilinear form, then XTAX is the result after a change of basis.

Definition 7.13.4. Two matrices A,B are said to be congruent if A = XBXT for some INVERTIBLE
X. (Note that we require X to be invertible here, since it should come from some change of basis.)

Previously, when we study eigenvalues, we would try to find X such that X�1AX is diagonal D, i.e., a
decomposition A = XDX�1. This is the best basis to study the linear transformation A. Now what is the
best basis to study the bilinear form A? We would now try to find X so that XTAX is as simple as possible.

Thankfully, this is not too bad, when A is symmetric. We have spectral decomposition A = QDQ�1 and
Q�1 = QT. So by choosing the right basis, we can always assume that A is diagonal. So let us restrict our
attention now.

Definition 7.13.5. A bilinear form is a symmetric bilinear form if f(v,w) = f(w,v). (Obviously these
are also bilinear forms with symmetric Gram matrix.)

Remark 7.13.6. There is also the concept of a quadratic form, which are q : Rn ! R such that q(x) =
f(x,x) for some symmetric bilinear form f . These corresponds to homogeneous polynomials of degree 2 on
n variables.
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The study of quadratic form is pretty much the same as the bilinear form though. If q(x) = xTAx, then
by taking transpose on both sides, we also have q(x) = xTATx. So q(x) = xTGx where G = 1

2 (A+ AT) is
symmetric. So we can always assume that the bilinear form for the quadratic form q is symmetric.

Note that one can also obtain the symmetric bilinear form via polarization identity f(x,y) = 1
2 (q(x +

y)� q(x)� q(y)), which can be verified to be bilinear and symmetric, and q(x) = f(x,x).

Proposition 7.13.7. For any symmetric bilinear form, we can choose a basis so that the Gram matrix is
diagonal D where the diagonal entries are 0, 1,�1.

Proof. Suppose that under the standard basis, the Gram matrix is symmetric A. By spectral decomposition,
A = QBQT for diagonal B. So our goal now is to find a decomposition so that B = XDXT, and D is as
desired.

Say B =

2

64
b1

. . .
bn

3

75. If bi 6= 0, let xi =
p
|bi|, and if bi = 0, set xi = 1. Either way, we have xi 6= 0.

Let X =

2

64
x1

. . .
xn

3

75, and D =

2

64
sign(b1)

. . .
sign(bn)

3

75, where sign(x) = 1 if x > 0, �1 if x < 0, and

0 if x = 0. Then it is easy to verify that B = XDXT and X is invertible. So we are done.

Corollary 7.13.8. Any symmetric matrix A is congruent to

2

4
Ia

�Ib
O

3

5. (We call this the congruence

canonical form of A.)

Now, are the integers a, b uniquely determined by A? They are. In fact, they have some very interesting
structural meaning.

Note that there are something interesting going on here. Let’s say we picked a nice basis and thus

our symmetric bilinear form has Gram matrix G =

2

4
Ia

�Ib
O

3

5. Then consider the subspace V =

span(e1, . . . , ea). For any v 2 V , you can easily verify that vTGv = kvk2 � 0 with equality if and only if
v = 0. So even though G itself is NOT positive definite, but on the subspace V , it is positive definite.

Definition 7.13.9. For a symmetrix matrix A, we define its positive index of inertia to be n+, the size
of largest subspace on which A can be positive definite. We define its negative index of inertia to be n�,
the size of largest subspace on which A can be negative definite.

Lemma 7.13.10. If A is positive definite on a subspace V , then A is positive semi-definite on V +Ker(A).

Proof. For any u 2 V + Ker(A), suppose u = v +w where v 2 V and w 2 Ker(A). (Note that there is a
chance of v = 0 here, when u is entirely in Ker(A).)

Then uTAu = (v + w)TA(v + w) = vTAv � 0. Here all the w disappear because Aw = 0 and (by
symmetricity of A) ATw = 0. Also note that we merely have � rather than >, because maybe v = 0.

Lemma 7.13.11. Suppose an n⇥ n symmetric matrix A has positive index of inertia n+, negative index of
inertial n�, and kernel of size n0. Then n+ + n� + n0  n.

Proof. Let V+ be a subspace of dimension n+ on which A is positive definite. Then all non-zero v 2 V+ will
have vTAv > 0, while all non-zero v 2 Ker(A) will have vTAv = 0. In particular, V+ and Ker(A) has trivial
intersection, and dim(V+ +Ker(A)) = dim(V+) + dimKer(A) = n+ + n0.

Let V� be a subspace of dimension n� on which A is negative definite. Then all non-zero v 2 V+ will
have vTAv < 0. However, in comparison, since A is positive semi-definite on V+ + Ker(A), all non-zero
v 2 V+ + Ker(A) will have vTAv � 0. In particular, V� and V+ + Ker(A) has trivial intersection, and
dim(V�+V++Ker(A)) = dim(V�)+dim(V++Ker(A)) = n�+n++n0. But since V�+V++Ker(A) ✓ Rn,
we see that n+ + n� + n0  n.
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Theorem 7.13.12 (Sylvester’s Law of Inertia). Suppose an n ⇥ n symmetric matrix A has positive index
of inertia n+, negative index of inertial n�, and kernel of size n0. We have n+ + n� + n0 = n, and n+ is
the number of positive eigenvalues of A, and n� is the number of negative eigenvalues of A.

In particular, if A,B are congruent, then they have the same positive index of inertia and same negative

index of inertial. If A is congruent to Da,b =

2

4
Ia

�Ib
O

3

5, then we must have a = n+ and b = n�. So

the congruence canonical form of A is unique.

Proof. Since A is normal, its eigenspaces are spanning. Let V+ be the subspace spanned by all eigenspaces
of A for positive eigenvalues of A. Then for any vector v 2 V+, it is a sum of eigenvectors of A for positive
eigenvalues, say v =

P
vi where each vi has eigenvalue �i > 0. Then vTAv =

P
�ikvik2 � 0, with equality

if and only if vi are all 0, if and only if v = 0. So A is positive definite on V+.
Since A is normal, algebraic multiplicity equals geometric multiplicity, so dim(V+) is exactly the number

of positive eigenvalues of A, say m+. Since A is positive definite on V+, and n+ is by definition the largest
possible dimension of such a subspace, we have n+ � m+. Similarly, we also see that n� � m�, where m�
is the number of negative eigenvalues of A. Finally, we have n0 = m0 where m0 is the algebraic multiplicity
of zero as an eigenvalue of A.

Now since A has n eigenvalues, we have n = m+ +m� +m0  n+ + n� + n0  n. So we have equality
everywhere.

Remark 7.13.13. By analyzing the proof above, you can also see that the largest subspace on which A is
positive definite is in fact unique. It must be the span of all eigenspaces for all possitive eigenvalues.

In particular, we see that up to a change of basis, a symmetric bilinear form is completely determined
by its positive and negative index of inertia. Now we can proceed to classify quadratic curves and quadratic
surfaces.

Example 7.13.14 (Classification of quadratic curves). Consider the solution set to some degree two poly-
nomial equation ax2 + bxy + dy2 + ex+ fy + c = 0 in R2 for constants a, b, c, d, e, f . What is it?

Let A =


a b

2
b

2 d

�
and b =


e
f

�
, then we see that the solution sets are points x such that xTAx+bTx+c =

0. Suppose for now that A is invertible.
Then we can try to complete the square. Recall that ax2+ bx+ c can be written as a(x+ b

2a )
2+(c� b

2

4a ).
So similarly, we change variable with y = x + 1

2A
�1b, and we have yTAy = C for some constant C. Note

that all we did is to translate the solution set around, without changing its shape.
Now we perform a change of basis, and we can assume that A is in congruence canonical form. We have

several possibilities.

1. Suppose n+ = 2 and n� = 0, then if y =


x
y

�
, we are facing x2 + y2 = C. The solution here is a circle

if C > 0. Going back to the solution set xTAx+bTx+c = 0, the change of basis process will make the
circle into an ellipse, and then the change of variable process will translate the ellipse around. Anyway,
we end up with an ellipse as the solution set. (If C = 0, the solution is a single point. If C < 0, the
solution set is empty.)

2. Suppose n+ = 0 and n� = 2, then if y =


x
y

�
, we are facing x2 + y2 = �C. We see that this is the

same as above, except that now C < 0 gives the ellipse, and C > 0 now gives empty solution set.

3. Suppose n+ = n� = 1. Then if y =


x
y

�
, we are facing x2 � y2 = C. We see that this is a hyperbola.

Change of basis means the two asymtotes can be in any direction, and the change of variable means
we can translate it around.

273



So all in all, it is either an ellipse, or a hyperbola, or in the degenerate cases, a single point or the empty
set.

What if A is NOT invertible? If A = 0, then we have a degree one equation ex + fy + c = 0, so the
solution is a single line, or it is the empty set if e = f = 0 while c = 0, giving us a contradiction.

We are left with one last case, when A has rank 1. Note that if b 2 Ran(A), say b = Av, then we can
again change variable y = x+ 1

2A
�1b as before.

1. If n+ = 1 and n� = 0 and b 2 Ran(A). Then by change of variable, we have yTAy = C. By change
of basis, we have x2 = C. So we have a pair of parallel lines.

2. If n+ = 0 and n� = 1 and b 2 Ran(A). Then by change of variable, we have yTAy = C. By change
of basis, we have x2 = �C. So we have a pair of parallel lines again.

3. If n+ = 1 and n� = 0 and b /2 Ran(A). Then we change basis directly, and have xTDx+(b0)Tx+c = 0,
which gives x2 + e0x+ f 0y + c = 0. Since b /2 Ran(A), after change of basis, we have b0 /2 Ran(D), so
f 0 6= 0. This gives y = � 1

f 0 (x2 + e0x+ c), so the solution set is a parabola.

4. If n+ = 1 and n� = 0 and b /2 Ran(A), this is the same as above by changing c into �c. So this is a
parabola.

Let us now sum up all cases of the solution set to xTAx + bTx + c = 0. This can be an ellipse, a
hyperbola, a parabola, a pair of parallel lines, a single line, a single point or the empty set. Throwing away
the degree one cases and the degenerate cases and the contradiction cases, the true degree two cases can
only be ellipses, hyperbolas and parabolas. ,

Example 7.13.15 (Classification of quadric surfaces). We now look at the solution set of degree two
polynomials in R3. Again, we can rearrange so that the equation looks like xTAx + bTx + c = 0. To save
time, let us drop the lower degree cases, degenerate cases and contradictory cases, and only try to classify
the rest. This means A 6= O (but A is allowed to be non-invertible), and b and Ran(A) span the whole R3.
(Otherwise we will be degenerate.)

Suppose A is invertible. Then again we can simplify via translation to xTAx = C. If C = 0, we are
degenerate. So assume C 6= 0. By replacing A via �A if needed, we can assume C > 0.

1. If n+ = 3, then after change of basis, we have x2 + y2 + z2 = C, so this is a sphere. Going back via
change of basis and translation, we have an aribtrary ellipsoid.

2. If n+ = 2 and n� = 1, then after change of basis, we have x2 + y2 � z2 = C. This is the famous
hyperboloid with one sheet. Take the hyperbola x2 � z2 = C > 0 and rotate around the z-axis, and
you can find this shape. It is a connected surface. (Note that there is a single negative sign in the
entire equation, which helps you memorize the number of sheets.)

3. If n+ = 1 and n� = 2, then after change of basis, we have x2 � y2 � z2 = C. This is the famous
hyperboloid with two sheets. Take the hyperbola x2 � z2 = C > 0 and rotate around the x-axis, and
you can find this shape. It is has two connected surfaces as its components. (Note that there are two
negative sign in the entire equation, which helps you memorize the number of sheets.)

4. If n� = 3, then A is negative definite. Since we require C > 0, xTAx = C > 0 is impossible. So there
is no solution in this case.

5. (Optional) Note that if C = 0, then we are degenerate. In the cases n+ = 3 or n+ = 0, the solution is
a single point. In the cases n+ = 2 or n+ = 1, the solution set is a pair of opposite cones.

Since we require b and Ran(A) to span the whole R3, the only non-invertible case is rank(A) = 2 and
b /2 Ran(A). By a change of basis, we have ±x2 ± y2 + ax + by + cz + d = 0. In fact by a translation in
variable x, y, we are left with ±x2 ± y2 + cz + d = 0. We change variable z so that �cz is now replaced by
z, then we have z = ±x2 ± y2 + d, and the signs depends on the index of inertia of A.
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1. If n+ = 2, then z = x2 + y2 + d. This is a paraboloid opening upward. (An elliptic paraboloid after a
change of basis.)

2. If n+ = n� = 1, then z = x2 � y2 + d. This is a hyperbolic paraboloid.

3. If n� = 2, then z = �x2� y2+d. This is a paraboloid opening downward.(An elliptic paraboloid after
a change of basis.)

To sum up, the true quardric surfaces are: ellipsoid, hyperboloid with one sheet, hyperboloid with two
sheets, elliptic paraboloid, hyperbolic paraboloid.

If you are interested, the quardric degenerate surfaces are: elliptic cones, elliptic cylinder, hyperbolic
cylinder, parabolic cylinder. And then we have lower degree cases line planes, or lower dimensional cases
like points or the empty set. ,

7.14 (Optional) Congruence canonical form for skew-symmetric
matrices

If A is skew symmetric, then QTAQ is block diagonal where each block is 0 or


0 �a
a 0

�
for some a. Now

when I perform XTAX, by choosing X to be block diagonal as well, I can assume that each block acts
independently.

Now since


0 1
1 0

� 
0 �a
a 0

� 
0 1
1 0

�
=


0 a
�a 0

�
, up to congruence I can swap the two non-diagonal entries,

so I can assume that we have a > 0. Finally, by setting X =

p
a p

a

�
, we have


0 �a
a 0

�
= X


�1

1

�
XT.

So in the end, A is congruent to a block diagonal matrix where each block is


�1

1

�
or 0. The congruence

relation is completely determined by the rank of A.
In particular, for each R2n, all alternating bilinear forms (bilinear forms with f(v,w) = �f(w,v)) are

the SAME up to a change of basis. This is a very important property, and involved in the study of symplectic
geometry, classical mechanics, and quantum mechanics. Here we can merely provide a quick taste of the
relation.

Example 7.14.1. Suppose a ball is located at p 2 R3 with velocity v 2 R3. Let us say the potential energy
is V (p) (maybe due to gravity, or due to magnetic field, or whatever), a function depending on the location
of the ball, and the kinetic energy is 1

2mvTv. Then the total energy is E(v,p) = V (p) + 1
2mvTv.

Suppose the only force on our object is the potential force. Note that the potential force would always
try to push objects to the direction that reduce potential as fast as possible. Let us write @E

@p as the vectorh
@V

@p1
. . . @V

@p3

i
, then to reduce potential as fast as possible, we skip the physical analysis here, and simply

claim that it means F = �@E

@p . But note that F = ma = mv0, where v0 is the derivative of v with respect

of time. So @E

@p = �mv0.

On the other hand, consider @E

@v = @

@v (
1
2mvTv) = mv = mp0, since velocity is the derivative of location.

As a result, we have the following structure:


p0

v0

�
=


0 1

m
I3

� 1
m
I3 0

� 
@E

@p
@E

@v

�
. So given the mass and a

formula for total energy, this equation here would completely describe the evolution of the location and
velocity of our ball. Here we see the involvement of a skew-symmetric matrix.

For more advanced reason (gradients are contravariant and change basis di↵erently), a change of basis

would actually induce X


0 1

m
I3

� 1
m
I3 0

�
XT on the matrix, so we should think of the matrix here as an

alternating bilinear form, rather than a linear transformation. This is how it is related to mechanics.
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You can also see that matricesX such thatX


0 1

m
I3

� 1
m
I3 0

�
XT =


0 1

m
I3

� 1
m
I3 0

�
are of special interests,

since they describe the “symmetries” of our mechanical system.

In general, we say X is symplectic if X


O �I
I O

�
XT =


O �I
I O

�
, and the study of geometric properties

invariant under such linear transformation X is the study of symplectic geometry. These symplectic prop-
erties would be the “essence” of the mechanical system, similar to how eigenstructures are the “essence” of
a linear transformation. ,
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Part IV

Review and Introduction
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Chapter 8

Complex Matrices

8.1 What is a complex linear combination?

We are entering into the second portion of your linear algebra education, and we are going to see more
complex matrices. A complex matrix is, in a very nominal sense, a matrix with possibly complex entries,

say


1 + i �i
2� i 3

�
. But this should NOT be satisfactory for you, because what does it even mean?

Let us do a little review first.

Recall that a matrix A =

2

4
1 1
2 4
2 0

3

5 is representing a linear map. In particular, it represents some process

that respect linear combinations. As a quick example, say we are doing the famous “hen and rabbit” problem.
Each hen has one head, two legs, and two wings. Each rabbit has one head, four legs, and no wing. So given


x hens
y rabbits

�
, then you would have a total of A


x hens

y rabbits

�
=

2

4
x+ y heads
2x+ 4y legs
2x wings

3

5. So A is the counting process

that tells you how many heads, legs and wings do we have. This process is LINEAR, because the total body
parts of “a linear combination of animals” is the corresponding linear combination of the body parts of each
type of animal. It RESPECTS the linear combination in the sense that A(sv + tw) = s(Av) + t(Aw).

For more fun examples, see Chapter 1.
If you forget all about our class last quarter, at least I hope you would remember these. A vector is

representing a linear combination, and a matrix is representing a linear map, which is a map that preserves
linear combinations. (Personally I think this perspectives on linear combinations and linear maps is WHY
we learn linear algebra in college. No other stu↵ is iimportant.)

Now, under this view, the idea of a complex matrix like


1 + i �i
2� i 3

�
is very disturbing. This seems to

be about COMPLEX linear combinations, in contrast the the real linear combinations that we are used to.
For example, if I think about all my friends, maybe I have 2 male friends and 3 femail friends, and this

corresponds to a vector


2
3

�
. But then a complex vector


4
i

�
would mean that I have 4 male friends and an

imaginary female friend. Huh?
So before we move on, we need a little extra perspective on complex numbers and complex linear com-

binations.
First of all, why do we even need complex numbers? The answer is obvious: we want a degree n

polynomial to have n roots. This is straightforward enough. Over the reals, x2 + 1 = 0 has no solution,

which is super annoying. For example, without complex numbers,


1 2
�1 �1

�
has NO eigenvector and no

eigenvalues, which is annoying. But over complex numbers, it will have distinct eigenvalues ±i, and in fact
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it will be diagonalizable. Hooray! (If you forget all about eigenvalues, this example is subtly telling you to
review.)

So this establishes the necessity of complex numbers. But how can we find roots for x2 + 1 = 0 out of
thin air? It turns out that this is asking the wrong question. “How to find” is not important. The key is
“where to find”. In particular, where can we find i?

Example 8.1.1. We are searching for x such that x2 = �1. And this is impossible over real numbers. But
broaden our minds a little bit. Can we find a real matrix J such that J2 = �I?

Yes we can. The 2⇥ 2 real matrices are linear transformations on R2, the plane. On the plane, what is
�I? That is basically reflecting everything about the origin, i.e., rotation by 180 degree. How can we find
an operation J , such that J2 is rotation by 180 degree? The answer is rotation by 90 degree, easy.

I hope you still remembered how to find this matrix. (Again, if you don’t know how, please review

Chapter 1.) The answer is (if we rotate counter-clockwise) J =


0 �1
1 0

�
. Of course, �J also satisfies

(�J)2 = �I, so we in fact have at least two solutions, ±J , just like x2 = �1 has two solutions, ±i. (We in
fact have infinitely many solutions to the matrix equations J2 = �I. Can you find a way to describe them
all?)

Now is time to witness magic. Lo and behold the wonders of algebra.

(2 + 3i)(4 + i) =5 + 14i;

(2I + 3J)(4I + J) =


2 �3
3 2

� 
4 �1
1 4

�
=


5 �14
14 5

�
= 5I + 14J.

In fact, you can safely assume that any complex number a+ bi is secretly representing the REAL matrix
a �b
b a

�
= aI + bJ . Then addition of complex numbers would corresponds to addition of matrices, and

multiplication of complex numbers are simply multiplication of matrices. (Can you prove this yourself?)
Here is something to think about. Suppose some n⇥ n matrix J satisfies J2 = �I, then would we have

a similar structure? ,

Example 8.1.2. Bonus foods for your thought. Compute the following two matrix multiplications. What
would you get? How are the two following calculations related?


1 i
2i 1 + i

� 
i 1� i
2 i

�
=?

2

664

1 0 0 �1
0 1 1 0
0 �2 1 �1
2 0 1 1

3

775

2

664

0 �1 1 1
1 0 �1 1
2 0 0 �1
0 2 1 0

3

775 =?

Suppose some n⇥ n matrix J satisfies J2 = �I, then can you construct similar coincidences? ,

Example 8.1.3. We have hinted that whenever J2 = �I, then you can choose i as representing J , and use
complex numbers. What are other possible A? Here is an exotic (but useful) example.

Let V be the space of functions of the form a sin(x) + b cos(x). This is a very useful space, because it is
the space of all waves with frequency 2⇡. Let J : V ! V be the linear map “taking derivatives”. Then note
that J2 = �I in this space. ,

The above serves to point out that the imaginary unit i has very real meanings, and possibly many many
meanings, and you should pick your own meaning depending on the application at hand. Luckily for us,
most of the time, when people use complex numbers, they are usually interpreting the imaginary i as some

sort of rotation, i.e.,


0 �1
1 0

�
.
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Under this interpretation, a complex number a+bi can be interpreted as


a �b
b a

�
. So a pure real number

is like a dilation operation on the plane, while a purely imaginary number is like a rotation operation on the
plane. Here is a example copied from the book “From One to Infinity”.

Example 8.1.4. A treasure is buried on an island. To find the treasure, we start at a location with a flag
(location Z). We then first walk to a building (location A), say with a total distance of x, then we turn right
and walk x. Let us call this location A0.

Next we go back to the flag (location Z). We then first walk to a statue (location B), say with a total
distance of y, then we turn left and walk y. Let us call this location B0.

The treasure is at the midpoint between A0 and B0.
Now some bad guy came and took away the flag (so Z is unknown). Can you still find the treasure? Yes

we can.
Note that A0 �A is A�Z rotated clockwise, so A0 �A = �i(A�Z). Similarly, B0 �B is B �Z rotated

counter-clockwise, so B0 �B = i(B � Z). So the treasure locatio 1
2 (A

0 +B0) = 1
2 (A+B) + 1

2 i(B � A), and
no Z is involved in this. So the flag position does not matter at all. I’ll leave the interpretation of the final
treasure location to yourself.

This is NOT showing you the power of complex numbers. Rather, this is showing you the power of linear
algebra. At the center of the entire calculation is the fact that rotation is linear. The complex numbers such
as i are merely names that we slap on the operations such as rotations.

So... linear algebra rules, and complex numbers are just names and labels for convenience. ,

So, when we are dealing with objects that can be “rotated”, it would make sense to talk about i times
that object. In this sense, we can do complex-linear combinations. No wonder that quantum mechanics,
which need to discuss the “spin” of a particle, are using complex numbers.

All in all, for a complex vector such as v =

2

4
1
i

1� i

3

5, it is better to think of each coordinate as representing

a point in the plane. So we have three points on the plane. And if we perform a complex scalar multiplication

(2 + i)v, think of this as applying a planar operation


2 �1
1 2

�
to each coordinate of v. So we are stretching

and rotating the three points simultaneously.
Here are some other fun applications of complex numbers.

Example 8.1.5 (Complex romantic relation). Romantic relations are indeed complex. Ha, let’s dig into
this example.

Suppose f 0 = kf , then I’m sure you know that the solution is f(x) = ekxf(0). That is the prerequisite
knowledge of this application.

Suppose two person A, B are in a romantic relation.Their love for each other is a function of time, say
A(t) and B(t). Now A is a normal person. For normal people, the more you are loved, the more you love
back. In particular, A0(t) = B(t). However, B is an unappreciative person. If you love B, then B take you
for granted, and treat you as garbage. If, however, you treat B badly, then B would all of a sudden thinks
of you as super charming and attractive. In short, B enjoys things that are hard to get, and think little of
the things that are easy to get. In Chinese, we say B is a Jian Ren. Anyway, we see that B0(t) = �A(t).

Now, consider the real vector v(t) =


A(t)
B(t)

�
2 R2. Then for the matrix J =


0 �1
1 0

�
, we see that

v0 = �Jv. Now, think of R2 as simply C, and v would be like some complex number, and J is the
rotation counter-clockwise by 90 degree, i.e., multiplication by i. And we have v0 = �iv. So the solution is
v(t) = e�itv(0) = (cos(t)� i sin(t))v(0).

Then the solution should be (cos(t)I � sin(t)J)


A(0)
B(0)

�
=


A(0) cos(t) +B(0) sin(t)
B(0) cos(t)�A(0) sin(t)

�
. This is indeed the

collection of all possible solutions of our system. We have solved the di↵erential equation.
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Note that the romantic relation of A and B are necessarily periodic. If you are ever trapped in a
relationship which is periodic, (i.e., happy for a week, then fight for a week, and repeat), then maybe you
should think about this model a bit more. ,

8.2 Complex Orthogonality

Procedural-wise, complex linear algebra works in the same way as real linear algebra. The Gaussian elimina-
tion works the same way. The matrix multiplication formula, the trace formula and the determinant formula
are all the same. Nothing new all in all. However, one thing is crucially di↵erent: inner product, and by
extension, transpose.

For two real vectors


1
2

�
and


2
�1

�
, it is very easy to understand that they are orthogonal to each other.

We can draw it, or visualize it in our mind, and so on. But for two complex vectors, what does it mean to
be orthogonal to each other?

Example 8.2.1. Consider


1
i

�
and


1
i

�
. What would happen if we perform the “real dot-product” on these

two vectors? We would have 12 + (i)2 = 1 + (�1) = 0. Huh, this vector is “orthogonal” to itself? How can
it be?

It simply cannot be. Quoting Sherlock Holmes, when you have eliminated the impossible, whatever
remains, however improbable, must be the truth: we used the wrong “dot product”!

There is a lesson we can learn from this. Blindly apply analogous procedures will usually lead you astray.
It is always to guide your scientific exploration with proper intuitions.

What is


1
i

�
? Recall that previously, we have talked about the relation between a + bi and


a �b
b a

�
.

Using this interpretation, let us think of


1
i

�
as

2

664

1 0
0 1
0 �1
1 0

3

775. So instead of one vector, it is in fact two vectors!

So what is orthogonal to


1
i

�
? Well, let us consider


1
�i

�
. Then the two vectors can be thought of as

2

664

1 0
0 1
0 �1
1 0

3

775 and

2

664

1 0
0 1
0 1
�1 0

3

775. Did you see that? ALL FOUR column vectors are mutually orthogonal to each

other. So we conclude that


1
i

�
and


1
�i

�
are orthogonal to each other.

What does this mean? It means that if n-dimensional complex vectors v,w corresponds to 2n ⇥ 2 real
matrices A,B, then we say v ? w if and only if ATB has all four entries zero.

Something funny is going on here. Note that, by interpreting i as


0 �1
1 0

�
, we are interpreting v =


1
i

�

as A =

2

664

1 0
0 1
0 �1
1 0

3

775. Then AT =


1 0 0 1
0 1 �1 0

�
, and it does NOT represent vT. Rather, it represents vT.

Here the line means complex conjugates on each coordinate. So we have

v ? w () ATB = O

() vTw = 0.
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In particular, the fact that ATB is the 2⇥2 zero meatrix corresponds to the fact that vTw is the complex
number zero. ,

Definition 8.2.2. For two complex vectors v,w 2 Cn, then we define their complex dot product to be
hv,wi = vTw.

Remark 8.2.3. Here is something fun to think about. If v 2 Cn is represented by a real 2n⇥ 2 matrix A,
and w 2 Cn is represented by a real 2n⇥ 2 matrix B, then vTw is represented by ATB.

Then what is the meaning of the complex angle vTw
kvkkwk? Note that columns of A span a 2-dimensional

plane of R2n. Similarly, columns of B span a plane of R2n as well. Is the planar angle between the two

planes related to vTw
kvkkwk?

A generic guideline is that, whenever you take transpose for a real matrix, in the corresponding world of
complex matrices, you probably would like to take a transpose conjugate. Think of this as a generalization of

the following fact: if


a �b
b a

�
represents a+bi, then its transpose actually represents a�bi. For convenience,

we shall use the “star” as a shorthand for conjugate transpose, i.e., we define A⇤ as A
T
.

For example, we have the following result.

Theorem 8.2.4. For a complex m ⇥ n matrix A, then Ran(A) and Ker(A⇤) are orthogonal complements,
and Ran(A⇤) and Ker(A) are orthogonal complements. Oh, and Ran(A) and Ran(A⇤) and Ran(AT) have
the same complex dimension, i.e., the rank of A.

Familar yes? We have a bunch of similar results here. Note that ultimately, everything here involves an
orthogonal structure, which is why conjugate transpose is used throughout. Review or read up about their
real conterparts if needed.

1. A complex matrix is Hermitian if A = A⇤. In this case, it is diagonalizable with real eigenvalues,
and the underlying space has an orthogonal basis made of eigenvectors of A.

2. A complex matrix is skew-Hermitian if �A = A⇤. In this case, it is diagonalizable with purely-
imaginary eigenvalues, and the underlying space has an orthogonal basis made of eigenvectors of A.

3. A complex matrix is unitary if A�1 = A⇤. In this case, it is diagonalizable with unit complex
eigenvalues (complex numbers with absolute value one), and the underlying space has an orthogonal
basis made of eigenvectors of A. Note that in particular, such a map would preserve the complex dot
product, i.e., hv,wi = hAv, Awi.

4. A complex matrix is normal if AA⇤ = A⇤A. In this case, it is diagonalizable, and the underlying
space has an orthogonal basis made of eigenvectors of A.

Finally, all these type of matrices have spectral theorems, similar to real symmetric matrices. Check out
Section 7.11 if you forget about them.

8.3 Fourier Matrix

Here is a family of matrices that is both super cool, extremely useful in practice, and also illustrates some
funny situations mentioned above. It is the famous Fourier matrix.

For any n, let ! be the primitive n-th root of unity , i.e., it is the complex number ! = cos(2⇡/n) +
i sin(2⇡/n). Then as you can check, 1,!, ...,!n�1 are all distinct complex numbers, and !n = 1. In fact, by
thinking of complex numbers as dilations and rotations, it is easy to see that 1,!, ...,!n�1 are ALL solutions
to the equation xn = 1 over the complex numbers.
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We start by looking at the fourier matrix Fn whose (i, j) entry is !(i�1)(j�1). For a typical example, we

have F4 =

2

664

1 1 1 1
1 ! !2 !3

1 !2 !4 !6

1 !3 !6 !9

3

775 =

2

664

1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

3

775.

As you can see, it appears that FT
n

= Fn. However, it is NOT Hermitian. (For example, its diagonal is
not real.) In fact, it is the opposite of Hermitian: it is a multiple of a unitary matrix. Feel free to perform
F4F ⇤

4 to verify the case when n = 4. In particular, you can also check that 1
n
Fn = F�1

n
.

The fourier matrix is closely related to the Fourier series and Fourier Transforms. In Calculus we learned
that Fourier series is very important. For a periodic function f(x) with period 2⇡, you can try to decompose
it into di↵erent frequencies via fourier series, and write it as a linear combination of sines and cosines. Say
we have maybe f(x) =

P
ckekix. Here note that eix = cosx + i sinx, so eix is just a lazy way to write sine

and cosine simultaneously.
Suppose we have a decomposition f(x) = c0 + c1eix + c2e2ix + c3e3ix. Given c0, c1, c2, c3, what do we

know about the function f(x)? Well, if you apply F4 to the vector

2

664

c0
c1
c2
c3

3

775, then you can verify that you have

2

664

f(0)
f(⇡/2)
f(⇡)

f(3⇡/2)

3

775. As you can see, you get four points on the graph of f(x). By using more fourier coe�cients,

and larger Fourier matrix, you will get more detailed points on your graph for f(x). This is the forward
direction.

But consider the backward direction as well. In pratical cases, we usually have the graph of f(x)
by some data gathering. How can we work out the Fourier coe�cients? Suppose we have f(x) = c0 +
c1eix + c2e2ix + c3e3ix where the ci are unknown. How to find the fourier coe�cient of f(x)? We could

evaluate f(0), f(⇡/2), f(⇡), f(3⇡/2) empirically or experimentially, and then compute F�1
4

2

664

f(0)
f(⇡/2)
f(⇡)

f(3⇡/2)

3

775 =

1
n
F4

2

664

f(0)
f(⇡/2)
f(⇡)

f(3⇡/2)

3

775. As you can see, by evaluating at merely a few points and apply 1
n
Fn, we can conveniently

obtain the (approximate) Fourier coe�cients. The approximation will get better as we use more data points
and larger Fourier matrix.

Suppose you want to compute the first 1000 fourier coe�cients (say you know the rest are probably noises
or measurement errors). In e↵ect, you want to quickly multiply F1000 to a known vector. Wow, that is pretty
big! How should you do it? By brute fource, this is a 1000 by 1000 matrix, and calculating with it needs
millions of calculations. That would take forever. So a better approach is the Fast Fourier Transfour. We

start by looking at F1024, reduce it to F512, then reduce it to F256, and so forth, until we reach F2 =


1 1
1 �1

�
.

So in 10 steps, we reduce the problem to a much smaller one. In the end, one million calculations will be
reduced to merely 5000 calculations. Imagine the gain in speed in signal processing and etc. This is ranked
as the top 10 algorithms of the 20-th centry by the IEEE journal Computing in Science and Engineering.

Example 8.3.1. Consider F4 =

2

664

1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

3

775. Observe the relation between its first and third

column, and between its second and forth column. You can see that the first and third coordinates of
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corresponding columns are the same, and the second and forth coordinates are negated.
Let us now swap the columns to bring the original first and third column togehter, and the original

second and forth column together. Then we have F4P23 =

2

664

1 1 1 1
1 �1 i �i
1 1 �1 �1
1 �1 �i i

3

775. Hey, note that the upper

left corner and lower left corner is exactly


1 1
1 �1

�
= F2! In fact, let D2 = diag(1, i), we have F4P23 =


F2 D2F2

F2 D2F2

�
=


I2 D2

I2 �D2

� 
F2 0
0 F2

�
. So step by step, we have extracted F2 out of F4! ,

Theorem 8.3.2 (Fast Fourier Transform). We have the following decomposition, where Dn = (1,!, ...,!n�1)
where ! = cos(⇡/n)+i sin(⇡/n), and P is a matrix permuting all odd columns to the left and all even columns
to the right.

F2n =


In Dn

In �Dn

� 
Fn 0
0 Fn

�
P.

Proof. Do it yourself. Same idea as Example 8.3.1.

Example 8.3.3. Here’s what happen after a recursion. You will have

F4n =


I2n D2n

I2n �D2n

�
2

664

In Dn 0 0
In �Dn 0 0
0 0 In Dn

0 0 In �Dn

3

775

2

664

Fn 0 0 0
0 Fn 0 0
0 0 Fn 0
0 0 0 Fn

3

775P.

Here P is a permutation matrix that put all (1 mod 4) columns to the left, followed by the (3 mod 4)
columns, followed by the (2 mod 4) columns, and followed by the (4 mod 4) columns. ,

Proof. Do it yourself.

Example 8.3.4. What would happen to F3n? Can you do something similar? I’ll leave this to yourself. ,
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Part V

Basic Matrix Analysis
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Chapter 9

Jordan Canonical Form

9.1 Generalized Eigenstu↵

We are moving towards Jordan canonical form. For a square matrix A, sometimes it is diagonalizable.
And by doing so, we shall find all the eigenvalues and eigenvectors and so on, so that we can completely
understand the behavior of this matrix. But what if we cannot diagonalize a matrix?

Maybe we can go for the next best thing, a block-diagonalization for blocks as smaller as possible. But
first of all, what are block matrices? What is the geometry behind block matrices?

9.1.1 Subspace decomposition and block matrices

We start by a review of an extremely important old concept: linear independency. The following proposition
is simply a recap of old results.

Proposition 9.1.1 (Alternative definitions of linear independence). For a collection of vectors v1, . . . ,vn 2
V , the following are equivalent:

1. For any scalars a1, . . . , an 2 C,
P

aivi = 0 implies that all ai = 0.

2. The subspace spanned by v1, . . . ,vn has dimension exactly n. In particular, v1, . . . ,vn is a basis for
the subspace they span.

All these equivalent conditions can be taken as a definition, as they are all equivalent anyway. We skip
the proof because they are old news. Say we have a subspace of dimension m spanned by n vectors, then we
must always have m  n. If we have m < n, then we have more vectors than needed, so there are redundant
vectors. If m = n, then no vector is redundant, and this is what linear independency means.

Now we generalize this concept to subspaces.

Definition 9.1.2. We say a collection of subspaces V1, . . . , Vn ✓ V is linearly independent if for any
dim(

P
Vi) =

P
(dimVi).

In short, there is no redundancy in these subspaces. These subspaces would span their sum as e�cient
as possible. Just by comparing linear independence of vectors with linear independence of subspaces, they
are very obviously the same idea. In particular, linear independence of vectors means exactly that the lines
spanned by these vectors are linearly independent as subspaces.

Proposition 9.1.3 (Alternative definitions of linear independence). For a collection of subspaces V1, . . . , Vn ✓
V , the following are equivalent:

1. For any v1 2 V1, . . . ,vn 2 Vn, then
P

vi = 0 implies that all vi = 0.
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2. The sum space V1 + · · ·+ Vn has dimension exactly dimV1 + · · ·+ dimVn. (More aethetically written
as dim(

P
Vi) =

P
(dimVi).) In particular, pick a basis for each Vi, and put them together, we would

obtain a basis for the sum space.

Proof.
Forward direction:
Suppose for any v1 2 V1, . . . ,vn 2 Vn, then

P
vi = 0 implies that all vi = 0.

Our goal is to show that dim(V1 + · · · + Vn) = dimV1 + · · · + dimVn. Let us think inductively. We
obviously have dimV1 = dimV1. Do we have dim(V1 + V2) = dimV1 + dimV2? Recall that by inclusion
exclusion principal, we have dim(V1 + V2) = dimV1 + dimV2 � dim(V1 \ V2), so we need to show that this
intersection is zero. Intersection is the key for the induction steps.

For each 1 < k  n, consider the subspaces V1 + · · ·+ Vk�1 and Vk. How do they intersect?
Pick any vk 2 Vk \ (V1 + · · · + Vk�1). So we have vk = v1 + · · · + vk�1 where each vi 2 Vi. But our

assumption then imply that all vectors involved must be zero. So vk = 0. In particular, Vk\(V1+· · ·+Vk�1) =
{0}. Consequently,

dim(V1+· · ·+Vk) = dim(V1+· · ·+Vk�1)+dimVk�dim(Vk\(V1+· · ·+Vk�1)) = dim(V1+· · ·+Vk�1)+dimVk.

So we are done by induction. (For a non-inductive proof, see Proposition 7.7.4.)
Backward direction:
Suppose that dim(

P
Vi) =

P
(dimVi). Suppose for contradiction that we have vectors v1 2 V1, . . . ,vn 2

Vn, and
P

vi = 0, but some of them is non-zero. WLOG say vn 6= 0.
Then vn = �v1 � · · · � vn�1, and it is a non-zero vector in the intersection of Vn and V1 + · · · + Vn�1.

Hence we have dim(Vn \ (V1 + · · ·+ Vn�1)) > 0. In particular,

dim(
X

Vn) =dimVn + dim(V1 + · · ·+ Vn�1)� dim(Vn \ (V1 + · · ·+ Vn�1))

< dimVn + dim(V1 + · · ·+ Vn�1)

 dimVn + (dimV1 + · · ·+ dimVn�1).

But this violates the assumption. So we are done.

Here is a useful lemma for future.

Lemma 9.1.4. If Vk \ (V1 + · · ·+ Vk�1) = {0} for all 1 < k  n, then V1, . . . , Vn are linearly independent.

Proof. This is a portion of the proof above.

Example 9.1.5. On the plane R2, the x-axis is a subspace, and the y-axis is a subspace, and they are
linearly independent.

Now, the line x = y is also a subspace. But the three subspaces are NOT independent. Why? First of
all, three 1-dimensional subspaces cramped into a 2-dimensional subspace? But 1 + 1 + 1 > 2, obviously.
There is simply not enough space. Some redundancy must occure.

And how would this redundancy manifest? Well,


1
0

�
+


0
1

�
+


�1
�1

�
=


0
0

�
, violating the alternative

definition of linear independence. In particular, this reveals why the subspaces are not as e�cient as possible.
,

Take a long hard look of this example, and we can come to the following interesting observation.

Example 9.1.6. Two subspaces are linearly independent if and only if they have zero intersection. This is
simply the inclusion exclusion principal, i.e., dim(V1 + V2) = dimV1 + dimV2 � dim(V1 \ V2).

However, for three subspaces or more, pairwise-independence do NOT imply collective independence.
This is not just linear algebra. It is also related to, say, probability theory. If you have many random

variables, then pairwise independent random events might not be collectively independent. The following
example requires some basic knowledge in probability theory. (So you can feel free to skip it.)
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Consider the four vertices of a square. Say we pick a vertex randomly and uniformly, so each vertex is
picked witha probability of 1

4 . Let X1 be the event that the picked vertex is one of the two lower vertices.
Let X2 be the event that the picked vertex is one of the two left vertices. Let X3 be the event that the picked
vertex is either the lower left or the upper right. Then you can check that Pr(Xi and Xj) = Pr(Xi)Pr(Xj)
for all i 6= j, so these events are independent events. However, they are not collectively independent, because
Pr(X1 and X2 and X3) 6= Pr(X1)Pr(X2)Pr(X3).

Can you see the relation between this probability example and the last linear algebra example? They
are secretly the same example. This probability example is simply the case of 2-dimensional plane over the
field F2 instead of R, where each line has only two points. ,

Now, how is this concept related to diagonalizations? Here is how. Recall that diagonalization is related
to eigenvalues and multiplicities. Given a matrix A and an eigenvalue �, then Ker(A��I) is the eigenspace
of A for �, and its dimension is the geometric multiplicity for �.

Proposition 9.1.7. All eigenspaces of a matrix A are linearly independent.

Proof. Suppose V1, . . . , Vk are eigenspaces of A for distinct eigenvalues �1, . . . ,�k. Let us show that they are
linearly independent. Pick any v1 2 V1, . . . ,vk 2 Vk and assume that

P
vi = 0.

How to proceed? Well, all we know is that Avi = �ivi. This is literally the only thing we know, so we
use it. Apply A to both sides of

P
vi = 0, we have

P
�ivi = 0, another equation! Let us keep going. Apply

A again, and we have
P

�2
i
vi = 0, yet another equations! We keep going and eventually we shall obtain k

equations about v1, . . . ,vk. Hopefully, with k equations and k unknown vectors, we should be able to solve
v1, . . . ,vk from these equations.

Now is the time to test whether you truly understand basic linear algebra. We have a system

v1 + · · ·+ vk = 0,

�1v1 + · · ·+ �kvk = 0,

...

�k�1
1 v1 + · · ·+ �

k
vk = 0.

But basic linear algebra means that we despise linear equations. Rather, we should write it in matrix
form. Then we have

⇥
v1 . . . vk

⇤

2

6664

1 �1 . . . �k�1
1

1 �2 . . . �k�1
2

...
...

. . .
...

1 �k . . . �k�1
k

3

7775
= 0.

Hey, there is the famous Vandermonde matrix! And no surprise there. Just look at the Vandermond
matrix. It is literally made for this: iterations of a matrix on many eigenvectors.

And we know that for distinct �1, . . . ,�k, the Vandermonde matrix is invertible. So
⇥
v1 . . . vk

⇤
is the

zero matrix. Done.

Remark 9.1.8. A side remark for those readers that did not know this before.

Recall that the Vandermonde matrix

2

6664

1 �1 . . . �k�1
1

1 �2 . . . �k�1
2

...
...

. . .
...

1 �k . . . �k�1
k

3

7775
has determinant

Q
(�j � �i). Why?

Well, by the big formula, determinant det

2

6664

1 �1 . . . �k�1
1

1 �2 . . . �k�1
2

...
...

. . .
...

1 �k . . . �k�1
k

3

7775
is some polynomial involving �1, . . . ,�k.

What if some �i = �j? Then two rows of the matrix would be identical, so the determinant is zero. Therefore,
the polynomial �j � �i must be a factor polynomial of the determinant.
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And as it turned out, the determinant is exactly the product of all these polynomials.

Now, note that for vectors, if they are linearly independent and spanning, they form a basis. So here
comes the subspace version.

Definition 9.1.9. We write V = V1 � · · · � Vk if the subspaces V1, . . . , Vk are linearly independent and
they span V . We say V is the direct sum of V1, . . . , Vk, and we also say V has a subspace decomposition
V1 � · · ·� Vk.

Example 9.1.10. For a matrix A, it is diagonalizable if and only if the domain is the direct sum of
eigenspaces of A.

We already know that these eigenspaces are always independent. So we need to show that A is diagonal-
izable if and only if these eigenspaces are spanning.

Say A is n⇥n and all its eigenspaces are V1, . . . , Vk. Now, A is diagonalizable if and only if all geometric
multiplicities adds up to n. This means that

P
dimV1 = n, which in turn means that dim

P
Vi = n. But

this means that
P

Vi is the whole domain. (The logical connection in each step is “if and only if”, as you
can check easily.) ,

Example 9.1.11. v1, . . . ,vn is a basis for V if and only if V =
L

span(vi). ,

Example 9.1.12. Consider Ra+b. Sometimes we write Ra+b = Ra�Rb. This is technically a very ambiguous
statement, but people still write this because it looks pretty. What does this mean?

For Ra+b, each vector has a+ b coordinates. Let Ra represent the subspace of vectors of the form

2

666666664

x1
...
xa

0
...
0

3

777777775

.

You can see why I name it so, because this subspace is pretty much just Ra. Similarly, let Rb represent the

subspace of vectors of the form

2

666666664

0
...
0
y1
...
yb

3

777777775

. Then Ra+b = Ra � Rb, which is very easy to verify. ,

Now, consider a linear map A : V ! W . When V,W decompose into subspaces, then the linear map A
would also decompose into “submaps”.

Example 9.1.13. Consider a map sending foods to nutrients. Say we have foods: apples, bananas, meat.

And we have nutrients: fibers, proteins, suger. Then this map is a matrix A, such that if we have

2

4
x
y
z

3

5 apples,

bananas and meat, then we have the vector A

2

4
x
y
z

3

5 representing a linear combination of fibers, proteins and

suger. Obviously A is a 3 by 3 matrix. Say A =

2

4
1 2 3
4 5 6
7 8 9

3

5. As you can see, the nutrition table is a linear

map. it sends linear combinations of foods into linear combinations of nutrients.

Now consider the block form A =

2

4
1 2 3
4 5 6
7 8 9

3

5 =


A11 A12

A21 A22

�
, where Aij represent the corresponding

blocks. Then each block is a “smaller nutrient table”, using only some fruits and some nutrients. For

292



example, A11 only concerns fruits, and as a linear map, it sends fruits to the total amount of sugar they
contain. It is a “submap”. In total, we have four submaps.

fruits low calory

meat high calory

A11
A21

A12
A22 .

As you can see, the domain decomposes into two subspaces, one spanned by fruits, and one spanned by
meat. And the codomain decomposes into two subspaces, one spanned by high calory nutrients, and one
spanned by low calory nutrients. As a result, the linear map breaks down into four submaps, from each
domain subspace to each codomain subspace.

More computationally, note that A

2

4
x
y
z

3

5 =

2

4
x+ 2y + 3z
4x+ 5y + 6z
7x+ 8y + 9z

3

5. Now A11 is about how x, y contributs to the

first output coordinat, and we have A11


x
y

�
= x+2y. Similarly, we have A12(z) = 3z,A21


x
y

�
=


4x+ 5y
7x+ 8y

�
,

and A22(z) =


6z
9z

�
.

This corresponds to the decomposition
2

4
x+ 2y + 3z
4x+ 5y + 6z
7x+ 8y + 9z

3

5 =

2

4
x+ 2y

0
0

3

5+

2

4
3z
0
0

3

5+

2

4
0

4x+ 5y
7x+ 8y

3

5+

2

4
0
6z
9z

3

5 .

Also check out how the vertical lines splitting the block matrix corresponds to domain decomposition,
while the horizontal lines splitting the block matrix corresponds to codomain decomposition. ,

Intuitively, when we have a block matrix, we are grouping input coordinates and output coordinates. The
block Aij records how the j-th group of inputing coordinates e↵ect the i-th group of outputing coordinates.

Example 9.1.14. Consider

2

4
1 1 1
1 1 2
0 0 1

3

5. Note that the lower left block is zero. This means the first two

input coodinates does NOT e↵ect the third output coordiante.

Indeed we have

2

4
1 1 1
1 1 2
0 0 1

3

5

2

4
x
y
z

3

5 =

2

4
x+ y + z
x+ y + 2z

z

3

5.

R2 R2

R R

A11

A12

A22 .

This is a block upper triangular matrix .
In particular, block diagonal means each groups of coordinates only e↵ect themselves. In particular,

instead of one system, it is more like many separate independent systems, one for each diagonal block. Here

is a picture for

2

64

1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 2

3

75, which is a block diagonal matrix .

R2 R2

R R

A11

A22 .
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As you can see, a block diagonal matrix happens exactly when the two “linear submaps” are independent
of each other. ,

So here is how one can think about block matrices. For example, for the block matrix


A
B

�
where A is

m1 ⇥ n and B is m2 ⇥ n, we can think of it as this:

Rn Rm1

Rm2

A

B
.

And for the block matrix
⇥
A B

⇤
where A is m⇥ n1 and B is m⇥ n2, we can think of it as this:

Rn1 Rm

Rn2

A

B

.

Now, why would the block matrices multiply exactly as regular matrices? Let us reprove this via more

diagrams. We have
⇥
A1 A2

⇤ B1

B2

�
= A1B1 +A2B2 because of this:

Rn Ra Rb Rm
B1

B2

L

A1

A2

And we have


A1

A2

� ⇥
B1 B2

⇤
=


A1B1 A1B2

A2B1 A2B2

�
because of this:

Rn1 Rm1

Rd

Rn2 Rm2

B1

B2

A1

A2

.

If you like, you can now prove the block multiplication formula by simply drawing these diagrams. Here
is another interesting related example.

Example 9.1.15. In multi-variable calculus, we consider functions f : R2 ! R, so we consider f(x, y) for
two input x, y. We write @f

@x
to mean the derivative with respect to x while holding y constant, and similarly

we write @f

@y
accordingly. You will learn about this extensively in multivariable calculus class. They are the

“partial derivatives” of f .
However, sometimes x, y are both functions of t, say x(t), y(t). So we have a new function f(x(t), y(t))

which is a function of t. What if we are interested in how a change of t would influence f?
The formula is called multivariable chain rule. We have df

dt = @f

@x

dx
dt + @f

@y

dy
dt . Why is this formula true?

Because of the following diagram.

R R R R
dx
dt

dy
dt

L

@f
@x

@f
@y

,
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We use mostly Rn here for visual purpose, but it does not really matter. Replace them all by Cn if you
like.

Now, for block matrices, the domain and codomains must be decomposed by grouping the coordinates,
i.e., those that looks like Ra+b = Ra � Rb. What if they are decomposed in some other way? It turns out
that this does not matter much. For any decomposition V = V1 � V2, we can always change basis. Simply
pick a basis for V1, followed by a basis for V2. Together this is a basis for V . Then treating this basis as the
standard basis, then V = V1 � V2 would look exactly like Ra+b = Ra � Rb.

For example, the plane V can decompose as the direct sum of any two linearly independent lines V1, V2.
Pick any v1 2 V1,v2 2 V2, then v1,v2 form a basis of V . Using these as the standard basis, V = V1 � V2 is
now exactly R2 = R� R. (Here the first R is the x-axis and the second R is the y-axis.)

One can also endeavor to do this abstractly. For a linear map L : V ! W , say V =
L

Vi and W =
L

Wj ,
then we define Lij : Vi ! Wj that sends vectors v in Vi to the Wj-component of Lv. Then L is a “block
map” with submaps Lij as the “blocks”.

Example 9.1.16 (Optional Example). Recall that we say V is the direct sum of its subspaces V1, V2. There
are four canonical linear maps involved in this structure.

First of all, we have an inclusion map ◆1 : V1 ! V and ◆2 : V2 ! V . These maps don’t change the input
at all, but their codomain is larger than the domain. They tell us how the smaller spaces (the domains) is
included in the bigger space (the codomain).

Now since V = V1 � V2, each vector v 2 V has a UNIQUE decomposition v = v1 + v2 such that vi 2 Vi.
(This is because the subspaces are independent. Prove it yourself.) So we also have two projection maps
p1 : V ! V1 and p2 : V ! V2 such that pi(v) = vi. These are INDEED projection maps. For example,
note that for any v1 2 V1, then v1 = v1 + 0 must be the unique decomposition according to V = V1 � V2.
Therefore p1(v1) = v1. In particular, p2

i
= pi. (This is the defining algebraic property for projections in any

mathematical context.) However, these are NOT necessarily orthogonal projections. They could be oblique
projections. See last semester’s note for oblique projections. (They are only orthogonal projections when
V1 ? V2. Otherwise they are oblique projections, where pi preserves Vi and kills Vj for j 6= i.)

Now if we have a linear map L : V ! W , and decompositions V = V1 � V2 and W = W1 �W2. Then
there are four possible linear maps induced from these structures. We can restrict the domain of L to Vi and

project the codomain to Wj , and obtain Lij = pj � L � ◆i : Vi ! Wj . Then we can write L =


L11 L21

L12 L22

�
.

For each v 2 V , if the unique decomposition according to V = V1 � V2 is v = v1 + v2, then let us write it

as


v1

v2

�
, and and we do similar things in W . Then we shall see that


L11 L21

L12 L22

� 
v1

v2

�
=


(Lv)1
(Lv)2

�
. ,

These whole venture is purely philosophical, and you need to feel no pressure to master these abstract
computations. My goal is to address the following question: What is the idea behind a block matrix?
It means that as we decompose domain and codomain into subspaces, the linear map is decomposed into
submaps. The “blocks” are actually “submaps”, or restrictions of the original linear map to corresponding
subspaces.

9.1.2 Invariant decompositions and diagonalizations

Which subspace decomposition should we choose to facilitate diagonalization? We need to first understand
why we need diagonalization.

Why are diagonal matrices neat? Consider

2

4
d1

d2
d3

3

5

2

4
a1
a2
a3

3

5 =

2

4
d1a1
d2a2
d3a3

3

5. As you can see, for a diagonal

matrix, treated as a linear map, it acts on each coordinate independently. The i-th coordinate of the output
depends only on the i-th coordinate of the input, and vice versa, the i-th coordinate of the input will influence
only the i-th coordinate of the output. Coordinates will NOT cross-influence each other, they just each do
their own thing during this linear map.
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In particular, for block diagonalization of a linear map A : V ! V , we are seeking a decomposition of
the domain V = V1 � · · ·� VK such that A only sends each subspace Vi into Vi itself.

In general, we can define the following:

Definition 9.1.17. We say a subspace W of a space V is an invariant subspace of the linear transfor-
mation L : V ! V if L(W ) ✓ W . (We do NOT require them to be equal. The point is such that L can be
restricted to a linear transformation on W .)

We say a decomposition V = V1 � V2 is an invariant decomposition for the linear transformation L :
V ! V if both V1 and V2 are invariant subspaces.

Indeed, given a diagonalizable matrix, how would we diagonalize it? We need to find eigenvectors. Each
eigenvector is like an invariant direction that the matrix must preserve, i.e., each vector spans a line which
is an 1-dimensional invariant subspace. Now our matrix acts on each invaraint direction independently, so if
we pick a basis made of eigenvectors, then our matrix after a corresponding change of basis will be diagonal.

Proposition 9.1.18. Given an invariant decomposition V = V1 �V2 for the linear transformation L : V !
V , then the corresponding block structure for L is block diagonal. (I only used two subspaces here, but the
case for more subspaces is identical.)

Proof. Since L(Vi) ✓ Vi, therefore for any v 2 Vi and any j 6= i, the Vj-component of Lv must be zero. So
Lij(v) = 0 for all v 2 Vi.

In particular, to block diagonalize a matrix is exactly the same as to find invariant subspace decomposi-
tions of the domain. Let us see a concrete example of this, using the same example as before.

Example 9.1.19. Consider a rotation in R3 around the line x = y = z that sends the positive x-axis to the
positive y-axis, and the positive y-axis to the positive z-axis, and the positive z-axis to the positive x-axis.

We know its linear map has matrix R =

2

4
0 0 1
1 0 0
0 1 0

3

5. This matrix has non-real eigenvalues, so there is NO

REAL diagonalizations. However, maybe we can find a REAL block-diagonalization?
There are two invariant subspaces that R must act on. One is the axis of rotation, the line x = y = z.

This is a one-dimensional subspace V1 spanned by

2

4
1
1
1

3

5. R acts on V1 by simply fixing everyone, i.e., via the

1⇥ 1 matrix R11 =
⇥
1
⇤
.

The other is the orthogonal complement of V1, the subspace V2 of all vectors

2

4
x
y
z

3

5 such that x+y+z = 0.

Say we pick basis

2

4
1
�1
0

3

5 and

2

4
1
0
�1

3

5. Our linear map acts on V2 as a rotation of 2⇡
3 , i.e., via some 2 ⇥ 2

matrix R22. To find the matrix R22 : V2 ! V2, note that it depends on the basis we have chosen for V2!!!
So this is NOT going to be the standard rotation matrix, because we forgot to pick an orthonormal basis.
Oops. Nevermind, let us just keep going forward.

Using the basis v1 =

2

4
1
�1
0

3

5 and v2 =

2

4
1
0
�1

3

5 for V2, note that Rv1 =

2

4
0
1
�1

3

5 = v2 � v1, and Rv2 =

2

4
�1
1
0

3

5 = �v1. So R22 =


�1 �1
1 0

�
.

So, under the basis

2

4
1
1
1

3

5 ,

2

4
1
�1
0

3

5 and

2

4
1
0
�1

3

5, our matrix will change into


R11

R22

�
=

2

4
1

�1 �1
1 0

3

5,

which is block diagonal.
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So we have R =

2

4
1 1 1
1 �1 0
1 0 �1

3

5

2

4
1

�1 �1
1 0

3

5

2

4
1 1 1
1 �1 0
1 0 �1

3

5
�1

.

Of course, as we can see in hind-sight, we can also find an orthonormal basis for V2, say
1p
2

2

4
1
�1
0

3

5 and

1p
6

2

4
1
1
�2

3

5. Then R22 will be the standard rotation matrix


cos 2⇡

3 � sin 2⇡
3

sin 2⇡
3 cos 2⇡

3

�
=

"
� 1

2 �
p
3
2p

3
2 � 1

2

#
.

So we haveR =

2

64

1p
3

1p
2

1p
6

1p
3

� 1p
2

1p
6

1p
3

0 � 2p
6

3

75

2

64
1

� 1
2 �

p
3
2p

3
2 � 1

2

3

75

2

64

1p
3

1p
2

1p
6

1p
3

� 1p
2

1p
6

1p
3

0 � 2p
6

3

75

�1

. We saved a bit of calcu-

lations but the numbers are uglier. Also note that the inverse here is also easy to calculate, because that
matrix is now an orthogonal matrix, courtesy of picking an orthonormal basis. So the inverse here is just
a transpose. In practise, this alone will make this better than the previous calculation, despite the ugly
entries. ,

We want to decompose the domain into as smaller invariant subspaces as possible. Ideally, if we can
decompose our domain as the direct sum of many 1-dimensional invariant subspaces, then we have completely
diagonalized the matrix. These 1-dimensional subspaces would then corresponds to eigenvectors.

9.1.3 Searching for good invariant decomposition

So this is it. How can we find a good invariant decomposition? Let us first see what kinds of invariant
subspaces we have.

Example 9.1.20. Given any matrix A, consider the zero space Ker(A). obviosuly A(Ker(A)) = {0} ✓
Ker(A). So this is indeed an invariant subspace!

Dually, since A sends everything into Ran(A) by definition, we have A(Ran(A)) ✓ Ran(A) as well.
Hooray! Another invariant subspace!

In fact, for n ⇥ n matrices A, we also have dimKer(A) + dimRan(A) = n. This is a really good omen.

In fact, consider say A =

2

4
1 2 3
4 5 6
7 8 9

3

5. Then Ker(A) and Ran(A) are both invaraint subspaces, and in fact

we have R3 = Ker(A)� Ran(A) in this case, a perfect decomposition into invariant subspaces!

Unfortunately, we do not always have this. Consider A =


0 1
0 0

�
. Then Ker(A) = Ran(A). So we failed

in this case.
In fact, the best complement subspace for Ker(A) is actually Ran(AT) (or Ran(A⇤) in the complex case),

and we always have Rn = Ker(A) � Ran(AT). However, again consider A =


0 1
0 0

�
, you shall see that

Ran(AT) is usually not an invaraint subspace!
We are screwed either way. ,

What can we do then? Well, recall our original motivation of doing diagonalization. What started us on
this path about eigenstu↵ and diagonalization? The original motivation is to understand iterated applications
of the same matrix, i.e., the eventual behavior of the sequence v, Av, . . . , Anv, . . . . Diagonalization gives us
a quick way to calculate An for large n.

As a result, maybe we shouldn’t focus on the immediate kernel and range of A. Rather, we should focus
on the eventual kernel and range of A.
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Example 9.1.21. Consider A =

2

664

0 1
0 1

0
1

3

775. Then applying A repeatedly, we have:

2

664

0
0
1
0

3

775
A7�!

2

664

0
1
0
0

3

775
A7�!

2

664

1
0
0
0

3

775
A7�! 0.

Then we say

2

664

0
0
1
0

3

775 is eventually killed by A. Let N1 be the subspace of all vectors eventually killed by A.

Also note that A2 =

2

664

0 0 1
0 0

0
1

3

775 and An =

2

664

0 0 0
0 0

0
1

3

775 for all n � 3. So eventually, Anv will be a

multiple of e4 for large enough n. So we say the eventual range of A is the subspace R1 spanned by e4.
Check yourself that in fact R4 = N1 �R1 is an invariant decomposition. ,

Definition 9.1.22. Given a linear map or a matrix A, we define N1(A) = [1
k=1 Ker(Ak) and R1(A) =

\1
k=1 Ran(A

k).

In particular, v 2 N1(A) if and only if some powers of A will kill v. And v 2 R1(A) if and only if v is
in the range of ALL powers of A.

Example 9.1.23. Let V be the space of smooth real functions. Let D be the map of “taking derivative”.
Can you show that N1(D) is the space of all polynomials?

,

It turns out that, for finite dimensional spaces, we don’t really have to look at all powers of A. Whatever
A kills, then A2 must kill as well. So as k grows, the subspace Ker(Ak) will be non-decreasing. However,
its dimension is at most n (the dimension of the domain). So it cannot grow forever, and eventually it must
stabilize. So we see that N1(A) = Ker(Ak) for some k. (Note that this is only true for finite dimensional
spaces, otherwise as k grows, the subspaces Ker(Ak) may grow larger and larger forever.)

We in fact have something stronger. It turns out that k does not need to be too large.

Lemma 9.1.24. For any n ⇥ n matrix A, if Ker(Ak) = Ker(Ak+1) for some natural number k, then
Ker(Ak+1) = Ker(Ak+2).

Proof. Suppose Ker(Ak) = Ker(Ak+1). Pick any v 2 Ker(Ak+2), then 0 = Ak+2v = Ak+1(Av). But the
assumption of Ker(Ak) = Ker(Ak+1) means that Ak+1(Av) = 0 if and only if Ak(Av) = 0, and hence
Ak+1v = 0. So v 2 Ker(Ak+1). We are done.

Proposition 9.1.25. For any n⇥ n matrix A, the chain of subspaces Ker(A0) ✓ Ker(A1) ✓ Ker(A2) ✓ . . .
is strictly growing at first, and then completely stabilizes. In particular, we have N1(A) = Ker(Ak) for some
k  n. (In particular, we always have N1(A) = Ker(An).)

Proof. Let k be the smallest natural number such that Ker(Ak) = Ker(Ak+1). Then obviously the chain
Ker(A0) ✓ Ker(A1) ✓ · · · ✓ Ker(Ak) is strictly growing by definition of k. In particular, dimKer(Ak) � k.
Since all dimensions cannot exceed n, we have k  n.

Then by the lemma above, Ker(Ak) = Ker(Ak+1) implies that the chain will stabilize forever after. So
N1(A) = Ker(Ak).
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Now, let us turn our attention to R1. This is the opposite of N1. If you recall, for any A : Cn ! Cn,
we have n = dimRan(A) + dimKer(A). This duality manifest in R1 and N1 as well.

Proposition 9.1.26. N1(A) = Ker(Ak) if and only if R1(A) = Ran(Ak).

Proof. Note that as k increases, Ran(Ak) is a non-increasing chain of subspaces. But since dimRan(Ak) =
n� dimKer(Ak), we see that dimRan(Ak) must stabilize as soon as dimKer(Ak) stabilizes, and hence that
Ran(Ak) must stabilize as soon as Ker(Ak) stabilizes.

However, unlike Ran(A) and Ker(A) which may intersect, R1 and N1 will never intersect in a non-zero
manner.

Theorem 9.1.27 (The Ultimate Invariant Decomposition). For any n⇥ n matrix A, we have an invariant
decomposition Cn = N1(A)�R1(A).

Proof. Note that for some k  n we have N1(A) = Ker(Ak) and R1(A) = Ran(Ak). It is straightforward
to verify that Ker(Ak),Ran(Ak) are A-invariant subspaces, so we skip that. Also by rank nullity of Ak, we
can see that dimN1(A) + dimR1(A) = n. So we only need to show that they have zero intersection. (Can
you see why this is enough?)

Suppose v 2 N1(A) \ R1(A). Since v 2 N1(A), we have some k  n such that Akv = 0. But since
v 2 R1(A) ✓ Ran(An), we have v = Anw for some w. Then Ak+nw = 0, so w 2 N1(A) as well. But this
implies that w 2 Ker(An), and hence v = Anw = 0. Oops. So we are done.

(Essentially, the key idea is that N1(A) stabilizes after finitely many steps, while v 2 R1(A) means we
can realize v after arbitrarily many steps, which forces v 2 N1(A) to be zero.)

In particular, we see that R1 is truely the “opposite” of N1. Here is an alternative way to see this. N1
is the maximal subspace collecting all 0-eigenstu↵ of A, and R1 is the maximal subspace collecting all the
non-zero eigenstu↵ of A. In particular, R1 is a maximal subspace on which A is invertible.

In this sense, the ultimate decomposition is simply trying to separate the zero-eigenstu↵ of A and the
non-zero-eigenstu↵ of A.

Proposition 9.1.28. Consider a linear map A : V ! V . Then if W ✓ V is an A-invariant subspace such
that the restriction A|W : W ! W is invertible, then W ✓ R1(A). In particular, R1(A) is the largest
A-invariant subspace on which A is invertible.

Proof. If A restricted to W is invertible, then A(W ) = W . Hence inductively, Ak(W ) = W for all k, and
thus W ✓ Ran(Ak) for all k. Thus W ✓ R1(A).

Now we show that A restricted to R1(A) is invertible. Note that R1(A)\Ker(A) ✓ R1(A)\N1(A) =
{0}. So A restricted to R1(A) has zero kernel. Hence it is invertible on R1.

Corollary 9.1.29. If an n ⇥ n matrix A has all eigenvalues zero, then Ak = 0 for some natural number
k  n.

Proof. Block diagonalize A according to the invariant decomposition Cn = N1(A)�R1(A). Note that the
diagonal block corresponding to R1(A) will be invertible, so it will have non-zero eigenvalues, unless that
block does not exist, i.e., R1(A) is zero-dimensional. Then Cn = N1(A), and Ak = 0 for some natural
number k  n.

Proposition 9.1.30. Consider a linear map A : V ! V . Then if W ✓ V is an A-invariant subspace such
that the restriction A|W : W ! W has all eigenvalues zero, then W ✓ N1(A). In particular, N1(A) is the
largest A-invariant subspace on which A has all eigenvalues zero.

Proof. Since A restricted to W has all eigenvalues zero, therefore Ak will restrict to the zero map on W for
some natural number k  n. So W ✓ Ker(Ak) ✓ N1(A).

Now we also know that N1(A) = Ker(Ak) for some natural number k  n. Let us denote this map as
A|N : N1(A) ! N1(A), then (A|N )k = 0, and hence any eigenvalue � of A|N must satisfy �k = 0. Hence
� = 0.
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So as we perform the decomposition Cn = N1(A) � R1(A) and change basis accordingly, A will be

transformed into a block diagonal matrix


AN

AR

�
where AN has all eigenvalues zero, and AR is invertible.

Now, here is one last example of caution. Above analysis only works for finite dimensional spaces.

Example 9.1.31. Let V be the space of all smooth real functions. Let D : V ! V be the map of “taking
derivative”. Then I claim that N1(D) ✓ R1(D).

For any k and any polynomial p(x), I claim that p(x) 2 Ran(Dk). Why? Because I can simply integrate
p(x) k-times to get some function P (x) such that P (k)(x) = p(x). Hence p(x) 2 Ran(Dk) for all k and thus
p(x) 2 R1(D). ,

9.1.4 (Review) Polynomials of Matrices

It has come to my attention that some of our classmates have never seen this. So let us do it here as a
review. Note that everything in this section could be over R or over C, it does not matter much.

Remark 9.1.32. This remark is not necessary. Feel free to skip this remark entirely.
Let us define what a polynomial is.
We define a real (or complex) polynomial p(x) toi be a finite sequence of real (or complex) numbers, say

(a0, . . . , an). We also write p(x) = a0 + a1x+ · · ·+ anxn where the symbol xk has no specific meaning, and
it is simply a place holder.

We add polynomial such that (a0, . . . , an) + (b0, . . . , bm) = (a0 + b0, . . . , an + bn, bn+1, . . . , bm) if m > n.

We multiply polynomial such that (a0, . . . , an)(b0, . . . , bm) = (c0, . . . , cm+n) where ck =
P

k

i=0 aibk�i.
Now, see if you can prove the following:
All polynomials form a vector space V , with a basis 1, x, x2, . . . . For any bilinear map m : V ⇥ V ! V

such that m(xa, xb) = xa+b, then m must be the polynomial multiplication as in our definition.
You do NOT need to remember the formula, or worry about this definition. I want you to see this

definition NOT because it is useful. It is not. Writing p(x) = 4 + 2x + 3x2 is strictly better than writing
(4, 2, 3).

However, this definition makes clear of the fact that a polynomial does NOT need x to have any meaning.
It could be a real number, a complex number, a matrix, a whatever. We can give whatever meaning to x,
and as long as x is capable of having a “power structure”, then we can define p(x) accordingly as the linear
combination of corresponding powers.

Here by power structure, it means that we want xk to be defined, and we want the property that xaxb =
xa+b.

What is a polynomial, say p(x) = 4 + 2x+ 3x2? Well, in the realm of linear algebra, the best answer is
that “a polynomial is a linear combination of powers.” In our case, p(x) is a linear combination of 1, x, x2.
(Note that 1 = x0, if you like.)

For each square matrix A, we obviously have well-defined powers of A. Therefore, if p(x) is some linear
combination of powers of x, we can define p(A) to be the corresponding linear combination of powers of A.
Easy peasy.

Proposition 9.1.33. For any polynomials p(x), q(x), and any square matrix A, then p(A)+q(A) = (p+q)(A)
and p(A)q(A) = (pq)(A). (Here (p + q)(x) is the polynomial p(x) + q(x) and (pq)(x) is the polynomial
p(x)q(x).)

Proof. DIY.

Now, why do we study polynomials of matrices? It is mainly because powers Ak has many good properties
related to A, and thus linear combinations of these powers, p(A), would also share such properties. Here let
us write some.

Proposition 9.1.34. For any polynomials p(x), q(x), we have p(A)q(A) = q(A)p(A).

300



Proof. First, note that AAk = Ak+1 = AkA. Therefore A commutes with powers of A. Therefore A
commutes with linear combinations of powers of A, i.e., polynomials of A.

So p(A) commutes with A. Therefore p(A) commutes with powers of A. Therefore p(A) commutes with
linear combinations of powers of A, i.e., other polynomials of A, say q(A). So p(A)q(A) = q(A)p(A).

We also have good results about eigenstu↵.

Proposition 9.1.35. Av = �v implies that p(A)v = p(�)v.

Proof. If Av = �v, then it is easy to see that Akv = �kv. Now we take linear combinations of various
powers, we see that p(A)v = p(�)v.

Corollary 9.1.36. If A has eigenvalues �1, . . . ,�n counting algebraic multiplicity, then p(A) has eigenvalues
p(�1), . . . , p(�n) counting algebraic multiplicity. And each eigenvector of A for some eigenvalue � is an
eigenvector of p(A) for the eigenvalue p(�).

Now, the eigenvectors of A are all eigenvectors of p(A), but sometimes p(A) has other eigenvectors.

Example 9.1.37. Consider A =


1 0
0 �1

�
. Its eigenvectors are vectors on the coordinate-axes. But A2 = I,

so ALL vectors are eigenvectors of A2. As you can see, this is because distinct eigenvalues of A are collapsed
into the same eigenvalue of p(A).

Also consider A =


0 1
0 0

�
. Its eigenvectors are vectors on the x-axis. But A2 = O, so ALL vectors are

eigenvectors of A2. As you can see, this is because A cannot be diagonalized (non-trivial Jordan block....),
yet A2 kills the obstruction to diagonalization (chopped down the bad Jordan block into smaller blocks, i.e.,
1⇥ 1 blocks), so now A2 CAN be diagonalized. ,

So how can we find all eigenvectors of p(A)? Under some special cases, the answers are easy.

Proposition 9.1.38. Suppose A can be diagonalized. Pick any polynomial p(x). For any eigenvalue � of
p(A), let �1, . . . ,�k be all eigenvalues of A such that p(�i) = �. Then p(A)v = �v if and only if v is a linear
combination of eigenvectors of A for the eigenvalues �1, . . . ,�k.

Proof. Diagonalize A = BDB�1. Then p(A) = Bp(D)B�1. So up to a change of basis, we can assume that
A is diagonal. Then DIY.

We can have more results if we delve into theory of polynomials. The following are entirely optional.
Read on if you like.

Example 9.1.39. Skip this example if you know about the Euclidean algorithm for coprime integers.
Otherwise, read on.

Consider 22 and 15. They have no common prime factor. They are coprime.
We divide 22 by 15, and we shall get a remainder. We have 22 = 15+ 7. Next we divide 15 by 7 and get

15 = 7⇥ 2 + 1. So we eventually reduced to the remainder 1.
Putting these together, we have 1 = 15�2⇥7 = 15�2⇥ (22�15) = 3⇥15�2⇥22. So an integer-linear

combination of 15 and 22 gives 1. This process is called the Euclidean algorithm, and it shows that two
numbers x, y are coprime if and only if we can find integers a, b such that ax+ by = 1.

Now we do the same thing for polynomials. Note that the polynomial p(x) = x3 + 3x2 + 3x + 1 and
q(x) = x2 � 3x + 2 has no common root, i.e., upon factorization, they shall have no common non-constant
factor. They are coprime polynomials.

We divide x3 + 3x2 + 3x+ 1 by x2 � 3x+ 2, and we shall get a remainder. We have x3 + 3x2 + 3x+ 1 =
(x2 � 3x + 2)(x + 6) + (19x � 11). Next we divide x2 � 3x + 2 by 19x � 11, and we have x2 � 3x + 2 =
(19x� 11)( 1

19x+ 46
19 ) +

544
19 . So we eventually reduced to a constant remainder 544

19 .
Putting these together, we have 1 = 19

544
544
19 = 19

544 ((x
2 � 3x + 2) � (19x � 11)( 1

19x + 46
19 )) = 19

544 ((x
2 �

3x+ 2)� ( 1
19x+ 46

19 )((x
3 + 3x2 + 3x+ 1)� (x2 � 3x+ 2)(x+ 6))). Break down the parenthesis, we see that

we can find polynomials a(x), b(x) such that a(x)p(x) + b(x)q(x) = 1. ,
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Theorem 9.1.40. If two complex polynomial p(x), q(x) has no common root, then we can find polynomials
a(x), b(x) such that a(x)p(x) + b(x)q(x) = 1.

Proof. Outside the scope of this class. Search for Euclidean algorithm online.

Corollary 9.1.41. If two complex polynomial p(x), q(x) has no common root, then for any square matrix
A, Ker(p(A)q(A)) = Ker(p(A))�Ker(q(A)).

Proof. Since p(x), q(x) has no common root, we can find polynomials a(x), b(x) such that a(x)p(x) +
b(x)q(x) = 1. Then a(A)p(A) + b(A)q(A) = I.

Suppose v 2 Ker(p(A)) \ Ker(q(A)). Then p(A)v = 0 and q(A)v = 0. Then v = Iv = a(A)p(A)v +
b(A)q(A)v = 0. So we have trivial intersection.

Next, if v 2 Ker(p(A)) � Ker(q(A)), then v = v1 + v2 where p(A)v1 = 0 and q(A)v2 = 0. Then
p(A)q(A)v = q(A)p(A)v1+p(A)q(A)v2 = 0+0 = 0. So we see that Ker(p(A))�Ker(q(A)) ✓ Ker(p(A)q(A)).

Conversely, suppose v 2 Ker(p(A)q(A)). Then a(A)p(A)v ✓ Ker(q(A)) and b(A)q(A)v ✓ Ker(p(A)).
Then we have v = Iv = a(A)p(A)v + b(A)q(A)v 2 Ker(p(A)) � Ker(q(A)). So we have Ker(p(A)) �
Ker(q(A)) ◆ Ker(p(A)q(A)).

Corollary 9.1.42. Suppose p(x) � � has distinct roots. Pick any square matrix A. For the eigenvalue �
of p(A), let �1, . . . ,�k be all eigenvalues of A such that p(�i) = �. Then p(A)v = �v if and only if v is a
linear combination of eigenvectors of A for the eigenvalues �1, . . . ,�k.

Proof. We can WLOG say � = 0. Then p(A)v = 0 implies that v 2 Ker(p(A)). On the other hand, by the
corollary above, since p(x) =

Q
(x� xi) for distinct roots xi, Ker(p(A)) =

L
Ker(A� xiI).

So if v 2 Ker(p(A)), then v is a linear combination of vectors vi 2 Ker(A�xiI). Note that Ker(A�xiI)
unless xi is BOTH a root of p(x) AND an eigenvalue, i.e., unless xi is some �i.

So we are done.

Corollary 9.1.43. If p(x) has distinct roots �1, . . . ,�n, then the solutions to the di↵erential equation
p( d

dx
)f = 0 are linear combinations of e�ix.

Proof. Taking derivative d

dx
is a linear operation, and for any complex number �, d

dx
has eigenvalue � with

eigenvectors multiples of e�x. So we are done.

Example 9.1.44. Consider an object attached to a spring, and it is bouncing around horizontally without
friction. Say the elastic coe�cient is 1, object mass is 1, and the location of our object at time t is f(t).
Then f 00(t) = �f(t).

So let p(x) = x2 + 1, we have p( d

dx
)f = 0. Note that p(x) has distinct roots, so the solutions are linear

combinations of eit and e�it. Taking real solutions only, then we see that the solutions are linear combinations
of sin t and cos t.

So our object moves periodically.
If we have elastic coe�cient k, and say we have friction positively correlated to speed with coe�cient µ,

and object mass m. Then mf 00(t) = �kf(t)� µf 0(t). So let p(x) = mx2 + µx+ k, and we have p( d

dx
)f = 0

again. Hopefully we have distinct roots (which we almost always have), then we are good to go again. ,

Finally, there is actually a way to prove Jordan canonical form entirely by juggling polynomials of a
matrix A, i.e., dealing with p(A) for various polynomial p(x). We leave that to homework.

9.1.5 Generalized Eigenspace

In the last section, we have separated zero-eigenstu↵ with nonzero-eigenstu↵, by doing invariant decompo-
sitions. In this section, we shall separate the eigenstu↵ of A according to EACH eigenvalue.
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Our goal here is the following. For any matrix A, we aim to block diagonalize it, such that each diagonal

block is a matrix with all eigenvalues the same. For example, something like this:

2

66664

1 2 3 0 0
0 1 4 0 0
0 0 1 0 0
0 0 0 2 5
0 0 0 0 2

3

77775
. Here

there are two diagonal blocks, the first one has all eigenvalues 1, and the second one has all eigenvalues 2.
In essense, we are looking for an invariant decomposition Cn = V1 � · · · � Vk such that A retricted to

each Vi will be a matrix with all eigenvalues the same �i.

Our previous ultimate invariant decomposition is already in this direction. Suppose


AN O
O AR

�
as the

corresponding block-diagonalization of A for the invariant decomposition Cn = N1(A)�R1(A). Now, AN

is the restriction of A to a linear transformation on N1(A), and it will eventually kill everything in this
domain, so AN can only have zero eigenvalues.

In contrast, Since Ker(A) ✓ N1(A) and N1(A)\R1(A) = {0}, it turns out that A restricted to a linear
transformation on R1(A) will have zero kernel, i.e., AR is an invertible matrix! So it has no zero eigenvalue.

In particular, the invariant decomposition Cn = N1(A) � R1(A) has successfully isolated all the zero-
eigenvalue behaviors of A in N1(A), and all the non-zero-eigenvalue behaviors of A to R1(A).

Recall that the eigenspace of a matrix A for the eigenvalue � is simply Ker(A� �I). We now define the
following.

Definition 9.1.45. The generalized eigenspace of a matrix A for the eigenvalue � is the subspace N1(A��I).

You can easily see the intuition behind this. N1(A � �I) is taking away all zero eigenstu↵ of A � �I,
which is exactly all the �-eigenstu↵ of A.

Let us show that these subspaces are linearly independent.

Lemma 9.1.46. If � 6= µ, then N1(A� �I) ✓ R1(A� µI).

Proof. Note that A � �I restricted to N1(A � �I) has all eigenvalue zero. Therefore A restricted to
N1(A � �I) has all eigenvalue �, and A � µI restricted to N1(A � �I) has all eigenvalue � � µ 6= 0. So
A� µI is invertible on the subspace N1(A� �I). Hence N1(A� �I) ✓ R1(A� µI).

Note that this immediately implies independence.

Corollary 9.1.47. Let �1, . . . ,�k be the eigenvalues of A (NOT counting algebraic multiplicity, i.e., they are
distinct complex numbers). Let Vi = N1(A� �iI) be the generalized eigenspace for each i. Then V1, . . . , Vk

are linearly independent subspaces ,and they are invariant under A.

Proof. For each k, we need to show that N1(A��kI) and
P

k�1
i=1 N1(A��iI) have zero intersection. But we

have N1(A��iI) ✓ R1(A��kI) for all i < k. Therefore, the fact that N1(A��iI)\R1(A��iI) = {0}
implies that N1(A� �kI) and

P
k�1
i=1 N1(A� �iI) have zero intersection.

They are not only independent. They in fact gives us the desired invariant decomposition of the whole
domain.

Proposition 9.1.48 (Geometric meaning of algebraic multiplicity). Let � be an eigenvalue of a square
matrix A with algebraic multiplicity m, and let V� = N1(A � �I) be the generalized eigenspace. Then
dimV� = m.

Proof. Replacing A by A� �I if necessary, we can assume that � = 0.

Now let


AN O
O AR

�
be the corresponding block diagonalization of A after a change of basis according

to the invariant decomposition Cn = N1(A) � R1(A). As we have discussed before, AN will only have
eigenvalue zero, while AR has no zero eigenvalue. But their characteristic polynomials must satisfy pA(x) =
pAN (x)pAR(x). So the algebraic multiplicity of 0 in pA is exactly the same as the degree of pAN , whcih is
dimN1(A).
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Theorem 9.1.49. Let �1, . . . ,�k be the eigenvalues of A (NOT counting algebraic multiplicity, i.e., they
are distinct complex numbers). Let Vi = N1(A � �iI) be the generalized eigenspace for each i. Then we

have an invariant decomposition Cn =
L

k

i=1 Vi.

Proof. These subspaces are linearly independent, and their dimensions add up to n (since algebraic multi-
plicities add up to n).

Recall that previously, we see that all eigenvalues of AN must be zero in the block diagonalization
AN O
O AR

�
corresponding to the invariant decomposition Cn = N1(A) � R1(A). Similarly, given a block

diagonalization of A, say

2

64
A1

. . .
Ak

3

75 according to the generalized eigenspaces, then each Ai is the

restriction of A to Vi, so all eigenvalues of Ai must be �i.

9.2 Nilpotent Matrices

9.2.1 Invariant Filtration and Triangularization

We have now block diagonalized our matrix, where each block is a matrix whose eigenvalues are all the same.
What now? Well, we need to understand such matrices whose eigenvalues are all the same! Let us start
with a special case. What if all eigenvalues are zero?

Definition 9.2.1. We say a matrix A is nilpotent if Ak = O for some positive integer k. (I.e., N1(A) is
the whole domain.)

(Tiny remark: “nil” means zero. “potent” means power. “Some power is zero”, i.e., nilpotent.)

Remark 9.2.2. If Ak = O for some positive integer k, then we can in fact require that k  n. This is
because of our previous analysis of N1(A). In particular, we always have An = O.

Proposition 9.2.3. A is nilpotent if and only if all eigenvalues of A are zero.

Proof. Suppose A is nilpotent. Then N1 is the whole domain, so all eigenvalues are zero.
If all eigenvalues are zero, then the whole domain is in N1. So A is nilpotent.

Now, these nilpotent matrices are annoying. Many of them has NO good invariant decomposition at all!
Instead, they behave like onions: layers of invariant subspaces, each containing the next.

Example 9.2.4. Consider A =

2

4
0 1

0 1
0

3

5. This is the “shift up” operator that sends

2

4
x
y
z

3

5 to

2

4
y
z
0

3

5, i.e., it

is shifting the coordinates upwards. Therefore, we obviously have A3 = O. It is nilpotent.
Now what are its invariant subspaces? If A is invariant, and A(V ) ✓ V for some subspace V , then A

restricted to this linear tranformation on V would be nilpotent as well. Now if dimV = k, any nilpotent
linear transformation must die in k steps. So we must have Ak(V ) = {0}.

(Alternatively, since An = O, consider the sequence of subspaces V,A(V ), . . . , An(V ), then this sequence
must eventually shrink to zero. Now if Ai(V ) = Ai+1(V ), then Ai+2(V ) = A(Ai+1(V )) = A(Ai(V )) =
Ai+1(V ) = Ai(V ), and the sequence would stabilize forever. So this sequence must shrink strictly until it hit
zero. Each step the dimension must reduce by at least one. So if dimV = k, we must have Ak(V ) = {0}.)

So V ✓ Ker(Ak). However, in our case, note that for any k, Ker(Ak) is spanned by e1, . . . , ek. So
dimKer(Ak) = k = dimV , wow! So V = Ker(Ak).

In particular, all invariant subspaces of A are Ker(Ak) for some k. The invariant subspaces are exactly
{0}, x-axis, xy-plane, and the whole space.
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There is no invariant decomposition of the whole domain other than the trivial one. However, you can
see that these invariant subspaces come in layers, like an onion, each layer containing the last. Why are

Jordan blocks like

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775
? As we shall see later, it is precisely due to this onion structure. ,

Definition 9.2.5. Given a vector space V , a filtration for V is a sequence of subspaces V0 ✓ V1 ✓ · · · ✓
Vn = V , where dimVk = k. For any linear tranformation A : V ! V , we say this is an (A-)invariant
filtration if all Vk are A-invariant subspaces.

So the idea is this: invariant decomposition leads to block diagonalization. Invariant filtration would lead
to triangularization.

Proposition 9.2.6. If L : V ! V is a linear transformation, and V has an invariant filtration V0 ✓ V1 ✓
· · · ✓ Vn = V . Pick any vi 2 Vi � Vi�1 for each 1  i  n, then v1, . . . ,vn form a basis of V , under which
the matrix for L is upper triangular.

Proof. Let us first show that v1, . . . ,vn form a basis. It is enough to show linear independence.
We perform induction. Since v1 2 V1 � V0, it is non-zero, so it is linearly independent. For each i � 1,

v1, . . . ,vi�1 2 Vi�1, yet vi /2 Vi�1. By induction hypothesis, v1, . . . ,vi�1 are already linearly independent,
so v1, . . . ,vi are linearly independent as well. We are done.

In fact, it is not hard to see that v1, . . . ,vi form a basis for Vi for each i.
Now vi 2 Vi, so by invariance, Lvi 2 Vi as well. Say Lvi = a1iv1 + · · · + aiivi since v1, . . . ,vi form a

basis for Vi.
Now by straight forward calculation, we have:

L(v1, . . . ,vn) = (a11v1, a12v1 + a22v2, . . . , a1nv1 + · · ·+ annvn) = (v1, . . . ,vn)

2

64
a11 . . . a1n

. . .
...

ann

3

75 .

This means that using v1, . . . ,vn as basis, the matrix for L is simply the upper triangular matrix above.

Note that to go from a filtration to a triangularization, we just need to pick a vector from each “gap”
between subspaces in the chain, and use them as a basis.

Example 9.2.7. Suppose A : R3 ! R3, and the xy-plane is invariant. What does this mean?

This means that Ae1, Ae2 will still have a zero third coordinate. In particular, A =

2

4
⇤ ⇤ ⇤
⇤ ⇤ ⇤
0 0 ⇤

3

5. As

you can see, any k-dimensional invariant subspace corresponds to some upper triangular block structure,
decomposing into a k-block and a (n� k)-block on the diagonal.

If we have an invariant filtration, then we have a block matrix which is block diagonal by a k-block and
a (n� k)-block, for all k. This forces the matrix to be (non-block) upper triangular. ,

The converse is also true. If A is upper triangular, then you can easily check that span(e1, . . . , ek) is
invariant under A for all k. So we see that a matrix can be triangularized if and only if there is an invariant
filtration.

Lemma 9.2.8. For any linear transformation L : V ! V on a finite dimensional complex vector space V ,
there is an invariant filtration. (Note that this statement NEEDS V to be a complex vector space.)

Proof. Due to Schur decomposition (from last semester), triangularization is always possible. hence filtration
can be found. In particular, suppose under a basis v1, . . . ,vn, the map L is upper triangularized, then the
desired filtration is simply span(v1) ✓ span(v1,v2) ✓ . . . .
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Note that, given any invariant filtration for A, simply let vi be a unit vector orthogonal to Vi�1 inside of
Vi (like finding a normal vector to a plane in the space). Then we shall find a unitary matrix B = (v1, . . . ,vn)
such that A = BTB�1 where T is upper triangular. This is the Schur decomposition theorem we did last
semester. If you look into our proof last semester, you shall see that it is essentially IDENTICAl to what
we are doing here.

9.2.2 Nilpotent Canonical Form

Definition 9.2.9. A matrix J is an d ⇥ d Jordan block for the eigenvalue � if J =

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775

d⇥d

.

(In the case where � = 0, we also say it is a nilpotent Jordan block.)

Let us show that all nilpotent matrices can be block diagonalized where the diagonal blocks are nilpotent
Jordan blocks.

Theorem 9.2.10. If A is nilpotent, then we can find B such that A = BDB�1 where D is block diagonal,
and each diagonal block is a nilpotent Jordan block.

Note that the nilpotent Jordan blocks are all “shift-up” operators, e.g.,

2

4
0 1

0 1
0

3

5 would sends

2

4
x
y
z

3

5 to

2

4
y
z
0

3

5, it shifts the coordinates up. If we keep sending all the coordinates upwards, then eventually nothing

will survive. In particular, if J is an n⇥ n Jordan block, then it has a kill chain en
J7�! . . .

J7�! e1
J7�! 0 where

the non-zero vectors for a basis.
In particular, our theorem says that any nilpotent matrix can be block diagonalized into such “shift-up”

operators. Each Jordan block here has a corresponding “kill chain basis”, and our matrix will have several
kill chains whose non-zero vectors form a basis.

The next example here will show the algorithm to do the theorem above.

Example 9.2.11. Suppose A is a 7 ⇥ 7 nilpotent matrix. The chain of subspaces Ker(A) ✓ Ker(A2) ✓
Ker(A3) ✓ Ker(A4) has a chain of dimensions 3  5  6  7. Note that this is NOT a filtration by itself,
because some adjacent subspaces might di↵er by more than one dimensions.

Now we fill up the following chart from the bottum upwards:

0

BB@

Ker(A)� {0} A3v1 Av2 v3
Ker(A2)�Ker(A) A2v1 v2
Ker(A3)�Ker(A2) Av1
Ker(A4)�Ker(A3) v1

1

CCA .

How did this work? We start by looking at the gap between Ker(A4) and Ker(A3). Note that the two
subspace di↵er by exactly one dimension, so one extra vector is enough to extend Ker(A3) to Ker(A4). So
we simply pick any v1 2 Ker(A4)�Ker(A3).

Note that if v1 2 Ker(A4) � Ker(A3), then we automatically have Av1 2 Ker(A3) � Ker(A2), A2v1 2
Ker(A2) � Ker(A) and A3v1 2 Ker(A) � {0}. So we automatically filled a vector into each gap. We have
Ker(A4) spanned by Ker(A3) and v1.

Now consider the gap between Ker(A3) and Ker(A2). Note that the two subspace di↵er by exactly one
dimension, and we already have Av1 to fill in this gap, so there is nothing to do. We have Ker(A3) spanned
by Ker(A2) and Av1.
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Now consider the gap between Ker(A2) and Ker(A). Note that the two subspace di↵er by two dimensions.
We already have A2v1 in this gap, but we need another vector. Pick any v1 2 Ker(A2) � (Ker(A) +
span(A2v1)). Now we have Ker(A2) spanned by Ker(A) and A2v1,v2.

Finally consider the gap between Ker(A) and {0}. Note that the two subspaces di↵er by three dimensions.
This time, we have A3v1, Av2 in this gap already. I claim that they are linearly independent (proven in a
later lemma), hence we just need one more. Pick any v3 2 Ker(A)� span(A3v1, Av2). Then we have Ker(A)
spanned by A3v1, Av2,v3.

Now, we see that the following subspaces are spanned by the following vectors:

0

BB@

Ker(A) A3v1 Av2 v3
Ker(A2) A2v1 A3v1 v2 Av2 v3
Ker(A3) Av1 A2v1 A3v1 v2 Av2 v3
Ker(A4) v1 Av1 A2v1 A3v1 v2 Av2 v3

1

CCA .

And furthermore, we have kill chains v1
A7�! Av1

A7�! A2v1
A7�! A3v1

A7�! 0, and v2
A7�! Av2

A7�! 0,

and finally v3
A7�! 0. All the vectors in these three kill chains (other than the zero vectors) are linearly

independent, and all the important invariant subspaces are spanned by these vectors in very nice manners.
Pick a basis A3v1, A2v1, Av1,v1, Av2,v2,v3, then you can check yourself that our matrix A would change

into the following:

2

666666664

0 1
0 1

0 1
0

0 1
0

0

3

777777775

.

,

Two things could go wrong here. First of all, when we fill in the gap between Ker(A) and {0}, we need
A3v1 and Av2 to be linearly independent. Why is that?

Recall that we picked v2 such that Ker(A), A2v1 and v2 are linearly independent. It turns out that this
is enough.

Lemma 9.2.12. If v1, . . . ,vk,Ker(At) are linearly independent, then Av1, . . . , Avk,Ker(At�1) are linearly
independent.

Proof. Suppose (
P

aiAvi) + w = 0 where w 2 Ker(At�1). Apply At�1 on both sides. Then we have
(
P

aiAtvi) +At�1w = 0, and here At�1w would die.
So we have At(

P
aivi) = 0. This implies that

P
aivi = w0 for some w0 2 Ker(At). But since these vi

and Ker(At) are linearly independent, this means all ai = 0 and w0 = 0.
This in turn means that, from the equation (

P
aiAvi) + w = 0, we must have w = 0 as well. So we

have proven independence.

This lemma guarantees that our algorithm in the example shall always work, and hence our theorem is
correct.

9.3 Jordan Canonical Form

The Jordan canonical form simply combines all previous results. There is one last simple lemma.

Lemma 9.3.1. If all eigenvalues of A are �, then A = BJB�1 where J is block diagonal, and each diagonal
block is a Jordan block with eigenvalue �.
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Proof. All eigenvalues of A��I are zero, so this is nilpotent. So A��I = BJB�1 where J is block diagonal,
and each diagonal block is a nilpotent Jordan block. Then A = BJB�1 + �I = B(J + �I)B�1. And we can
see that J + �I is block diagonal, and each diagonal block is a Jordan block with eigenvalue �.

Theorem 9.3.2 (Jordan canonical form). For any matrix A, we have A = BJB�1 where J is block diagonal,
and each diagonal block of J is a Jordan block.

Proof. Since the domain is the direct sum of generalized eigenspaces, we can assume that A = XDX�1

where D =

2

64
D1

. . .
Dk

3

75 is block diagonal, and each diagonal block Di corresponds to a generalized

eigenspace for the eigenvalue �i.
So all eigenvalues of Di are �i. So Di = BiJiB

�1
i

where Ji is block diagonal, and each diagonal block is
a Jordan block with eigenvalue �i.

Then A = BJB�1 where B = X

2

64
B1

. . .
Bk

3

75 and J =

2

64
J1

. . .
Jk

3

75 is block diagonal, and each

diagonal block of J is a Jordan block.

How to find Jordan canonical form? Let us have some calculation examples.

Lemma 9.3.3. If � is an eigenvalue of A with algebraic multiplicity m, then N1(A��I) = Ker(A��I)m.

Proof. Take N1(A � �I) as the domain, and consider the operator A � �I, which is nilpotent. So if
dimN1(A� �I) = m, then (A� �I)m = 0 on the space N1(A� �I).

So now using our original domain, we see that N1(A� �I) ✓ Ker(A� �I)m. But by definition Ker(A�
�I)m ✓ N1(A� �I). So we are done.

Example 9.3.4. Consider A =

2

4
2 0 0
�1 1 2
3 0 1

3

5. Then det(xI � A) = det

2

4
x� 2 0 0
1 x� 1 �2
�3 0 x� 1

3

5 = (x �

2) det


x� 1 �2
0 x� 1

�
= (x� 2)(x� 1)2. So it has eigenvalue 1 with algebraic multiplicity 2 and eigenvalue

2 with algebraic multiplicity 1. So it must has a generalized eigenspace V1 for the eigenvalue 1 of dimension
2 and a generalized eigenspace V2 for the eigenvalue 2 of dimension 1.

What is V1? It is Ker(A � I)2 = Ker

2

4
1 0 0
�1 0 2
3 0 0

3

5
2

= Ker

2

4
1 0 0
5 0 0
3 0 0

3

5, which is spanned by

2

4
0
1
0

3

5 ,

2

4
0
0
1

3

5.

And restricted to this subspace V1, under this basis, we have A =


1 2
0 1

�
, and A � I =


0 2
0 0

�
in indeed

nilpotent. Now our theorem on nilpotent Jordan normal form tells us that we could pick basis v1 = (A�I)v2

and v2 =

2

4
0
0
1

3

5 as the right basis for V1.

What is V2? It is Ker(A � 2I) = Ker

2

4
0 0 0
�1 �1 2
3 0 �1

3

5 which is spanned by v3 =

2

4
1
5
3

3

5. Obviously A

restricted to V2 is just
⇥
2
⇤
and there is nothing to do here.

So the best basis for V should be (v1,v2,v3) =

2

4
0 0 1
2 0 5
0 1 3

3

5. And under this basis, the new matrix for A
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should be

2

4
1 1 0
0 1 0
0 0 2

3

5. Let us check this. Indeed, we have:

2

4
0 0 1
2 0 5
0 1 3

3

5

2

4
1 1 0
0 1 0
0 0 2

3

5

2

4
0 0 1
2 0 5
0 1 3

3

5
�1

=

2

4
0 0 2
2 2 10
0 1 6

3

5

2

4
�5/2 1/2 0
�3 0 1
1 0 0

3

5 =

2

4
2 0 0
�1 1 2
3 0 1

3

5 = A.

,

Example 9.3.5. Let us have a more complicated example. Feel free to have a matrix calculator in hand
while reading this example.

Say A =

2

66664

�10 9 �7 �1 7
�17 13 �9 �2 12
�14 9 �6 �1 10
�13 9 �7 0 9
�12 9 �7 �1 9

3

77775
. You can find its characteristic polynomial and check that its

eigenvalues are 1,1,1,1,2.
The eigenvalue 2 is simple. It has algebraic and geometric multiplicity 1, and you can find its correspond-

ing eigenvector is v5 =

2

66664

5
9
8
7
6

3

77775
.

For the eigenvalue 1, consider A� I =

2

66664

�11 9 �7 �1 7
�17 12 �9 �2 12
�14 9 �7 �1 10
�13 9 �7 �1 9
�12 9 �7 �1 8

3

77775
. You can check that dimKer(A� I) =

2, dimKer(A � I)2 = 3, dimKer(A � I)3 = 4, and we don’t need to continue once we reach dimension 4,
because 1 only has algebraic multiplicity 4.

Pick any v3 2 Ker(A� I)3 �Ker(A� I)2, and set v2 = (A� I)v3 and v1 = (A� I)v2, and find any v4

such that v1,v4 span Ker(A� I). One possible choice is v3 =

2

66664

1
2
2
1
1

3

77775
, then v2 =

2

66664

�1
�1
�1
�1
�1

3

77775
, and then v1 =

2

66664

3
4
3
3
3

3

77775
.

Then you can pick say v4 =

2

66664

1
3
3
2
1

3

77775
. Note that since v3 goes to v2, which goes to v1, and v4 stands alone,

therefore the corresponding nilpotent Jordan block is

2

664

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

3

775.

So under the basis B = (v1,v2,v3,v4,v5) =

2

66664

3 �1 1 1 5
4 �1 2 3 9
3 �1 2 3 8
3 �1 1 2 7
3 �1 1 1 6

3

77775
, we have A in Jordan canonical form
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J =

2

66664

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

3

77775
. In particular, A = BJB�1.

(Obviously I designed it so that we could have integer solutions.... Usually we should not be so lucky. A
super interesting challenge question here: Can you design another 5⇥ 5 integer-entry matrix A such that for
A = BJB�1, both B and J has integer entries?) ,

Sometimes we can tell the Jordan normal form right away, just from the geometric and algebraic multi-
plicity. Here is why.

Proposition 9.3.6. Suppose � is an eigenvalue of A with algebraic mulitiplicity ma and geometric multi-
plicity mg. Then mg is the number of �-Jordan blocks in the Jordan canonical form of A, while ma is the
sum of the sizes of all these Jordan blocks.

Proof. WLOG we can assume that A is already in Jordan canonical form. Furthermore, all the blocks not
related to � are irrelavant. It is then clear that each �-Jordan block contributes to exactly one dimension to
Ker(A� �I), so the statement about geometric multiplicity is done.

The statement about algebraic multiplicity is trivial by just looking at the characteristic polynomial of
block diagonal matrices.

In particular, if a matrix A has all geometric multiplicities equal to algebraic multiplicities, then the
number of �-blocks would equal to the sum of sizes of all these blocks, i.e., each block is 1⇥1. So the matrix
is diagonalizable.

Example 9.3.7. For example, consider J =

2

664

1 1
0 1

1
2

3

775. Chech that the eigenvalue 1 here has indeed

geometric multiplicity 2 and algebraic multiplicity 3.
Conversely, suppose A is any matrix with eigenvalue 1, 2, and mg(1) = 2,ma(1) = 3,mg(2) = ma(2) = 1,

then it has two 1-blocks and a single 2-block. Furthermore, since the two 1-blocks have a total size 3, it
must be 1 + 2. So A must have the Jordan canonical form J above.

Of course, if A is any matrix with eigenvalue 1, 2, and mg(1) = 2,ma(1) = 4,mg(2) = ma(2) = 1, then
there is no way to tell now. The two 1-blocks could be 2 + 2 or 1 + 3, and we may never know. ,

The last example where we cannot decide is unfortunate. However, there is one more tool we can use: the
minimal polynomial. But before we do that, let us do the famous Cayley-Hamilton Theorem as a corollary
to our study of generalized eigenspaces.

Corollary 9.3.8 (Cayley-Hamilton Theorem). For any matrix A, let pA(x) be its characteristic polynomial.
Then pA(A) is the zero matrix.

Proof. It is enough to show that pA(A) kills each generalized eigenspace.
For each eigenvalue �, let m be its algebraid multiplicity. Then pA(x) = q(x)(x � �)m. So pA(A) =

q(A)(A� �I)m.
So if v 2 N1(A� �I) = Ker(A� �I)m, then pA(A)v = q(A)(A� �I)mv = 0.
But this is true for all �. So pA(A) kills all vectors in all generalized eigenspaces. Oops.

Definition 9.3.9. We say a polynomial p(x) is a killing polynomial for A if p(A) = 0. We say p(x) is a
minimal polynomial for A if any killing polynomial of A must contain p(x) as a factor.

Proposition 9.3.10. Any square matrix A has a minimal polynomial.
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Proof. Suppose that A is in Jordan normal form. Then p(A) is simply applying p(x) to each diagonal block,
and p(x) is a killing polynomial if and only if it kills all blocks simultaneously. So it is enough to prove this
statement for each Jordan block.

Suppose A be a single Jordan block, say n⇥ n with eigenvalue �. Then A� �I is the shift up operator,
and if p(x) = a0 + a1x + · · · + akxk, then p(A � �I) will have diagonal entries a0, and entries right above
the diagonal a1, and so on so forth. So p(A � �I) = 0 if and only if the coe�cients a0, . . . , an�1 are zero,
i.e., p(x) contains xn as a factor. So if q(A) = 0, then q(A) must contains (A� �I)n as a factor.

To sum up, to kill a Jordan block, say n⇥ n with eigenvalue �, p(x) must contain factor (x� �)n.
So p(x) kills A if and only if it contains (x� �)m� for all �, where � is the size of largest �-Jordan block

for A.

Example 9.3.11. If A is any matrix with eigenvalue 1, 2, and mg(1) = 2,ma(1) = 4,mg(2) = ma(2) = 1,
then there is no way to tell now. The two 1-blocks could be 2 + 2 or 1 + 3, and we may never know.

But if we also know that the minimal polynomial is (x�1)2(x�2), then the 1-blocks must be 2+2, and we
must have two 1-blocks of size 2, and a single 2-block of size 1. If the minimal polynomial is (x� 1)3(x� 2),
then the 1-blocks must be 1 + 3, and we must have a 1-blocks of size 3, a 1-blocks of size 1, and a single
2-block of size 1.

Of course, there will be situations where even the minimal polynomial is not enough. Suppose A is 7⇥ 7
with ma(1) = 7,mg(1) = 3, and minimal polynomial (x� 1)3. Then it could be 3 + 3 + 1 or 3 + 2 + 2, and
we cannot tell anymore. Time to get your hand dirty and actually compute those blasted Ker(A� I)k. ,

9.4 (Optional) The geometric interpretation of Jordan canonical
form and generalized eigenspaces

Technically we are done. The theorem of Jordan canonical form is saying that, for any linear map, we can
decompose it into independent “submaps” that are Jordan blocks. So if we understand all Jordan blocks we
would understand every single matrix.

So this raises a new question. How would a Jordan block behave? Let us look at a few to generate some
ideas.

Example 9.4.1. What are nilpotent Jordan blocks? Consider the 3⇥ 3 nilpotent Jordan block N . It sends
the z-axis to the y-axis, and the y-axis to the x-axis. Huh, it seems to be rotating. But then it sends the
x-axis to zero. So we are “rotating inwards to zero”. (Nei Juan....)

Personally I think of R3 as the space of all students, and N as some competitive and selective process.
Then after N , all students are squeezed into the xy-plane, trying to excel. After another N , now everyone is
squeezed into the x-axis, trying to be the best of the best. After yet another N , everyone dies of exhaustion
apparently.... ,

Example 9.4.2.


1 1
0 1

�
is the standard shearing. In general, consider E =


1 k
0 1

�
. It sends rectangles, with

sides parallel to the coordinate-lines, into parallelograms of the same height. Draw a few graphic examples
and shapes to see this better. This process would preserve the base and height of the parallelogram, so it
preserves the area.

(Also note that EA is a row operation on A. Such row operations corresponds to shearings, so it preserves
area, and hence it preserves the determinant. I.e., det(EA) = det(A).)

If you repeatedly apply


1 1
0 1

�
to a vector, say


0
1

�
, you get


1
1

�
,


2
1

�
,


3
1

�
, and so on. Basically the

second coordinates are always the same, while the first coordinate keep progressing. The so the orbits of A
are lines parallel to the x-axis. ,

Example 9.4.3. Now consider J =

2

4
1 1 0
0 1 1
0 0 1

3

5. It sends

2

4
0
0
1

3

5 to

2

4
0
1
1

3

5, then to

2

4
1
2
1

3

5, then to

2

4
3
3
1

3

5, then to
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2

4
6
4
1

3

5, and so on. This is EXACTLY the left three entries of the Pascal’s triangule (Yang Hui triangle, or

binomial coe�cients, etc.)!

So to see Jk

2

4
0
0
1

3

5, you can imagine that you are doing (x+ 1)k, and read out the last three coe�cients.

You can also see that Jk

2

4
0
1
0

3

5 =

2

4
k
1
0

3

5
T

, which is basically the last three coe�cients of x(x+ 1)k. In general,

Jk

2

4
a
b
c

3

5 is the last three coe�cients of (ax2 + bx+ c)(x+ 1)k. Funny, no?

Is this really true? Well, let P2 be set of polynomials mod x3. I.e., we consider two polynomials to be
the same as long as they have the same coe�cients at degree 2, 1, 0. For example, we think of x3 + x + 1
and x4 + x+ 1 as the same element in P2.

Then clearly P2 is three dimensional, hence we can idenfity it with R3 via its standard basis x2, x, 1.
Then how does J behaves on P2? It sends 1 to x + 1, and x to x2 + x, and x2 to x2, which is the same
as x3 + x2 since we only care about the coe�cients at degree 2, 1, 0. So J behaves exactly by multiplying
polynomials by (x+ 1). So Jk(ax2 + bx+ c) = (ax2 + bx+ c)(x+ 1)k (mod x)3.

This algebraic picture can be generalized to Jordan blocks with eigenvalue 1 of arbitrary size. ,

Example 9.4.4. What is the geometric behavior of J =

2

4
1 1 0
0 1 1
0 0 1

3

5? Say what are its orbits (smooth curves

C such that J always maps each point in C back to some point in C)?

Well, in general,

2

4
a
b
c

3

5 would goes to

2

4
a+ b
b+ c
c

3

5, and then to

2

4
a+ b+ b+ c
b+ c+ c

c

3

5, and then to

2

4
a+ b+ (b+ c) + (b+ c+ c)

b+ c+ c+ c
c

3

5

and so on. So after k steps, Jk would maps it to

2

4
a+ kb+ (0 + 1 + · · ·+ (k � 1))c

b+ kc
c

3

5 =

2

4
a+ kb+ 1

2 (k
2 � k)c

b+ kc
c

3

5.

So generically, to find orbits, I simply replace the integer k by an arbitrary real number t, and we have

the orbits p(t) =

2

4
c

2 t
2 + (b� c

2 )t+ a
ct+ b

c

3

5. It is easy to verify that any points on this curve shall stay on this

curve after J .
As you can see, the third coordinate never change, so the orbit curves stays on a plane (parallel to the

xy-plane). On this plane, the first coordintae is in fact a degree two polynomial of the second coordinate.
So on this plane, we would actually see a graph of a parabola. So orbits of J are various parabolas parallel
to the xy-plane.

Note that for each parabola on a plane z = c 6= 0, when t = � b

c
, then the parabola would go through the

xz-plane. So if you want to find all parabolas on the plane z = c, then they are p(t) =

2

4
c

2 t
2 � c

2 t+ a
ct
c

3

5, or

the parabola p(t) =

2

4
c

2 t
2 � c

2 t
ct
c

3

5 shifted along the x-axis. Furthermore, since we only care about the curve,

not how it is parametrized, we can further more substitute t by t/c. Then we have p(t) =

2

4
1
2c t

2 � 1
2 t

t
c

3

5

shifted along the x-axis.
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So for each constant c, the orbits on z = c are just parabolas obtained by translating this along the
x-axis.

I highly recommand you to draw these parabolas on z = 1, z = 2, z = �1 to see what would happen.
Also fell free to draw the picture on the plane z = 0, and see why this is the limiting case for z > 0 and
z < 0.

If you want to see the geometric behavior, you can try to generlize this further. Say you want a size 4
Jordan block with eigenvalue 1. Then for any orbit curve, again the last coordinate is constant for some
d 2 C. If the third coordinate is t, then the second coordinate would again be 1

2d t
2 � 1

2 t shifted around by
some constant. And finally, the first coordinate would be a degree 3 polynomial in t. It would look like some

form of spiral. Consider curves like

2

664

t3

t2

t
1

3

775 2 R4 for a idea of this kind of spirals. ,

Example 9.4.5. Consider a Jordan block with eigenvalue, say J =

2

4
2 1 0
0 2 1
0 0 2

3

5. Then it sends

2

4
0
0
1

3

5 to

2

4
0
1
2

3

5,

then to

2

4
1
4
4

3

5 and so on. It looks like you are doing (x+ 2)k.

Indeed, algebraically Jk

2

4
a
b
c

3

5 is the last three coordinates of (ax2 + bx + c)(x + 2)k for the same reason

as before. Now you can generalize this to get the algebraic behavior of all Jordan blocks of all size for all
eigenvalues.

What about its geometric behavior? Suppose we start at some vector

2

4
a0
b0
c0

3

5, and we construct J

2

4
an�1

bn�1

cn�1

3

5 =

2

4
an
bn
cn

3

5. Then we see that cn = 2nc0.

We can see that bn = 2bn�1+cn�1. Divide this by 2n on both sides (because we know all three sequences

must be related to 2n somehow, as 2 is the eigenvalue), we see that bn
2n = bn�1

2n�1 + c0
2 . So the sequence bn

2n is

arithmetic and bn
2n = b0

20 + c0
2 n. So bn = 2nb0 + n2n�1c0.

Finally, an = 2an�1 + bn�1. By a similar argument, an
2n = an�1

2n�1 + b0
2 + (n� 1) c04 . So an

2n is a degree two

polynomial in n, and specifically you can see that an
2n = b0

2 n+
c0
4 (0+1+2+ ...+(n�1)) = c0

8 n
2+( b02 � c0

8 )n.
So an = n22n�3c0 + n2n�3(4b0 � c0).

So a typical curve looks like p(t) =

2

4
t22t�3c0 + t2t�3(4b0 � c0)

2tb0 + t2t�1c0
2tc0

3

5. By a change in parametrization, we

can choose 2tc0 as the new parameter t, then the curve is p(t) = t

2

4
a(t)
b(t)
c(t)

3

5 where a(t), b(t), c(t) here are

polynomials in ln t of degree 2,1,0.

Also note that, asymptotically for super large n, lim b
2
n

2ancn
= 1. Therefore these curves has asymptotic

surface xz = y2. What is this surface? It is a cone around the line {y = 0} \ {x = z}. So all these orbital
curves will eventually get closer and closer to this cone. ,

Example 9.4.6. As shown in the example above, the geometric picture of a Jordan block is not always easy

to compute. However, let us try to do another case, J =

2

4
� 1 0
0 � 1
0 0 �

3

5 for some extremely large �. Then since

313



� is so large, comparatively the ones are ignorable. So J ⇡ �I. This geometric picture is very easy now, it
is approximately just stretch everything by �. So the orbits are approximately just rays shooting from the
origin, with some minor perturbations. ,

The process of finding Jordan canonical form is equivalent to this: First we find generalized eigenspaces
of A. Next, for each generalized eigenspace for an eigenvalue �, we identify linearly independent killing
chains of A� �I.

With this in mind, what is the generalized eigenspace, i.e., vectors eventually killed by A� �I? Here let
us formulate an alternative definition for generalized eigenspaces.

The most fundamental motivation for studying eigenstu↵ is to understand the behavior of sequences like
v, Av, A2v, . . . .

Example 9.4.7. Again consider A =

2

4
1 1 0
0 1 1
0 0 1

3

5. We know that its orbits are parabolas. In particular, the

sequence v, Av, A2v, . . . would tend to produce longer and longer vectors, and they would never converge.
However, even though the vectors do not converge, their DIRECTIONS would in fact converge! The

directions of these vectors would get closer and closer to the direction of the opening for the parabola, which
is always in the direction of plus or minus x-axis.

In particular, the directions of v, Av, A2v, . . . converge to ±e1. ,

Definition 9.4.8. Given an inner product space (say, Cn with the dot product if you prefer), and any linear
transformation A, and any vector v, we set v0 = v

kvk , and set vi+1 = Avi
kAvik . Then if the limit exists and

limt!1 vt = w, then we say v converges in direction to w under iterations of A.

Proposition 9.4.9. If v is in a generalized eigenspace for some eigenvalue � > 0 of A, then it converges in
direction to some eigenvector of � under iterations of A.

This can be proven easily with basic topology, which is outside of the scope of this class. (The unit sphere
is compact, the rest is easy.) Of course we cannot do that here. So now let us prove this using linear algebra
instead.

Proof. Suppose v is in the generalized eigenspace for the eigenvalue �. Then A� �I would kill it in finitely
many steps, say v 7! (A� �I)v 7! · · · 7! (A� �I)k�1v 7! 0 where (A� �I)k�1v 6= 0.

Let V be the span of v, (A��I)v, . . . , (A��I)k�1v. (Recall that these vectors are linearly independent.)
It should be very obvious that V is a k-dimensional (A��I)-invariant subspace. Hence it is also A-invariant.
Furthermore, if we restrict the domain and codomain to V , and use basis (A� �I)k�1v, . . . ,v, then A� �I

would have matrix

2

66664

0 1
. . .

. . .

. . . 1
0

3

77775
. As a result, A would have a matrix of

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775
. This is a

k ⇥ k matrix.
So our problem is reduced to this: we can assume that the space we study is Ck, and the matrix is simple

a single Jordan block

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775
. Set v = ek the last standard basis vector, we aim to show that the

sequence vi as defined would converge to an eigenvector. Also note that the only eigenvectors in this space
are multiples of e1.

Note that vt is in the same direction of Atv, and its coordinates should corresponds to the last n

coe�cients of the polynomial (x+ �)t. By the binomial theorem, it is

2

64

�
t

k�1

�
�t�k+1

...�
t

0

�
�t

3

75.
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(Notation: Here
�
n

k

�
means the number of ways to choose k objects out of n objects. In Chinese textbooks

it is more traditionally written as Ck
n
, the combinatorial number to choose k out of n.)

Since we only care about the direction, we can divide all coordinates by the same constant �t. Then we

are looking at the vector

2

64

�
t

k�1

�
��k+1

...�
t

0

�
�0

3

75. Note that the coordinates are all polynomials of t, and the i-th

coordinate is a polynomial of t of degree k � i. In particular, as t ! 1, eventually the first coordinate
(polynomial of degree k � 1) will outgrow everyone else (polynomials of lower degree). So the direction
converge towards e1 indeed.

The proof above should clarify the following idea: generalized eigenspace is where killing chains happen
(for the corresponding A � �I). And each killing chain corresponds to some indecomposable invariant
subspace (cannot be the direct sum of two smaller invariant subspaces), on which the linear map will be a
Jordan block. In this sense, Jordan blocks are indeed the “atoms” of a linear map.

What if � = 0? Then the sequence Atv is going to be 0 in finitely many steps. So it does not converge
to any direction, since it becomes zero.

What if � < 0? By basically the same proof the sequence (Atv) for all even t is going to converge to an
“eigendirection”, while for all odd t the sequence will converge to the negation of the previous direction. It
is “alternating”, but they all converge to the same “eigenline”.

Proposition 9.4.10. Again suppose we have an inner product space, say Cn with dot product.
Suppose V is an A-invariant subspace of Cn in which all non-zero vectors converge in direction to some

eigenvector of � > 0, then V is inside the generalized eigenspace of � for A.
(In short, the generalized eigenspace of � > 0 is the UNIQUE LARGEST A-invariant subspace, where

all vectors converges in direction to some �-eigendirection.)

Proof. Pick any v 2 V . Then since it is A-invariant, linear combinations of v, Av, . . . are all in V . In
particular, (A��I)nv 2 V . Suppose (A��I)nv is non-zero, then it converges in direction to an eigenvector
of �.

Now note that the whole domain decomposes as a direct sum of N1(A � �I) and R1(A � �I). Then
we have a corresponding decomposition v = vN + vR. Then (A� �I)nv = (A� �I)nvN + (A� �I)nvR =
(A� �I)nvR. Since R(A� �I) is A-invariant, we would still have (A� �I)nvR 2 R1(A� �I). As a result,
we have (A� �I)nv 2 R1(A� �I).

In particular, if (A��I)nv converges in direction to some unit vector, that unit vector must still be inside
R1(A � �I). But since it is also in V , it must converge in direction to some unit vector in N1(A � �I).
Contradiction.

Hence we must conclude that (A� �I)nv = 0, which means v 2 N1(A� �I).

The other cases are similar. We put the result here without proof.
If � = 0, then the generalized eigenspace is the UNIQUE LARGEST A-invariant subspace on which A

eventually kills everything.
And if � < 0, then the generalized eigenspace is the UNIQUE LARGEST A-invariant subspace, where

all vectors converges alternatingly to some �-eigenline.
So we have a geometric description of generalized eigenspaces.

Example 9.4.11. The requirement that A-invariance is important! There are indeed (non-invariant) sub-
spaces OUTSIDE of the generalized eigenspace for �, where all non-zero vectors converges to �-eigendirections.

Consider A =

2

4
1 1
0 1

2

3

5. I claim that all vectors NOT in the xy-plane would converge in direction to

e3.
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To see this, say we started with v =

2

4
a
b
c

3

5 where c 6= 0. Then Atv =

2

4
a+ tb

b
c2t

3

5. CLearly the last coorinate

would dominate, and the vector’s direction would be closer and closer to e3.
In general, if v has non-zero components involving many di↵erent generalized eigenspaces, then the �

with largest absolute value would dominate the convergence behavior of v, Av, . . . .
What if some eigenvalues involved with v have the same absolute value? Then something funny might

happen. Consider


1

�1

�
. Then other than the eigenvectors, nothing else would converge to eigendirections

or even eigenlines. They simply bounce. ,

9.5 Sylvestor’s equation

There are many proofs of Jordan canonical form. Our proof here is essentially a geometric proof. We break
down into invariant subspaces and yada yada done. There is also a very interesting (but less illuminating)
algebraic proof, where we study polynomials and yada yada done. (Maybe I’ll type up another optional
section about this.)

Finally, here is a computational proof, using Schur decompositions, and row and column operations, we
shall achive a block-diagonalization without using generalized eigenstu↵.

First, by Schur decomposition, we can always upper triangularize a matrix. Here is a particularly
interesting example

Example 9.5.1. Consider A =

2

4
2 0 0
�1 1 2
3 0 1

3

5. We know that it has eigenvalue 1 with algebraic multiplicity

2 and eigenvalue 2 with algebraic multiplicity 1.
Let us first try to put it in upper triangular form. When we do this, by picking the right filtration,

we want to make sure that we are grouping eigenvalues of the same value together. So say we require the
resulting upper triangular matrix to have diagonal 1,1,2.

Then first we need a vector v1 for eigenvalue 1, say v1 =

2

4
0
1
0

3

5. Note that we can do a (non-invariant)

decomposition of the domain into R3 = Vy � Vxz where Vy represents the y-axis, while Vxy is the xz-plane.

Then since A =

2

4
2 0 0
�1 1 2
3 0 1

3

5, the corresponding submaps of A would be Ay!y =
⇥
1
⇤
, Ay!xz =


0
0

�
,

Axz!y =
⇥
�1 2

⇤
, Axz!xz =


2 0
3 1

�
.

So to continue our filtration, since we already have Vy chosen, we need to look at Vxz and thus the linear

map Axz!xz. Let us find an eigenvector v2 of Axz!xz for eigenvalue 1, say v2 =


0
1

�
2 Vxz (the coordinates

here are under the basis e1, e3 for Vxz). Then it is in fact the unit vector in the z-axis, i.e., v2 = e3. You
can check that span(v1,v2) is indeed A-invariant.

Now we already have v1,v2 chosen. To finish the filtration, we just need to pick any v3 that make this
into a basis. Since we have v1 = e2,v2 = e3, we might as well just pick v3 = e1, and we are done.

Under the basis v1,v2,v3, we have A similar to

2

4
0 0 1
1 0 0
0 1 0

3

5
�1 2

4
2 0 0
�1 1 2
3 0 1

3

5

2

4
0 0 1
1 0 0
0 1 0

3

5 =

2

4
1 2 �1
0 1 3
0 0 2

3

5 =


A1 B
0 A2

�
with A1 =


1 2
0 1

�
and A2 =

⇥
2
⇤
and B =


�1
3

�
. ,
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So by choosing the right filtration, our matrix is something like, say,


A1 B

A2

�
where A1 and A2 has

NO common eigenvalues. Now we would like to kill B to make this block diagonal. How to do this?

We want to perform C


A1 B

A2

�
C�1 so that the resulting matrix is block diagonal. Note that since C

here is invertible, it must corresponds to some row/column operations that must happen in pairs. Can we
find the right row/column operation to do this?

Suppose C =


I X

I

�
, i.e., it is a block operation. Then C


A1 B

A2

�
C�1 = C


A1 B +XA2 �A1X

A2

�
C�1.

So we need to find X such that A1X �XA2 = B for given A1, A2, B. This is the Sylvester’s equation.

Theorem 9.5.2. Suppose A,B are m⇥m matrix and n⇥ n matrix with no common eigenvalue. Then for
any m⇥ n matrix C, there is a UNIQUE solution X to the matrix equation AX �XB = C.

Proof. First of all, let V be the space of all m ⇥ n matrices. Consider the map L : V ! V such that
L(X) = AX �XB. Note that, indeed, L would send an m ⇥ n matrix to another m ⇥ n matrix, and it is
also linear! This means that it is an linear operator. Our goal is to show that L is a bijection, hence it is
enough to check that the kernel of L is trivial.

So we have reduced our problem to this: we need to show that AX�XB = 0 must only have the solution
X = 0. (See how the problem is simplified? THAT is why we do abstract vector spaces. We do not even
need V, L from now on, but the abstraction allows us to SEE that we have a simplification.)

Suppose AX �XB = 0, then AX = XB. In particular, AkX = XBk for any positive integer k. Now
we take linear combinations of powers, we see that p(A)X = Xp(B) for any polynomial p(x).

Consider pA(x), the characteristic polynomial of A. Then on one hand, pA(A) = 0. On the other hand,
since A,B has no common eigenvalue, for each eigenvalue � of B, pA(�) 6= 0. So pA(B) has NO eigenvalue
zero. In particular, it is invertible! Hence we have 0 = pA(A)X = XpA(B) where pA(B) is invertible, so
X = 0 is the only solution.

Example 9.5.3. We have A similar to

2

4
1 2 �1
0 1 3
0 0 2

3

5 =


A1 B
0 A2

�
.

Now, since A1 and A2 has NO eigenvalue in common, we know that there is a unique X 2 M2⇥1 such

that A1X �XA2 = B. Then A is similar to


I X
0 I

� 
A1 B
0 A2

� 
I �X
0 I

�
=


A1 0
0 A2

�
.

To be more explicit, if X =


x
y

�
, then XA2 �A1X = �B would translate into


2x
2y

�
�

x+ 2y

y

�
=


1
�3

�
,

which means that x = �5 and y = �3. Then A is similar to

2

4
1 0 �5
0 1 �3
0 0 1

3

5

2

4
1 2 �1
0 1 3
0 0 2

3

5

2

4
1 0 5
0 1 3
0 0 1

3

5 =

2

4
1 2 0
0 1 0
0 0 2

3

5. This corresponds to a spatial decomposition of V into invariant subspaces.

Finally,


1 0
0 2

� 
1 2
0 1

� 
1 0
0 1

2

�
=


1 1
0 1

�
is a Jordan block, and A2 = (2) is already a Jordan block. So

A is similar to

2

4
1 0 0
0 2 0
0 0 1

3

5

2

4
1 2 0
0 1 0
0 0 2

3

5

2

4
1 0 0
0 1

2 0
0 0 1

3

5 =

2

4
1 1 0
0 1 0
0 0 2

3

5 is block diagonal with Jordan blocks on the

diagonal.
If you have been keeping track, we have done the Jordan canonical form of A with exclusively row/column

operations that come in inverse paris, i.e., each step is A ! XAX�1 for some elementary matrix X. ,
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Chapter 10

Functions of Matrices

10.1 Limit of Matrices

Whenever we have a collection of things, and a concept of “distance” between things, then we can define
limits in the sense of shrinking distance. In this way, we can easily define limits of vectors in Rn or Cn. And
treating matrices as vectors in Rm⇥n or Cm⇥n, we can define limits of matrices.

So, as an operational definition, one may think of the limit of a sequence of matrices {Mk}k2N as taking
a limit on each entry.

Of course, technically speaking, this definition is bad. The “entries” of a matrix depend on your choice
of basis. If you change basis, then all entries are now di↵erent. Who can guarantee that the limit will stay
the same?

We can ad-hoc verify that this is the case.

Proposition 10.1.1. If limAn = A and limBn = B, then lim(AnBn) exists and it is AB.

Proof. One line calculation proof. lim(
P

k
aik,nbkj,n) =

P
k
lim(aik,n) lim(bkj,n).

Corollary 10.1.2. lim(BAnB�1) = B(limAn)B�1. So limits are invariant under a change of basis.

But ad-hoc arguments are like cheating. A GOOD definition should make this clear in the first place.
We do not require this good definition, but if you are curious, read the following remark.

Remark 10.1.3. This is a exposition on how to define limits of linear operators without picking a basis.
This portion is optional.

A sequence of vectors in an abstract vector space has no well-defined limit. This is because there is no
way to measure distance (or induce some topology), and therefore there is no way to measure convergence.

But with inner product structures, we are now golden. Given a sequence of vectors {vn}n2N in an inner
product space V , we say their limit is v if for all ✏ > 0, we can find N 2 N such that kv� vnk < ✏ whenever
n � N . You know, the obvious way to define this.

Given linear maps L,L0 : V ! W between two inner product spaces, how to define distance? It turns out
that there are many ways to define this distance. One would be the operator norm, where we define the norm
kLk to be the largest kLuk for all unit vectors u. In particular, it is the largest possible length-dilation that

can happen, maxv2V

kLvk
kvk . This looks nice, yes? For any input v, we shall always have kLvk  kLkkvk,

and the norm kLk is exactly the tightest possible constant k for kLvk  kkvk to work for all v.
It is even easy to conceptualize: it is exactly the largest singular value of L. (NOT the eigenvalue!) Neat!
Then using kL�L0k as a distance between two linear maps, we can then define L = limLn in the obvious

way. I.e., for all ✏ > 0, we can find N 2 N such that kL� Lnk < ✏ whenever n � N .
Note that our operator norm satisfy the condition that kLL0k  kLkkL0k. (Easy to prove as kLL0vk 

kLkkL0vk  kLkkL0kkvk.) As a result, if Ln converge to L and say L0
n
converge to L0, then LnL0

n
would
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converge to LL0. I.e., we have the identity lim(LnL0
n
) = (limLn)(limL0

n
) whenever the latter two limits

exist.
Now since matrix multiplication respect limits, if we pick orthonormal basis and assume that our domain

and codomain are Cn,Cm, then we see that lim(e⇤
i
Lnej) = e⇤

i
(limLn)ej. So if we picked some basis, then

linear operator convergence is the same as convergence in all entries.
Let us define this norm in a di↵erent way. You may recall (or you can verify) that trace(L⇤L0) is an

inner product of the space of linear maps from V to W , and we may define kLk2 = trace(L⇤L). To be more
clear that this is independent of basis, we actually have kLk =

pP
�2
i
where �i are all the singular values.

If we had picked an orthonormal basis, then we also have kLk =
qP

a2
ij

where aij are all the entries. Neat

right? This is a very natural way to define a norm, and it is NOT the same as the operator norm.
But worry not. You may verify that we still have kLL0k  kLkkL0k, and therefore we also have

lim(LnL0
n
) = (limLn)(limL0

n
) and lim(e⇤

i
Lnej) = e⇤

i
(limLn)ej.

So in the end, it does not matter much which norm we pick. The only important property here is
kLL0k  kLkkL0k. As long as this condition is true, then the convergences in di↵erent settings mean exactly
the same thing. The TOPOLOGY is the same.

Finally, above statements applies strictly to finite dimensional cases. For infinite dimensional spaces, the
two norms above would induce di↵erent topologies and will have di↵erent meaning of convergence.

Now we have a TOPOLOGY (a way to talk about convergence) on matrices. Then we can define dense
subsets.

Theorem 10.1.4. Diagonalizable matrices are dense in n ⇥ n matrices. (I.e., any matrix is a limit of
diagonalizable matrices.)

Proof. Given a matrix A, how to construct a sequence of diagonalizable matrices whose limit is A? First,
we change basis and assume that A is in Jordan canonical form (or any upper triangular form).

Say the diagonal entries (eigenvalues) are a1, . . . , an. Note that some of these are the same, while some
are not. Let g be the smallest “gap” between distinct diagonal entries, i.e., either ai = aj , or |ai � aj | � g.

For a tiny real number t < g

2n , consider a diagonal matrix D(t) =

2

64
t

. . .
nt

3

75, let At = A+Dt. Then

limt!0 At = A. I only need to show that At are diagonalizable.
Note that eigenvalues of At are a1 + t, . . . , an + nt. For any i 6= j, if ai = aj , then ai + it 6= aj + jt. If

|ai � aj | � g, then |(ai + it)� (aj + jt)| � g� it� jt � g� 2nt > 0 by construction of t, so ai + it 6= aj + jt.
Eitherway, we see that eigenvalues of At are all distinct, so it must be diagonalizable. Done.

Note that we in fact proved something stronger: matrices with distinct eigenvalues are dense. Feel free
to prove something even stronger: INVERTIBLE matrices with distinct eigenvalues are dense. (Just throw
in distance to zero when you define the “gap” size g.)

This fact is extremely useful. Consider this:

Corollary 10.1.5. Given a square matrix A, let Aij be its (i, j)-cofactor, and let Adj(A) be the adjugate
matrix of A. (So for invertible matrices, A�1 = 1

det(A)Adj(A). Note that for non-invertible matrices, Adj(A)

is still defined.)
Then for any square matrices A,B, we havbe Adj(AB) = Adj(B)Adj(A).

Proof. Note that invertible matrices are dense. And for invertible matrices, Adj(AB) = det(AB)(AB)�1 =
det(A)B�1 det(A)A�1 = Adj(B)Adj(A). Now take limit and we are done.

Or for example, let us prove Cayley-Hamilton again. First, if A has distinct eigenvalues, then it is trivial
to verify that pA(A) = 0. (A is diagonalizable, so there is a basis made of eigenvectors of A. And pA(A)
will kill all eigenvectors of A.) Then by taking limits of An with distinct eigenvalues, we have pA(A) for any
matrix A.
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Remark 10.1.6. The adjugate matrix is NOT useful at all. It is an attempt to relate the matrix A with its
inverse. However, the Cayley-Hamilton theorem does a better job at this.

If A is invertible, then det(A) 6= 0, so pA(x) has a non-zero constant term. I.e., pA(x) = xq(x) + a for
some a 6= 0. Then since pA(A) = 0, we have Aq(A) + aI = 0, and thus A�1 = 1

a
q(A). So A�1 is ALWAYS

a polynomial of A!
A polynomial relation is huge. Whatever you can do using adjugates, you can use Cayley-Hamilton

instead. For example, a classical argument for the adjugate matrix goes like this: if entries of A are rational,
then entries of A�1 are also rational. To see this, note that each cofactor is a sum of products of entries of
A, so it is rational. So we are done. We also see that if A has integer entries, then det(A)A�1 has integer
entries.

But with Cayley-Hamilton, A�1 = 1
det(A)q(A), and the coe�cients of q(x) are also sums of products of

entries of A. So if A has rational entries, then A�1 has rational entries, and if A has integer entries, then
det(A)A�1 has integer entries.

10.2 Functions of matrices

What is a function of a matrix? Here is an easy example:

Definition 10.2.1. We define eA to be the limit limn!1(I + A+ 1
2!A

2 + · · ·+ 1
n!A

n). This is the limit of
a sequence of matrix.

This raises an immediate problem. Why would this series converge at all? (Spoiler: it will always
converge.) If we were in an analysis class, then we shall then proceed to show convergence. It is not too
bad, as entries of An grows polynomially while the denominator n! grows faster than exponential.

But as a linear algebra class, let us jump out of this, and think about something bigger. If YOU were to
define a function of a matrix, f(A) for some function f , what would you like?

The following principles seem like must-haves:

1. We want it to NOT depend on our choice of basis. So f(BAB�1) = Bf(A)B�1. It is really a function
of LINEAR TRANSFORMATIONS.

2. We want it to respect independent actions. So f(


A

B

�
) =


f(A)

f(B)

�
. In particular, for diagonal

matrices, f(D) is just applying f on each diagonal entry.

3. If f : R ! R or f : C ! C is continuous, then the induced function f : Mn⇥n ! Mn⇥n should still be
continuous. Here Mn⇥n refers to the space of all n⇥n real or complex matrices, depending on context.
(We can use real functions when all of our eigenvalues are real.)

Combining these principles, one thing is super clear. If A is diagonalizable A = BDB�1 where D =2

64
d1

. . .
dn

3

75, then we want f(A) = Bf(D)B�1 = B

2

64
f(d1)

. . .
f(dn)

3

75B�1. So this resulting matrix

f(A) is already uniquely defined! It is also not hard to see that, if A changes continuously (i.e., B and
each di changes continuously), then since f is continuous on C, f(di) also changes continuously, and hence
f(A) = Bf(D)B�1 changes continuously. So we have all the desired result.

BUT what if A is NOT diagonalizable? This is where density comes into play. According to our principles,
f(limAn) = lim f(An). So we just use a sequence of diagonalizable matrices to approximate A, and we can
get f(A).

Would the limit always exists? Let us see what would happen.

Example 10.2.2. Consider J =


� 1
0 �

�
. Let Jt =


� 1
0 �+ t

�
, then clearly Jt is diagonalizable whenever

t 6= 0, and limt!0 Jt = J .
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So for a function f , we want f(J) = f(limt!0 Jt) = limt!0 f(Jt). To calculate f(Jt), we need to

diagonalize Jt. Note that Jt =


� 1
0 �+ t

�
can be diagonalized by solving the corresponding sylvesters

equation �x � x(� + t) = 1, which yeilds x = � 1
t
. So


1 1

t

0 1

�
Jt


1 � 1

t

0 1

�
=


�

�+ t

�
. In particular, we

have Jt =


1 1

t

0 1

� 
�

�+ t

� 
1 � 1

t

0 1

�
.

So f(J) = f(limt!0 Jt) = limt!0 f(Jt) = limt!0


1 1

t

0 1

� 
f(�)

f(�+ t)

� 
1 � 1

t

0 1

�
= limt!0


f(�) f(�+t)�f(�)

t

f(�+ t)

�
.

Wait, the definition of the derivative is right there!

So we must have f(J) =


f(�) f 0(�)

f(�)

�
when f is di↵erentiable at �. Otherwise f(J) cannot be defined

and lim f(Jt) does not converge. ,

This line of logic can easily be generalized to give us a formula for f(A) in general. But for mnemonics
sake, let us see an alternative proof.

Proposition 10.2.3. Assume that f is analytical at �. (It means f equals to its Taylor expansion at �.)

Consider the n ⇥ n Jordan block J =

2

66664

� 1
. . .

. . .

. . . 1
�

3

77775
. Then using previous principles, we must have

f(J) =

2

66664

f(�) 1
1!f

0(�) . . . 1
(n�1)!f

(n�1)(�)
. . .

. . .
...

. . . 1
1!f

0(�)
f(�)

3

77775
.

Proof. Why do we see coe�cients of Taylor expansions? That is not a coincidence. First we have J = N+�I
where N is the nilpotent Jordan block.

Now f equals to its Taylor series. So if we expand f at �, we have f(x) = a0+a1(x��)+a2(x��)2+ . . .
where ak = 1

k!f
(k)(�). So f(J) = a0I + a1N + a2N2 + . . . . But as a nilpotent matrix, Nn = 0, and Nk

is really just the identity matrix shifted up k times. So f(J) = a0I + a1N + a2N2 + · · · + an�1Nn�1 =2

66664

f(�) 1
1!f

0(�) . . . 1
(n�1)!f

(n�1)(�)
. . .

. . .
...

. . . 1
1!f

0(�)
f(�)

3

77775
.

Now we can define functions of matrices.

Definition 10.2.4. Suppose f is a function defined at all eigenvalues of A, and it is (m� 1)-times di↵er-
entiable at the eigenvalue � when �-blocks in the Jordan canonical form of A have sizes at most m. Then
we define f(J) for each involved Jordan blck as

f(J) =

2

66664

f(�) 1
1!f

0(�) . . . 1
(m�1)!f

(m�1)(�)
. . .

. . .
...

. . . 1
1!f

0(�)
f(�)

3

77775
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, and we define

f(A) = B

2

64
f(J1)

. . .
f(Jt)

3

75B�1

where the Jordan decomposition of A is B

2

64
J1

. . .
Jt

3

75B�1.

Here is an obvious result:

Corollary 10.2.5. If f is infinitely di↵erentiable everywhere, then f(A) is defined for all square matrix A.

Corollary 10.2.6. If A has eigenvalues �1, . . . ,�n counting algebraic multiplicity, then f(A) has eigenvalues
f(�1), . . . , f(�n) counting algebraic multiplicity.

Proof. Do it block-wise.

Corollary 10.2.7. f(A)g(A) = h(A) if f(x)g(x) = h(x), and f(A) + g(A) = h(A) if f(x) + g(x) = h(x).
Finally, if f(x) = x, then f(A) = A, and if f = 1 is a constant function, then f(A) = I.

Proof. Do it block-wise.

Corollary 10.2.8. If f is a polynomial, then f(A) is exactly as we have always defined it to be.

One can then do the boring verification that such a definition satisfy the given principles. We are going
to skip those because we might not learn much from that process.

Corollary 10.2.9. If f = g at all eigenvalues of A and they also equal at enough derivatives that are used
in f(A) and g(A), then f(A) = g(A).

Corollary 10.2.10. Fix a matrix A, then for any well-defined f(A), there is a polynomial p(x) such that
f(A) = p(A). (Be careful, the choice of p(x) here depends on A. For di↵erent A and same f , we would need
to choose di↵erent p(x).)

Proof. See Hermite interpolations, which is done via Chinese remainder theorem in abstract algebra. (Ring
theory.)

So if we are FIXING A, then there is NO point in studying f(A) at all. They are all just polynomials of
A. In particular, we have results like Af(A) = f(A)A always, and etc.

However, be careful here. If we are fixing f , but changing A, then each di↵erent A might require a
di↵erent polynomial. So it is better to study f(A) in terms of f .

Example 10.2.11. For A = I, then eA = eA, so f(A) = p(A) where p(x) = ex.

But for A =


0 1

0

�
, then eA = I +A = q(A) where q(x) = x+ 1. ,

Finally, let us have some easy and useful propositions.

Proposition 10.2.12. f(AT) = f(A)T.

Proof. Suppose A = BJB�1 where J is the Jordan canonical form, then f(A) = Bf(J)B�1. We also see
that AT = CJTC�1 where C = (B�1)T, and thus f(AT) = Cf(JT)C�1, while f(A)T = Cf(J)TC�1. So it
is enough to show that f(JT) = f(J)T for any Jordan canonical form. But since J is block diagonal, it is
then enough to show this for a single Jordan block.

(This paragraph is NOT part of the proof, merely some explorative exposition.) For a single Jordan
block, how are J and JT related? For the sake of clarification, let us assume that J is a nilpotent Jordan
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block. Then J is characterized by the killing chain en 7! en�1 7! · · · 7! e1 7! 0. It is easy to see that JT is
similarly characterized by the killing chain e1 7! e2 7! · · · 7! en 7! 0. So to convert between J and JT, we
need to flip the entire order of the standard basis!

Let T =

2

64
1

...
1

3

75, which is the matrix that flips the entire order of the standard basis. Then you may

verify that for ANY matrix of the form X =

2

66664

a0 a1 . . . an�1

. . .
. . .

...
. . . a1

a0

3

77775
, then TXT�1 = XT. Note that for any

Jordan block J , both J and f(J) are matrices of this type. So f(JT) = f(TJT�1) = Tf(J)T�1 = f(J)T.
So we are done.

We do NOT have f(A�1) = f(A)�1. Why? Because for functions, we in general do NOT have f(g(x)) =
g(f(x)) when g(x) = x�1. E.g., if f(x) = x+1, then 1

x+1 6= 1
x
+1. In fact, if A is invertible, f(A) may even

be NON-invertible, say when f is the constant zero function.
Of course, I am assuming the following fact, which (not surprisingly) is true.

Proposition 10.2.13. If f(x) = x�1, and A is invertible, then f(A) = A�1.

Proof. If A is invertible, then it has no zero eigenvalue, so f(A) is well-defined. Let g(x) = x. Then
1 = f(x)g(x). So I = f(A)g(A) = f(A)A. So f(A) = A�1.

Here is a DANGEROUS thing: do we have f(A⇤) = f(A)⇤ for a complex matrix? Well, we might NOT
have this!

Since we already have f(AT) = f(A)T, all we need now is f(A) = f(A). However, do we always have
f(x) = f(x) for any complex function f and complex number x? This is NOT always true.

For example, suppose f(x) = ix. Then f(1 + i) = i � 1, while f(1 � i) = i + 1. The resulting image is
NOT complex conjugates of each other! In particular, f(A) = f(A) fails for even 1⇥ 1 matrices.

Remark 10.2.14. In fact, if f(x) = ix, then we can define f(x) = �ix. The idea is that we take complex
conjugate on all coe�cients, but NOT on the input. Then we in fact have f(x) = f(x), which makes a LOT
more sense. The idea is that, when you do f(x), the complex conjugate would not only hit x, but also hit f
as well.

Take complex analysis class to properly define f and so on.

Our saving grace is the following.

Proposition 10.2.15. Suppose f : C ! C is complex di↵erentiable and f(R) ✓ R, then f(A) = f(A) and
f(A⇤) = f(A)⇤ for any complex matrix A.

Proof. Complex di↵erentiable functions are analytical. So they are infinitely di↵erentiable, and they equal
to a power series, i.e., f(x) = a0 + a1x + . . . . Furthermore, if f(R) ✓ R, then f(0) 2 R which implies that
a0 2 R.

Furthermore, note that f 0(0) = limt!0
f(t)�f(0)

t
. By using only real t to perform the limit t ! 0, we see

that f 0(0) must also be real. So a1 is real.
Similarly, 2a2 = f 00(0) is real, and thus a2 is real. So on so forth. We see that (n!)an = f (n)(0) is real,

so an is real.
So f is a power series whose coe�cients are all real. Now f(A) = a0I + a1(A) + · · · = a0I + a1A+ . . . =

(f(A)).

Remark 10.2.16. Being complex di↵erentiable is a STRONG requirement. For example, f(x) = x is NOT
complex di↵erentiable, even though it is super nice.
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Consider limz!0
f(z)�f(0)

z
= limz!0

f(z)
z

. If z approaches zero from the real line, then obviously f(z) = z
for all real z, hence the limit is 1. However, let z approaches zero from the imaginary axis, then f(z) = �z
for all purely imaginary z, so the limit is �1. Since the two limits disagree, this complex limit fails to exist.
So f is NOT di↵erentiable at zero. (In fact, it is di↵erentiable nowhere.)

In particylar, if f(z) = z, then f(A) is NOT well-defined for non-diagonalizable A!
Intuitively, a complex function f being complex di↵erentiable means the function respect angles and

orientations locally. If two curves a(t), b(t) on the complex plane interset, and their tangent lines at the
intersection make an angle of ✓ (positive means counter-clockwise), then the image curves f(a(t)), f(b(t))
should also intersect and make an angle of ✓.

Complex conjugation is NOT di↵erentiable because, while it preserves the absolute value of local angles,
it does NOT preserve the orientation. The angle ✓ will become �✓. Hence it is not complex di↵erentiable.

In the end, the only complex di↵erentiable functions are power series. Learn more by taking a complex
analysis class.

10.3 Applications to functions of Matrices

The obvious application is to solve various di↵erential equations.

Lemma 10.3.1. If AB = BA, then eA+B = eAeB = eBeA.

Proof. Direct computation using Taylor series of ex.

eAeB = (
X

m

1

m!
Am)(

X

n

1

n!
Bn) =

X

m,n

1

m!n!
AmBn.

Now let k = m+ n. We have

X

m,n

1

m!n!
AmBn =

X

k

kX

n=0

1

n!(k � n)!
Ak�nBn =

X

k

1

k!

kX

n=0

k!

n!(k � n)!
Ak�nBn =

X

k

1

k!
(A+B)k.

Note that commutativity AB = BA is used in the last step. For example, A2 + 2AB + B2 = (A + B)2

is only true when we have commutativity.

Remark 10.3.2. When A has distinct eigenvalues, then AB = BA imples that A,B are simultaneously
diagonalizable. Hopefully your last linear algebra class has discussed this. But if not, see if you can prove
this yourself.

There are many proofs. If you need a hint, maybe try 2 by 2 matrices. If


a

b

�
X = X


a

b

�
and

a 6= b, whwy must X be diagonal?
Or one can work abstractly on finding common eigenvectors.

Proposition 10.3.3. d

dt
eAt = AeAt.

Proof. Compute. Or be cheap and do this for diagonal A, and use density.

Corollary 10.3.4. Let v(t) be a vector of functions, i.e., each coordinate may change as t change. Suppose
it satisfy the di↵erential equation v0(t) = Av(t) for some linear transformation A. Then eAtc is a solution
for any constant vector c. (In fact v(0) = c, so it is the initial condition.)

I claim that this is in fact the only solution.

Proposition 10.3.5. The solution space to v0(t) = Av(t) is n dimensional where n is the dimension of the
domain. (So columns of eAt form a basis.)
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Proof. Let us first do a single nilpotent Jordan block. Then we have

2

66664

f 0
1
...
...
f 0
n

3

77775
=

2

66664

0 1
. . .

. . .

. . . 1
0

3

77775

2

66664

f1
...
...
fn

3

77775
. This

reads as f 0
i
= fi+1. So the solution space is simply this: f1 is a polynomial of degree at most n� 1, and the

rest are iterated derivatives of f1. Obviously the solution space is n dimensional.
Now let us do a single �-Jordan block J . Let w(t) = e��tv(t). Then w0(t) = e��tv0(t) � �e��tv(t) =

e��t(J � �I)v(t) = (J � �I)w(t). But (J � �I) is nilpotent, so solutions to w(t) is n dimensional. Hence
v(t) = e�tw(t) has n-dimensions of possibilities as well.

Now suppose A has many Jordan blocks. But being block diagonal means each block behaves indepen-
dently, so we are reduced to the single block cases and we are done.

Conclusion: given a di↵erential equation v0(t) = Av(t) and initial value v(0) = c, then the unique
solution is eAtc.

You can imagine that things like sin(A) and such will also help solving other kinds of di↵erential equations.
We leave the rest to your future di↵erential equation class.

Let us see another use of functions of matrices.

Definition 10.3.6. We define the sign function sign such that sign(a+ bi) = 1 if a > 0, sign(a+ bi) = �1
if a < 0, and undefined when a = 0.

It is obvious that this sign function is smooth (infinitely di↵erentiable) whenever the input is NOT purely
imaginary. So for any matrix A whose eigenvalues are NOT purely imaginary, then sign(A) is well-defined.
Specifically, for any �-Jordan block J , then sign(J) = sign(�)I = ±I.

Let us consider an application of this sign function.

Example 10.3.7. Consider the following variants of the Sylvester’s equation. We want to find X to solve
AX +XB = C, where A,B have positive eigenvalues.

(This is very possible, because in physics, eigenvalues are usually energy states or some other physical
meanings, which we usually want to be positive.)

Solving this equation is the same as finding a diagonalization


A �C

�B

�
=


I X

I

� 
A

�B

� 
I �X

I

�
.

Now apply matrix sign function and watch the magic:

sign(


A �C

�B

�
) =


I X

I

�
sign(


A

�B

�
)


I �X

I

�
=


I X

I

� 
I

�I

� 
I �X

I

�
=


I �2X

�I

�
.

So if we have a magic computer to compute matrix sign function, then to solve AX+XB = C, we simply

apply the matrix sign function to


A �C

�B

�
and read the answer from the upper right block. ,

Remark 10.3.8. (This part should be moved to earlier sections....)
The Sylvester’s equations are very important. For example, consider the case AX�XB = C where C = 0

and B is 1⇥ 1. Then we have AX = Xb for some number b, and X is m⇥ 1, a vector! In particular, this is
the equation defining eigenvectors and eigenvalues. In general, for the equation AX = XB, you may think
of the solution X as the B-eigenstu↵ for A. And AX�XB = C is the inhomogeneous version of this. (Just
like how f 0 � f = 0 and f 0 � f = x2 are related.)

Furthermore, if AX = XB, then Ran(X) is an invariant subspace of A. Can you see this? (And
Ran(XT) is an invariant space of BT.)

10.4 Matrix exponentials, rotations and curves

Matrix exponentials are super useful. One reason is its ties to rotations.
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Example 10.4.1. Consider A =

2

4
0 c �b
�c 0 a
b �a 0

3

5, which is a skew symmetrix matrix. Suppose a, b, c are

not all zero. Let us think about the meaning of A and eA.

First of all, we have A

2

4
x
y
z

3

5 =

2

4
cy � bz
az � cx
bx� ay

3

5. This is the formula for a cross product! It is

2

4
x
y
z

3

5 ⇥

2

4
a
b
c

3

5.

According to the geometric meaning of cross product, we can now understand the geometric meaning of A.

Let v =

2

4
a
b
c

3

5, then for any input x, Ax is a vector perpendicular to both x,v, and under the Euclidean

metric, its length is the area of the parallelogram made by x,v. But there are two vectors like this! Which
one should we pick? Well, we also have the requirement that x,v, Ax would make a right-handed system
(i.e., det(x,v, Ax) > 0).

In partiular, we see that Av = v⇥ v = 0. So v is an eigenvector for the eigenvalue zero. And since A us
skew-symmetric, we know that all its eigenvalues are purely imaginary, hence the other two eigenvalues are
±i✓ for some real number ✓.

Now let us try to understand eA. Since Av = 0v, we must have f(A)v = f(0)v. Hence eAv = v. So v
is a direction fixed by eA!

Also note that A+ AT = O. Since A and AT = �A commutes, we have eA(eA)T = eAe(A
T) = eA+A

T

=
eO = I. Oops! So eA is an orthogonal matrix! (Also note that since ex is a power series with real coe�cients,
it send real matrices to real matrices, so eA is a real matrix.)

So it is a rotation around v. Since A has eigenvalues 0, i✓,�i✓, therefore eA has eigenvalues 1, ei✓, e�i✓.
So eA is a rotation around v by angle ✓.

Finally, let us figure out what ✓ is. The characteristic polynomial of A is x3 + (a2 + b2 + c2)x. So
✓ =

p
a2 + b2 + c2 = kvk.

In conclusion, if A =

2

4
0 c �b
�c 0 a
b �a 0

3

5, then eA is a rotation around

2

4
a
b
c

3

5 by an angle k

2

4
a
b
c

3

5k. Neat, yes?

,

It is not hard to extrapolate the following results from the arguments above.

Lemma 10.4.2. det(eA) = etraceA.

Proof. If A has eigenvalues �1, . . . ,�n, then det(eA) =
Q

e�i = e
P

�i = etraceA.

Proposition 10.4.3. If A is real skew-symmetric, then eA is a real orthogonal matrix with determinant
one. (I.e., a rotation matrix.) And if A is skew-Hermitian, then eA is unitary.

Proof. DIY.

Proposition 10.4.4. If A is a real orthogonal matrix with determinant 1 (i.e., a rotation matrix), then
A = eB for some real skew-symmetric B.

Proof. Since A is real orthogonal, A = BJB�1 for real B and block diagonal J where each diagonal block of
J is either 1, or a 2⇥ 2 real rotation matrix. (See spectral theorem for normal matrices. This is in my linear

algebra lecture notes last semester.) (Also note that we are pairing up �1 into rotation matrix


�1

�1

�
,

since �1 must have even algebraic multiplicity.)
So after usual simplification tactics, it is enough to show that the statement is true for a single 2⇥ 2 real

rotation matrix. Note that


cos ✓ � sin ✓
sin ✓ cos ✓

�
= e

2

4 �✓
✓

3

5

.
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The exponential function is not only useful for high dimensional rotations. It also serves as a useful way
to “connect” matrices with smooth curves.

Now imagine that an object is rotating. Whatever the object is, at t = 0, the object is in its initial state,
i.e., we can apply the identity matrix I to the initial state. As t increases, the object will be rotated more
and more, in a continuous manner. So at each t, we want to apply some matrix A(t). The matrix A(t)
depends on t continuously. In particular, we have a CURVE of matrices.

Given two orthogonal matrices A,B with determinant one, how to find a smooth curve of invertible
matrices between them? And how to find the “shortest” or “most e�cient” curve between them? (This will
be of interests in physics, robotics, making movies, etc..) Note that we want all intermediate matrices to be
orthogonal as well.

It turns out that, in the set of orthogonal matrices, etA when t grows from 0 to 1 is the “straight curve”
(geodesic) between the identity matrix and the matrix eA. (Here A is real skew-symmetric.) And to draw a
straight curve between rotations eA and eB , it is enough to find a straight curve between I and e�AeB and
then apply eA to the left of everything on this curve, i.e., the desired curve is eAetC where we find a matrix
C such that eC = e�AeB . (Note that maybe AB 6= BA, so usually C 6= B �A.)

Intuitively, you can think of etA as the following. Note that at t = 0, we have etA|t=0 = I and
d
dt (e

tA)|t=0 = A. So this is the curve where we started at the identity matrix, move in the direction of
A while remaining inside the set of orthogonal matrices, and go straight in the same direction forever.

Of course, to rigorously prove this, we would need many high dimensional ( 12 (n
2 � n) dimensional)

geometry. So we leave it as such.
Even though we have no proof that this curve is “straight”, we can still do something with it.

Corollary 10.4.5. The set of real orthogonal matrices has two path-connected components. One component
is the set of all orthogonal matrices with determinant 1, and the other component is the set of all orthogonal
matrices with determinant �1.

Proof. For any real orthogonal matrix eA with determinant one, it is path-connected to the identity matrix
via etA. So the set of all such matrices is path-connected.

For any real orthogonal matrices A,B with determinant minus one, then A�1B is a real orthogonal
matrix with determinant one. Hence there is a path from I to A�1B. By applying A to all matrices on this
curve, we get a continuous path from A to B. So the set of all such matrices is path-connected.

Finally, how to show that these two components are NOT path-connected? Suppose we have a continuous
curve C : [0, 1] ! M where M is the space of all real orthogonal matrices, and C(0) has determinant one
while C(1) has determinant minus one. Note that the determinant map is continuous (because it is a sum of
products of entries). So det �C is a continuous map. But for each t, either det(C(t)) = 1 or det(C(t)) = �1.
So this is a continuous map from [0, 1] to {0, 1}. So this is a continuous curve on the set {0, 1} connecting 0
and 1, which is absurd. So we are done.

If you like, you can think of these two components as the very definition of “positive orientation” and
“negative orientation” in each n-dimensional space.

10.5 Commuting matrices

Matrices are a great source of commutativity. However, most things are not commutative. For example, if
f(x) = 2x+ 1 and g(x) = 3x+ 1, then in general f � g 6= g � f .

Remark 10.5.1. Many modern advances in science is essentially the realization that our world is not
commutative. By dropping the commutativity assumption, things become unintuitive, ingenius and powerful.
For example, general relativity tries to explain various phenomena with the idea of curvature, which is defined
in terms of failure of commutativity.

Suppose we are on a flat world, say R2. Then let A be moving to the north by 1 unit, and let B be moving
to the east by 1 unit, then you can see that AB = BA since you would end up at the same place. But if we
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live on the sphere (earth?), say we stand on the equator. Then you can verify that AB 6= BA. Curvature
happens.

Now consider quantum mechanics. In quantum mechanics, the position operator X is defined as a operator
that sends a function f(x) to the function xf(x). The momentum operator P is defined as an operator that
sends a function to its derivative, say f(x) to f 0(x), assuming that the world is one dimensional for simplicity.
Then you can verify that XP 6= PX, and in fact (PX � XP )f = (xf(x))0 � xf 0(x) = f(x), so we have
PX �XP = I for the identity operator. In physics there will be some extra constant flying around, and this
constant is the reduced Planck constant.

The fact that PX 6= XP is at the heart of the uncertainty principle, i.e., you cannot simultaneously
measure precisely the position AND the velocity of a particle.

Recently there are also surges of quantum stu↵ in other fields. Things such as quantum computing are
ALL essentially done by dropping commutativity assumption (i.e., use matrices instead of numbers). For
example, a recent field in cognitive science is quantum inference. Suppose we are the judge, and we are going
to decide if a suspect is guilty or not. If we first see evidence A, then see evidence B, then we may have
some idea. But if we first see evidence B, then see evidence A, then we may have a di↵erent idea. This does
NOT go well with traditional probability, since Pr(Guilty—A and B) is the same as Pr(Guilty—B and A).
We need some non-commutative model to handle this.

Let us say we are going to genuinly invent quantum speed reading. What would we do? It must be some
non-commutative (and thus non-linear) form of reading. Maybe we look at one word from each line, and
then look at a di↵erent word from each line, and repeat this several times for a single page, and then try to
infer the meaning of the whole page? Maybe if we are proficient enough, hopefully this might yeild a faster
way of reading things (but with non-zero chance of misunderstanding the content...).

So in this section, we aim to explore some commutative and non-commutative behaviors.

10.5.1 Totally dependent commutativity

What commutes with A? Well, A commutes with A. In fact, all powers of A commutes with A. Furthermore,
all polynomials of A commutes with A. Finally, all functions of A (which are essentially polynomials of A if
we fix A) must commutes with A. So here is a super easy result:

Proposition 10.5.2. For any functions f, g, suppose f(A), g(A) are both defined, then f(A)g(A) = g(A)f(A).

Here comes a question: Are these all? In general, then answer is no.

Example 10.5.3. The identity matrix commute with ALL matrices. But are all matrices functions of the
identity matrix? Obviously no. For any function f , we have f(I) = f(1)I, always a multiple of identity. ,

Luckily, there are cases where all matrices that commutes with A are functions of A. For example, if
A has distinct eigenvalues, then AB = BA implies that A,B are simultaneously diagonalizable. WLOG
suppose they are both diagonal. Say A has eigenvalues a1, . . . , an while B has eigenvalues b1, . . . , bn. Since
a1, . . . , an are all distinct, we can simply find any function f such that f(ai) = bi for all i, then f(A) = B.

More generally, we have the following.

Proposition 10.5.4. Suppose A has a single Jordan block for each eigenvalue. (I.e., all geometric multi-
plicity are one.) The AB = BA implies that B = p(A) for some polynomial p.

Proof. Suppose A is a single nilpotent Jordan block. Then AB = BA means entries of B shifted up and
entries of B shifted right shall have the same results. Use this and you can show that we must have

B =

2

66664

a0 a1 . . . an�1

. . .
. . .

...
. . . a1

a0

3

77775
= a0I + a1A+ · · ·+ an�1An�1. We are good.
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Now suppose A is a single � Jordan block. Then A = �I + N for a nilpotent Jordan block N . So
AB = BA implies that (�I + N)B = B(�I + N), and simplification gives NB = BN . So B = p(N) for
some polynomial p. Let q(x) = p(x� �), then B = p(A� �I) = q(A).

Now consider the generic case. By changing basis, I assume that A is in Jordan canonical form, say

A =

2

64
A1

. . .
Ak

3

75. Now we write B into a block matrix in the same manner, and let the (i, j)-block

be Bij . Then AB = BA implies that AiBij = BijAj . But by our assumption, Ai, Aj has no common
eigenvalues! Hence the only solution to the Sylvester’s equation AiX � XAj = 0 is zero. So B is block
diagonal as well.

So B =

2

64
B1

. . .
Bk

3

75, and we have AiBi = BiAi. Since each Ai is a single Jordan block, we see that

Bi = pi(Ai) for some polynomial pi. So our goal is now the following: we want to find a polynomial p(x)
such that p(Ai) = pi(Ai) for all i.

So we want to find p(x) such that p ⌘ pi modulus the killing polynomial of Ai. We are done by the
lemma below.

Lemma 10.5.5. Given polynomials q1, . . . , qk and coprime polynomials p1, . . . , pk, there is a polynomial
p such that p ⌘ pi (mod qi) for all i. (We can in fact require this polynomial to have degree less thanP

deg(pi), and in this case such p is unique.)

Proof. Chinese Remainder Theorem (Sun Zi Ding Li).
Alternatively, say qi has degree di, and let d =

P
di. Consider the space V of all polynomials of degree

less than d, and let Vi be the space of all polynomials of degree less than di.
Now for each i, we have a map Qi : V ! Vi, such that Qi(p) is the remainder of p divided by pi. You

can check that Qi is linear. So we have a linear map Q : V !
Q

Vi. (Here
Q

Vi is the space of (p1, . . . , pk)
where each pi 2 Vi.) It is enough to show that Q is surjective. Note that dim(V ) = d =

P
di =

P
dimVi =

dim
Q

Vi, so it is enough to show that the map is injective.
Finally, if Q(p) = 0, then pi divides p for all i. So

Q
pi(x) divides p(x). But since p 2 V , it has degree

less than d, while
Q

pi(x) has degree exactly
P

di = d. Hence we can only have p = 0. So Q has trivial
kernel and is injective (hence bijective).

Example 10.5.6. The condition here that A had all geometric multiplicity one is the best possible.
Suppose A has geometric multiplicity larger than one for some eigenvalue �. By usual simplification

method, we only need to consider the case where A is made of two nilpotent blocks. Say A =


N1

N2

�

and say N1, N2 are m⇥m and n⇥ n and m  n. Let X be an m⇥ n matrix such that X =
⇥
0 N

⇤
where

0 is m⇥ (n�m) and N is the m⇥m nilpotent Jordan block. Then N1X = XN2, so we have a non-trivial

solution to the Sylvester’s equation. So


I X

I

�
A = A


I X

I

�
, yet any function of A must remain block

diagonal. ,

10.5.2 Totally INdependent commutativity

There is an alterntive case where things always commute. If A,B acts on completely di↵erent things, and
do not interfere with each other, then we should have AB = BA.

Example 10.5.7.


A

I

�
,


I

B

�
always commute, because they act on independent subspaces and they

do not interfere with each other.
For any distinct i, j, k, l, consider the elementary matrix Eij , Ekl, then they commute. Because as row

operations, they do their things independently and do not touch each other.
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Note that in both cases, neither matrix is a function of the other. Consider A =

2

664

1
1

1
1

3

775 and

B =

2

664

1
1

1
1

3

775. Then any f(B) will have the lower right block diagonal, so it is never A, while any

f(A) will have the upper left block diagonal, so it is never B.
However, it is possible to reconcile the totally independent case with the totally dependent case. We can

in fact find C such that A = f(C), B = g(C) for some polynomials f, g. Can you find them?
Also, for another challenge, can you find a matrix C such that f(C) is the elementary matrix E12 and

g(C) is the elementary matrix E34? ,

Graphically, one can see that if A =

2

664

1
1

1
1

3

775 and B =

2

664

1
1

1
1

3

775, then their action lookes like

this:

e1 e2 e3 e4

A

A

B

B

You can sort of see why they commute.

For a totally dependent case, say if A =

2

4
0 1

0 1
0

3

5 and B = A2, then their action is like the following:

e3 e2 e1 0

A

B

A

B

A

You can see that they are the same flow on the same killing chain, except that B is a faster version of A.
Both cases are ultimately described by the fact that we can find C, and A = f(C), B = g(C) for some

function f, g. You may think of this phenomena as such: at some places they do not meet at all, and at
those places where they meet each other, they shall essentially be di↵erent versions of the same thing.

Unfortunately, NOT all commutativities are like this. Read on.

10.5.3 Entangled commutativity and non-commutativity

Totally dependent and independent things commute. But things will be bad if they are “entangled”, a status
between dependent and independent.

Example 10.5.8 (Entangled things might not commute). Consider the 3⇥ 3 elementary matrices E12, E23.
The following to operations are di↵erent:

1. Add second row to first row, then add third row to second row.

2. Add third row to second row, then add second row to first row.

The di↵erence here is that, in the first one E23E12, the original third row did NOT contribute to the
first row. While in the second one E12E23, the original third row DID end up contributing to the first row.

This is also evident in the calculation E12E23 � E23E12 =

2

4
1 1 1

1 1
1

3

5 �

2

4
1 1 1

1 1
1

3

5 =

2

4
0 0 1

0 0
0

3

5. So you

see that the di↵erence is exactly this: whether the third row made it to the first or not.
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Graphically, it looks like the following. Note how they entangle at e2. The order of multiplication
determines whether the two arrow “connect” or “disconnect” at e2. (These graphs are NOT rigorous. They
are just what I do to make things clear to myself.)

e3 e2 e1

E23 E12

The “passing of the baton” thing is usually a bad sign that things are not going to commute. ,

So, are all entangled things bad? Not always. Here is an entanglement that is actually quite nice.

Example 10.5.9 (Parallel things commute). Consider the 3⇥ 3 elementary matrices E12, E13. They com-
mute, because both E12E13 and E13E12 says the same thing: add the bottom two rows to the first row.

Similarly, E13E23 = E23E13, since they are both saying the same thing: add the third row to the top two
rows.

Graphically they look like this:

e3 e2 e1

E13
E12

e3 e2 e1

E23

E13

Note that in these cases, you would NOT be able to find C such that E12 = f(C) and E13 = g(C). ,

Proposition 10.5.10. There is no matrix C such that E12 = f(C) and E13 = g(C).

Proof. Suppose for contradiction that there is such a matrix C. Then if v is an eigenvector for C, it must
also be an eigenvector for f(C) and for g(C).

However, the only common eigenvectors of E12E13 are multiples of e1. So any eigenvector of C must be
a multiple of e1. In particular, C in its Jordan form has a single Jordan block.

Suppose C = XJX�1 = X

2

4
� 1

� 1
�

3

5X�1. Now note that E12 � I has rank one. So X(f(J)� I)X�1

has rank one, and thus f(J) � I has rank one. But f(J) � I must looke like

2

4
a b c

a b
a

3

5, so the only rank

one possibility is

2

4
0 0 c

0 0
0

3

5.

Similarly, E13 � I also has rank one. So by identical logic, g(J) � I is also

2

4
0 0 d

0 0
0

3

5. But this means

Ran(f(J) � I) = Ran(g(J) � I), which, after change of basis, implies that Ran(E12 � I) = Ran(E13 � I),
which is false.

Now, parallel things are not the only non-functional commuting behavior. Here is another, where the
entanglement “balanced out”

Example 10.5.11 (Balancing Entanglement). Consider A =

2

664

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

3

775 and B =

2

664

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

3

775. You

can check that they commute. However, they are non-parallel and there is no polynomial relation.
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(Same proof essentially. Suppose there is a C. Then for the same reason, all eignevalues of C must be
multiples of v1, so under some basis C is just a single Jordan block. Then A�I, B�I are rank 2 and nilpotent,

so under the new basis they look like

2

664

0 0 a b
0 0 0 a
0 0 0 0
0 0 0 0

3

775. Then they have the same range, contradiction.)

Graphically, they look like this:

e2

e1 e4

e3

A B

AB

As you can see, there are two “passing the baton” phenomena, but they balanced out. No matter AB or
BA, e4 is carried over to e1 exactly once. ,

Example 10.5.12. Let us also try to understand the above phenomena from yet another perspective, by

looking at a related phenomena. Consider the nilpotent version A =

2

664

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

775 and B =

2

664

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

3

775,

and then we symmetrize B so that Bs =


0 I
I 0

�
.

Then note that BsAB�1
s

= A, and Bs essentially permute the two Jordan blocks of A. Yet BsAB�1
s

= A
is equivalent to BsA = ABs. So we see that they commute. ,

Now, let us give one last explanation of the commutativity here. Read on.

10.5.4 Kronecker tensor product

Definition 10.5.13. Given two (not necessarily square) matrix A,B, let aij be the (i, j) entry of A. Then
we define their Kronecker tensor product A⌦B to be the matrix whose (i, j) block is aijB.

Proposition 10.5.14. The Kronecker tensor product is bilinear, i.e., (kA) ⌦ B = k(A ⌦ B) = A ⌦ (kB),
and we also have (A1 +A2)⌦B = A1 ⌦B +A2 ⌦B, and A⌦ (B1 +B2) = A⌦B1 +A⌦B2.

Proof. Straightforward verification by definition.

Example 10.5.15. Note that in our last example, A =

2

664

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

3

775 = I⌦X where I is the 2 by 2 identity

matrix and X =


1 1
0 1

�
. We also see that B = X ⌦ I. ,

So from another perspective, the commutativity here can also be explained as the following:

Proposition 10.5.16. (A ⌦ B)(C ⌦D) = (AC) ⌦ (BD). (So, if A,C commute and B,D commute, then
A⌦B,C ⌦D commute.)

To prove this, let us first try to figure out what exactly is A ⌦ B tries to do. Note that there is no size
requirement for A and B. If A is mA ⇥ nA and B is mB ⇥ nB , then A⌦B is (mAmB)⇥ (nAnB).

In particular, for two vectors v 2 Cm and w 2 Cn, then v ⌦w is 1⇥ (mn), hence it is a vector in Cmn.
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Example 10.5.17. Suppose m = n = 3. Then e1 ⌦ e1 =

2

6664

1
0
...
0

3

7775
, and e1 ⌦ e2 =

2

666664

0
1
0
...
0

3

777775
, while e2 ⌦ e1 =

2

6666666664

0
0
0
1
0
...
0

3

7777777775

.

In general, ei ⌦ ej is the (3i� 3 + j)-th standard basis vector of C9.
Note that NOT all vectors in Cmn are of the form v ⌦w. For example, e1 ⌦ e1 + e2 ⌦ e2 will have no

such representation. Note that ei ⌦ ej form a basis. You may think of Cmn with this basis as “the space
of matrices”, and for each element

P
aijei ⌦ ej , you can make a matrix A whose (i, j) entry is aij . Then

as far as addition and scalar multiplication go, it works as expected. Now v ⌦w corresponds to the matrix
vwT for any v,w, so its matrix has rank one, while e1 ⌦ e1 + e2 ⌦ e2 corresponds to a matrix of rank two,
so it is never vwT for any v,w. ,

Lemma 10.5.18. (v ⌦B)w = v ⌦ (Bw).

Proof. (v ⌦B)w =

2

64
v1B
...

vmB

3

75w =

2

64
v1Bw

...
vmBw

3

75 = v ⌦ (Bw).

Proposition 10.5.19. (A⌦B)(v ⌦w) = (Av)⌦ (Bw).

Proof. Mostly by direct computation, which you can DIY. Here is a slightly (and hopefully) less boring
presentation of the calculations.

Note that we have the identity
⇥
A1 A2

⇤
⌦B =

⇥
A1 ⌦B A2 ⌦B

⇤
just by definition of this block matrix.

So if Aei = ai, i.e., A =
⇥
a1 . . . am

⇤
, then A⌦B =

⇥
a1 ⌦B . . . am ⌦B

⇤
.

Now (A ⌦ B)(v ⌦ w) =
⇥
a1 ⌦B . . . am ⌦B

⇤
2

64
v1w
...

vmw

3

75 =
P

(ai ⌦ B)(viw) =
P

(ai) ⌦ (viBw) =

(
P

viai)⌦ (Bw) = (Av)⌦ (Bw).

Note that, if we were to think of v ⌦w as the matrix vwT, then (A⌦ B) acts by mutliplying A on the
left, and multiply BT on the right. In particylar, the matrix for (A⌦B)(v ⌦w) would be AvwTBT.

Corollary 10.5.20. (A⌦B)(C ⌦D) = (AC)⌦ (BD).

Proof. For any basis vector ei ⌦ ej , then ((AC)⌦ (BD))(ei ⌦ ej) = (ACei)⌦ (BDej), while (A⌦B)(C ⌦
D)(ei ⌦ ej) = (A⌦B)((Cei)⌦ (D ⌦ ej)) = (ACei)⌦ (BDej). So the two agree on a basis. They must be
the same map.

Alternatively, we can also prove this using the matrix interpretation of the input
P

xijei ⌦ ej . Let
this corresponds to the matrix X. Then (A ⌦ B)(C ⌦ D) sends this to the matrix A(CXDT)BT, while
(AC) ⌦ (BD) sends this to the matrix (AC)X(BD)T. You can see that the two resulting image are the
same.

So, by picking commuting A,C and commuting B,D, we can create commuting A ⌦ B,C ⌦ D, which
might look surprising before you realize the tensor structure.

But are all commuting matrices like this? The answer is still no. Here is an example of commuting
matrices that cannot be explained by anything we’ve done.
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Example 10.5.21. Consider A =

2

66664

0 1
0 1

0
0 1

0

3

77775
. Any matrix that commute with it must have the

following form

2

66664

a b c d e
a b d

a
f g h i

f h

3

77775
. (Can you prove this?)

Now let B =

2

66664

0 1 1 1 1
0 1 1

0
0 1

0

3

77775
. Then we have AB = BA. Furthermore, they are not functions of some

common matrix.
(Usual proof. A,B has only multiples of e1 as common eigenvectors, so any such C must have only one

Jordan block. Then since both A,B has rank three, f(C), g(C) must also have rank 3. By change of basis
to make C into canonical form, we see that f(C)2, g(C)2 have the same kernel. Which is not the case, as
Ker(A2) 6= Ker(B2).)

Furthermore, there can be no tensor decomposition, since both matrices are 5⇥5 and 5 is a prime number.
And finally, some arrows in the graph would disagree with others.

So while they commute, the situation does not fall into any categories we have discussed about. ,

10.5.5 Simultaneously nice

If AB = BA and one of them has distinct eigenvalues, then they can be simultaneously diagonalized. This
is true. And in general, if AB = BA, then they can be simultaneously triangularized. This is HW.

However, they might not be simultaneously Jordanized. In fact, it might not even be possible to put one
in Jordan canonical form and put another in upper triangular form.

Here let us see some examples, with varying degree of niceness.

Example 10.5.22. Say A =

2

4
0 0 1
0 0 0
0 0 0

3

5 and B =

2

4
0 0 1
0 0 1
0 0 0

3

5. Then AB = BA = 0 and in fact they have

parallel behaviors. (Just consider the corresponding row operations of I +A and I +B.)
Also note that both matrices are nilpotent. They also both have the same Jordan normal form J1 =2

4
0 1 0
0 0 0
0 0 0

3

5, or alternatively J2 =

2

4
0 0 0
0 0 1
0 0 0

3

5. They also have the same kernel. Their range are both

1-dimensional.
Now, under whatever basis, they must not be equal. So if they are simultaneously Jordanized, then one

must be J1 while the other must be J2. But then J1J2 6= J2J1, which contradict the fact that AB = BA.
So they CANNOT be simultaneously Jordanized.

Pick v1 that span Ran(A) and pick v3 such that Av3 = v1. Since Av3 6= 0,and Ker(A) = Ker(B), it
follows that v2 := Bv3 is non-zero. And under the basis v1,v2,v3, we would turn A into uppoer triangular2

4
0 0 1
0 0 0
0 0 0

3

5 and B into its Jordan canonical form J2. ,

Example 10.5.23. Consider C =


0 1
0 0

�
, and A = I ⌦ C and B = S ⌦ C, where S =


1

1

�
. Obviously

AB = BA, and A is already in Jordan normal form.
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Now B2 = 0, so all eigenvalues of B are zero. B has a two dimensional kernel, so it has two Jordan
blocks. Finally, B2 = 0 means each block is 2 by 2. Hence B in fact has the same Jordan normal form as A.

Suppose we want to change basis simultaneously by some matrix T , such that A is still in JNF but B is
upper triangular. If afterwards A is still in Jordan normal form, then A = TAT�1. In particular, TA = AT .

To make the latter process rigorous, let P be the matrix that swaps the second and third row as a
row operation. Then P (X ⌦ Y )P�1 = Y ⌦ X always, as you can verify. Then PAP�1 = C ⌦ I =
0 I

0

�
, and PTP�1 must commute with PAP�1. Hence PTP�1 =


X Y

X

�
for some X,Y . Its inverse is


X�1 �X�1Y X�1

X�1

�
.

Now PBP�1 = C⌦S =


0 S

0

�
. So P (TBT�1)P�1 = (PTP�1)(PBP�1)(PTP�1)�1 =


X Y

X

� 
0 S

0

� 
X�1 �X�1Y X�1

X�1

�
=


0 XSX�1

0

�
. Say XSX�1 =


a b
c d

�
, then we see that TBT�1 = P�1(C ⌦ (XSX�1))P = XSX�1 ⌦C =

2

664

0 a 0 b
0 0

0 c 0 d
0 0

3

775. This is triangular if and only if c = 0.

So pick any X that upper triangularize S, say X =


1 1
1 �1

�
. Then P (TBT�1)P�1 =

2

664

0 0 1 0
0 0 0 �1
0 0 0 0
0 0 0 0

3

775.

As a result, we have TBT�1 = P�1

2

664

0 0 1 0
0 0 0 �1
0 0 0 0
0 0 0 0

3

775P =

2

664

0 1 0 0
0 0 0 0
0 0 0 �1
0 0 0 0

3

775.

So as you can see, you can pick any T = P


X Y
0 X

�
P�1 with any X upper-triangularizing S and take

any Y . These are all possible choices of basis T . ,

Now consider the next example, where we can do this, but there is no control over WHICH matrix get
put into Jordan normal form.

Example 10.5.24. Consider A =

2

4
0 1 0
0 0 1
0 0 0

3

5 and B = A2. We are already good since A is in Jordan

normal form and B is upper triangular.
However, there is no way to put B in Jordan normal form while keeping A upper triangular. Suppose

TAT�1 is upper triangular. Then it is still nilpotent, and its rank is still 2. So TAT�1 =

2

4
0 a b
0 0 c
0 0 0

3

5 for

some unknown a, b, c 2 C. Then TBT�1 = (TAT�1)2 =

2

4
0 0 ac
0 0 0
0 0 0

3

5. So if A is upper triangular, B may

never be in its Jordan normal form. ,

Finally, consider the following example where this is not possible at all. Whenever one is in JNF, the
other cannot be upper triangular.

Example 10.5.25. Let C =

2

4
0 1 0
0 0 1
0 0 0

3

5 and D = C2 be as in the last example. Let A = diag(C,D) and

B = diag(D,C). The intuition is that, in the first block, you cannot Jordanize the D portion withouth
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ruining the upper triangular structure of C, but in the second block, the situation is reversed. So it turned
out that neither can be Jordanized without ruining the other.

Of course, who knows if there is some super weird change of basis that end up achieving the desired
result? To rigorously prove the impossibility, first note that AB = BA = 0. Suppose, for contradiction, that

we find a basis A2u,Au, u,Av, v, w, such that A becomes its Jordan normal form

2

6666664

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775
and

B is upper triangular. Note that since BA = 0, we see that B(A2u) = B(Au) = B(Av) = 0. So the first,
second and forth columns of B must be all 0. Since AB = 0, by looking at A, the second, third and fifth
rows of B are also all 0. Since B is nilpotent and upper triangular, its entries on the diagonal and below the

diagonal are all 0. So B has the form

2

6666664

0 0 ⇤ 0 ⇤ ⇤
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ⇤ ⇤
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775
. Then you can check that B2 = 0. However,

this is not true. In the original basis, B2 = diag(0, C2) = diag(0, D) 6= 0. Contradiction ,
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Part VI

Multilinear Algebra
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Chapter 11

Dual Space

11.1 The Dual Phenomena

Before any formal exploration of tensors, it is important to realize that there are two kinds of vectors. In
some informal sense, I guess we can call them “column vectors” and “row vectors”. But more formally, we
call them “vectors” and “dual vectors”.

Example 11.1.1. Consider the following example. We go to a McDonald store and buy food. I can buy
burgers, wings and cokes. Then my orders are linear combinations of these things, i.e., vectors. Say if I buy

a burgers, b wings and c cokes, I can simply say that I am buying v =

2

4
a
b
c

3

5. So I am working on a vector

space V = R3, where each vector represent a potential order I could make.
Now, after I made my order, I need to pay. The process of “paying” is like a map ↵ : V ! R. Further

more, this map is linear. The total cost of ordering v +w is exactly ↵(v +w) = ↵(v) + ↵(w) and so on.
Yeah, this is a real life linear algebra phenominon. Don’t let any tell you that linear algebra is not related
to everyday life.

So what is this ↵? Well, it is a linear map from R3 to R, so it is a 1 ⇥ 3 matrix, i.e., a row vector
↵ =

⇥
p q r

⇤
. If you think about it, the three coordnates have well-defined meanings: p, q, r are the prices

of a single burger, a single wing and a singel coke. So if we order

2

4
a
b
c

3

5 burgers, wings and cokes, the total

cost is
⇥
p q r

⇤
2

4
a
b
c

3

5 = ap+ bq + cr.

What if we go to a di↵erent fast food store? Then they might have a di↵erent prices for burgers, wings
and cokes, so it will have a di↵erent row vector. Now, let V ⇤ be the space of all 1⇥ 3 row vectors, i.e., the
space of potential prices. Given any order v 2 V and any pricing ↵ 2 V ⇤, the total cost would be ↵(v),
which is the multiplication of a row vector to a column vector.

Now, suppose McDonald gives us options to buy combos! Say Combo A contains 2 burgers plus one

coke, and Combo B contains 1 burger, 2 wings and 2 cokes. Then if I purchase


x
y

�
Combo A’s and Combo

B’s, then it contains a total of

2

4
2 1
0 2
1 2

3

5

x
y

�
burgers, wings and cokes. As you can see, we have a linear map

L, called “counting the ingredients”, that goes from the combo space W = R2 to the food space V = R3.
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Now let us look at the pricing of combos. If the food price are

2

4
p
q
r

3

5 (we write them vertically now for

convenience), then the combo prices for combo A and combo B would make a vector


2 0 1
1 2 2

�2

4
p
q
r

3

5. (I am

assuming that there is no discount.) As you can see, we have a linear map L⇤ that goes from the food price
space V ⇤ to the combo price space W ⇤.

I would like to draw your attention to this phenomena, which is the key to the understanding of dual
spaces:

1. The food space V and the food price space V ⇤ evaluate each other. Given a food vector, you can
evaluate the total cost using a pricing (row) vector. But it also goes the other way: given a pricing
(row) vector, you can use a food vector to get a total cost.

2. Similarly, the combo space W and the combo price space W ⇤ have the same relation.

3. If we are putting foods into combos, it actually gives a map L from the combo space to the food space.
It goes in the counter-intuitive direction. However, in the price spaces, things would go in the intuitive
direction. Putting foods into combos induce a linear map L⇤ from the food price space to the combo
price space.

4. Finally, not only the two maps L,L⇤ goes in the opposite direction, in fact they are transposes of each
other!

,

So the key question is this: what is the meaning of transpose? The above example hopefully gives you
some idea about this. We now start the formal process of building these things.

Definition 11.1.2. Given a vector space V , its dual space V ⇤ is the space of all linear maps from V to R
(or to C if we were doing complex vector spaces).

People call elements of V ⇤ many things. Some popular choices are “dual vectors” and “linear functionals”.

Intuitively, a dual vector is something used to evaluate vectors. And usually, despite its abstract con-
struction, dual vectors shall turn out to be more intuitive than vectors. In fact, we all actually udnerstand
dual vectors way before we understand vectors. Let us see some examples.

Example 11.1.3. Consider R3. Given a vector v 2 R3, we sometimes say we want to take its x-coordinates.
But what is “taking the x-coordinate”? It is in fact a linear map x : R3 ! R. As you can see, taking
coordinates are dual vectors.

When we first encouter vectors in high school, we usually start with coordinates. Why? Because dual
vectors are the only way for us to understant these vectors. If I just say “we have a generic vector v”, then

you might feel that it is a bit abstract. But if I say “look at the vector

2

4
1
2
3

3

5”, now you feel a little better.

By using three dual vectors to “evaluate” and “locate” a vector, we now feel a little more comfortable. ,

Example 11.1.4. This is an informal example. Let X be the space of all students. Then what should a
“dual student” be? It should be an evaluation of students. How can we evaluate students? Well, through
exams of course. So the dual student space X⇤ should be the space of all exams. ,

Here are several rather important examples.

Example 11.1.5. Let V be the space of all real functions. Then for any real number a 2 R, we can use
this to evaluate functions at a, i.e., we send function f to f(a).
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Let us write this map as eva : V ! R. Then eva(f + g) = (f + g)(a) = f(a) + g(a) = eva(f) + eva(g),
and eva(kf) = (kf)(a) = keva(f). Well, this is linear! (Be careful here. a 7! f(a) is not linear unless f is
linear itself. But f 7! f(a) is always linear, even if f is non-linear.)

So for each a 2 R, the corresponding evaluation map eva is a dual vector (or dual functions, or “function-
als”) in V ⇤. These are “local” evaluations of functions, since we only care about the value of the function
at a single point. Similarly, we have other local evaluations. For example, the map D|a : f 7! f 0(a) is also a
dual vector, and it is also a local evaluation. ,

Example 11.1.6. Let V be the space of all real integrable functions. What is integration?

Given any a, b 2 R, consider the map
R
b

a
: V ! R. Well, it is easy to verify that this is linear! So the

definite integral
R
b

a
is an element of V ⇤. This is a more “global” evaluation, in the sense that it ignores

local information. Indeed, if we change the value of f at a single point, then it shall have NO e↵ect in these
integral evaluations. ,

Remark 11.1.7. (This remark is optional.) What is an indefinite integral?
If we were to study derivatives from the prespectives of linear algebra, we usually just think of it as a

linear map, sending functions to functions. However, it is a bad idea to do so for integrations.
For example, the indefinite integral

R
x dx is NOT a function. It is 1

2x
2 + C for some undetermined

constant C, and this undetermined constant means the result is NOT a well-defined element of the function
space!

The source of trouble is this: given a function f , we need only one input a to evaluate its derivative into a

real number f 0(a). But we need two inputs a, b to evaluate its anti-derivative into a real number
R
b

a
f(x) dx.

Furthermore, it might be better to NOT think of a, b as two numbers, but rather think of it as the closed
interval [a, b], a subset of R. For multivariable calculus, integration would be done as

R
S
f(x, y, z) dx dy dz

where S is some subset of R3.
In particular, an indefinite integral

R
is a pairing. Given a domain S ✓ Rn and a function f , it shall

send them to a number
R
S
f(x) dx. With more advanced tools from algebraic topology, we can in fact make

the “space of domains” into a vector space, then
R

is in fact a bilinear map (the evaluation process), and
“domains” and “functions” are duals to each other.

Example 11.1.8. So far, we have seen two kinds of evaluations of functions, a local one and a global one.
They have vastly di↵erent behaviors and they measure very di↵erent aspects of a function. How can they
be so di↵erent? Is there a way to think of both in a single perspective?

There indeed is one. Let X be a random real number for some probability distribution. Then for each
function f 2 V , f(X) is also a random real number for some probability distribution. Then one can look at
the expected value (i.e., “average value”) E(f(X)) as a linear evaluation of f . Let us call this evX .

If X is a random number with 100% chance to have value a 2 R, then E(f(X)) = f(a). So evX is
exactly the local evaluation eva. On the other hand, let X be a random number uniformly distributed in the
closed interval [a, b]. (Uniformly distributed means each number happen with the same probability.) Then

E(f(X)) = 1
b�a

R
b

a
f(x) dx. So evX is a global evaluation.

In this sense, we can have the following funny interpretation of a random real variable: it is simply an
element of V ⇤. Some subjects these days require “non-classical” probability theory, like quantum computa-
tions and such. And thinking of random variables as elements in a dual space is a very important idea to
have. ,

Here is one last example, and it is pretty imporant. Say the dual of V is V ⇤. What is the dual of V ⇤?

Example 11.1.9. Given ↵ 2 V ⇤, then it is a linear map from V to R. In particular, given any v 2 V , we
can form an evaluation map evv that sends each ↵ to ↵(v). In this sense, each v corresponds to an element
of (V ⇤)⇤. Wow!

To be more elaborate, we now think of the evaluation process ev as a two-input function, ev(�)(�). By
put in some v 2 V and some ↵ 2 V ⇤, we have a real number evv(↵) = ↵(v). If we only put in a dual
vector ↵ but leave the vector slot open, then we have ev(�)(↵). It is waiting to eat a vector and then spit
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out a number, i.e., it is a map from V to R, and in fact it is easy to see that it is exactly ↵ itself (because
evv(↵) = ↵(v)).

But if we only put in a vector v but leave the dual vector slot open, then we are left with evv(�), and it
is waiting to eat a dual vector and spit out a number. I.e., it is a map from V ⇤ to R. So this is an element
of (V ⇤)⇤. We simply write evv for evv(�).

So, v is an element of V while evv is an element of (V ⇤)⇤. So we in fact have a map ev : V ! (V ⇤)⇤ that
sends v to evv.

So, many elements of (V ⇤)⇤ are in correspondence of elements of V as some local evaluation. Are these
all? ,

Lemma 11.1.10. If dimV = n, then dimV ⇤ = n.

Proof. The cheap way is to pick a basis, and pretent V is Rn. Then it is the space of n⇥ 1 column vectors.
Then the space V ⇤ is the space of linear maps from Rn to R, so it is the space of 1 ⇥ n row vectors, and
immediately dimV ⇤ = n.

Proposition 11.1.11. If V is finite dimensional, then ev : V ! (V ⇤)⇤ is an isomorphism of vector spaces
(i.e., it is a linear bijection).

Proof. If V is n dimensional, then its dual V ⇤ is n dimensional. But applying this logic again, if V ⇤ is n
dimensional, then its dual is also n dimensional. So the domain and codomain of ev have the same dimension.
So to show that it is a linear bijection, it is enough to show that it is a linear injection.

The verification that it is linear is routine so we skip it here (but do this yourself). Now suppose
v 2 Ker(ev). Then evv is the zero map from V ⇤ to R. This means evv(↵) = 0 for all ↵, i.e., ↵(v) = 0 for all
↵.

By picking basis for V , we may assume that V = Rn. Recall that each coordinate is a dual vector in V ⇤.
So ↵(v) = 0 for all ↵ implies that all coordinates of v are zero, so v = 0.

To paint a complete picture, if V = Rn is the space of column vectors, then V ⇤ is the space of row
vectors, and then (V ⇤)⇤ is the space of column vectors again. In some sense, this is similar to the fact that
taking transpose twice would go back to the original matrix.

Example 11.1.12. As you can see, the above proofs are essentially built upon the fact that dimV = dimV ⇤.
Unfortunately, this is only true for finite dimensional spaces. For infinite dimensional spaces, dimV ⇤ is always
larger than dimV . (And then (V ⇤)⇤ would be even bigger, so we would have V 6= (V ⇤)⇤.)

Let us see an example. Let V be the space of finite sequences, i.e., a =

2

64
a1
a2
...

3

75 such that after finitely

many terms, all later terms are zero. Then for each INFINITE sequence b⇤ =
⇥
b1 b2 . . .

⇤
, we can think

of it as a linear map a 7!
P

aibi from V to R. Note that the sum is always defined, because it is in fact a
finite sum, as only finitely many ai are non-zero.

We see that all infinite sequences are in V ⇤! In fact that is everything. Informally, we can say that the
dual to the space of finite sequences is the space of all infinite sequences.

(If you have the extra knowledge, you can further verify that V is coutable-dimensional while V ⇤, the
space of all infinite sequences, is uncountable-dimensional.) ,

Now we usually do computations by picking a basis. If we have a basis for V , we would like to pick a
“corresponding” basis for V ⇤ which would hopefully make my computations easier.

Definition 11.1.13. Given a basis v1, . . . ,vn in V , then we say a basis ↵1, . . . ,↵n for V ⇤ is its dual basis
if ↵i(vj) = �ij. (Here as usual, �ij is 1 if i = j, and 0 if i 6= j.)

Example 11.1.14. Let V be the space of polynomials of degree at most 2. If we pick basis 1, x, x2 for V ,
then what is the dual basis?

The dual basis are ↵ : p 7! p(0), � : p 7! p0(0) and � : p 7! 1
2!p

00(0). I shall leave the verification for you.
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By the way, hopefully you can see the pattern here: they are Taylor expansion coe�cients at zero. A
polynomial is simply a function whose Taylor expansion terminates after finitely many steps. ,

“Dual basis” looks like something new, but it is actually quite familiar to us. ↵i(v) simply means “the
vi-coordinate of v”. For example, if v = a1v1 + · · · + anvn, you can easily see that ↵i(v) = ai. So given a
basis, its dual basis are simply the “coordinates” under this basis.

Example 11.1.15. If we use the standard basis for R3, then its dual basis vectors are “x-coordinate”,
“y-coordinate” and “z-coordinate” maps.

In general, fix the basis e1, . . . , en for Rn. Then its dual basis is obviously eT1 , . . . , e
T
n
in the space of row

vectors (Rn)⇤. These corresponds to taking the corresponding coordinates, as always.

But what if the basis are ugly? Now consider the basis

2

4
1
0
0

3

5 ,

2

4
1
1
0

3

5 ,

2

4
1
1
1

3

5. You may verify that its dual

basis is in fact
⇥
1 �1 0

⇤
,
⇥
0 1 �1

⇤
,
⇥
0 0 1

⇤
. Look, if we put the basis and dual basis into matrices,

we see that
⇥
v1 v2 v3

⇤
=

2

4
1 1 1
0 1 1
0 0 1

3

5 while the dual basis is

2

4
↵1

↵2

↵3

3

5 =

2

4
1 �1 0
0 1 �1
0 0 1

3

5! Wow, coincidence?

Furthermore, note that in the last two examples, v1 are the same, while ↵1 are di↵erent! This is a very
important thing to remember: ↵i does NOT depend on vi. In fact, the opposite is true (which we shall
prove below): ↵i depends completely on v1, . . . ,vi�1,vi+1, . . . ,vn. (I.e., anything but vi.) ,

Proposition 11.1.16. If v1, . . . ,vn form a basis in Cn, let ↵1, . . . ,↵n be the corresponding dual basis in

the row vector space (Cn)⇤. Then the complex matrices A =
⇥
v1 . . . vn

⇤
and B =

2

64
↵1
...
↵n

3

75 are inverse of

each other.

Proof. The block matrix multiplication shows BA =

2

64
↵1v1 . . . ↵1vn

...
. . .

...
↵nv1 . . . ↵nvn

3

75. Since ↵i(vj) = �ij , we see that

BA = I.

So finding the dual basis is exactly the same as finding inverse. In particular, given a basis v1, . . . ,vn,
say the dual basis is ↵1, . . . ,↵n. What determines ↵1? Well, let A =

⇥
v1 . . . vn

⇤
, then we are wondering

about what determines the first ROW of A�1. Look back at your linear algebra one notes, you shall realize
that the first row of A�1 is exactly determined by v2, . . . ,vn, i.e., all columns but v1.

(In fact, if you were in my linear algebra class, you can even see the geometric relation. Say we are over
R3, and we use the Euclidean length. Then v2,v3 form a parallelogram in the space. And ↵1 (flipped into
a column vector) is in the perpendicular direction to this parallelogram, while its length is the same as the
area of the parallelogram. In general, ↵1 is perpendicular to the hyperplane spanned by v2, . . . ,vn, and its
length is the (n� 1)-dim volumn of the (n� 1)-dim parallelotope made of v2, . . . ,vn.)

Example 11.1.17 (Polynomial interpolation). Suppose I want to find all polynomials p such that p(1) = a,
p(2) = b and p0(1) = c for some given constants a, b, c. What should I do?

The central ideal of linear algebra is the reduction to zero. Let us first find all solutions to the requirements
p(1) = p0(1) = p(2) = 0. Well, this is not so bad. p(1) = p(2) = 0 means we have roots at 1 and 2. So p
must have factors (x� 1) and (x� 2). Furthermore, p0(1) = 0 means 1 is in fact a “double roots” for p, so
(x� 1)2 must be a factor of p. It is easy to verify that these are all necessary and su�cient conditions. So
p satisfies p(1) = 0, p0(1) = 0 and p(2) = 0 if and only if p is a multiple of (x � 1)2(x � 2). So in this case,
all the solutions are q(x)(x� 1)2(x� 2) for an arbitrary polynomial q.

Now back to our problem. We do not know how to find a polynomial p such that p(1) = a, p(2) = b and
p0(1) = c. But any two solutions p1, p2 must have (p1�p2)(1) = (p1�p2)0(1) = (p1�p2)(2) = 0. In particular,

345



if we have found one solution p0, then we know that all solutions must be p0(x) + q(x)(x� 1)2(x� 2) for an
arbitrary polynomial q.

So how to locate our polynomial p0? Well, since we are only interested “modulus of (x� 1)2(x� 2)”, it
is enough to search for solutions among polynomials of degree at most 2. Let V be the space of polynomials
of degree at most 2. Note that dimV = 3.

Our requirements are essentially dual vectors. Let ↵1 be the dual vector in V ⇤ that sends p to p(1), and
let ↵2 be the dual vector in V ⇤ that sends p to p(2), and finally let ↵3 be the dual vector in V ⇤ that sends
p to p0(1). We want to find p 2 V such that ↵1(p),↵2(p),↵3(p) gives us the desired values. Or in vector

language, we want to find p such that

2

4
↵1(p)
↵2(p)
↵3(p)

3

5 =

2

4
a
b
c

3

5. How to do that?

I think we have had this investigation before. What we did was to notice that L : V ! R3 via p 7!2

4
↵1(p)
↵2(p)
↵3(p)

3

5 is a linear map from a 3-dimensional space to a 3-dimensional space, and it is easy to verify that

it is injective (since p(1) = p0(1) = p(2) = 0 implies p must be a multiple of a degree 3 polynomial). So it
is bijective, and thus a solution exists. But WAIT! This only shows the existence of a solution. It does not
FIND the actual solution!

What do we do to FIND the actual solution? Well, let us start some day-dreaming. Suppose we have
magically found a polynomial p1, p2, p3 such that L sends them to the standard basis e1, e2, e3. Then we

immediately see that ap1 + bp2 + cp3 would be sent to ae1 + be2 + ce3 =

2

4
a
b
c

3

5. YES!

What are these p1, p2, p3? To be sent to e1, e2, e3, they need to satisfy the condition of

2

4
↵1(p1) ↵1(p2) ↵1(p3)
↵2(p1) ↵2(p2) ↵2(p3)
↵3(p1) ↵3(p2) ↵3(p3)

3

5 =

I, the identity matrix. In particular, you can see that this requires ↵i(pj) = �ij . So ↵1,↵2,↵3 2 V ⇤ should
be a dual basis to p1, p2, p3 2 V !

(Optional paragraph.) Indeed, if ↵1,↵2,↵3 2 V ⇤ is a dual basis to p1, p2, p3 2 V , then

2

4
↵1(p1) ↵1(p2) ↵1(p3)
↵2(p1) ↵2(p2) ↵2(p3)
↵3(p1) ↵3(p2) ↵3(p3)

3

5 =

I, the identity matrix. Then ap1 + bp2 + cp3 would evaluate into
2

4
↵1(ap1 + bp2 + cp3)
↵2(ap1 + bp2 + cp3)
↵3(ap1 + bp2 + cp3)

3

5 =

2

4
a↵1(p1) + b↵1(p2) + c↵1(p3)
a↵2(p1) + b↵2(p2) + c↵2(p3)
a↵3(p1) + b↵3(p2) + c↵3(p3)

3

5 =

2

4
↵1(p1) ↵1(p2) ↵1(p3)
↵2(p1) ↵2(p2) ↵2(p3)
↵3(p1) ↵3(p2) ↵3(p3)

3

5

2

4
a
b
c

3

5 =

2

4
a
b
c

3

5 .

So let me summarize. How to find p such that p(1) = a, p(2) = b and p0(1) = c? All we need to do is to
find a basis p1, p2, p3 2 V whose dual basis is ↵1 : p 7! p(1),↵2 : p 7! p(2),↵3 : p 7! p0(1).

How to find the basis p1, p2, p3? We start from any easy basis, say 1, x, x2 for V , then we can think
of V as the space of column vectors R3 and V ⇤ as the corresponding space of row vectors. Then the row-
vector coordinates for ↵1 is

⇥
↵1(1) ↵1(x) ↵1(x2)

⇤
=

⇥
1 1 1

⇤
. Similarly, we can calculate the row-vector

coordinates for ↵2 and ↵3, and we get
⇥
1 2 4

⇤
,
⇥
0 1 2

⇤
. So

2

4
↵1

↵2

↵3

3

5 =

2

4
1 1 1
1 2 4
0 1 2

3

5. But we should have

⇥
p1 p2 p3

⇤
=

2

4
↵1

↵2

↵3

3

5
�1

=

2

4
1 1 1
1 2 4
0 1 2

3

5
�1

=

2

4
0 1 �2
2 �2 3
�1 1 �1

3

5 .

So p1(x) = 2x� x2, p2(x) = 1� 2x+ x2, p3(x) = �2 + 3x� x2. You may verify that indeed ↵i(pj) = �ij .
So the all solutions are [(�a+ b� c)x2 + (2a� 2b+ 3c)x+ b� 2c] + q(x)(x� 1)2(x� 2) for an arbitrary

polynomial q(x).
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Our example is long, but it is mostly explanatory. The actual solution process is very short: first identify
↵1,↵2,↵3, then write them in coordinates and put them into a matrix. Next find inverse, and read the
columns, and we get p1, p2, p3, and we are done. ,

Remark 11.1.18. It is easy to see from these discussion that, for any basis ↵1, . . . ,↵n 2 V ⇤, then we can
find a unique “dual basis” v1, . . . ,vn 2 V . To do this, simply put the rows ↵1, . . . ,↵n into a matrix, take
inverse, and look at the columns.

This gives rise to a very nice intuition about dual vectors: what is the meaning of a dual vector ↵ 2 V ⇤?
↵ is always “taking a coordinate” under some basis of V . All dual vectors are coordinate maps.

11.2 Dual Maps

Recall the starting example from last time. We are combining foods into combos. And this induces two
maps, one is the “counting map” L from the combo space V to the food space W , and one is the “combining
map” L⇤ from the food price space V ⇤ to the combo price space W ⇤. Surprisingly, the corresponding forms
look like transposes of each other!

And say we are purchasing a meal from a store where the food price is ↵ 2 V ⇤. We can buy a combo
w 2 W ⇤ (again without discount). Then we can check out via the combo price L⇤(↵)(w), and we can also
check out via the food price ↵(Lw).

Proposition 11.2.1. For any linear map L : V ! W , then ↵ 7! ↵ � L is a linear map from W ⇤ to V ⇤.

Proof. For any ↵ 2 W ⇤ and v 2 V , since L : V ! W and ↵ : W ! R (or C if we were over complex spaces)
are well-defined linear maps, therefore their composition ↵ � L(v) is a well-defined linear map from V to R,
i.e., ↵ � L is an element of V ⇤.

Definition 11.2.2. For any linear map L : V ! W , we define its dual map to be the linear map L⇤ : W ⇤ !
V ⇤ such that L⇤(↵) = ↵ � L.

It is unfortunate that it shares the same notation as adjoints (conjugate transposes). But I assure you that
this is the standard notation. The two are related, but not to be confused. Sometimes standard notations
are confusing and not too smart, and we have to live with it because everyone else is using it. From now on,
we shall use A⇤ to denote the dual of A, and only use Aad to denote the adjoint of A.

(Usually you can tell the di↵erence between a dual and an adjoint by looking at the domain and codomain.
Given a map between inner product spaces L : V ! W , the its adjoint is Lad : W ! V while its dual is
L⇤ : W ⇤ ! V ⇤.)

Graphically, this process looks like this:

V W

R

L

L
⇤
↵

↵
L

⇤

As you can see, L sends vectors to vectors, while L⇤ sends arrows to arrows. And while L would “push
forward” vectors from V to W , the map L⇤ would “pull back” dual vectors from W ⇤ to V ⇤.

Example 11.2.3. The “pushforward” and “pullback” phenomena is very common. Here are some real life
examples.

Say X is the set of all people, and Y is the set of all jobs, and we have an assignment map f : X ! Y
that sends people to jobs.

Now what should Y ⇤ be? What is an evaluation of jobs? The salary. Consider ↵ 2 Y ⇤ which is a map
from Y to R that send jobs to salaries. Now if all jobs now have well-defined salaries, then immediately for
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each person, we can first find a job via f , and the look at the salary. So this map ↵ � f is evaluation people
to their personal income.

This is exactly what the dual map f⇤ : Y ⇤ ! X⇤ should do: pull back evaluations of jobs to evaluations
of people. In particular, f⇤ would send the salary of a job ↵ to the income of a person ↵ � f .

The slogan is the following: If you push stu↵ forward, then you are pulling back evaluations of the stu↵.
For another non-rigorous example of some people’s parenting style: if parents push their world view onto
their children, then they can pull back achievements o↵ of their children. (“If the child did what I said, and
then achieved something, then it is my achievement!”) (Achievements can be considered as an evaluation of
one’s world view.) ,

The important thing to keep in mind is that L and L⇤ are essentially the same process. In some sense,
you can think of L as a matrix that is going to multiply some column vector, i.e., the process v 7! Lv. And
you can think of L⇤ as the very same matrix but it is now going to multiply a row vector, i.e., the process
↵ 7! ↵L where ↵ 2 V ⇤ is the row vector.

However, even though it might be tempted to use the same matrix to represent both, they have drastically
di↵erent behaviors. L wants to multiply (column) vectors to its right, while L⇤ wants to multply (row) vectors
to its left! The direction of multiplication is di↵erent!

In particular, (L1L2)v would have L2 happening first, and then L1. But ↵(L1L2) will have L1 multiplied
to ↵ first, and then L2, so the order of multiplication is di↵erent! (In particular, you immediately see that
(L1L2)⇤ = L⇤

2L
⇤
1.)

Proposition 11.2.4. (AB)⇤ = B⇤A⇤.

Proof. (AB)⇤(↵) = ↵ � (AB) = (↵ � A) � B = (A⇤(↵)) � B = B⇤(A⇤(↵)) = (B⇤A⇤)↵. Be ware of the
parenthesis. The only tools we used here are the law of associativity for function composition, and the
definition of a dual map.

What if we want to write the linear map ↵ 7! ↵L the usual way, as L⇤(↵) where we treat ↵ as a (column)
vector? To make a row vector ↵ into a column vector, we need to take transpose. Then the process ↵ 7! ↵L
now looks like ↵T 7! (↵L)T = LT↵T.

So as it turns out, if we FORCE the notation as L⇤(↵) (the “correct” order) to denote the process ↵L,
then the resulting matrix for L⇤ would be the transpose of L. Let us now establish these claims rigorously.

Proposition 11.2.5. If the matrix for L : V ! W under some basis is A, then the matrix for L⇤ : W ⇤ ! V ⇤

under the dual basis is AT. (Even over complex vector spaces!)

Proof. Pick basis for V,W and dual basis for V ⇤,W ⇤, then we can pretend that V,W are Cn,Cm with the
standard basis and V ⇤,W ⇤ are the space of row vectors, with basis eT1 , . . . , e

T
n
and basis eT1 , . . . , e

T
m
.

Now the (i, j)-entry of L is the i-th coordinate of L(ej) = Aej , so it is eT
i
Lej . While the (i, j)-entry of

L is the i-th coordinate of L⇤(eT
j
) = eT

j
A, so it is eT

j
Aei. Now it is clear that the (i, j)-entry of L is exactly

the (j, i)-entry of L⇤. So the matrix for L⇤ is AT.

A super important distinction here. The “dual” operation (or “transpose”) is linear, i.e., (kL)⇤ = kL⇤

for all complex k, while taking adjoint is NOT complex linear, i.e., (kL)⇤ad = kLad.
Since we have now established the relation between “dual” and “transpose”, we technically do not need

anything below. However, I present them here nonetheless as an approach that is independent of basis.
After all, the “proper” way to do things is NOT to think of dual as transpose. Rather, we should do the
opposite. We should think of transpose (basis dependent concept) as a representation of the dual process
(basis independent concept). All properties of transpose should be derived from properties of dual, not the
other way around.

(Also, hopefully this shall explain some of the mysterious phenomena surrounding transpose. Why would
A,AT have the same rank? Why must they have the same Jordan form? Why must f(AT) = f(A)T? The
following perspective would hopefully make these things less “mysterious” and more “obvious”.)
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Proposition 11.2.6. (Note that for fixed vector spaces V,W , all linear maps from V to W would form
a vector space. We denote this as L(V,W ).) For finite dimensional spaces V,W , the “dual” operator
(�)⇤ : L(V,W ) ! L(W ⇤, V ⇤) is a linear isomorphism.

Proof. The domain and codomain of (�)⇤ both have dimension (dimV )(dimW ), so we only need to establish
injectivity.

Injectivity requires only the lemma below.

Lemma 11.2.7. For any linear map L between finite dimensional spaces, L = 0 if and only if L⇤ = 0.

Proof. L = 0 if and only if Lv = 0 for all v 2 V ,
if and only if ↵Lv = 0 for all v 2 V,↵ 2 V ⇤,
if and only if (L⇤(↵))(v) = 0 for all v 2 V,↵ 2 V ⇤,
if and only if L⇤(↵) = 0 for all ↵ 2 V ⇤,
if and only if L⇤ = 0.

Before we move on, here is a cute characterization of injectivity and surjectivity for linear maps. The
content is not that useful, but the perspective is super interesting.

Lemma 11.2.8 (Dual vector knows the di↵erence). In a vector space V , let W be any proper subspace (i.e.,
W 6= V ) and pick any v 2 V �W . Then we can find ↵ 2 V ⇤ such that ↵(W ) = 0 and ↵(v) = 1.

Proof. (If you are a di↵erent person form the rest of the class, then somewhere there MUST BE an exam
that you will score 100/100 while all your classmates get zero....)

It is harmless to make W larger. So WLOG we can assume that W has dimension dimV � 1, and thus
W and v would span V .

For each u 2 V , note that W,v spans V , so u has a unique decomposition u = w+ kv for some w 2 W
and scalar k. We define ↵(u) = k. I claim that this is linear.

Indeed, if u1 = w1 + k1v and u2 = w2 + k2v, then u1 + u2 = (w1 +w2) + (k1 + k2)v, so ↵(u1 + u2) =
↵(u1)+↵(u2). Similarly, if u = w+kv, then au = aw+akv, so ↵(au) = a↵(u). So ↵ is a linear map from
V to R (or C). So ↵ 2 V .

Now we can easily verify that ↵(W ) = 0 while ↵(v) = 1.

Now we establish the following perspective: injectivity and surjectivity is really about the law of can-
cellations. Recall that in arithmetic calculations, for any non-zero a 2 R and any b, c 2 R, we know that
ab = ac implies b = c, and ba = ca implies b = c. This is called the law of cancellation, and I’m sure you all
love this. Sadly, this is false for matrices. In general, AB = AC might NOT imply B = C, and BA = CA
might NOT imply B = C, unless A is invertible.

Here we show that injectivity is the same as left-cancellation, and surjectivity is the same as right-
cancellation.

Lemma 11.2.9 (Categorical characterization of injectivity and surjectivity). A linear map L is injective if
and only if LT1 = LT2 implies T1 = T2 for any linear maps T1, T2. (Assuming that domains and codomains
match so that everything is well-defined.)

Similarly, A linear map L is surjective if and only if T1L = T2L implies T1 = T2 for any linear maps
T1, T2. (Assuming that domains and codomains match so that everything is well-defined.)

Intuitively, injectivity is defined as Lv = Lw implies v = w, which is already a special case of left-
cancellation. For the surjectivity portion, note that T1L = T2L means T1, T2 agrees on Ran(L). But they
could potentially disagree outside of Ran(L). So this implies T1 = T2 if and only if there is NO “outside”,
i.e., Ran(L) is the whole space.

Proof. Suppose L is injective, and LT1 = LT2. Then T1, T2 have common domain. And for any v in this
common domain, L(T1v) = L(T2v). By injectivity of L, this means T1v = T2v. But this v is arbitrary, so
T1, T2 are the same linear map.
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Conversly, suppose LT1 = LT2 implies T1 = T2 for any linear maps T1, T2. We want to show that L is
injective. (Pick any v,w, assuming Lv = Lw, we want to show that v = w.)

Then for any v,w in the domain V of L, suppose L(v) = L(w). Set T1 : C ! V such that T1(k) = kv, and
set T2 : C ! V such that T2(k) = kw. We then have LT1(k) = L(kv) = kL(v) = kL(w) = L(kw) = LT2(k),
and this is true for all k. So LT1 = LT2 as linear maps. So T1 = T2 as linear maps. So v = w.

The surjectivity portion is similar. Suppse L is surjective and T1L = T2L. Then for any v in the codomain
of L (which is also the common domain of T1 and T2), then v = Lw for some w. So T1Lw = T2Lw, which
implies that T1v = T2v. But since v is arbitrary, the two linear maps T1, T2 are the same.

Conversely, suppose L is NOT surjective. Then we shall show that T1L = T2L might not imply T1 = T2.
Pick any v /2 Ran(L), then we can find ↵ such that ↵(v) = 1 and ↵(Ran(L)) = 0.

Now clearly ↵ 6= 2↵. However, ↵(L(v)) 2 ↵(Ran(L)) = 0, and 2↵(L(v)) 2 ↵(Ran(L)) = 0, so ↵ � L =
(2↵) � L. So T1L = T2L cannot imply T1 = T2 for any linear maps T1, T2.

As you can see here, the di↵erence between injectivity and surjectivity lies in the “order of multiplication”.
I.e., whether it is LEFT cancellation or RIGHT cancellation. So if something, say the “dual” process, would
switch up the order of multiplication, then it would swap the two concepts.

Proposition 11.2.10. L is injective if and only if L⇤ is surjective, and L is surjective if and only if L⇤ is
injective. (The transpose version is obvious.)

Proof. L is injective if and only if LT1 = LT2 implies T1 = T2 for any linear maps T1, T2,
if and only if (LT1)⇤ = (LT2)⇤ implies T ⇤

1 = T ⇤
2 for any linear maps T ⇤

1 , T
⇤
2 ,

if and only if T ⇤
1L

⇤ = T ⇤
2L

⇤ implies T ⇤
1 = T ⇤

2 for any linear maps T ⇤
1 , T

⇤
2 ,

if and only if L⇤ is surjective.
The other one is identical.

Corollary 11.2.11. For any linear map L, dimRan(L) = dimRan(L⇤). (The basis-dependent expression
is that A and AT have the same rank.)

Proof. We decompose L : V ! W into two parts, the “essense of L” which is Le : V ! Ran(L). This is
essentially just L, except that we throw away the untouched portion of the codomain. Let ◆ : Ran(L) ! W
be the inclusion map. Then L = ◆ � Le where ◆ is injective and Le is surjective.

Now we take dual. Then L⇤ = L⇤
e
� ◆⇤, where L⇤

e
is injective and ◆⇤ is surjective. Then dimRan(L⇤) =

dimRan(L⇤
e
� ◆⇤) = dimRan(◆⇤), since injective linear map do not change dimensions. Finally, note that ◆⇤

is a surjective map from W ⇤ to Ran(L)⇤, so dimRan(◆⇤) = dimRan(L)⇤ = dimRan(L). So we are done.

The slogan is this: RANK is the dimension of the middle space.
What is the rank of a linear map L? For any linear map L : V ! W , we can decompose it as L = AB

where A : U ! W is injective and B : V ! U is surjective, and rank of L is the dimension of the middle
space dimU . From this perspective, it is trivially obvious that L and L⇤ have the same rank. The dual
process simply flips everything, and the middle space U and U⇤ have the same dimension. (Remember how
bothersome it is to show that A and AT have the same rank? Now it is just trivial word game.)

Corollary 11.2.12. If L : V ! V is a linear transformation, then dimKer(L� �I)k = dimKer(L⇤ � �I)k.

Proof. dimRan(L� �I)k = dimRan((L� �I)k)⇤ = dimRan(L⇤ � �I)k. Now dimKer = dimV � dimRan,
so we are done.

Corollary 11.2.13. L and L⇤ have the same Jordan canonical form.

Proof. The Jordan canonical form is defined entirely by the generalized eigenstructures, i.e., the dimKer(L�
�I)k stu↵. But L,L⇤ have the same generalized eigenstructures, according to the last corollary.

Corollary 11.2.14. f(L)⇤ = f(L⇤).
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Proof. Oops, this is negligence on my part. In general, if we fix A, then f(A) = p(A) for some polynomial
p. But actually p does not depends on A, it only depends on the Jordan canonical form of A. For example,
if f(A) = p(A), then obviously f(BAB�1) = Bf(A)B�1 = Bp(A)B�1 = p(BAB�1).

Anyway, since L and L⇤ have the same Jordan canonical form, there is a polynomial p such that f(L) =
p(L) and f(L⇤) = p(L⇤). So we only need to prove the statement when f is a polynomial.

Now the statement is true for powers. (E.g., (Lk)⇤ = (L . . . L)⇤ = L⇤ . . . L⇤ = (L⇤)k.) Thus it is true for
polynomials (i.e., linear combinations of powers).

Of course, everyting we’ve compiled here can also be proven if we simply think of dual as transpose.

11.3 Double Dual and Canonical Isomorphisms

In the world of linear algebra, “isomorphism” just means “bijective linear map”, and we say two space are
isomorphic if there is a bijective linear map, i.e., if they have the same dimension.

But now let us look at a stronger term, “canonical isomorphism” (or also “natural isomorphism” in
some textbooks). For any vector space V , we can constructits dual space V ⇤ and its double dual space
(V ⇤)⇤. In the finite dimensional world, all three spaces V, V ⇤, (V ⇤)⇤ have the same dimension, so they are
all isomorphic. However, we say V and (V ⇤)⇤ are canonically isomorphic, while V and V ⇤ has NO canonical
isomorphism. What do we mean by this?

Vaguely, we have have the following feeling: even though V and V ⇤ have the same dimension, but there
is an “unseen order flip”, i.e., the order of multiplication of linear transformations are reversed. If we have
A,B : V ! V , then we have corresponding A⇤, B⇤ : V ⇤ ! V ⇤. But we do NOT have (AB)⇤ = A⇤B⇤.
Rather, we have (AB)⇤ = B⇤A⇤. So the “unseen hidden-structure” of the two spaces are di↵erent.

But if we take dual twice, looking at V and (V ⇤)⇤, then not only their linear structure match (same
dimension), their “unseen hidden-structure” also match (because the order of multiplication flipped twice,
which is the same as not flipped at all). We indeed have (AB)⇤⇤ = A⇤⇤B⇤⇤ always.

So what does it mean to be canonically isomorphism? It is NOT just the relation between two spaces.
It means that not only we can identify the two space, we can also identify all related linear maps.

Proposition 11.3.1. Take the “evaluation map” ev : V ! (V ⇤)⇤ that sends v to evv. By abuse of notation,
we also use the same symbol for the evaluation map ev : W ! (W ⇤)⇤. Then for any linear map A : V ! W ,
the linear maps ev �A = (A⇤)⇤ � ev.

In particular, we have the following diagram, where going down right is the same as going right down.
You can see that not only ev identifies spaces, it also identifies maps. This is what we mean by the term
“canonical isomorphism”. It is not just about the spaces being in correspondence, but the fact that maps
are also in correspondence.

V W

V ⇤⇤ W ⇤⇤

A

ev ev

A
⇤⇤

Before we proceed with the proof, note that the parenthesis here is a nightmare. Here are some calcula-
tional remark to keep in mind. These are NOT just for linear algebra, they are also true in other settings of
mathematics. Here we use x for an element or a vector, f, g for functions or dual vectors or linear maps, A
for linear maps or operators.

1. By definition of function composition, f � g(x) = f(g(x)).

2. By definition of dual, A⇤(f) = f �A. (Applying this to the dual of A, we have A⇤⇤(f) = f �A⇤.)

3. A more fancy way of writing above is [A⇤(f)](x) = f(Ax).

4. By definition of the evaluation map, ev(x) = evx, and evx(f) = f(x).
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5. By definition of functions, if f(x) = g(x) for all x, then f = g.

Proof of the last proposition. Pick any v 2 V . Then ev � A(v) and (A⇤)⇤ � ev(v) are elemente of W ⇤⇤,
which evaluate elements of W ⇤. To show that they are the same, we need to show that they give the same
evaluation for any ↵ 2 W ⇤.

Take any ↵ 2 W ⇤. Then we have

[ev �A(v)](↵) = [ev(Av)](↵) = evAv(↵) = ↵(Av).

Now we tackle (A⇤)⇤ � ev(v) applied to ↵. Note that the dual map is defined as L⇤(↵) = ↵ � L. So the
dual of A⇤ will give us (A⇤)⇤ � ev(v) = (A⇤)⇤(ev(v)) = ev(v) �A⇤ = evv �A⇤ by definition.

So we have

[(A⇤)⇤ � ev(v)](↵) = (evv �A⇤)(↵) = evv(A
⇤↵) = evv(↵ �A) = ↵ �A(v) = ↵(Av).

Hey, so we see that ev �A(v) and (A⇤)⇤ � ev(v) evaluate arbitrary ↵ 2 W ⇤ to the same value ↵(Av). So
ev �A(v) = (A⇤)⇤ � ev(v). But since this is true for all v, we have ev �A = (A⇤)⇤ � ev.

In summary, the “evaluation process” gives us the canonical isomorphism between V and V ⇤⇤. Not only
we can identify V and V ⇤⇤ as the same space for all V , we can also simultaneously identify A and A⇤⇤ for
all linear map A!

In comparison, here is the situation for a single dual, as opposed to double duals.

Example 11.3.2. V and V ⇤ are NOT canonically isomorphic.
Suppose there is an canonical isomorphism between spaces and their duals. Say we have canonical

isomorphisms LV : V ! V and LW : W ! W . Then for any A : V ! W , we should have the diagram

V W

V ⇤ W ⇤

A

L L

A
⇤

The above diagram is supposed to be true for all A. However, pick A = 0, and then LV = A⇤LwA = 0
is NOT an isomorphism. Contradiction. ,

11.4 Inner products and Dual space

Here we connect the dual space and the inner product structure. Depending on how your last semester was
taught, this might be a review or new knowledge. For the moment, let us first restrict our attention to real
numbers.

Think about dot products. The motivation of defining dot product is to define length of vectors and
angles between vectors. For example, in an arbitrary abstract vector space,say P2 the space of polynomials
of degree at most 2, would you set x2 to have length one? Would you set 1

2x
2 to have length one? Would

you set 1, x, x2 to be an orthonormal basis? Or would you rather set 1, x� 1, (x� 1)2 to be an orthonormal
basis? There is no “unique best way” to do this. There is no innate “dot product” structure.

Definition 11.4.1. Given a real vector space V , an inner product structure is a map h�,�i : V ⇥ V ! R
that sends pairs of vectors to a complex number, such that the following is true:

1. (Bilinear) hkv,wi = khv,wi and hv, kwi = khv,wi and hu+v,wi = hu,wi+ hv,wi and hu,v+wi =
hu,vi+ hu,wi.

2. (Symmetric) hv,wi = hw,vi.

3. (Positive-Definite) hv,vi � 0 for all v, and it is zero if and only if v = 0.
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Then we define kvk =
p
hv,vi, and the angle between any two non-zero vectors v,w to be arccos hv,wi

kvkkwk .

Proposition 11.4.2. For any finite dimensional real inner product space V , the inner product is some dot
product under the coordinates of some basis.

Proof. We would not do the whole proof here, since it is more relevant to last semester. However, we can
make some short remark on the idea behind the proof.

First, we want to find an orthonormal basis, i.e., a basis v1, . . . ,vn such that hvi,vji = �ij , i.e., the Gram
matrix is the identity matrix. (The existance of an orthonormal basis is guaranteed by the Gram-Schmidt
orthogonalization.) Now under this basis, we can then verify that the inner product is the dot product.

This is nice in the following sense: If you are not familiar with inner product spaces, do not worry. It is
simply “dot product” under some basis. In fact, check the following: a basis is an orthonormal basis if and
only if the inner product is the dot product under coordinates of this basis.

Example 11.4.3. We here show an exotic example of inner product on an infinite dimensional space. Let
F(R) be the space of all real integrable functions from R to R.

For each function f , if we think of f as a “vector”, then we may think of numbers such as f(1), f(2), f(1.23)
and such as “coordinates” of f . Then a “dot product” between two functions f and g will try to multiply
these “coordinates”, and try to “add” these products f(x)g(x), i.e.,

R1
�1 f(x)g(x) dx. We define this to be

hf, gi the “dot product” on F(R).
Note that if F([a, b]) is the space of all real integrable functions from an interval [a, b] to R, then we can

also define hf, gi =
R
b

a
f(x)g(x) dx.

Now, is this “dot product” an inner product structure? The answer is no. We have bilinearity and
symmetry obviously. But we only have positive SEMI-definiteness. Even thouhg

R1
�1 f(x)f(x) dx � 0

always, but we might have non-zero integrable functions whose square integrate to zero, say if f(x) = 0
everywhere except that f(x) = 1 when x = 0.

One solution is to restrict our attention to continuous functions. Then
R1
�1 f(x)2 dx = 0 would necessarily

implies that f = 0 everywhere, and hence this becomes a genuin inner product.
Another get-away is to say that two functions are “almost the same” if their di↵erence has “zero-length”.

I.e., we employ an equivalence relation where f ⇠= g to NOT mean that f(x) = g(x) for all x, but rather to
mean that

R
domain(f(x)�g(x))2 dx = 0. This yeilds a new vector space L2(R) whose elements are “equivalent

classes”. On this space, hf, gi would be a genuin inner product.
Of course, another solution is to simply define “semi-inner product”, and just be careful. Either way, the

notion hf, gi =
R1
�1 f(x)g(x) dx is a very useful one. ,

Now note that each inner product needs a pair of inputs, hv,wi. If we FIX v and let w be an unknown
input, then we have a linear map hv,�i : V ! R. Hey, this is a dual vector!

Due to conventions in physics, who call the symbol h�,�i a “braket”, people (especially in physics)
sometimes use the following notations:

1. We think of hv,wi as “the bra” hv| and “the ket” |wi.

2. The bra of v refers to the linear map hv,�i : V ! R. The ket of w means simply w itself, and we are
only giving it this name to make the duality clearer.

3. So we may also think of hv,wi as the dual vector hv| applied to the vector |wi.

So what does an inner product do? Think about the bra process v 7! hv|. It gives us a canonical way to
change vectors into dual vectors!

Theorem 11.4.4. Given a real inner product space V , the bra map h�| : V ! V ⇤ is the unique linear
bijection such that hv|(w) = hv,wi.
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Proof. Uniqueness is obvious because we literally defined hv|(�) as hv,�i. Linearity is also obvious because
the inner product is linear in its left input. Finally, to show bijectiveness, note that dimV = dimV ⇤, so we
only need to show that h�| is injective. Suppose hv| is the zero map. Then hv|(v) = 0, and thus kvk = 0,
and thus v = 0.

Previously, without any inner product structure, we discussed that there is NO canonical bijection be-
tween V and V ⇤. There are bijections between V and V ⇤, but they all suck. None of them have good
properties. However, given an inner product structure, now we have a UNIQUE BEST bijection between V
and V ⇤ that could play well with the given an inner product structure!

In this sense, finding an inner product structure is like this: since there is no canonical isomorphism
between V and V ⇤, we just pick a bijection artificially, and claim it to be canonical.

Btw, to make the resulting “canonical isomorphism” nice, we need the artificial bijection L : V ! V ⇤ to
be “symmetric” in the sense of L = L⇤. (Funny thing: L and L⇤ do have the same domain and codomain in
this case.)

We also want L to be “positive definite”, i.e., the linear evaluation L(v) should not screw up v itself. In
particular, the linear map L(v) should always send v to a positive number (unless v = 0, in this case L(0)
sends everyone to zero).

For any “symmetric” and “positive-definite” linear bijection L : V ! V ⇤, you may verify that [L(v)](w)
is indeed a inner product structure.

But now comes the moment of realization: if we have a linear bijection L : V ! V ⇤, then its inverse is
also linear bijection from V ⇤ to V ⇤⇤ = V ! This means the following:

Corollary 11.4.5. Given any inner product on V , there is a unique induced inner product on V ⇤ such that
the dual basis to an orthonormal basis is orthonormal. (I.e., dot product of column vectors would induce the
dot product on row vectors.)

Proof. Let L be the inverse of h�| : V ! V ⇤. Then we can verify that [L(�)](�) is an inner product structure
on V ⇤. (Here we identify V and V ⇤⇤ via the evaluation process as usual.) Let us do the verification now.

[L(�)](�) is obvious bilinear by construction. Let us now verify symmetry. For any ↵,� 2 V ⇤, let
v = L(↵) and w = L(�). Then [L(↵)](�) = evv(�) = �(v). But since w = L(�), by definition we have
� = hw|. So �(v) = hw,vi = hv,wi = ↵(w). Finally, [L(�)](↵) = ↵(w) by the same process as before. So
[L(↵)](�) = [L(�)](↵).

Finally, we want to establish positive definiteness. For any ↵ 2 V ⇤, let v = L(↵). Then we have
[L(↵)](↵) = ↵(v) = hv,vi. So this is positive unless v = 0, which could happen if and only if ↵ = 0.

Finally, let us verify that dual basis to an orthonormal basis is orthonormal. Note that, along our previous
arguments, we have proven something very funny: [L(↵)](�) = hv,wi. So if v1, . . . ,vn is an orthogonal basis,
then immediately we see that hv1|, . . . , hvn| is also an orthonormal basis. I claim that hv1|, . . . , hvn| is also
the dual basis.

To see this, note that hvi|(vj) = hvi,vji = �ij , so we are done.

We explore one last idea stemming from the identification of V and V ⇤. It states that for each dual
vector ↵, there is a unique vector v such that ↵ = hv|. This is the inverse of the “bra” map, which we also
call the Riesz map.

Theorem 11.4.6 (Riesz representation theorem). For any ↵ 2 V ⇤ on an inner product space V , there is a
unique v such that ↵ = hv|.

We call this map V ⇤ ! V (inverse of the bra map) as the Riesz map. This has some very interesting
applications.

Example 11.4.7. Let X be a random real number. The standard way to study such a random number is

to define its “probability distribution function”. We say X has a probability function pX if
R
b

a
pX(x) dx =

Pr(a  X  b). One might loosely think of pX(x) as the “probability” of X = x. We add this up for all

a  x  b, and the result would be
R
b

a
pX(x) dx = Pr(a  X  b).
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Now note that X can also be thought of as a dual vector f 7! E(f(X)). How is this calculated? Well,
since X has “probability” pX(x) to be x, therefore f(X) has “probability” pX(x) to be f(x). To find the
“average value” of the random value f(X), we want to informally do something like

P
x
f(x)Pr(X = x),

whose integration version is
R1
�1 f(x)pX(x) dx. So we usually have E(f(X)) =

R1
�1 f(x)pX(x) dx = hpX , fi.

In particular, if we think of X as a dual vector, then note that f
X7�! E(f(X)) is the same as hpX |. So we

have Riesz(X) = pX the probability distribution function.
So going from a random variable to its probability distribution function is just trying to do the Riesz

representation theorem. ,

Example 11.4.8. Let us see an application of an infinite dimensional version of the Riesz representation
theorem. We do not actually prove this theorem, since it needs a lot more set up. However, it illustrate
perfectly how the idea of “dual vectors are represented as bra of vectors” could be useful.

Suppose we have a di↵erential equation �f 00(x) + b(x)f(x) = q(x), where b(x) is a known function and
we always have b(x) � 0, and q(x) is another known function. We are trying to solve for possible f . For
simplicity, say f is defined on the interval [0, 1], satisfying the initial condition f 0(0) = f 0(1) = 0. Let us
show that a solution exist.

First, via integration by parts, for any function �(x) we have
R 1
0 f 00(x)�(x) dx = �

R 1
0 f 0(x)�0(x) dx. We

consider the dot product of both sides of our di↵erential equation with an arbitrary function �, and we have
the computation:

Z 1

0
[�f 00(x)�(x) + b(x)f(x)�(x)] dx =

Z 1

0
q(x)�(x) dx

Z 1

0
[f 0(x)�0(x) + b(x)f(x)�(x)] dx =

Z 1

0
q(x)�(x) dx.

Let us define that hf, gi as
R 1
0 [f

0(x)g0(x) + b(x)f(x)g(x)] dx on the space V of di↵erntiable functions,
then you can easily see that this is symmetric and positive definite. In fact, if hf, fi = 0, then we must have
f = 0.

Let us also define a dual vector ↵ : V ! R such that f 7!
R 1
0 q(x)f(x) dx.

Then our di↵erential equation is now this: hf,�i = ↵(�).
Recall our goal: we want to find a solution f to the di↵erential equation �f 00(x)+ b(x)f(x) = q(x). Now

by computations above, we have transformed our goal into the following: we want to find a solution f such
that hf,�i = ↵(�) for all �? Or in short, given a dual vector ↵, can we find f such that ↵ = hf |? Well, by
some corresponding Riesz representation theorem, we can. So there you go, a solution exists. ,

11.5 (Optional) Complex Riesz map

Now let us consider the case of a complex space. For complex spaces, we have the following distinctions.

Definition 11.5.1. Given a real vector space V , an inner product structure is a map h�,�i : V ⇥ V ! C
that sends pairs of vectors to a complex number, such that the following is true:

1. (Sesquilinear) hkv,wi = khv,wi and hv, kwi = khv,wi and hu+ v,wi = hu,wi+ hv,wi and hu,v +
wi = hu,vi+ hu,wi.

2. (Conjugate Symmetric) hv,wi = hw,vi. (Note that this implies that hv,vi is always real.)

3. (Positive-Definite) hv,vi � 0 for all v, and it is zero if and only if v = 0.

Then we define kvk =
p
hv,vi.

In many sense, this is just as before. For example, we have this result
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Theorem 11.5.2. Given a complex inner product space V , the bra map h�| : V ! V ⇤ is the unique linear
bijection such that hv|(w) = hv,wi.

However, the main di↵erence is the following: the complex inner product is NOT bilinear. It is only
linear in the right input, and it is merely conjugate-linear in the left input. (Think about the dot product
vadw.)

In particular, the identification between V and V ⇤ via v 7! hv| is NOT complex linear, only real linear.
We have hkv| = khv|.

Nevertheless, we have maps h�| : V ! V ⇤ and its inverse Riesz : V ⇤ ! V . They are not complex linear,
but they still provide bijective identification of V and V ⇤. So for any linear transformation L : V ! V , for
its dual map L⇤ : V ⇤ ! V ⇤, we can identify the domain and codomain of L⇤ as V via the Riesz map, and
thus obtain a linear map Lad : V ! V .

Definition 11.5.3. On an inner product space (real or complex), we define the adjoint of a linear transfor-
mation L : V ! V to be Lad : V ! V such that Ladv = Riesz(L⇤hv|).

Note that, in a sense, Lad = Riesz � L⇤ � Riesz�1, so Lad and L⇤ are the same map. Just like “similar
matrices”, they di↵er only via the “change of basis” which is the Riesz map. However, in the complex case,
the “change of basis” here is NOT complex linear! This causes some computation trouble.

Lemma 11.5.4. For any complex inner product space V , we pick an orthonormal basis for V , so we may
treat V as the column vector space Cn and V ⇤ as the row vector space. Then the bra map would send v 2 Cn

to vad. As the inverse of the bra map, the Riesz map send a row vector ↵ to the column vector ↵ad.

Proof. This is obvious, since hv,wi = vadw under an orthonormal basis.

Proposition 11.5.5. For any complex inner product space V , we pick a basis for V and pick the dual basis
for V ⇤. Consider any linear transformation L : V ! V , and suppose its matrix under the chosen basis is A.
Then the matrix for L⇤ under the dual basis is AT, but the matrix for Lad is Aad.

Proof. Lad(v) = Riesz(L⇤hv|) = Riesz(L⇤(vad)) = Riesz(vadA) = (vadA)ad = Aadv.

Corollary 11.5.6 (Alternative definition). The adjoint Lad : V ! V is the unique linear transformation
on the inner product space V such that hLv,wi = hv, Ladwi.

Definition 11.5.7. A linear transformation L : V ! V is self-adjoint (Hermitian, or symmetric in the real
case) if L = Lad, skew-adjoint if �L = Lad, unitary if L�1 = Lad.

Then one may proceed to do spectral theorems and so on. These should already be done in the last
semester, so we stop here.
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Chapter 12

Tangent Space and cotangent space

12.1 Tangent vectors and push forwards

The goal here is to use what we have learned to about dual spaces to study geometry. Technically, we want
to talk about manifolds, but their formulation is a bit abstract and unwieldy. Nevertheless, let us take a
look at an informal characterization of it.

Informally, a embedded n-manifold is a subset M of Rm for some m, such that it locally looks like Rn

for some n  m. For example, we say a curve in Rm is a 1-manifold, because it is locally “line-like”, i.e.,
R1. A surface is a 2-manifold, because it is locally “plane-like” and so on. We say it is a di↵erentiable
manifold if it has “tangent stu↵” everywhere. For example, a di↵erentiable curve in Rm is a curve with a
well-defined tangent line everywhere. And a di↵erentiable surface is a surface with a well-defined tangent
plane everywhere.

Remark 12.1.1 (Formal Definition of a Di↵erentiable Manifold). Skip this entirely, unless you are super
curious. The main trouble of a formal definition is that of topology. One needs to learn topology before
talking about manifolds.

We define an open ball in Rm to be Br(p) = {x 2 Rn : kx� pk < r}. We define open subsets of Rm to
be arbitrary unions of open balls, and define closed subsets of Rm to be complements of open subsets. Here
are some observations, which hopefully gives you some intuition about the concept of open stu↵ and closed
stu↵.

1. Arbitrary unions and finite intersections of open subsets are open.

2. Arbitrary intersections and finite unions of closed subsets are closed.

3. Given any subset S of Rm, its “interior” is the largest open subset inside of it. (This is the definition.)

4. Given any subset S of Rm, its “closure” is the smallest closed subset containing it. (This is the
definition.)

5. A subset S of Rm is closed if and only if for any converging sequence inside of S, the limit is in S.
(See if you can prove this.)

6. A subset S of Rm is open if and only if for any p 2 S, a “neighborhood” of p is inside of S, i.e., we
can find r > 0 such that the open ball Br(p) ✓ S.

7. A subset S is defined to be disconnected if we can find two open subsets U, V , U \ V = ? and U [ V
contains S.

8. The concept of “open intervals” and “closed intervals” are really open connected subsets and closed
connected subsets of R.
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For any open subset U , a di↵eomorphic (i.e., “di↵erentiably isomorphic”) image of U is the image f(U)
of a continuously di↵erentiable bijective function f : U ! Rm such that the total derivative of f (Jacobi
matrix) is everywhere invertible. (This is to guarantee that its inverse is also di↵erentiable.)

For any subset M of Rm, we say it is an embedded di↵erentiable n-manifold if for any p 2 M , we can
find r > 0 such that M \Br(p) is the di↵eomorphic image of an open ball in Rn. (Thus the idea of “locally
the same as Rn”.)

If you are even more hardcore, one can define manifold abstractly as “second countable Hausdor↵ space”
with an “atlas” of open subsets each “homeomorphic” to an open ball in Rn. (Don’t worry if these words
sound like gibberish....) And the manifold is a di↵erentiable manifold if the transition maps for the atlas
are all di↵erentiable. This would require more definitions though, e.g., what is an atlas and what are the
transition maps etc..

All these talks about Hausdor↵ space and atlas and such sound scary. However, by an advanced geometric
theorem called the Whitney’s embedding theorem, any abstract n-manifold can be “put” into R2n+1. So the
definition is essentially the same to our previous “concrete” versions of manifolds.

Here I would propose an alternative way to study “manifolds”, rather than cramming an entire course of
topology here. Our goal is to define what is a “di↵erentiable” thing, i.e., smooth curve, smooth surface and
etc.. And the ultimate definition for that is to have a corresponding “tangent stu↵”. So we need to define
tangent vectors. Intuitively, a tangent vector on a geometric object is a direction that, if I move a tiny bit
along that direction, then I “approximately” would stay in the geometric object.

How to define this “tiny movement”? We start with curves.

Definition 12.1.2. Given a subset X of Rm, a curve (segment) is a continuous map � : [0, 1] ! X. A
curve is di↵erentiable if, well, the map is di↵erentiable.

Here continuity or di↵erentiability means that if we treat � as a map from [0, 1] to Rm, then it is contin-
uous or di↵erentiable.

Remark 12.1.3. Our requirement that the domain of � is the closed interval [0, 1] is unimportant. Change
it into any closed interval [a, b], you will be just fine.

Just like linear maps v : R ! V corresponds to “elements” of the space V , we study curves on X because
they are the “continious elements” of X. If our goal is to study continuous structure of X, then mere discrete
points are NOT enough. Curves (i.e., how two arbitrary points �(0) and �(1) “connect”) gives us a primitive
way to study such continuous structures.

It is then natural to do the following definitions.

Definition 12.1.4. Given a subset X of Rm and a point p 2 X, we say v 2 Rm is a tangent vector to X
at p if there is a di↵erentiable curve � : [0, 1] ! X such that �(0) = p and �0(0) = limt!0+

�(t)��(0)
t

= v.
(Since 0 is on the boundary, we only require the one-sided limit to exist.)

Definition 12.1.5. (I made this definition myself.) We say X 2 Rm is a di↵ferential k-set if for each
p 2 X, all possible tangent vectors to X at p form a k-dimensional subspace, i.e., the tangent space to X
at p, written as Tp(X).

In short, tangent directions at p in X are “possible velocities” if we move inside of X along some curve,
starting at p. Seems natural enough, right? Here let us see some fun and weird examples. The “weirdness”
is mostly for fun, and will not be tested, at least not in our class. The point is to do some mental exercises
with our newly defined concepts.

Example 12.1.6. Consider the famous curve � : R ! R2 such that f(t) =


t

t2 sin( 1
t
)

�
. The geometric

object we study is simply X = �(R), the image of the curve. (I am using R as the domain of the curve, but
it matters little. If you are feeling pedantic, then restrict to some closed intervals [a, b].)

Note that this is also the graph of the function t 7! t2 sin( 1
t
), which is famously di↵erentiable everywhere

but NOT continuously di↵erentiable. We can take derivative and see that �0(t) =


1

2t sin( 1
t
)� cos( 1

t
)

�
when
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t 6= 0, and �0(0) =


1
0

�
. And by using the curve t 7! �(kt), we see that k�0(t) is a tangent vector at �(t) for

all t. So at each point in X, the tangent directions form a 1-dimensional subspace. Tp(X) is always a one
dimensional subspace. X is a 1-dim di↵erentiable set.

However, just as the function t 7! t2 sin( 1
t
) is NOT continuously di↵erentiable, X has some trouble. The

tangent line to X at the origin T0(X) is horizontal, but points of X near the origin will have wildly osciliating
tangent lines!

These are the “tangent directions” on the subset X = �(R), and they do NOT change continuously!
In particular, if we merely study di↵erentiable subsets X of R, then adjacent points might have “non-

continuous” tangent directions.
Lucky for us, this example shall give us no trouble, because at least in our class, we would NEVER

compare tangent vectors at di↵erent points. We only compare di↵erent tangent vectors at the same points.
,

Example 12.1.7. Let us do a favorite geometric object of mine, the Hawaiian earring. Take the circle of
radius one touching the origin, say e.g. (x� 1)2+ y2 = 1. Then “shrink” this circle towards the origin to get
a smaller circle, say (x � 1

2 )
2 + y2 = 1

4 which now has radius 1
2 . Then shrink again to have an even smalle

circle, say (x � 1
4 )

2 + y2 = 1
16 which now has radius 1

4 . So on so forth. Let X be the union of ALL these
infinitely many circles, then X is called the Hawaiian earring. It is a 1-dimensional di↵erentiable set.

The tangent structure of X are very obvious. At any point p 2 X, if p is not the origin, then the tangent
lines Tp(X) are the obvious tangent lines to the corresponding circle containing p. If p is the origin, then
the tangent line T0(X) is the vertical line. So as far as we are concerned, this is a super nice thing to study.

The Hawaiian earring is famous because it gives many trouble to topologists, who want to understand all
curves on this thing. Let me show you a weird curve that goes through ALL the circles. Note that the largest
circle has circumference 2⇡. Then the next one has circumference ⇡. Then the next one has circumference
⇡

2 . So the TOTAL circumference of all circles is 2⇡+⇡+ ⇡

2 + · · · = 4⇡ via our knowledge on geometric series.
So imagin that I am holding a thread of length 4⇡. Then I can simple wind the thread around each circle,

one by one, and I would have enough length to “eventually” cover all infinitely many circles. This gives a
map � : [0, 4⇡] ! X which is surjective (all circles are covered), and continous (the thread is not “broken in
two”) and di↵erentiable (no “sharp turns”).

(Note that continuity at t = 4⇡ for � is actually quite tricky, but can be proven. But we leave that to an
actual geometry class. If you attempt to wind the same circle infinitely times using similar techniques, you
shall fail, and the curve would NOT be continuous in the end.)

Another annoying thing about the Hawaiian earring is that, it is NOT a manifold. Take the orgin. NO
neighborhood around the origin is “line-like”, because any ball around the origin, no matter how small, must
contain some even smaller “loop”. The construction of the Hawaiian earring deviously sneaks in a loop into
EVERY neighborhood of the origin. ,

Example 12.1.8. Since we are at the topic of curves, have you heard of a space-filling curve? There is a
surjective continuous map � : [0, 1] ! [0, 1]2, i.e., the curve segment actually fills up a square. Search for it
yourself.

Luckily such a curve must be non-di↵erentiable. We only do di↵erentiable things, so we are fine. ,

Example 12.1.9. All previous examples are 1-dimensional. Let us see a 2-dimensional example, which
turns out NOT to be a di↵erentiable set. Let X be the “cone” in R3, i.e., z =

p
x2 + y2, or the “upper half”

of x2 + y2 = z2. This is an upward-opening cone with the “tip” at the origin.
At any p 2 X that is NOT the origin, the tangent plane Tp(X) is very obvious. However, at the origin,

all possible “velocities” are all the directions along the cone itself, so Tp(X) is in fact X itself! In particular,
they do NOT form a subspace. So X does NOT have a tangent plane at the origin. It is NOT a 2-dim
di↵erentiable set.

Sad.... However, do not despire. Let X 0 = X � {0}, then X 0 is a 2-dim di↵erentiable set, and we simply
deal with X 0 whenever we want to deal with X. ,
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Example 12.1.10. Here is a weird example. Let X = R�Q ✓ R, the set of all irrational real numbers. At
each p 2 X, where could you go? NOWHERE! By removing Q, we have made sure that it is disconnected
everywhere. The only possible conitnuous curve � : [0, 1] ! X is a constant curve, i.e., �(t) is the same
point for all t, and �0(t) = 0 always.

This is obviously NOT a manifold, and NOT a nice geometric object at all. Nevertheless, it is a 0-dim
di↵erentiable set, since all “tangent stu↵” Tp(X) are zero-dimensional subspaces. ,
Example 12.1.11. Let us do a “vanilla” example. Say U ✓ Rm is “open”, i.e., it is a union of open balls
in Rm. Here open balls means sets like Br(p) := {q 2 Rn : kp� qk < r}, i.e., a ball of radius r around some
point p, without boundary.

For each point p 2 U , then p is in one of the open balls that make up U . In particular, we can find r > 0
such that Br(p) ✓ U . In particular, we see that starting from p, all directions are possible to make “tiny
movements”. So all vectors are tangent vectors, and Tp(X) = Rm for all p.

(For any p 2 U and v 2 Rm, try yourself and see if you can construct a curve � such that �(0) = p and
�0(0) = v.)

In particular, all open subsets of Rm are m-dim di↵erentiable sets, since all of its points have the entire
Rm as the tangent space. ,

Anyway, despite some weird looking examples, for these di↵erentiable sets, at least the concept of tangent
vectors and tangent spaces are well-defined. Now, let me show you what are derivatives through some
examples.

Imagine that we have a map f : X ! Y between di↵erentiable sets. Then it will send points p 2 X to a
point f(p) 2 Y . Now, if I perform some tiny movement starting at p inside X, i.e., some tangent vector to
X, then the image f(p) would also change into something new, inducing a tangent vector to Y . This is the
idea of a directional derivative.

Example 12.1.12. Let X be the unit circle in R2, and Y be the unit spher in R3. For each point


cos ✓
sin ✓

�

on X, we can map it to

2

64

1p
2
cos ✓

1p
2
sin ✓
1p
2

3

75. So this is a map f : X ! Y .

(Tip: the formula is not that useful. We keep it here for to make things precise, but you’d better get
used to the geometry. Understanding what goes where is more important than tracking the formula. Try to
visualize this map.)

For any curve � : [0, 1] ! X, then f would immediately push it into a curve f⇤(�) = f � � : [0, 1] ! Y .

For the sake of example, let us say we have �(t) =


cos(2t⇡)
sin(2t⇡)

�
. Then at “time” t = 1

4 , � would induce a

tangent vector �0( 14 ) =


2⇡ sin(⇡2 )
�2⇡ cos(⇡2 )

�
=


2⇡
0

�
to the unit circle X at the point �( 14 ) =


0
1

�
.

Now if any tangent vector to X is induced by � (like in the example above), then in fact f⇤(�) would also

induce a tangent vector. Note that f � � is the curve t 7!

2

64

1p
2
cos(2t⇡)

1p
2
sin(2t⇡)

1p
2

3

75. Now at the same “time” t = 1
4 ,

f⇤(�) would induce a tangent vector (f � �)0( 14 ) =

2

4

p
2⇡
0
0

3

5 at the point f(�( 14 )).

We say that the tangent vector v =


2⇡
0

�
to X at p is pushed forward to the tangent vector

2

4

p
2⇡
0
0

3

5 to

Y at f(p).
Computations aside, hopefully this is graphically trivial. The function f simply “shrink” the circle by a

factor of
p
2, and then put the shrunken loop on top of the unit sphere. So all tangent vectors “shrunk” by

the same factor. ,

360



Given a map f : X ! Y between subsets X ✓ Rn and Y ✓ Rm, if f is nice enough, then we usually
should expect to have a well-defined map f⇤|p : TpX ! Tf(p)Y , where tangent vectors are “pushed forward”
according to how di↵erential curves are pushed forward.

If you choose to understant tangent space TpX as representing an “infinitesimally small neighborhood”
around p, then f⇤|p is basically the restriciton of f to this tiny neighborhood.

Furthermore, if TpX and Tf(p)Y are subspaces, then we hope that f⇤|p is linear. I.e., we hope that f
behaves “linearly” around each infinitesimally small neighborhood. If a function f is “locally linear” like
this, then we say f is di↵erentiable.

Definition 12.1.13. A map f : X ! Y between di↵erentiable sets is di↵erentiable at p 2 X if there is
a linear map L : TpX ! Tf(p)Y , such that for any curve � on X with �(0) = p and �0(0) = v, then the
derivative of f⇤(�)(t) at t = 0 is Lv. We write f⇤|p for this linear map L.

Example 12.1.14. Consider a function R ! R, say f(x) = |x|. Note that for any x 2 R, the tangent space
TxR is simlpy R itself. If we have a tiny change dx from x in the domain, and x < 0, then it would be
mapped to a tiny change � dx at �x in the codomain. This map f⇤|x is simply “multiplication by �1”, and
it is linear. Similarly, if x > 0, then the map f⇤|x is simply “multiplication by 1”, and it is also linear.

However, at the point 0 in the domain, a tiny change forward and a tiny change backward would BOTH
be mapped to a tiny change forward in the codomain. So f⇤|0 : T0R ! T0R actually maps both 1 and �1 to
1. So it cannot be linear. ,

Example 12.1.15. Consider a function R2 ! R3, such that


x
y

�
is mapped to

2

4
x
yp

x2 + y2

3

5. Geometrically,

we are folding the plane into the cone. Then f⇤|0 would not be linear. Can you see this visually?
Intuitively, the “sharp corner” ruins di↵erentiability. ,

12.2 Cotangent vectors and pullbacks

Let us first see a curious special case of a di↵erentiable map.

Example 12.2.1. Suppose f : X ! R is di↵erentiable for some di↵erentiable set X. Then we have an
induced map f⇤|p : TpX ! Tf(p)R. However, note that at any point on R, the corresponding tangent line is
simply R itself. So we in fact have a map f⇤|p : TpX ! R. Hey, so f⇤|p is a “dual tangent vector” (or more
traditionally, a cotangent vector, or sometimes a covector for short)!

Things are even more uncanny than you think. If we have a “tiny” change inside of X, i.e., a tangent
vector v to X, then this dual vector would give us a corresponding “tiny” change in the codomain R, i.e.,
the change in the f -value. This is exactly how the “directional derivative” is defined.

We sometimes also write f⇤|p as df |p which literally reads as “change in f -value at p”. For the directional
derivative, we have many notations but they are all the same, like rvf(p) or df |p(v). They mean the same
thing (but as you can see, one focus on changing p while the other is on changing v).

Finally we have formulas such as limt!0
f(x+tv)�f(x)

t
. What is x + tv here? It is simply a “curve” at

x with tangent vector v. We simply picked this curve, and see how a tiny change along this curve would
induce a tiny change in f -value.

In general, if we have any curve � such that �(0) = x and �0(0) = v, then the directional derivative

should be defined as rvf := limt!0
f(�(t))�f(�(0))

t
. The traditional formula is simply a special case of this

when we pick � to be a straight line. ,

Last section we were mainly studying the “continuous elements” of X, i.e., curves R ! X. This section,
we study the “dual” of these, i.e., real functions on X, f : X ! R. Just as curves induce tangent vectors,
real functions would induce cotangent vectors. And just as maps pushforward tangent vectors, they would
pull back cotangent vectors.

But we are getting ahead of ourselves. Let us see some more examples.

361



Example 12.2.2. Hmmm, an intersting notion in calculus is dx. What is dx?
Well, on the di↵erential set X = R2, we have a map x : R2 ! R sending each point to their x-component.

Then dx at each point is simply a covector, sending each “tiny change” (tangent vector) in the domain R2

to the corresponding change in x-value. In particular, you can see that dx|p(v) = vx, the x-coordinate of v.
Now given a di↵erentiable curve � on X, say � : [0, 1] ! X with �(0) = a and �(1) = b, suppose we

want to do the integral
R
�
dx. What does this mean? Well, on each point of the curve, the covector dx at

�(t) would evaluate the tangent vector �0(t). I “sum over” all such evaluations (Riemann-type sum), and I
would get the “total change in x-values along �” as a result.

So calculations goes like
R
�
dx :=

R 1
0 dx|�(t)(�0(t))dt. Note that dx|�(t)(�0(t)) is the directional derivative

of x along �0(t), so it is simply the x-coordinate of �0(t).

So we have
R
�
dx :=

R 1
0 dx|�(t)(�0(t))dt =

R 1
0 �0

x
(t)dt = �x(t)|10 = �x(1) � �x(0) = bx � ax, the di↵erence

in x-coordinates. ,

In general, we would like to think of df as a “covector field”, i.e., each point p has a corresponding
covector df |p. Here is a very funny observation, which makes a “intuitive equality” into an actual concrete
equality. (Btw, people also call these covector fields “di↵erential 1-form”.)

Proposition 12.2.3. For any continuously di↵erentiable f : R2 ! R, then df = @f

@x
dx+ @f

@y
dy.

Here I have three functions, f : R2 ! R, x : R2 ! R, y : R2 ! R. They induce a covector field df, dx, dy.
I am claiming that, at each point p, df is a linear combination of dx, dy. The precise combination may
change depending on p. At di↵erent points, df might be a di↵erent linear combination of dx, dy, hence the
coe�cients of linear combination @f

@x
and @f

@y
are functions whose value depends on p.

Proof. Fix a point p 2 R2. Note that TpR2 = R2, so covectors at p are all row vectors. Then it is easy to
see that dx|p is the row vector

⇥
1 0

⇤
, dy|p is the row vector

⇥
0 1

⇤
.

What about df? Note that given a tangent vector v =


vx
vy

�
, the directional derivative is @f

@x
(p)vx +

@f

@y
(p)vy, so df |p =

h
@f

@x
(p) @f

@y
(p)

i
.

So we see that df = @f

@x
dx+ @f

@y
dy.

Basically the heavy lifting was already done by your calculus class. I simply cheat by using the directional
derivative formula. But the realization that dx, dy, df are covector fields are very handy sometimes.

Example 12.2.4. For example, given a di↵erential curve � from


1
2

�
to


3
4

�
, how to calculate

R
�
(y dx+(x+

1) dy)? Well, we have y dx+(x+1) dy = d(xy)+dy. So since the whole thing is a (Riemann) sum of covectors

evaluating tangent vectors, everything is linear, so
R
�
(y dx� x dy) =

R
�
d(xy) +

R
�
dy = (xy)|�(1)

�(0) + y|�(1)
�(0) =

10 + 2 = 12. ,

Here is another handy result.

Proposition 12.2.5. All covector fields on R2 are f dx+ g dy for some functions f, g : R2 ! R.

Proof. Pick any covector field ↵. At each point p, obviously the covectors dx|p =
⇥
1 0

⇤
and dy|p =

⇥
0 1

⇤

span the entire dual space. So ↵|p is a linear combination of dx|p and dy|p for each p. So we are done.

12.3 Integration on covector fields

Your calculus class should teach you how to do this. But I shall attempt to teach you how to see this.
How to visualize a vector field? This is easy. We just think of it as “tiny arrows” at each point of the

domain. But how should one visualize covector field? First let us try to visualize a single dual vector.
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Example 12.3.1. In the space Rn, say n = 3, we may think of a vector as an “arrow”, i.e., a one-dimensional

object with a real number associated to it. For the vector

2

4
x
y
z

3

5, we can draw an arrow from the origin to

the end point

2

4
x
y
z

3

5. It can be thought of as a one-dimensional subspace (the direction) with a number (the

length).
Then in an analogous manner, we may think of a dual vector as an (n � 1)-dimensional object with a

number associated to it. The idea is that, for the row vector
⇥
a b c

⇤
, we think of the equation ax+by+cz =

0, which gives an (n� 1)-dimensional hyperplane (in fact a subspace).
If you think about this, it makes natural sense. A dual vector is, first and foremost, a linear map

↵ : V ! R. The row vector
⇥
a b c

⇤
literally refers to the linear map that sends

2

4
x
y
z

3

5 to ax+ by + cz. So

far so good.
However, note that the equations x+ 2y + 3z = 0 and 2x+ 4y + 6z = 0 refers to the SAME hyperplane!

So a dual vector is not just a hyperplane. It is a hyperplane with a number (density)!
Consider the dual vector

⇥
0 0 1

⇤
, for example. Then think of this as such: we are layering the space

R3 with hyperplanes parallel to the plane z = 0. It has “density one”, which means that we have one such

plane in each vertical unit distance. Then why would

2

4
3
4
5

3

5 be sent to 5? Because it puctures through 5

layers. (Similarly, the vector

2

4
1
1
0.5

3

5 be sent to 0.5, because it puctures through half a layer.)

Now consider the dual vector
⇥
0 0 4

⇤
. Then think of this as such: we are layering the space R3 with

hyperplanes parallel to the plane z = 0. It has “density four”, which means that we have FOUR such plane

in each vertical unit distance. Then why would

2

4
3
4
5

3

5 be sent to 20? Because it now puctures through 20

layers.
This phenomenon is sometimes called a foliation. (“Falling of leaves”, which makes layers and layers of

leaves....) A dual vector
⇥
a b c

⇤
can be though of as a foliation of R3 by planes parallel to ax+by+cz = 0,

with a density
p
a2 + b2 + c2. ,

In general, for any dual vector ↵ : V ! R, we may think of ↵ as the hyperplane Ker(↵) with a number
(density). It corresponds to a picutre of foliation of the whole space V , and it measures vectors by counting
how many layers in the foliation were punctured.

(Note that if ↵ = 0, then Ker(↵) is no longer a hyperplane. It is the whole space (an n-dim object). You
would never puncture through the whole space, so all vectors are measured to be zero. This corresponds to
the fact that 0 no longer corresponds to any 1-dim object, but instead becomes a point (a 0-dim object). So
it cannot puncture through anything. It is always measured to be zero.)

Now let us look at covector fields. Say we are looking at covector fields on Rn. Then we have a covector at
each point, i.e., a “tiny (n� 1)-dim hyperplane’ with a number (density) at each point. By connecting these
“tiny (n� 1)-dim hyperplanes”, we can obtain a foliation of Rn by hypersurfaces with densities everywhere.

Example 12.3.2. Suppose n = 2. Then covector fields are supposed to look like a foliation of R2 by
hypersurfaces (i.e., curves).

Say we have a function f : R2 ! R, and it induces a covector field df . What is the corresponding
foliation of curves? It is exactly the level curves!

Consider f(x, y) = x2 + y2. Then the covector field is df = 2x dx + 2y dy. So at each point


x
y

�
2 R2,
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the corresponding covector is simply
⇥
2x 2y

⇤
. It kills vectors perpendicular to the “radial direction”, and

its kernel is always tangent to some circle around the origin.
If we connect these “tiny line segments tangent to some circle around the origin”, then we would actually

get these circles around the origin. We have a foliation of R2 by concentric curcles around the origin, i.e.,
the level curves of f . Note that

⇥
2x 2y

⇤
grows larger and larger as we move away from the origin, so the

“densities” of these level curves would increas as we move away from the origin. If you draw these level
curves at constant “f -speed”, e.g., say we draw f = 1, f = 2, f = 3, . . . and so on, then you can see how the
circles get denser and denser away from the origin.

Consider f(x, y) =
p
x2 + y2, which induces a covector field df = x dxp

x2+y2
+ y dyp

x2+y2
on the geometric

object R2�{0}. This is also a foliation of the plane by concentric circles, but the densities are now di↵erent.

Note that the covector
h

xp
x2+y2

yp
x2+y2

i
is always a unit covector, and hence the “density” is the same

everywhere. If you draw these level curves at constant “f -speed”, e.g., say we draw f = 1, f = 2, f = 3, . . .
and so on, then you can see how the “distances” between layers stay constant.

For whatever function f onX, its level curves is the foliation ofX, which is a graphic representation of the
covector fied df . And if we integrate a curve � : [0, 1] ! X on this covector field, then we are asking ourselves:
how many layers (level curves) are punctured by the curve �? And the answer is

R
�
df = f(�(1)) = f(�(0)).

In particular, if � is a closed curve, then
R
�
df is always zero, because whatever � would puncture, it

would eventually “unpuncture” so that it can be a closed curve. It also makes a lot of sense: if you end
where you started, then f has no change, so df integrates to zero. ,

What if our covector field is NOT induced by a function? This is perfectly possible. Then something
weird might happen.

Example 12.3.3 (A non-conservative vector field). Consider the following foliation of R2. The foliation
curves are actually rays shooting away from the origin. Which covector field does it represent?

At each point v =


x
y

�
2 R2, we wish the kernel to be the radial direction, i.e., the corresponding covector

should be parallel to
⇥
�y x

⇤
. What about density? Well, suppose going around the unit circle (curve of

length 2⇡) would puncture 2⇡ layers. Then you see that, around any circle around the origin, we would
always puncture the SAME amount of layers, i.e., 2⇡ layers. So the density must drop as we move away
from the origin. By the circumference formula of circles, we see that the density of the foliation at v should
be 1

kvk .

So the desired covector field should be ! = �y dx
x2+y2 + x dy

x2+y2 . ,

Example 12.3.4 (Winding Number). Consider the covector field ! = �y dx
x2+y2 + x dy

x2+y2 defined on R2 � {0}.
Consider the integration of this covector field around the circle around the origin with radius r, � :

[0, 2⇡] ! R2 � {0} such that �(✓) =
⇥
r cos ✓ r sin ✓

⇤
. To do

R
�
! =

R
�
( �y dx
x2+y2 + x dy

x2+y2 ), note that on the

unit circle, we always have x2 + y2 = 1. So we can simplify this to 1
r2

R
�
(�y dx+ x dy).

How to do such an integration? We integrate ✓ from 0 to 2⇡, and at each point we use the corresponding
covector to evaluate the corresponding velocity vector for �, i.e.,

R 2⇡
0 (�y dx+ x dy)|�(✓)(�0(✓)) d✓.

Now �0(✓) =
⇥
�r sin ✓ r cos ✓

⇤
, and�y dx+x dy at �(✓) is

⇥
�r sin ✓ r cos ✓

⇤
. So (�y dx+x dy)|�(✓)(�0(✓)) =

r2 sin2 +r2 cos2 = r2. So
R
�
! = 1

r2

R 2⇡
0 r2 d✓ = 2⇡. Hooray!

In fact, let us forget about the calculations. Take any closed curve. If it winds around the origin once
(counter-clockwise), then it shall ALWAYS puncture through the same amount of layers as did the unit
circle. Hence

R
�
! = 2⇡.

Given any closed curve �, we define 1
2⇡

R
�
! to be the winding number of �. It is quite amazing that

1
2⇡

R
�
( �y dx
x2+y2 + x dy

x2+y2 ) is always an integer! And it counts the number of times the curve winds around the

origin (where positive = counter-clockwise and negative = clockwise).
The covector field ! is also sometimes written as d✓, because it measures the change in angles. You

can loosely think of ✓ as a “function” that sends vectors to their “angles”. However, ✓ on R2 is NOT a
well-defined function. A point at angle ⇡ also has angle 3⇡. There is NO function ✓. ,
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Note that, in the case of df for some f , the level curves are always closed curves or bi-infinite curves
(extends on both sides of the curves infinitely). However, in the case of d✓ as above, the foliation curves are
NOT bi-infinite. They are rays, i.e., only infinite on one side of the curve.

Here is another covector field whose foliation is made of rays.

Example 12.3.5 (The “middle-aged man” covector field). The covector field d✓ has an annoying denomi-
nator. Let us throw it away. Say ! = �y dx + x dy. Hooray! It is now defined on all of R2. Now how can
we visualize this new covector field?

Well, again the kernel of
⇥
�y x

⇤
is always the radial direction. So it looks a bit like d✓. However, the

densities are di↵erent. ! has zero density at the origin, and it become denser and denser as we move away
from the origin!

So you have more and more rays shooting away from the origin. Unlike the case of d✓, where all rays
started at the origin, now for !, all the rays must start somewhere away from the origin. And we have more
and more new “starting rays” as we move away from the origin, creating a denser and denser foliation.

It looks like the hair of a “middle-aged man”, with less and less hair towards the center.... ,

Example 12.3.6 (Rays to the right). Consider the covector field x dy. The kernel of
⇥
0 x

⇤
are in the

horizontal direction, and the density increases as we move to the right. So the covector fields actually looks
like rays shooting to the right. If we move to the right at a constant speed, then the density (“number of
rays”) increases (new rays are emerging/starting) at a constant speed.

This means that we have the same number of new curves at every region of the same area size. In
particular, the starting points of these rays are dots in R2, and they are uniformly distributed all over R2

with “unit density”.
Now let � be a curve that goes around the unit square in R2 counterclockwise, and consider

R
�
x dy. How

many rays does it puncture?
Well, for the rays above and below the square, they do not touch the curve, so they do not contribute.

For the rays started to the right of the square, they also do not touch the curve. For the rays started to the
left of the square, they are punctured but then “unpunctured” by the curve, so they do not contribute.

And we have come to the following conclusion: the only thing that contribute to
R
�
x dy are rays START-

ING INSIDE the square! In fact, this is exactly what
R
�
x dy is counting.

How many rays started in the unit square? Well, we can just count the number of starting points of
these rays inside the square. So this is the area of the square.

Now look at the famous special case of Green’s theorem: if @M is the boundary of a region M , thenR
@M

x dy = Area(M).
In general, the Green’s theorem is pointing out that

R
@M

! is asking the number of “starting points” of
rays are inside of M , which is the integration over the inside of M , i.e.,

R
M

d!. Here you can interpret d as
“taking boundarys of each foliation curve” to get a “dot field with density”, on which you can integrate. ,

Remark 12.3.7. (Optional proof of Green’s theorem.)
As Green’s theorem has told us, the formula for d! is that d(f dx + g dy) = (gx � fy) dx dy. You can

actually also establish this formula using the idea we have presented here. Think of this as d(f dx+ g dy) =
d(f dx) + d(g dy) and do each independently. Then g dy also corresponds to a foliation of rays going to the
right, and the new rays emerge at a speed of gx. So d(g dy) = gx dx dy.

Similar argument can show that d(f dx) = �fy dx dy. Note that the negative sign is due ot orientation.
Imagin that you are cutting the foliation curves for f dx counter-clockwise, then higher edge actually cuts in
the negative x-direction, while lower edge cuts in the positive x-direction. So if we have more curves as we
move upward, then it contribute negatively towards the integration.

So far, all examples are in R2. If we were in R3, then the foliations for a covector field would by via
surfaces. And in Rn, it would be hyper-surfaces.

In whatever case, df always have a foliation made by the level-hypersurfaces. These are always closed-up
or extending infinitely, i.e., no boundary. And for covector fields which are NOT derived from a function,
then some foliation hypersurfaces might have boundaries. (Just like the “rays” which now has starting points
or ending points.)
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(And we would always have the formula
R
@M

! =
R
M

d!, which is simultaneously Green’s theorem and
Stoke’s theorem and divergence theorem. here @ means taking the boundary of M , while d! means we take
the boundary of each “foliating thing” for !. For example, suppose ! is a foliation of surfaces in R3, and a
disc M is cutting the foliation of closed curves d!. How many closed curves were cut? Well, this equal to
the number of foliation surfaces ! cut by the curve @M . Think on this if you like.)

Calculations will become more annoying though, so we stop here.
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Chapter 13

Tensor

13.1 Motivating Examples

Maybe some of you have thought about something like this. (If not, then maybe you don’t play enough)

Example 13.1.1. A matrix is, somewhat crudely speaking, a rectangular array of numbers. It is a two
dimensional array of numbers. What if we have a “cubic array” of numbers (a three dimensional array of
numbers)? It would feel like a “box matrix”. Say, maybe we can have a 2⇥ 4⇥ 3 array of numbers.

How would we write such a “box matrix”? Well, we can do it one layer at a time. We have three layers
of 2⇥ 4 matrices A1, A2, A3. (Draw a stack of three papers and write A1, A2, A3 on them respectively, if you
like.)

So far so good. But we need to give it a meaning. How would such a thing acts on a vector?
There are three possible ways. First of all, given a vector v 2 R4, we can multiply each layer matrix to

v. Then we get a resulting 2 ⇥ 3 matrix
⇥
A1v A2v A3v

⇤
. As you can see, a 2 ⇥ 4 ⇥ 3 box matrix sends

vectors in R4 to 2⇥ 3 matrices.

But if v 2 R2, then we can apply the row vector vT to each layer matrix, and get a 3⇥4 matrix

2

4
vTA1

vTA2

vTA3

3

5.

This is a di↵erent way of sending a vector (in R2) to a matrix (of dimension 3⇥ 4).
Finally, we can simply do a linear combination of the three layers according to the coordinates of a vector

v 2 R3. Say if v =

2

4
2
3
4

3

5, then we do the linear combination of layer matrices, and get a 2 ⇥ 4 matrix

2A1 + 3A2 + 4A3. This is yet a di↵erent way of sending a vector (in R3) to a matrix (of dimension 2⇥ 4).
If you draw the array of numbers, you shall see that the three ways above correspond to the three ways

of collapsing a 3D object into 2D. From a 3D array, we can collapse the columns of each matrix (the first
way) to get a 2D array, or we can collapse the rows of each matrix (the second way) to get a 2D array, or
we can collapse vertically all the layers (the third way) to get a 2D array.

So, we have three ways to collapse a 3D array. Which way should we choose? Well, we choose ALL OF
ABOVE!

Consider a 2D array, i.e., a matrix A. Rather than think of it as a linear map v 7! Av, we can think of
it as a bilinear map (v,w) 7! vTAw.

Similarly, for a cube array, say the 2 ⇥ 4 ⇥ 3 box array B with layers A1, A2, A3, then we think of it as
a TRI-LINEAR map, sending (u,v,w) to

⇥
uTA1v uTA2v uTA3v

⇤
w. Here u 2 R2,v 2 R4,w 2 R3,

and the thing to the left of w is a row vector, with entries uTAiv for i = 1, 2, 3. So we have a map
B : R2 ⇥ R4 ⇥ R3 ! R such that it is tri-linear, i.e., linear in each input if we fix the other two inputs. ,

As you can see there, the generalization of a matrix (which corresponds to bilinear maps) is a MULTI-
LINEAR map. In the example above I choose R as the codomain. But in general, we can pick any vector
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space as the codomain.

Definition 13.1.2. Given vector spaces V1, . . . , Vn and W , then the “n-input” map M : V1 ⇥ · · ·⇥Vn ! W
is multilinear if it is linear in each input.

(Technically, mathematicians call an “n-input” map as an n-ary map. Unary means one input, i.e., a
regular function as we are used to. Binary means two input. Trinary means three input, and n-ary means
n inputs. There are also related weird names. For example, the “arity” of a map is the number of inputs....
A constant map is sometimes also called a 0-ary map, since it does not really need any input.) (We do not
need these Jargons though.)

Here are some examples of multilinear maps (tensors), as motivations to study tensors.

Example 13.1.3 (Real number multiplication). The multiplication map M : R⇥ R ! R by sending (a, b)
to ab is a multilinear map, in fact a bilinear map. This seems pretty straight forward. ,

Example 13.1.4 (Cross Product). By now you must know what a cross product is. Given two vectors
v,w 2 R3, their cross product v⇥w is a unique vector such that det

⇥
v w v ⇥w

⇤
is positive (they make

a “right-handed” system), v⇥w is perpendicular to v and w, and kv⇥wk is the area of the parallelogram
made by v and w. It also has a formula that I’m sure you have memorized.

And this is a bilinear map R3 ⇥ R3 ! R3. ,

Example 13.1.5 (Determinant). The determinant map send a matrix to a number. It is NOT linear, since
in general det(kA) is NOT the same as k det(A). Rather, it is kn det(A) if A is n⇥ n.

However, it is multilinear! Do NOT think of A as a matrix. Rather, think of it as n column vectors.
Then the determinant map sends n vectors (v1, . . . ,vn) to a number, and it is linear in each input (since
determinant is linear in each column). So it is a multilinear map. (n-linear map.)

To exploit the geometric meaning, higher-dimensional volumn is multilinear in the edge vectors. Can you
see this geometrically?

Here’s a challenge problem for you to do: For any n-linear map from Rn ⇥ · · ·⇥ Rn to R, if it sends the
identity matrix to 1 and it is “alternating”, i.e., swapping two inputs would negate the resulting value, then
it MUST be the determinant map.

So the determinant map is in fact the UNIQUE alternating multilinear map on Rn that sends the identity
matrix to one. Ha! ,

A tensor is basically a multilinear map where all vector spaces involved are the same space. Here are
some examples.

Example 13.1.6 (Tri-focal tensor). Say I take a photo of an object, say a ball. And by looking at the
picture, we can see a fly at the center of the ball. However, since the picture is 2D, I do not know how far
the fly is from me. It’s simply a dot in the picture, and it could be touching the ball, or maybe it is staying
mid-air. Just by looking at the picture, I do NOT know the 3D location of the fly, and I only know that it
rests on the line connecting my camera to the center of the ball. By taking a picutre, I am squashing a 3D
scene into a 2D picture, and I have “one-dimension” of ambiguity.

To figure out the location of the fly, I take another photo at a di↵erent angle. Now from the new picutre,
I also have “one-dimension” of ambiguity. By looking at the new picture, again I only know that the fly lies
on some new line. However, by looking at both pictures, I can intersect the two “lines of ambituity”, then I
would obtain the actual 3D location of the fly.

In particular, if I want to take a third photo at yet another di↵erent angle, then I don’t even need to
take the photo. I can already predict where the fly shall appear on the third photo.

The tri-focal tensor thus refers to the following process. We fix a scene to take photos, and we fix three
di↵erent locations for cameras. Say the three photos are X,Y, Z. Then given X,Y , I can already infer the
location of everything, so even without looking at Z, I can infer what Z shall look like.

The map (X,Y ) 7! Z is multilinear. (If the fly moves in a straight line, then it shall move in a straight
line in all pictures X,Y, Z simultaneously.) This is the tri-focal tensor, and it is used for photography, rental
websits (to give “virtual tours” online), movie making (make two photos of a 3D animated object, then we
can compute the photo of the animated object from all angles, etc.). ,
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Example 13.1.7 (Cauchy Stress tensor). In engineering, Cauchy stress tensor is used to describe some
internal tension within an object. How to study tension forces inside an object? Well, the answer is to use
tensors. Not surprising, huh? (This is the reason for the name.)

Given a cylinder, let us pull both ends. Then it shall bread along some cross section. As you can imagine,
before the break, cross sections within the cylinder must be su↵ering from forces to pull them apart!

Now imagine that I have a chocolate bar. I can snap it into two. It will also break along some cross
section. As you can imagine, before the break, cross sections within the cylinder must be su↵ering from
forces to break them. However, the direction of the forces are di↵erent! Now the forces are not apart, but
rather trying to shear apart. (I.e., a sliding-like tension.)

We now attempt to describe stress at a point p 2 X. First we need to describe a cross section. For any
pair of tangent vectors u,v at p, it would span some “cross section”. Then this cross section would face a
stress force, which is another tangent vector w at p. So we have a multilinear map (u,v) 7! w, which goes
from Tp(X) ⇥ Tp(X) to Tp(X). This is the stress tensor at p. What we would end up having is a tensor
field on X (so that you can integrate or manipulate etc.).

Just like the shape of X might influence possibilities of continuous vector fields, the shape of X would
also influence possiblilities of continuous tensor fields. So by designing the shape of X carefully, stress at
some point against some cross-sections would be maximal, and the object is more likely to break that way.
(E.g., a chocolate bar would snap along the “dents”.)

Note that since most engineering applications are in R3, we do not actually need to use a pair of vectors
to describe a cross section. We can just pick a normal vector. Then the Cauchy stress tensor would be
sending n to w, i.e., it is some linear map from Tp(X) to Tp(X). Then actually it can be described by a
matrix. (Which is apprarently what all the engineering textbooks are doing.... A matrix is less scary than
a tensor I guess.) ,

Example 13.1.8 (Curvature). General relativity states that gravity can be modeled as curvaturs of a
4-dimensional geometric object. How can we define curvature on a high-dimensional object?

Suppose we are in R2. I hold my arm towards the north. Now I walk along the unit square, all the way
back to my starting position, while trying to KEEP my arm pointing to the North. This is called a “parallel
translation”. And when I finish my walk, my arm is still pointing the North. So far so good.

Suppose now that we are on the unit sphere. Say I start at somewhere on the equator, and I hold my arm
towards the direction of the north pole. I move towards the north pole while holding my arm in the same
direction, and then turn my body by 90 degree without changing my arm direction. Then I walk straight
until I hit the equator again while holding my arm in the same direction, and turn my body to face my
starting point without changing arm direction. Then I walk back to my starting point while holding my arm
in the same direction. Wait! Now my arm is no longer pointing at the north pole! What happened?

The idea of curvature is based on this. Suppose I am standing inside an object X, at some point p 2 X.
If I hold my arm in some direction (pick a tangent vector v at p), and perform a “parallel translation” while
walking around a loop, my arm might end up at a di↵erent direction (a resulting tangent vector w at p).
If X is flat without curvature, then I expect v = w. But if X is not flat but curved, then around certain
loops, we might have v 6= w. The di↵erence between v and w is the curvature.

To define this more rigorously, first we pick two tangent vectors u,v at p. Then we have a tiny parallel-
ogram made by tu, tv for any number t. If t is tiny enough, then we can approximately imagine that this is
a tiny parallelogram inside of X. We pick a third tangent vector w at p, which is my “arm direction”. We
perform this parallel transport of w while walking around the tiny parallelogram loop made by tu, tv, and
my arm shall end up at some direction wt depending on t.

If t is tiny, then the di↵erences between w and wt shall also be tiny. So we can take limt!0
wt�w

t
as the

curvature.
So what is the curvature? It takes three vectors u,v,w and output a vector limt!0

wt�w
t

. It is a
multilinear map. This is the Riemann curvature tensor, which goes from Tp(X)⇥Tp(X)⇥Tp(X) to Tp(X).
,
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13.2 Kronecker tensor product of Rn

Multilinear maps are usually NOT linear. (E.g., determinant.) In particular, if a map L : V ⇥ V ! W is
linear, then L(ku, kv) = kL(u,v). But if it is bilinear , then L(ku, kv) = k2L(u,v). As such, it is not
obvious how we can study them using linear algebra.

But the following is a starting point. How did we start studying linear maps? Well, it all started with
the following observation: a linear map is COMPLETELY determined by where would a basis goes. If I
know the image of a linear map on the basis vectors, then the whole linear map is uniquely determined.

Observe something similar:

Example 13.2.1. Consider a bilinear map B : R ⇥ R ! V for whatever vector space V . Say we find out
that B(1, 1) = v for some vector v 2 V .

Now, for any a, b 2 R, according to bilinearity, B(a, b) = abB(1, 1) = abv. Hey, everything is decided!
Just like a linear map is completely decided if we know where a basis would go, the object (1, 1) is like a

“tensor basis”. Any bilinear map from R⇥ R to V must be completely determined by where (1, 1) goes.
In particular, any bilinear map B : R⇥R ! V corresponds to a linear map L : R ! V , where we define

L(1) = B(1, 1). This is a one-to-one-correspondence.
Furthermore, the relation between the domain of B and L is funny: it is simply the multiplication map.

Let M : R⇥ R ! R be the multiplication map, the it is easy to see that B = L �M .
In short, the study of bilinear maps from R⇥ R is identical to the study of linear maps from R, via the

multiplication process. ,

Proposition 13.2.2. Any bilinear map B : Rm ⇥ Rn ! V is uniquely determined by its images B(ei, ej)
in U for all i, j.

Proof. For any v 2 Rm and w 2 Rn, then v =
P

aiei and w =
P

bjej . Then using bilinearity, we see that
B(v,w) = B(

P
aiei,

P
bjej) =

P
i,j

aibjB(ei, ej). So we are done.

We only proved the binary version here. But the n-ary version is identical. For example, a trinary map
B is completely determined by values B(ei, ej , ek) for all i, j, k.

We now go one step further. We have seen that any bilinear maps from R⇥ R can ba factored through
the multiplication map. What is the higher dimensional analogue? Well, recall the Kronecker tensor product
for vectors K : Rm ⇥ Rn ! Rmn that sends v 2 Rm,w 2 Rn to their Kronecker product v ⌦w 2 Rmn.

Proposition 13.2.3. Any bilinear map B : Rm ⇥ Rn ! V can be decomposed into the Kronecker product
K : Rm ⇥ Rn ! Rmn and then a linear map L : Rmn ! V .

Proof. Note that vectors like ei⌦ej form a basis for Rmn. By sending each basis vector ei⌦ej to B(ei, ej),
we have a linear map L : Rmn ! V .

Now it is easy to check that L �K(ei, ej) = B(ei, ej), hence the two bilinear maps are the same.

We sometimes also write Rm ⌦ Rn for Rmn. Then multilinear maps from Rm ⇥ Rn to V would be in
one-to-one correspondence with linear maps from Rm ⌦ Rn to V .

As you can imagine, if I want to study multilinear maps from Rn1 , . . . ,Rnk to V , it is enough to study
linear maps from R

Q
ni = Rn1 ⌦ · · ·⌦Rnk to V . This way, we have successfully converted multilinear algebra

into linear algebra. The dimensions are big, but all the theories shall still be there for us to use.
Here is a fast application.

Example 13.2.4 (Determinant is well-defined). Remember how we use to establish determinants? It is a
major headache no matter what! Here are some popular choices.

1. Use the big formula to define determinants. Oh boy is it ugly and scary. And when is the last time
you ever used this? In fact, I won’t be surprised if you never ever use the big formula again in your
life.
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2. Define the case for dimension one and two (and maybe three), and then use Laplace expansion to define
determinant inductively. This one is better because sometimes we do use this method to compute
determinant. (And how often do you use the big formula for 4⇥ 4 matrices?) It also has a geometric
meaning hidden inside, which is a nice bonus. However, the proof is lengthy, and it is annoying to
establish all the column/row operation properties.

3. I like to define it as “higher-dimensional oriented volumn”. However, who can say such a thing even
exist in the first place? This is not a rigorous way.

Now let us re-establish the existence of determinants in a super easy way. The key is to NOT treat⇥
v1 . . . vn

⇤
as a matrix. Rather, treat it as n inputs from Rn, and consider multilinear maps into R.

Consider the space R(nn) = Rn ⌦ · · · ⌦ Rn. Then a basis is ei1 ⌦ · · · ⌦ ein for all i1, . . . , in. Define
L : Rn ⌦ · · ·⌦ Rn ! R such that

1. ei1 ⌦ · · ·⌦ ein goes to zero if some indices among i1, . . . , in are repeating.

2. ei1 ⌦ · · ·⌦ ein goes to 1 if the tuple (i1, . . . , in) can be obtained from (1, . . . , n) via an even number of
swaps. (I.e., the positively-oriented unit cube

⇥
e1 . . . en

⇤
reflected even times could yield the cube⇥

ei1 . . . ein
⇤
.)

3. ei1 ⌦ · · ·⌦ein goes to �1 if the tuple (i1, . . . , in) can be obtained from (1, . . . , n) via an odd number of
swaps. (I.e., the positively-oriented unit cube

⇥
e1 . . . en

⇤
reflected odd times could yield the cube⇥

ei1 . . . ein
⇤
.)

Then this induces a multilinear map from Rn⇥ · · ·⇥Rn to R sending n (column) vectors to a real number,
which we call the determinant. It is immediate to see that this map from

⇥
v1 . . . vn

⇤
to a real number

is linear in each column, and alternating (because it is alternating on abasis).
The row operation properties are also easy to do: just check on the basis ei1 ⌦ · · ·⌦ ein . ,

13.3 The abstract tensor product

Before we move on, let us note that linear maps from V to W form a vector space. We write this as L(V ;W ).
Now, multilinear maps from V1, . . . , Vk to W also form a vector space, which we shall call M(V1, . . . , Vk;W ).

Example 13.3.1. Say we have M1,M2 2 M(V1, . . . , Vk;W ). Then a linear combination aM1 + bM2 is the
obvious multilinear map that sends (v1, . . . ,vk) to aM1(v1, . . . ,vk) + bM2(v1, . . . ,vk). Verify yourself that
this is still multilinear.

Consider the space M(Rn, . . . ,Rn;R), where we have n-copies of Rn. In this space, all alternating
multilinear maps must form a subspace A (“alternating” means swapping a pair of input would negate the
output). You can verify that this subspace is actually one-dimensional, and thus all alternating multilinear
maps here are multiples of the determinant map.

It is easy to see from our discussion in Rn that dimM(Rn1 , . . . ,Rnk ;Rm) = dimL(Rn1⌦ · · ·⌦Rnk ;Rm) =
n1 . . . nkm. ,

We now attempt to do the tensor product WITHOUT using a basis. First let us observe: given a matrix
A, there are three interpretations of it. We can multiply a (column) vector to its right, and think of it
as a linear map v 7! Av. We can also multiply a (row) vector to its left, and think of it as a linear map
wT 7! wTA. Finally, we can multiply a row vector and a column vector to both sides and think of it as a
bilinear map (v,wT) 7! wTAv.

As you can see, all three things corresponds to the same matrix A. It seems that the following three
things are all actually the same thing! (As they are all the same matrices.)

1. Linear maps Rm ! Rn.
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2. Linear maps (Rn)⇤ ! (Rm)⇤.

3. Bilinear maps Rm ⇥ (Rn)⇤ ! R.

4. n⇥m matrices.

Proposition 13.3.2 (What are matrices). Let V,W be finite dimensional spaces. Then the following three
things are the same, in the sense that they all have (canonical and linear) one-to-one correspondings with
each other.

1. Linear maps V ! W . I.e., L(V ;W ).

2. Linear maps W ⇤ ! V ⇤. I.e., L(W ⇤;V ⇤).

3. Bilinear maps V ⇥W ⇤ ! R. I.e., M(V,W ⇤;R).

(Note that these three are three vector spaces, and their identifications with each other are (canonical) linear
bijections.)

Proof. The first two things are in correspondence by taking dual map of each other.
The third one is in correspondence with previous two by taking an analogue of the “bra map”. Given a

bilinear map B : V ⇥W ⇤ ! R, we define LB : V ! W ⇤⇤ to be B(v,�), and L⇤
B
: W ⇤ ! V ⇤ to be B(�,↵).

I shall leave the verification that these are indeed linear for yourself.

Remark 13.3.3 (Why canonical). (Optional)
This portion deal with the use fo the term canonical here. Suppose we have spaces V1, V2,W1,W2.
For any LV : V2 ! V1 and LW : W1 ! W2, then we have three induced linear maps:

1. Elements in the space L(V1;W1) of linear maps from V1 to W1 could be send (via composition with
LV , LW ) to elements in the space L(V2;W2).

2. Elements in the space L(W ⇤
1 ;V

⇤
1 ) could be send (via composition with L⇤

V
, L⇤

W
) to elements in the space

L(V2;W2).

3. Elements in the space B(V1,W ⇤
1 ;R) of bilinear maps from V1 ⇥W ⇤

1 to R can be sent (via composition
with LV , L⇤

W
) to elements of B(V2,W ⇤

2 ;R).

(Draw the diagram to make this easier....) If we treat the spaces L(V1;W1),L(W ⇤
1 ;V

⇤
1 ),B(V1,W ⇤

1 ;R)
as the same space, and the spaces L(V2;W2),L(W ⇤

2 ;V
⇤
2 ),B(V2,W ⇤

2 ;R) as the same space, then by straight
forward calculation, the three maps induced by LV , LW are the same linear map.

This way, we see that not only spaces are isomorphic, maps between pairs of spaces are also isomorphic.
Hence we can say that this is canonical.

Definition 13.3.4. For any two finite dimensional vector spaces V,W , we define their tensor space V ⌦W
as the space L(V ⇤;W ) of linear maps from V ⇤ to W , or the space L(W ⇤;V ) of linear maps from W ⇤ to V ,
or the space B(V ⇤,W ⇤;R) of bilinear maps from V ⇤ ⇥W ⇤ to R.

We have a standard bilinear map ⌦ : V ⇥W ! V ⌦W , such that ⌦(v,w) = v ⌦w should represent the
linear map that sends each � 2 W ⇤ to �(w)v, or the linear map that sends each ↵ 2 V ⇤ to ↵(v)w, or the
bilinear map that sends (↵,�) 2 V ⇤ ⇥W ⇤ to the number ↵(v)�(w).

In short, v ⌦w is just two vectors waiting to be eaten by the corresponding dual vectors! For example,
you can eat v via something in V ⇤, and what you are left with is a multiple of w. You can also eat w via
something in W ⇤, and what you are left with is a multiple of v.

A vector and a dual vector will eat each other. So what is v ⌦w? We have two vectors, and they are
waiting to eat corresponding dual vectors (and then the result is multiplied together). So they induce a
bilinear map from V ⇤ ⇥W ⇤ to R.
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Example 13.3.5. Consider Rn ⌦ (Rm)⇤. This is also the space of linear maps from Rm ! Rn, i.e., the
space of m⇥ n matrices!

So elements of Rn ⌦ (Rm)⇤ are just matrices. the element v⌦wT in it is simply just the matrix vwT in
the most literal sense! This is a very nice idea to keep in mind. The symbol ⌦ might looks strange, but it is
usually just the obvious multiplication under whatever setting. E.g., in the space R ⌦ R, then a ⌦ b is just
ab.

Note that not all matrices are rank one. There are many elements in Rn ⌦ (Rm)⇤ that CANNOT be
written as vwT. Similarly, not all elements of V ⌦ W are of the form v ⌦ w. Those are simply the “rank
one” tensors. In general, we say a tensor ! 2 V ⌦W to have rank k if we need at least k “rank one” tensors
to linearly combine into !. ,

Let us go back to the point of establishing tensor spaces.

Proposition 13.3.6. There is a (canonical) linear one-to-one corresponding between bilinear maps from
V ⇥W to U and linear maps from V ⌦W to U .

Proof. The cheap way: pick basis, and turn everything into Rm,Rn. Then we have already done this.
The honest way: Let us build a linear isomorphism from L(V ⌦ W ;U) to B(V,W ;U). For any linear

L : V ⌦W ! U , note that we have a natural bilinear map ⌦ : V ⇥W ! V ⌦W , then L � ⌦ is a bilinear
map. It is straight forward to verify that L 7! L � ⌦ is linear.

Suppose L � ⌦ is zero. Then L(v ⌦w) = L � ⌦(v,w) = 0. So the process L 7! L � ⌦ is injective. We
count dimension and see that it must be a bijection. (dimB(V,W ;U) = dimV dimW dimU = dimL(V ⌦
W ;U).)

Example 13.3.7. Let us study the cross product, which is bilinear from R3 ⇥ R3 to R3. This corresponds
to a linear map from R3 ⌦ R3 to R3. How is it built?

Note that the cross product is defined so that ei ⇥ ei+1 = ei+2 (where the indices are taken mod three),
and it is alternating (skew-symmetric). Hence let us build a linear map C : R3 ⌦ R3 ! R3 by declaring its
value at a basis. The rule is this: for each pair of basis vectors, the output is the third basis vector. (And
we choose directions carefully to achieve skew-symmetry.)

1. C(e1 ⌦ e1) = 0.

2. C(e1 ⌦ e2) = e3.

3. C(e1 ⌦ e3) = �e2.

4. C(e2 ⌦ e1) = �e3.

5. C(e2 ⌦ e2) = 0.

6. C(e2 ⌦ e3) = e1.

7. C(e3 ⌦ e1) = e2.

8. C(e3 ⌦ e2) = �e1.

9. C(e3 ⌦ e3) = 0.

This gives the values of C at a basis, so they extends to a linear map, whose corresponding bilinear map
is the cross product. Cross product is the unique thing that linearly extends the declarations above. ,

So indeed V ⌦W serves the purpose of an abstract version of Kronecker product, and the bilinear map
⌦ is the “first process” that any bilinear map must go through.

Note that above process is true for all multilinear maps. We just do the bilinear version because it is
easier to present. In general, we have M(V1, . . . , Vk;W ) canonically isomorphic to L(V1 ⌦ · · ·⌦ Vk;W ).
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Remark 13.3.8. There are some hidden things. For example, one can also prove that the spaces U⌦V ⌦W
and (U ⌦ V )⌦W and U ⌦ (V ⌦W ) are canoncially the same.

V ⌦ W and W ⌦ V are also canonically the same, but note that this canonical identication is NOT
identity map. For example, R2 ⌦ R2 under this “swapping” canonical isomorphism to itself is like taking a
“transpose”.

At the level of spaces, you may just think of V ⌦ W as the same space as W ⌦ V . But when V = W ,
then at an level of elements, we almost always expect v ⌦w 6= w ⌦ v.

It is now time to loosen up. It turns out that domain and codomain should be treated “fluidly” in the
following sense:

Proposition 13.3.9. All these spaces are canonically isomorphic to B(V,W ;U).

1. V ⇤ ⌦W ⇤ ⌦ U .

2. L(R;V ⇤ ⌦W ⇤ ⌦ U)

3. L(V ;W ⇤ ⌦ U).

4. L(W ;V ⇤ ⌦ U).

5. L(U⇤;V ⇤ ⌦W ⇤).

6. L(V ⌦W ;U).

7. L(V ⌦ U⇤;W ⇤).

8. L(W ⌦ U⇤;V ⇤).

9. L(V ⌦W ⌦ U⇤;R).

Proof. The actual proof is not hard, just boring and long. Here let us see this intuitively.
An element ! 2 V ⇤ ⌦W ⇤ ⌦ U means we have a dual vector in V ⇤, a dual vector in W ⇤, and a vector in

U , combined in a multilinear fashion.
If the V ⇤ portion of ! eat a vector in V , then we are left with a dual vector in W ⇤ and a vector in U ,

combined in a multilinear fashion. So ! can be seen as an element of L(V ;W ⇤ ⌦ U).
Similarly, let ! eat things selectively, and we have all these interpretations of ! as listed.

So if some tensor-factor is in the domain, you can throw it to the codomain by taking dual. If something
tensor-factor is in the codomain, you can throw it back to the domain by taking dual. If the domain or
codomain has nothing left, then it becomes R. These are the rules of tensor algebra.

So, how to study a multilinear map M(V1, . . . , Vk;W )? Well, we simply study the vector space V ⇤
1 ⌦

· · ·⌦ V ⇤
k
⌦W .

So from now on, we never need to study multilinear maps anymore. We simply study vector spaces.

Example 13.3.10. Recall our examples of 3D array of numbers in the begining, which is a trilinear map
in M(R2,R4,R3;R). For such a 3D box array B, say 2 ⇥ 4 ⇥ 3, then these arrays form a vector space
(R2)⇤ ⌦ (R4)⇤ ⌦ (R3)⇤.

Recall that we have three ways to collapse the 3D array into 2D arrays. This corresponds to the inter-
pretation of B as an element of L(R2; (R4)⇤ ⌦ (R3)⇤),L(R4; (R2)⇤ ⌦ (R2)⇤),L(R3; (R2)⇤ ⌦ (R4)⇤).

A basis for (R2)⇤ ⌦ (R4)⇤ ⌦ (R3)⇤ is made in the form of eT
i
⌦ eT

j
⌦ eT

k
. And the “entries” in the box

array is the coordinates under this basis. For example, 2eT1 ⌦ eT1 ⌦ eT1 + 4eT2 ⌦ eT3 ⌦ eT3 corresponds to the

box array whose three layers are


2 0 0 0
0 0 0 0

�
,


0 0 0 0
0 0 0 0

�
,


0 0 0 0
0 0 4 0

�
. You can think of the i, j, k

index-values as saying “this coe�cient is the entry in the (i, j)-location of the k-th layer”.
You can now verify that if the three layers areA1, A2, A3, then it indeed send (u,v,w) to

⇥
uTA1v uTA2v uTA3v

⇤
w.
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For example,


1
2

�
,

2

664

1
2
3
4

3

775 ,

2

4
1
2
3

3

5 is sent by the example above to
⇥
uTA1v uTA2v uTA3v

⇤
w =

⇥
2 0 24

⇤
2

4
1
2
3

3

5 =

74.
However, there is another way to calculate this. From 2eT1 ⌦eT1 ⌦eT1 +4eT2 ⌦eT3 ⌦eT3 , note that e

T
1 ⌦eT1 ⌦eT1

and eT2 ⌦ eT3 ⌦ eT3 would simply multiply the corresponding coordinates of input vectors, according to their
indices. So !(u,v,w) = 2u1v1w1 + 4u2v3w3 = 74. ,

Example 13.3.11. Consider the cross product again. It is bilienar from R3 ⇥ R3 to R3. Hence the cross
product is an element C of the vector space (R3)⇤ ⌦ (R3)⇤ ⌦ R3.

In fact, since C is defined as the following:

1. C(e1 ⌦ e1) = 0.

2. C(e1 ⌦ e2) = e3.

3. C(e1 ⌦ e3) = �e2.

4. C(e2 ⌦ e1) = �e3.

5. C(e2 ⌦ e2) = 0.

6. C(e2 ⌦ e3) = e1.

7. C(e3 ⌦ e1) = e2.

8. C(e3 ⌦ e2) = �e1.

9. C(e3 ⌦ e3) = 0.

This means we have C = eT1 ⌦eT2 ⌦e3�eT2 ⌦eT1 ⌦e3+eT2 ⌦eT3 ⌦e1�eT3 ⌦eT2 ⌦e1+eT3 ⌦eT1 ⌦e2�eT1 ⌦eT3 ⌦e2.

And the three layers are A1 =

2

4
0 0 0
0 0 1
0 �1 0

3

5 , A2 =

2

4
0 0 �1
0 0 0
1 0 0

3

5 , A3 =

2

4
0 1 0
�1 0 0
0 0 0

3

5. And as a bilinear

map from R3 ⇥ R3 to R3, it would sends v,w to

2

4
vTA1w
vTA2w
vTA3w

3

5. This map action is a bit di↵erent from before,

because the last space of (R3)⇤ ⌦ (R3)⇤ ⌦ R3 is not dualed.
Also note that you can litereally read the cross product formula in your calculus class from the expression

C = eT1 ⌦ eT2 ⌦ e3 � eT2 ⌦ eT1 ⌦ e3 + eT2 ⌦ eT3 ⌦ e1 � eT3 ⌦ eT2 ⌦ e1 + eT3 ⌦ eT1 ⌦ e2 � eT1 ⌦ eT3 ⌦ e2. Can you
see the correspondence? ,

Example 13.3.12. Consider the determinant map det 2 (R3)⇤ ⌦ (R3)⇤ ⌦ (R3)⇤. What are the coordinates
of det in terms of standard basis vectors? What are the layer matrices? Which element of (R3)⇤ (the third
tensor factor space) would it send v,w to? Compare the result with the last example, and enjoy the surprise.
,

Example 13.3.13 (Complexification). If V is a real vector space, say of dimension n. Treat C also as a
real vector space. Then V ⌦ C has real dimension 2n.

For any v ⌦ z and any k 2 C, let us define scalar multiplication as k(v ⌦ z) = v ⌦ kz. Then you may
verify that this makes V ⌦ C into a complex vector space of complex dimension n. If v1, . . . ,vn is a basis
for the real vector space V , then v1 ⌦ 1, . . . ,vn ⌦ 1 is a basis for the complex vector space V .

You may also check that Rn ⌦C is canonically the same as Cn. In general, if V has property blah, then
V ⌦ C is expected to have the corresponding complex property blah.

Suppose you have been working with a real vector space V , but for whatever reason, all of a sudden you
need to expand the coe�cients to include complex numbers. Then you can just do the complex vector space
V ⌦ C, and translate whatever result you have from V over to V ⌦ C in a very simple way. ,
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Suppose we have A : V1 ! V2 and B : W1 ! W2. Then for each v1 ⌦ v2 2 V2 ⌦ V2, we can send it
to (Av1)⌦ (Av2). Since the tensor space is spanned by rank one elements, this induces a well-defined map
A⌦B : V1⌦V2 ! W1⌦W2. (We do not establish it here, but as you can imagine, in coordinates, the matrix
of A⌦B would be the Kronecker tensor product of the matrices for A and B.)

Example 13.3.14 (Tensor multiplication and real number multiplication). Why would v ⌦ w in V ⌦ W
corresponds to the bilinear map v⌦w(↵⌦�) = ↵(v)�(w)? In particular, why does the tensor multiplication
between v and w translate into the multiplication of real numbers?

Note that dual vectors are linear maps by nature, i.e., ↵ : V ! R and � : W ! R. Therefore ↵⌦ � is a
linear map from V ⌦W to R⌦ R = R. The last equality here is exactly real number multiplication. ,

13.4 Tensor powers and calculations

Definition 13.4.1. An (a, b)-tensor over a vector space V is an element of V ⌦a⌦ (V ⇤)⌦b. (Here the tensor
power notation means the tensor of this space with itself many times.)

Note that all (a, b) tensors over a vector space V form a vector space, which we write as T a

b
(V ).

For example, the cross product of 3D vectors is a (1, 2) tensor over R3, while a determinant map is an
(0, n) tensor over Rn. The inner product is a (0, 2)-tensor. The Riemann curvature tensor, as you might
have recall, would eat three vectors of TpX and spit out a single vector of TpX. Therefore it is a (1, 3) tensor
over TpX.

(Also, sometimes people get careless and simply say a+ b tensor. Then a 2-tensor can always be repre-
sented by a matrix, a 3-tensor is always a 3D array, and so on.)

Example 13.4.2. SayM is a geometric object (manifold), then at each point p 2 M , the Riemann curvature
tensor at this point is a (1, 3) tensor. Since we have such a tensor at each point, we see that curvature on
M is in fact a (1, 3)-tensor field!

Similarly, say we want to endow M with distance structure (called a Riemannian manifold). To measure
angle between intersecting curves, we need an inner product between tangent vectors at the intersection
point! Furthermore, to get the length of a curve, we simply integrate the length of the velocity along the
curve. So again, we need an inner product structure on each tangent space.

So the distance structure of M is equivalent to picking an inner product for each tangent space. I.e., this
is a (0, 2)-tensor field. ,

Also note that by convention, we define V ⌦0 to be R. (Because V ⌦R is just V itself. Can you see why?)
This section focus on calculation of things. Say you have a (0, b)-tensor. Then this corresponds to a

multilinear map to R who needs to eat b vectors. So I can feed k vectors (or a (k, 0)-tensor) to it, and get a
(0, b� k)-tensor.

Similarly, say you have a (a, 0)-tensor. Then this corresponds to a multilinear map to R who needs to
eat a dual vectors. So I can feed k dual vectors (or a (0, k)-tensor) to it, and get a (a� k, 0)-tensor.

In general, for an (a, b)-tensor, you can feed it a (b, a)-tensor to get a number. I.e., you can think of
T a

b
(V ) and T b

a
(V ) as dual spaces of each other. So the calculation works like this:

v1 ⌦ · · ·⌦ va ⌦ ↵1 ⌦ · · ·⌦↵b(w1 ⌦ · · ·⌦wb ⌦ �1 ⌦ · · ·⌦ �a) = �1(v1) . . .�a(va)↵1(w1) . . .↵b(wb).

Note that this formula is for rank 1 tensors. A generic (a, b)-tensor or (b, a)-tensor might not have rank
one, but they are always a linear combination of rank 1 tensors.

Any, we have the following.

Proposition 13.4.3. (T a

b
(V ))⇤ = T b

a
(V ).

Here are some easy calculations involving tensors.
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Example 13.4.4 (What is dot product). Consider V = R2 and let g be the (0, 2)-tensor which is the dot
product.

Then g(v ⌦w) = v1w1 + v2w2. Well, it is easy to see that the tensor eT1 ⌦ eT1 + eT2 ⌦ eT2 does exactly
this! So g = eT1 ⌦ eT1 + eT2 ⌦ eT2 . ,

Example 13.4.5 (What is a Euclidean space). We treat the Euclidean space R2 as a Riemannian manifold.
So it has a “distance structure”, i.e., a (0, 2)-tensor field, i.e., a (0, 2)-tensor at each point. What is its
(0, 2)-tensor field?

Note that a (0, 2)-tensor on TpR2 is a linear combination of ↵ ⌦ � for dual vectors of TpR2. For each
tangent vector v,w 2 TpR2, we want hv,wi = vxwx + vywy obviously. This corresponds to the dual vector
tensor

⇥
1 0

⇤
⌦
⇥
1 0

⇤
+

⇥
0 1

⇤
⌦
⇥
0 1

⇤
.

Now note that dx, dy are covector fields. So dx ⌦ dx + dy ⌦ dy gives a (0, 2)-tensor field, and at each
point it will be exactly what we want. ,

Example 13.4.6 (The hyperbolic plane). Let H be the open half plane, i.e., the collection of points with
positive y-coordinate. Consider the (0, 2)-tensor field dx⌦dx+dy⌦dy

y2 . This is called the hyperbolic plane.

Consider the curve � : (�1,1) ! H such that �(t) =


0
e�t

�
. Then its tangent vector at t is �0(t) =


0

�e�t

�
. What is the “speed” according to my distance structure? Well, we have to use the (0, 2)-tensor

dx⌦dx+dy⌦dy
y2 to evaluate this tangent vector with itself (like dot product) and then take square root.

The tensor field dx⌦dx+dy⌦dy
y2 would tell me that this tangent vector has “length”

q
0⇥0+(�e�t)(�e�t)

e�te�t = 1.
So what is �? It is a walk towards the origin along the y-axis at “constant speed”!

As you can see, as we move towarts the x-axis, things will become “sluggish”. You feel like you are
moving at constant speed, yet “Euclideanly” you seem to be slower and slower, and you will in fact never
be able to reach the x-axis. You may also imagine that this is a magical place where, as you move towards
the x-axis, your leg become shorter and shorter.

It can be shown that “Straight lines” in H are of the following two kinds: either a half-circle around
some point on the x-axis, or a vertical line perpendicular to the x-axis. Given any two points p, q, what is
the “shortest path” connecting them? Well, you draw their “perpendicular bisector” which intersects with
the x-axis, and then use the intersection as a center of a half circle going through p, q. Then the shortest
path from p to q is the corresponding arc on the half-circle.

Intuitively, to go from p to q as fast as possible, you need to first move somewhat “upward” so that your
leg can grow longer.

The hyperbolic plane is very famous, because it is the opposite of a sphere. A sphere has constant positive
curvature everywhere, while a hyperbolic plane has constant negative curvature everywhere. Triangles in
H will have internal angles less than ⇡, and “circles” in H or radius r (i.e., points with distance r to a

center point in the H-distance.) will have circumference 2⇡ er�e�r

2 � 2⇡r. As you can imagine, it grows
approximately exponentially as r grows. If you stand in H and look away, then “things with distance r to
you” will be exponentially more as r grows.

If you shoot at a target with distance r away from you, then it is easier to do in a Euclidean space (2⇡r
things are distance r away from you) than in the hyperbolic space (exponentially more things are distance
r away from you). If we do chemistry in the hyperbolic plane (or its generalization, the hyperbolic space),
then everything is super stable, because it is so much harder for molecules to accurately collide with each
other.

For someone standing inside the hyperbolic plane, in their eyes, the hyperbolic plane would actually look
like a disk (search for “Poincaré circle model”.) This is becasue their vision border at distance r will grow
exponentially as r grows. This growth is so fast, that infinity is right in front of your eyes! ,

The examples here are not too bad. However, that is because R2 is rather easy. For more complicated
geometric object, say a 4-dim black hole model, then the computations of distances ((0, 2)-tensor field) and
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curvatures ((1, 3)-tensor field) will become increasingly annoying. Therefore, the famous Albert Einstein
invented a whole new notation to calculate tensors over Rn!

So you see, sometimes the key to discovering a great theory, like general relativity, is to invent super nice
notation, so that calculations are easier.

The key idea behind it are the followings:

1. We write coordinates of vectors with upper indices, and coordinate of dual vectors using lower indices.

So we write v =

2

4
v1

v2

v3

3

5 and ↵ =
⇥
↵1 ↵2 ↵3

⇤
and so on.

2. Basis-dependent things should NOT matter. So given v =

2

4
v1

v2

v3

3

5 and ↵ =
⇥
↵1 ↵2 ↵3

⇤
, will we be

interested in the quantity ↵1v1? NEVER! That would depends on a choice of basis. However, could
we be interested in the quantity

P
↵ivi? Yes. This is simply ↵(v), and it does not depend on the

choice of basis.

3. As a result, if we see ↵1v1 in a calculation process, it must never be alone. It must come as a cluster
↵1v1 + ↵2v2 + ↵3v3 so that it is independent of basis!

4. Writing clusters or summation symbols are tiring. So from now on, if we write ↵ivi, it is implied that
we are adding over i.

Continuing this idea, we have the following notations when it comes to vectors and dual vectors.

1. For a vector v, we sometimes just write (vi). Similarly, for a dual vector ↵, we sometimes just write
(↵i).

2. If we evaluate a dual vector on a vector, we have (↵i)(vi) = aivi, where in the last expression, it is
understood that we take the sum over all possible i.

3. Note that if you see vi↵i, then it is the same thing as ↵ivi. We are just adding these products of these
coordinates over all possible i.

As a rule of thumb, if an index i appear somewhere as an upper index (some vector-coordinates have this
index), and then somewhere else as a lower index (some dual vector-coordinates have this index), then it is
implied that we are summing up over i (the vector index and the dual vector index eat each other). We do
not write the summation symbol. All other notations are invented to keep this rule alive.

For example, consider this:

Example 13.4.7. If we are writing a sequence of vectors, we write v1, . . . ,vk. If we are writing a sequence
of dual vectors, we write ↵1, . . . ,↵j .

For example, we write the standard basis vectors as e1, . . . , en. Then any v is a linear combination of
these. We simply write v = viei where we don’t need to write the summation symbol. Whenever you see i
as both an upper index and a lower index, then you just sum over it without hesitation.

Similarly, the dual stardard basis would be e1, . . . , en, and ↵ = ↵iei. ,

Now what about tensors? We generalize the following convension: vector indices goes to the top, while
dual vector indices goes to the bottom. So an (a, b)-tensor T will have coordinates T i1,...,ia

j1,...,jb
. This means we

can write T as a linear combination T =
P

T i1,...,ia
j1,...,jb

ei1 ⌦ · · ·⌦ eia ⌦ eT
j1
⌦ · · ·⌦ eT

jb
. Sometimes the standard

basis vector ei1 ⌦ · · ·⌦ eia ⌦ eT
j1

⌦ · · ·⌦ eT
jb

for the tensor space T a

b
(V ) is simply written as ej1,...,jb

i1,...,ia
. Then

we simply write T = T i1,...,ia
j1,...,jb

ej1,...,jb
i1,...,ia

, where we sum up corresponding things in the obvious manner.
Consider the following
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Example 13.4.8. 1. A matrix A : V ! V is a tensor in V ⌦ V ⇤. So we write its entries as A = (Ai

j
).

Note that i is indexing the coordinates of the output, while j is indexing the coordinate of the input.
Might as well keep this in mind: upper-index=output, lower-index=input.

2. For any input vector (vj), the rule of matrix-vector multiplication is simply (Ai

j
)(vj) = (Ai

j
vj). Note

that the index j is summed over, so Ai

j
vj is simply a number for each i. Hence (Ai

j
vj) is a vector whose

coordinates are indexed by i. Look at how pretty this multiplication formula is: (Ai

j
)(vj) = (Ai

j
vj)!

3. What is Ai

i
? Well, it is obviously the trace of the matrix A. This is probably the fastest proof that

trace is independent of coordinates.

4. Consider matrix multiplications. Say A = (Ai

j
) and B = (Bi

j
). To do matrix multiplications AB, we

need to feed the output of B to the input of A. So we just “connect the lower index of A (the input
of A) with the upper index of B (the output of B)”. So (AB)i

j
= (Ai

k
)(Bk

j
) = (Ai

k
Bk

j
). Wow, matrix

multiplication formula is so easy!

5. What if we see an expression Bk

j
Ai

k
? Well, it is STILL the (i, j)-coordinate for AB! Because by

looking at the index, we are still identifying the input of A with the output of B. So as you can see,
the Einstein notation has NO confusion about the order of multiplication. You can feel free to write
Bk

j
Ai

k
or Ai

k
Bk

j
, and they both corresponds to the same entry of AB. To get an entry of BA, the you

would need to connect the output of A with the input of B, so you are looking at Ak

j
Bi

k
.

6. Suppose A,B are inverse matrix of each other. Then we expect Ai

j
Bj

k
= Aj

k
Bi

j
= �i

k
, where �i

k
is the

(i, k)-entry of the identity matrix.

7. Given a vector v = (vi) and a row vectorwT = (wi), then viwi meanswTv, while viwj is a (1, 1)-tensor,
and it is the linear map vwT.

8. Given v = (vi),w = (wi), then what is viwj? It is v ⌦w, a (2, 0)-tensor. What is viwi? It is NOT
the dot product. It is in fact MEANINGLESS. NEVER put the same index as upper index twice, or
as lower index twice. But how would we do dot product then? Well, look below.

9. What is a bilinear map? Well, it eats two vectors, so it is a (0, 2)-tensor, i.e., its entry shall have two
lower indices. Say A is a bilinear map, then A = (Ai,j). Then A(v,w) = Aijviwj , a number. The dot
product is (�ij) where �ij = 1 if i = j and �ij = 0 if i 6= j. So how to take dot product between two
vectors? DO NOT WRITE

P
i
viwi, which looks stupid. We NEVER want the same index appear

twice as an upper index, or twice as a lower index. Instead, we write viwj�ij for the dot product. The
symmetricity is super clear in this formula, much better than, say, vTw, which makes symmetricity
unclear.

,

So, given entries of matrices A,B,C, what is the multiplication formula for ABC? Easy. Hook up the
output of C to the input of B, and the output of B to the input of A, and we are done. So we can just do
Ck

j
Bl

k
Ai

l
(the order of multiplication of Ck

j
, Bl

k
, Ai

l
does not matter), and this is the (i, j)-entry of ABC.

13.5 Inner products of tensors

In this section, we FIX a vector space V with an inner product structure. Say the inner product is induced
by the (0, 2)-tensor g = (gij), i.e., hv,wi = g(v,w) = viwjgij . Note that we require g to be symmetric and
positive definite, i.e., gij = gji, and gijvivj � 0 with equality if and only if all vi are zero.

First we need a calculational version of Riesz representation theorem. The bra map is easy.

Proposition 13.5.1 (Lowering the index). The map v 7! hv| would send the vector (vi) to the dual vector
(vigij).
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Proof. hv|((wj)) = vigijwj = (vigij)(wj). So we are done.

So under the inner product on V , given a vector, how to find the corresponding dual vector? We simply
multiply by gij .

Then conversely, given a dual vector, how would we go back to the vector? Well, we would like to multiply
the inverse matrix of gij .

Definition 13.5.2. Let (gij) be a symmetric positive definite (0, 2)-tensor on Rn. Then we write (gij) to be
the (2, 0)-tensor such that the matrix with entries gij and the matrix with entries (gij) are inverse of each
other. (Note that it does NOT matter whether we choose i or j to be the row index or column index, because
everything is symmetric.)

In particular, we have the following identity:

Proposition 13.5.3 (The duality between inner products). Let (�j
i
) be the identity map.

1. gij = gji.

2. gijgjk = �i
k
. (Note that by exploiting the symmetricity of gij and gij, we would get many similar

identities.)

3. gijgij = n, the dimension of V .

Proof. Note that (gij) form a symmetric matrix, and the inverse of a symmetric matrix is symmetric, so
(gij) is symmetric.

By construction, (gij) and (gij) are inverse matrix of each other. So (gijgjk) = (gij)(gjk) = I = (�i
k
).

Finally, gijgij = �i
i
= trace(I) = dimV .

Proposition 13.5.4 (Raising the index). The Riesz map would send the dual vector (ai) to the vector
(aigij).

Proof. We only need to check that this is the inverse of the bra map. We have aigijgjk = ai�ik = ai. Yay!

Remark 13.5.5 (Transpose). In general, transpose means “raise all lower indices and lower all upper
indices.” So Ai

j
has a transpose of Aj

i
, and the standard basis vector ei has a transpose ei (i.e., eT

i
).

Now let us consider an inner product structure on V ⇤. Such an inner product shall eat two DUAL vectors
and output a number. Hence it is a (2, 0)-tensor over V !

Definition 13.5.6. Given an inner product space V with inner product (gij), we choose (gij) as the corre-
sponding inner product on V ⇤.

Proposition 13.5.7. Under the inner product on V and the corresponding inner product on V ⇤, the bra map
and the Riesz map are isometric bijections. (I.e., they preserve inner product in the domain and codomain.)

Proof. hhv|, hw|i = (vigij)(wkgkl)gjl = vigijwk(gklgjl) = viwkgij(�
j

k
) = viwk(gij�

j

k
) = viwkgik = hv,wi.

Now we are ready to define inner products on tensors. (And then length of and angles between tensors
are defined.)

Definition 13.5.8. We define inner products on (k, t)-tensor space over V as h(T i1,...,ik
j1,...,jt

), (Sm1,...,mk
n1,...,nt

)i =

T i1,...,ik
j1,...,jk

Sm1,...,mk
n1,...,nk

gi1m1 . . . gikmkg
j1n1 . . . gjtnt . Here gij is the inner product on V .

In short, we literally just do the inner product for each corresponding components. For example, h↵ ⌦
v,� ⌦wi = h↵,�ihv,wi.
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13.6 Alternating tensor and alternization

We now focus our study on (0, k)-tensors and (k, 0)-tensors. A (0, k)-tensor T is both an element of (V ⇤)⌦k,
and a multilinear map T : V ⇥ · · · ⇥ V ! R. Dually, a (k, 0)-tensor T is both an element of V ⌦k, and a
multilinear map T : V ⇤ ⇥ · · · ⇥ V ⇤ ! R. In the following discussions, we first and foremost treat them as
multilinear maps into R.

Definition 13.6.1. A (0, k)-tensor or a (k, 0)-tensor is alternating if swapping a pair of inputs would negate
the output.

Determinant is the most prominant example of this. But let us review a bit about what’s going on.

Example 13.6.2. In R, given a vector v 2 R (which is secretly just a single number...), we can talk about
its length. Note that R is naturally endowed with a positive axis direction. Therefore, some vectors have
positive length, and some have negative length. The oriented-length measurement is simply e1 (i.e., eT1 ),
the unit dual vector.

Note that for any multilinear map, if it is linear (only one input), then there is no other input to swap
with, so we treat it as alternating by convention.

Now in R2, given a pair of vectors (v,w), they form a parallelogram. We say the parallelogram is
positively oriented if doing v first and then w is going counter-clockwise around this parallelogram. Then
the parallelogram will have an oriented area! Note that (v,w) and (w,v) would represent the SAME
parallologram with OPPOSITE orientation. Therefore the measurement of oriented area is alternating!
(And it is also easily seen as bilinear.)

Of course, this area is just the determinant det(v,w). You can review last semester’s notes on determi-
nants. By the determinant formula, oriented area is e12 � e21, where eij refers to eT

i
⌦ eT

j
as usual.

In R3, pick three vectors and we have oriented volume, also given by the determinant. And the oriented
volume tensor is e123 + e231 + e312 � e132 � e213 � e321. So on so forth to higher dimensions and oriented
higher dimensional volumes. ,

Let us have an exotic example here, which is the “dual” to the ideas above. In the example above, say
in R2, then two one-dimensional things (vectors) span an area (the parallelogram). Dually speaking, in R2

we can also intersect two one-dimensional things to get a point (zero dimension).

Example 13.6.3. (This example still has some troubles.... Consider y = x3 intersecting with y = �x3.)
Instead of using an a-dim thing and a b-dim thing to span an (a + b)-dim thing, we can also intersect

an (n � a)-dim thing and a (n � b)-dim thing to obtain an (n � a � b)-dim thing. Here we show a simple
example of this where n = 2 and a = b = 1.

In R2, curves wouold intersect at points. However, sometimes it is useful to study the oriented-intersections.
For example, let’s say that �1 is in fact a Jordan-curve, i.e., a closed curve that will unambiguously bound a
region. (But it might still look windy and complicated.) In short, there are well-defined concepts of “region
inside of the curve” and “region outside of the curve”. Then given a point p 2 R2, how can we tell if it is
inside the region or outside of the region? Well, we just draw a straight ray from p to infinity �2. Then
when �2 intersects with �1, it will “cut”, then “uncut”, then “cut”, and then “uncut”, and so on. Each time
�2 will change its status of being “inside” or “outside” of �1. If in the end we have even number of cuts,
then p is outside of �1, and we say the total oriented-intersection of �1 and �2 is zero.

To formally define this idea, given two curves �1 and �2 on R2, if they intersect somewhere, i.e., �1(s) =
�2(t) for some s, t, then we say they intersect positively here if det(�0

1(s), �
0
2(t)) > 0, and intersect negatively

here if det(�0
1(s), �

0
2(t)) < 0. What if they intersect with det(�0

1(s), �
0
2(t)) = 0, i.e., tangentially? Well, note

that a tangent intersection is actually always the limit of a pair of oppositely-oriented intersections. So if
det(�0

1(s), �
0
2(t)) = 0, we do not count this as an intersection.

In particular the total number of intersections of a curve � with itself is zero. Even though � intersect
with itself everywhere, but all these intersections are tangential. Hence they all do not count. Similarly,
from definition you can easily see that the total number of oriented-intersections of �1 with �2 and the total
number of oriented-intersections of �2 with �1 must be negations of each other.
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So this “intersection number” between curves is an “alternating” thing, say if i(�1, �2) denotes the total
number of oriented-intersections between the two curves, then i(�1, �2) = �i(�2, �1).

We now make this bilinear. To avoid infinite intersections, suppose we only consider straight lines and
quadratic curves. (You can safely generalize this to all algebraic curves.) Then let V be the “formal linear
combination of these curves”. So elements of V are a finite sum a1�1 + · · ·+ ak�k, where you may interpret
k� as a “curve where each point has mass k” if you like. Then given a linear combination of curves �1,�2,
then we can ask how many oriented-intersections do they have.

Then we can extend the idea of oriented-intersections linearly to V . Then we have a bilinear alternating
map i : V ! V such that i(�1, �2) is the total number of oriented-intersections, and i(a�1, b�2) = abi(�1, �2)
is the total oriented-weight of the intersections. ,

The above examples are all (0, k)-tensors. What about (k, 0)-tensors?

Example 13.6.4. Suppose we are in R2. Suppose we have a (2, 0) tensor P . Then the (0, 2)-tensor det
would be able to evaluate it into a number, i.e., P is an object with “oriented area”!

So given an oriented-parallelogram, P made by two edges (v,w) (so the orientation is done by going
along v and then w), which tensor represent it? Well, note that if we switch the order of the two edges, the
orientation of P is flipped. So we want an alternating (2, 0)-tensor.

It turns out that there is a unique alternating tensor using v and w such that det would evaluate P to
the desired area. For example, consider the positively-oriented unit square. Well, note that det(v ⌦ w) =
det(v,w), so e1,2 = e1 ⌦ e2 and �e21 = �e2 ⌦ e1 are BOTH objects constructed using the edge e1, e2, so
they are both candidates to represent the unit square. In fact, any linear combination of then ae12 � be21
with a+ b = 1 would also represent the unit square. However, most of these are NOT alternating. The only
alternating one is 1

2 (e12 � e21). So this is what we choose.
In general, you may think of 1

2 (v ⌦w �w ⌦ v) as representing the parallelogram made by (v,w). ,

Definition 13.6.5. Given a (k, 0)-tensor T , its alternization is Alt(T ) = 1
k!

P
�2Sk

sign(�)�(T ), where
�(T ) means we are permuting the inputs of the multilinear map T by the permutation �.

Here Sk is the set of all permutations of k things.

Think of this as an “anti-symmetrization” of T , so that we get an alternized version of T .

Proposition 13.6.6. In Rn, the map Alt from (k, 0)-tensors to alternating (k, 0)-tensors is a linear projec-
tion map. Here projection means Alt(Alt(T )) = Alt(T ).

Proof. It is easy to see that it is linear from the definition. For the second statement, we just need to show
that if T is alternating, then Alt(T ) = T .

If T is alternating, then �(T ) = sign(�)T . So by direct computation we have Alt(T ) = T .

Corollary 13.6.7. Let ⇤k(V ) be the space of all alternating (k, 0) tensors on V . Then if V = Rn, a basis
is Alt(ei1,...,ik) where 1  i1 < · · · < ik  n. In particular, dim ⇤k(V ) =

�
n

k

�
where n = dimV . Here

�
n

k

�

means the number of ways to pick k elements out of a set of n elements, i.e., n!
k!(n�k)! .

Proposition 13.6.8. In Rn, for any (k, 0)-tensor P and (0, k) ALTERNATING tensor T , then T (P ) =
T (Alt(P )).

Proof. Note that T is alternating. So for each � 2 Sk, T (�(P )) = sign(�)T (P ).
T (Alt(P )) = 1

k!

P
�2Sk

sign(�)T (�(P )) = 1
k!

P
�2Sk

sign(�)2T (P ) = 1
k! (k!)T (P ).

So we are done.

Corollary 13.6.9. In Rn, let det be the n-dim volume tensor, then det(Alt(v1⌦· · ·⌦vn)) = det(v1, . . . ,vn).

In general, in Rn, you may think of Alt(v1 ⌦ · · ·⌦ vk) as representing the oriented k-dim parallelotope.
Here is the final piece that might convince you of this.

Proposition 13.6.10. In the Euclidean space Rn (so all vectors and all tensors have “length”), let P be the
tensor representing a k-dim parallelotope. Then the k-dim volume of this parallelotope is simply (

p
k!)kPk.

382



Proof. We only prove k = 2 here for simplicity. The generic case is pretty much the same.
If P is made of (v,w), a pair of orthogonal vectors, then k2Pk2 = hv⌦w�w⌦ v,v⌦w�w⌦ vi. Here

I use 2P to get rid of the annoying alternization coe�cient.
Note that hv⌦w,v⌦wi = hw⌦v,w⌦vi = kvk2kwk2 = Area(P )2, while hv⌦w,w⌦vi = hv,wi2 = 0.

Hence we are done.
Now let me show that both area and kPk are invaraint under shearing. Suppose P is made of (v,w), any

pair of vectors. Then let P 0 be the parallelogram made by (v,w� kv) for some constant k. Then treating v
as the “base”, you can see that P, P 0 have the same “base” and “height”, therefore they have the same area.

On the other hand, note that Alt(v⌦ (w� kv)) = Alt(v⌦w)� kAlt(v⌦ v) = Alt(v⌦w). So P, P 0 are
the same tensor, and kPk = kP 0k.

Since any parallelogram can be obtained by shearing a rectangle, we are done.

Example 13.6.11 (3D Pythagorean theorem). Let us prove the following fact. Given a right tetrahedron,
say the three right triangles are on yz, zx, xy-planes respectively, with area Sx, Sy, Sz. And let S be the area
of the slant face. Then S2 = S2

x
+ S2

y
+ S2

z
.

How to show this? Let the three edges on the coordinate axis be u,v,w. Then the three right triangles
are represented by tensors Tx = 1

2Alt(u⌦ v), Ty = 1
2Alt(v ⌦w), Tz = 1

2Alt(w ⌦ u).
The slant triangle is made by T = 1

2Alt((v �w)⌦ (v �u)) = 1
2 [Alt(v ⌦ v)�Alt(w⌦ v)�Alt(v ⌦u) +

Alt(w ⌦ u)] = Tx + Ty + Tz. As you can see here, the fact that the four triangles “closed up” is translated
into the fact that T = Tx + Ty + Tz.

Now we think of Rn as the Euclidean space. Then Sx =
p
2kTxk and so on. So we aim to show that

kTk2 = kTxk2 + kTyk2 + kTzk2.
However, a direct calculation (or a geometric observation) shows that Tx, Ty, Tz are mutually orthogonal

tensors. Hence we are done by regular Pythagorean theorem. ,

Note that the correspondence here between alternating (k, 0)-tensors and k-dim parallelotopes is NOT
one-to-one, but one-to-many. For example, v ⌦ (2w) and (2v) ⌦ w are the SAME tensor. In the end, a
(k, 0) alternating tensor is simply something with a k-dim “direction” (the k-dim subspace spanned by the
parallelotope) and a “magnitude” (the k-dim volume), like a generalized concept of vector. It does NOT
really care about the specific shape.

For example, ⇡Alt(e1 ⌦ e2) could either refer to a 1 ⇥ ⇡ rectangle on the xy-plane, or a unit circle on
the xy-plane. It only records the “direction”, i.e., it lies on the xy-plane, and the “magnitude”, which is the
“oriented-area”.

13.7 Wedge product

We now try to figure out intersections.

Example 13.7.1. Recall that in a vector space V , a dual vector ↵ induces a foliation of V by hyperplanes
parallel to Ker(↵).

Now consider R2 with two dual vectors ↵ = e1,� = e2. If you like, we can also write dx, dy for them.
Either way, dx induces a unit density foliation of R2 by lines parallel to x = 0, i.e., the y-axis. Similarly,

dy induces a unit density foliation of R2 by lines parallel to y = 0, i.e., the x-axis. If we intersect the lines
in the dx foliation with lines in the dy foliation, what would we get? We would get a foliation of R2 by
points, and we have unit density of points everywhere. Write this as dx ^ dy. (In calculus, people simply
write dx dy.)

What is this object dx ^ dy? Well, for each parallelogram, say represented by the (2, 0) alternating
tensor P , then we can ask ourself: how many points of the foliation dx ^ dy are inside of P? Since this is
a unit density foliation, we would simply get the oriented-area. In particular, dx ^ dy send (2, 0) tensors to
numbers, so it is a (0, 2)-tensor itself. In fact, since dx^ dy means the oriented-area, we have dx^ dy = det
as a (0, 2)-alternating tensor over R2.

In terms of the standard basis, e1 ^ e2 = e12 � e21, since det(v ⌦w) = det(v,w) = v1w2 � v2w1. ,
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Example 13.7.2. What about R3? We have standard dual basis dx, dy, dz. Then dx^dy is the intersection
of planes perpendicular to x-axis with planes perpendicular to y-axis. Hence it is a foliation of R3 by lines
parallel to the z-axis (with unit density throughout).

Given any parallologram, say represented by the (2, 0) alternating tensor P over R3, then we can ask
ourself: how many lines in the foliation of dx^dy would P cut? As you can imagine, since dx^dy have unit
density, dx^dy(P ) is the oriented-area if we project P to the xy-plane. In particular, dx^dy(Alt(v⌦w)) =
dx ^ dy(v,w) = v1w2 � v2w1 again.

If you want the foliation of R3 by unit density dots, then you would have to do dx ^ dy ^ dz. Then
it measures volumes of parallelopiped. It is the (0, 3) alternating tensor det, and we have dx ^ dy ^ dz =
e123 + e231 + e312 � e132 � e213 � e321. ,

So the wedge product is induced by the geometric idea of taking intersections. Now let us figure out the
formula for wedge products.

The basic idea is that we want e1^ · · ·^en to corresponds to the tensor det over Rn. By the big formula,
this should be e1^· · ·^en =

P
�2Sn

sign(�)�(e1⌦· · ·⌦en). But wait! This almost look like an alternization,
except that we do NOT divide by the factorial n!.

Therefore, for (0, 1)-tensors a1, . . . ,ak, we define a1 ^ · · · ^ ak =
P

�2Sk
sign(�)�(a1 ⌦ · · · ⌦ ak) =

(k!)Alt(a1 ⌦ · · ·⌦ ak).
What if we have a (0, a)-tensor T and a (0, b)-tensor K? Well, consider (e1 ^ e2 ^ e3) ^ (e4 ^ e5), which

we would like to become e1 ^ e2 ^ e3 ^ e4 ^ e5. Then we would want the following identity

[(3!)Alt(e1 ⌦ e2 ⌦ e3)] ^ [(2!)Alt(e4 ⌦ e5)] = (5!)Alt(e1 ⌦ e2 ⌦ e3 ⌦ e4 ⌦ e5).

So we make this definition here:

Definition 13.7.3. For a (0, a)-tensor T and a (0, b)-tensor K, we define T ^K as (a+b)!
a!b! Alt(T ⌦K).

Proposition 13.7.4. For any non-negative integer a, b, the wedge map ^ : ⇤a(V ) ⇥ ⇤b(V ) ! ⇤a+b(V ) is a
bilinear alternating map. It is also associative as a binary operation.

We skip the proof because it is just boring calculations.
Some other things to keep in mind is that the tensors ei1 ^ · · · ^ eik for 1  i1 < · · · < ik  n form

the standard basis of ⇤k(Rn). Note that we usually write ⇤k(V ) for alternating (k, 0) tensors, and ⇤k(V ) for
alternating (0, k) tensors. It is also easy to verify that ⇤k(V ) and ⇤k(V ) are canonically dual to each other.

13.8 Di↵erential form and exterior derivative

Definition 13.8.1. Given a di↵erential set M , we say ! is a di↵erential k-form if it is a smooth alternating
(0, k) tensor field on M . (The word “smooth” here is tricky. But we shall clarify later.) In particular, for
each p 2 M , !p is an element of ⇤k(TpM) = ⇤k(TpM)⇤.

Di↵erential k-forms on M form a vector space, which we shall denote as ⌦k(M). The use of upper index
here might be a bit annoying, but it is so for topological reasons.

Example 13.8.2. A di↵erential 0-form is assigning each point a (0, 0)-tensor, i.e., a number. So it is simply
a function. ⌦0(M) is the space of all smooth functions X ! R. Here smooth means infinitely di↵erentiable.

A di↵erenital 1-form is assigning each point a (0, 1)-tensor, i.e., a covector. So it is simply a covector
field. ⌦1(M) is the space of all smooth covector fields ! on X. Note that if X = Rn, then ! = !i dxi as per
the Einstein’s notation. Here dxi is the covector field that pick the covector ei everywhere, and !i : X ! R
are functoions. The smoothness of ! refers to the fact that all !i are infinitely di↵erentiable. ,

Example 13.8.3. If X is an open subset of Rn, then we may simply choose the alternating (0, k)-tensor
ei1 ^ · · · ^ eik everywhere. We write this di↵erential k-form as dxi1,...,ik .
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Then at each point, these dxi1,...,ik form a basis for the corresponding alternating tensor space. So for
any di↵erential k-form ! on X, then !p is a linear combination of (dxi1,...,ik)p. Note that at di↵erent p, the
coe�cient for the linear combination might be di↵erent though.

So we have ! = !i1,...,ik dx
i1,...,ik as per the Einstein’s notation, and !i1,...,ik : X ! R is some function

on X. The smoothness of ! means all !i1,...,ik are infinitely di↵erentiable. ,

Now intuitively, you may think of a di↵erentiable k-form on an n-dim manifold M as some (n� k)-dim
foliations of M with density. And given two di↵erential form !, ⌘, we may take their wedge product ! ^ ⌘
such that (! ^ ⌘)p = !p ^ ⌘p. Then wedge products of di↵erential forms corresponds to intersections of
foliations, just like before.

Remark 13.8.4. The paragraph above is just an intuitive guide. It is entirely accurate for R,R2,R3, but
starting from R4 there might be some weird things. For example, dim⇤2(R4) = 6. However, the “2-dim
planes in R4” form a geometric object with dimension 4 (the Grassmanian manifold). Therefore, some
alternating (2, 0)-tensors cannot be seen as “parallelograms”.

Nevertheless, you may think of elements of ⇤2(R4) as linear combinations of parallelograms. Then every-
thing is fine again. It is the same thing for di↵erential forms. Some ! cannot be realized as actual foliations.
But it is always a linear combination of things that could be realized as actual foliations. Then ! ^ ⌘ is still
the corresponding intersection (of linear combinations of foliations).

Example 13.8.5. In R3, a di↵erential 0-form is some function f .

A di↵erential 1-form is something like f dx+g dy+h dz. People also write this as

2

4
f
g
h

3

5·dr. It is a foliation

of R3 by surfaces, and the surface has normal vector

2

4
f
g
h

3

5 everywhere, and density k

2

4
f
g
h

3

5k everywhere.

A di↵erential 2-form is something like f dy ^ dz + g dz ^ dx + h dx ^ dy. Note that in calculus, people
usualy obmit the wedge sign, and simply write stu↵ like dx dy instead. People also write the 2-form as2

4
f
g
h

3

5 · dS. It is a foliation of R3 by curvess, and the curves has tangent vector

2

4
f
g
h

3

5 everywhere, and density

k

2

4
f
g
h

3

5k everywhere.

A di↵erential 3-form is something like f dx ^ dy ^ dz. It is a foliation of R3 by points, with density f
everywhere.

On a k-dim “integrable oriented object” M , whatever that means, we can then integrate a di↵erential
k-form

R
M

!, which counts how many layers of the (n� k)-dim foliation by ! is cut by the k-dim object M
(counting orientation, of course). ,

Example 13.8.6. An interesting yet somewhat disturbing fact is dx ^ dy = � dy ^ dx. However, I’m sure

calculus taught you the formula
R
b

a

R
d

c
f dx dy =

R
d

c

R
b

a
f dy dx. Well, why don’t they agree with each other?

The hidden reason is that when we learn
R
b

a

R
d

c
f dx dy =

R
d

c

R
b

a
f dy dx, we were not careful about the

orientation.
R
b

a

R
d

c
refers to a parallelogram with side vectors ((b � a)e1, (d � c)e2), while

R
d

c

R
b

a
refers to

a parallelogram with side vectors ((d � c)e2, (b � a)e1). Hey! They are the same parallelogram with the
OPPOSITE orientation!

So the proper way to do this is like this:
R
b

a

R
d

c
f dx dy =

R
P
f dx dy = �

R
P
f dy dx =

R
�P

f dy dx =
R
d

c

R
b

a
f dy dx. Here P refers to the oriented parallelogram for

R
b

a

R
d

c
, i.e., the parallelogram [a, b]⇥ [c, d] ✓ R2

with positive orientation. ,

Example 13.8.7. Consider a smooth function f : R2 ! R. What is df ^ dy? Note that df = fx dx+ fy dy
where fx, fy are the partial derivatives. So df^dy = (fx dx+fy dy)^dy = fx dx^dy+fy dy^dy = fx dx^dy.
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Here dy^dy = 0 because the wedge product is alternating (and because the foliation curves of dy is tangent
to itself everywhere).

df is the foliation by level curves of f , while dy is the foliation by lines parallel to the x-axis. You can
indeed see that the density of df foliation curves in the x-direction fx is the density of the intersections. ,

Now let us define exterior derivatives. Given a di↵erential k-form, interpreted as some (n � k)-dim
foliations, then we can take the boundary of each foliation layer, and get a (n� k � 1)-dim foliation, i.e., a
di↵erential (k + 1)-form. This operation is called the exterior derivative d! of a di↵erential form !. Let us
see how one might define this.

First of all, d : ⌦k(M) ! ⌦k+1(M) must be linear.
Furthermore, we know already that, when k = 0, we want d(f) to be fx dx + fy dy + fz dz. This could

be the start of some inductive definition.
Also note that, since d is taking boundary of the layers of the foliation, d� d = 0. This is tied to the

geometric fact that the boundary of boundary is always empty, i.e., @(@M) = ?. (E.g., if a curve is not
even closed up, then how could it bound a region? If a surface is not even closed up, how could it bound a
volume?)

The last ingredient, as with all derivatives, is the Leibniz rule.

Definition 13.8.8. We define the exterior derivative d to be the unique linear map such that:

1. (Start of the induction.) d(f) is the covector field df for all f 2 ⌦0(M).

2. (Boundary of the boundary is empty.) d� d= 0 always.

3. (Leibniz rule.) d(↵ ^ �) = (d↵) ^ � + (�1)p↵ ^ (d�) where ↵ is an p-form.

Example 13.8.9 (An explicit formula for the exterior derivative). Consider f dx dy on R3. This is a foliation
of R3 by lines or rays or line segments parallel to the z-axis. At a point p, if f increases in the z-direction,
i.e., fz > 0, then it means more rays along the positive z-axis direction are emerging (positive boundary
point). If f decreases in the z-direction, i.e., fz < 0, then it means rays along the positive z-axis direction
are ending (negative boundary point).

In particular, it only makes sense that d(f dx dy) = fz dz dx dy = �fz dx dz dy = fz dx dy dz.
In general, if we have f dxI for some I = (i1, . . . , ik), then d(f dxI) = (df) ^ (dxI), since d(dxI) is a

double d, hence it is zero. Since all k-forms are linear combinations of things like f dxI , this actually gives
a more explicit formula to calculate exterior derivatives on Rn. ,

Example 13.8.10 (Gradient, Curl, Divergence). The following three computations reveals that tha nature
of gradient, curl and divergence are ALL the same: they are all exterior derivatives in disguise!

df = fx dx + fy dy + fz dz, where fx, fy, fz refers to the corresponding partial derivatives. This is the
“gradient” process. In the language of calculus, we have df = (rf) · dr.

d(f dx+ g dy+ h dz) = (hy � gz) dy dz + (fz � hx) dz dx+ (gx � fy) dx dy. This is the “curl” process. In
the language of calculus, we have d(F · dr) = (r⇥ F ) · dS.

d(f dy dz+g dz dx+h dx dy) = (fx+gy+hz) dx dy dz. This is the “divergence” process. In the language
of calculus, we have d(F · dS) = (r · F ) dx dy dz.

As you can see, calculus class basically would try to do these in a way to avoid mention tensors. They
end up needing many di↵erent names for these di↵erent formulas. But the concept of tensor unify all these
calculations.

Furthermore, since d� d= 0, we immediately see that r⇥rf = 0 and r · (r⇥ F ) = 0. Also note that
r ⇥ rf = 0 is the SAME statement as the fact that all mixed derivatives are the same. All of these are
consequences of d� d= 0.

Finally, the Green’s theorem, Stoke’s theorem and Gauss theorem are all unified under the same equation:R
@M

! =
R
M

d!. In some sense, this is pointing out the fact that the geometric “boundary” map @ and the
algebraic “boundary” map d are dual to each other. ,

Remark 13.8.11 (Optional Proof of Stoke’s theorem). See Class Video 142-3.
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13.9 Poincaré duality and de Rham cohomology

Note that we have a combinatorial identity
�
n

k

�
= n!

k!(n�k)! =
�

n

n�k

�
. In particular, the spaces ⇤k(Rn) and

⇤n�k(Rn) have the SAME DIMENSION! Do they have some sorts of correspondence?

Example 13.9.1. If we switch up k-dim things with (n�k)-dim things, there would be some fun phenomena.
An interesting examlpe are the platonic solids, i.e., the most “regular” possible 3D shapes.

A regular polygon is a polygon where all side lengths and all inner angles are the same, i.e., equilateral
triangles, squares, regular pentagons etc.. A platonic solid is a 3D polyhedron where all faces are the same
regular polygon of the same sizes, and all vertices looks the same. So, in some sense, this is a 3D shape with
maximal symmetry.

(Note that even though polyhedrons are 3D shapes, i.e., shapes in R3, we actually treat them as 2-dim
“piecewise-di↵erentiable” surfaces.)

The most well-known examples of pPlatonic solids are tetrahedrons (made of four triangles) and cubes
(made of six squares). Lesser known Platonic solids are octahedrons (made of eight triangles), dodecahedron
(made of 12 pentagons. Here “do-dec-ahedron” breaks down into “do”, which means two [e.g. double], and
“dec”, which means 10 [e.g. “decade”], so do-dec-ahedron means “12-polyhedron”), and the icosahedron
(made of 20 triangles).

Well, it turns out that this is it! There are only five Platonic solids, no more. You might take some
topology or graph theory class to see this.

(Also for those interested in dodecahedrons, I highly recomment the exposition website https://math.
ucr.edu/home/baez/dodecahedron/1.html.)

Let us switch up k-dim things with (n� k)-dim things. Since we treat these things as 2-dim “piecewise-
di↵erentiable” surfaces, n = 2.

Given a platonic solid P , for each face, place a vertex in the center, and connect these vertices. You will
obtain the dual Platonic solid P ⇤. If you do this again, you will realize that P ⇤⇤ is just the shap P again.
(Try this on the cube to get an octahedron.)

By comparing P and P ⇤, you can see that each k-dim thing of P corresponds to some (n� k)-dim thing
of P ⇤! Furthermore, if an edge e is on the boundary of a face f of P , then the point f⇤ is on the boundary
of the edge e⇤ of P ⇤. So “boundary” maps goes in the opposite direction! This duality is not just some
one-to-one correspondence of objects, but in fact a total duality of the internal geometric structure.

Under this idea, the cube and the octahedron are dual, the dodecahedron and the icosahedron are dual,
and finally, the tetrahedron is self-dual. ,

As you can feel from the example of the Platonic solids (which are 2-dim surfaces), k-dim things with
(n � k)-dim things should in some sense be the “dual” of each other. This is not just a geometric duality.
Here is a combinatorial duality to think about.

Example 13.9.2. How many k-element subset does an n-element set S has? Well, the answer is
�
n

k

�
=

n!
k!(n�k)! . However, how many (n � k)-element subset doew an n-element set has? Well, the answer is
�

n

n�k

�
= n!

k!(n�k)! .
Furthermore, there is indeed a “mutual evaluation” going on. Let Sk be the set of k-element subsets of

S, and let Sn�k be the set of (n�k)-element subsets of S. Then eash element x 2 Sn�k would send elements
y 2 Sk to the number |x \ y|, the number of elements in the intersection. This way, we see that Sk, Sn�k is
indeed “dual” to each other, in the sense that they send each other to numbers. ,

Now consider the fact that dim⇤k(Rn) =
�
n

k

�
=

�
n

n�k

�
= dim⇤n�k(Rn), it is very natural to conjecture

that the two are actually dual spaces of each other! I.e., alternating k-tensors should be naturally dual to
alternating (n� k)-tensors.

But how is this duality achieved? Well, as suggested by the combinatorial case, it should be done via
“intersection”, which in the case of alternating tensors means the wedge product.

Consider the wedge map ^ : ⇤k(Rn)⇥⇤n�k(Rn) ! ⇤n(Rn). What is this codomain? Well, dim⇤n(Rn) =
1, so it is R. Therefore elements of ⇤k(Rn) and ⇤n�k(Rn) send each other to R, i.e., they are dual to each
other!
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Before we go into the proof, let us standardize a notation. For any multi-index I = (i1, . . . , ik), we use
⇠I to denote ei1 ^ · · · ^ eik . Then a basis for ⇤k(Rn) is ⇠I for all strictly increasing k-multi-indices I.

Proposition 13.9.3. We have a linear isomorphism P : ⇤n�k(Rn) ! ⇤k(Rn) such that, for each ! 2
⇤n�k(Rn) and ⌘ 2 ⇤k(Rn), we have ! ^ ⌘ = P (!)(⌘) det. Here det is the determinant tensor in ⇤n(Rn).

Proof. Since ⇤n(Rn) is one-dimensional and det 2 ⇤n(Rn) is non-zero, therefore any element of ⇤n(Rn) is a
unique multiple of det. This gives a linear bijection L : ⇤n(Rn) ! R.

We now define P = L � ^, so P (!, ⌘) = L(! ^ ⌘) is a bilinear map. Then P : ⇤n�k(Rn) ⇥ ⇤k(Rn) ! R
is bilinear. So P 2 M(⇤n�k(Rn),⇤k(Rn);R) = L(⇤n�k(Rn);⇤k(Rn)). So we may treat P as a linear map
from ⇤n�k(Rn) to ⇤k(Rn). By construction, we have ! ^ ⌘ = P (!)(⌘) det.

It remains to show that P : ⇤n�k(Rn) ! ⇤k(Rn) is a bijection. We already know that the domain and
codomain have the same dimension. So we only need injectivity.

Suppose P (!) = 0, then ! ^ ⌘ = 0 for all ⌘ 2 ⇤k(Rn). But this means ! ^ ⇠I = 0 for all k-multi-indices
I. In particular, by the lemma below, this means under the basis ⇠I for ⇤n�k(Rn), all coordinates of ! are
zero. So we are done.

Lemma 13.9.4. Suppose ! = aI⇠I where I ranges over all possible strictly increasing (n�k)-multi-indices.
For any strictly increasing k-multi-index J , let J 0 be the strictly increasing (n � k)-multi-index such that
J, J 0 has no common index. (Note that such J 0 must be unique.) In particular, (J 0, J) is a permutation of
(1, . . . , n).

Then ! ^ ⇠J = (sign(J, J 0)aJ 0) det = ±aJ 0 det. In particular, if ! ^ ⇠J = 0 for all J , then all coordinates
aI of ! are zero, and thus ! = 0.

Proof. Note that for any strictly increasing (n� k)-multi-indices I, either it has common index with J and
thus ⇠I ^ ⇠J = 0. Or it does not has common index with J , and thus I = J 0.

So ! ^ ⇠J = aI⇠I ^ ⇠J = aI⇠(I,J) = aJ 0⇠J
0
,J . Since ⇠J

0
,J is the result of the permutation (J 0, J) acting

on det, we see that aJ 0⇠J
0
,J = (sign(J, J 0)aJ 0) det = ±aJ 0 det.

The isomorphism P here is called the Poincaré duality, i.e., the k and (n � k) alternating tensor space
are dual to each other.

In general, for any abstract vector space V , then ⇤nV ⇤ is always one dimensional, and thus isomorphic
to R. However, there is no canonical isomorphism if we do not pick a basis. For example, for any linearly
independent vectors v1, . . . ,vn, then if we pick these as basis to do determinant, then det(v1, . . . ,vn) = 1.
But if we pick v2,v1,v3,v4, . . . ,vn as the standard basis, then det(v1, . . . ,vn) = �1.

Remark 13.9.5. If we treat determinant as a function on matrices or linear maps, then they are independent
of “basis change for matrices”. However, if we treat it as a multilinear map on columns, then it depends on
the basis of each column. A change of basis for these columns is like (v1, . . . ,vn) 7! B(v1, . . . ,vn) for the
change of coordinate matrix B, and thus det(v1, . . . ,vn) will change into det(B) det(v1, . . . ,vn), which is
di↵erent.

Definition 13.9.6. An orientation on V is a choice of non-zero vector ! on ⇤nV . (Note that ⇤nV is a
one-dimensional space, so it is spanned by any non-zero vector.)

You might intuitively think of this as “declaring unit volume”. Elements of ⇤nV are sending ⇤nV to
numbers, i.e., they send parallelotope to numbers in an alternating multilinear way (i.e., multiples of the
volume measurement). We know ⇤nV is isomorphic to R, but which one do you pick to be 1? The ! serves
the purpose of 1, i.e., we choose it as the standard volume measurement of the parallelotopes.

For any linearly independent vectors v1, . . . ,vn, let its dual basis be ↵1, . . . ,↵n. Then choosing ↵1^· · ·^↵n

as orientation is the same as declaring that we treat the volume of the parallelotope (v1, . . . ,vn) as the unit
volume. (Because using ↵1 ^ · · · ^ ↵n as the multilinear map results in (↵1 ^ · · · ^ ↵n)(v1, . . . ,vn) = 1.)

Proposition 13.9.7. Let V be an oriented vector space with orientation ! 2 ⇤nV . Then we have a linear
isomorphism P : ⇤n�k(Rn) ! ⇤k(Rn) such that, for each ⌘1 2 ⇤n�k(Rn) and ⌘2 2 ⇤k(Rn), we have
⌘1 ^ ⌘2 = P (!)(⌘)!.
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Example 13.9.8. An n-dim manifold or di↵erential set M is said to be oriented if we pick a non-vanishing
smooth n-form on it, called the orientation form. (Note that an n-form is a (0, n)-alternating tensor field.
So this means we “smoothly” picked an orientation for all TpM , where “smooth” means adjacent points p
has adjacent orientation for TpM , hopefully in a di↵erentiable manner.)

Say the orientation is !. Then for any k-form ⌘1 and (n � k)-form ⌘2, at each point, ⌘1 ^ ⌘2 must be a
multiple of !. So as a whole, ⌘1 ^ ⌘2 = f! for some function f . This is the Poincaré duality for manifolds.

For example, consider when M = R3 and the orientation is the standard dx ^ dy ^ dz. Then note that
0-forms and 3-forms can BOTH be described by a single function, while 1-forms and 2-forms can BOTH be
described by three functions. Poincaré duality is the main reason for this.

(This is used rather subtly. For example, we say we want to integrate a function f on M . But if M is
a k-dimensional domain, then you can only integrate k-forms, not 0-forms. So what do we mean? Well, if
M is oriented by a non-vanishing k-form !, then what we mean is

R
M

f!. Inside R3, we almost always use
dx ^ dy ^ dz as the orientation form, so integrationg a function f just means

R
f dx dy dz.)

Now, sometimes it is IMPOSSIBLE to pick an orientation form. For example, on the Mobius strip, any
n-form must vanish at some point, hence it is NOT orientable.

Integrations on things such as the Mobius strip will have SERIOUS troubles. For example, the Stoke’s the-
orem is no longer true. See for example https://sites.icmc.usp.br/szani/sma332/material/moebius.
pdf. ,

13.10 Hodge dual and Maxwell’s equation

The Poincaré duality states that ⇤k(Rn) and ⇤n�k(Rn) are dual spaces of each other. However, in cases
such as Rn, we actually have an inner product structure on all tensor spaces. Hence each space is isomorphic
to its dual via Riesz representation theorem!

Of course, first we shall standardize the inner product structure on ⇤k(Rn). This is slightly di↵erent
from the tensor inner product. For example, the tensor ⇠12 = e12 � e21 has length

p
2, yet we prefer it to

form an orthonormal basis. So from now on, to avoid unnecessary ugly constants, we use the following inner
product.

Definition 13.10.1. For ⌘1, ⌘2 2 ⇤k(Rn), we define h⌘1, ⌘2i to be 1
k! h⌘1, ⌘2i⌦, where h�,�i⌦ is the regular

tensor inner product.

You may also think of this as this: for skew-symmetric matrices, we do not really need all n2 � n non-
diagonal entries. We only need half of that, say the upper half. In this sense, the fact that h⇠12, ⇠12i⌦ = 2
instead of 1 is exactly caused by using those redundant coordinates. For alternating k-tensors, the “redundant
repetition” is k! fold. If we simply ignore the “redundant coordinates”, and only use “essential coordinates”
to calculate inner product, then the inner product will be shrunk by the factor 1

k! .

Proposition 13.10.2. For ↵1, . . . ,↵k,�1, . . . ,�k 2 ⇤1(Rn), we have h↵1 ^ · · · ^ ↵k,�1 ^ · · · ^ �ki =
det((h↵i,�ji)).

Proof. This is a direct computation. Time to test your mastery of the determinant big formula!
Alternatively, you may verify that both 1

k! h�,�i⌦ and the determinant definition above are inner prod-
ucts, and ⇠I form an orthonormal basis for all k-multi-indices I.

Hence, for inner product spaces, we should have a “compatible” isomorphism between ⇤k(Rn) and
⇤n�k(Rn). This is Hodge duality. We write this isomorphism as the Hodge star operator ⇤ : ⇤k(Rn) !
⇤n�k(Rn).

Definition 13.10.3. For any n-dim inner product space V with orientation ! 2 ⇤nV , we define the Hodge
dual of a (0, k)-alternating tensor ⌘ to be a (0, n� k)-alternating tensor ⇤(⌘), such that ⌘0 ^ ⇤(⌘) = h⌘0, ⌘i!
for all (0, k)-alternating tensor ⌘0.

To figure out ⇤(⌘), usually we just take ⌘0 to be all possible standard basis tensors, and we shall have
⇤(⌘). To keep things simple, let us focus on R3, where the Hodge duality is defined in a very simple manner.
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Example 13.10.4. The Hodge duality identifies ⇤k(Rn) and ⇤n�k(Rn), and thus they identifies k-forms
with (n� k)-forms. In the context of R3, it works like this:

For any 0-form (i.e., functions) f , we have ⇤f = f dx dy dz.
For any 1-form f dx+g dy+h dz, we have ⇤(f dx+g dy+h dz) = f dy dz+g dz dx+h dx dy. (We simply

send ei to ei+1 ^ ei+2.)
For any 2-form f dy dz + g dz dx+ h dx dy, we have ⇤(f dy dz + g dz dx+ h dx dy) = f dx+ g dy + h dz.
Finally, for any 3-form f dx dy dz, we have ⇤(f dx dy dz) = f .
As you can see clearly, the “Hodge” process goes like this. Given a 1-form (i.e., a covector field), it is a

foliation of R3 by surfaces. Note that these surfaces have NORMAL VECTORS

2

4
f
g
h

3

5 at each corresponding

point.
By taking Hodge star, the 1-form is sent to the two form f dy dz + g dz dx+ h dx dy. This is a foliation

of R3 by curves, and the curves have tangent direction

2

4
f
g
h

3

5 at each corresponding point. In particular, the

foliation of ⌘ = f dx+g dy+h dz and the foliation of ⇤(⌘) are EVERYWHERE PERPENDICULAR to each
other.

Finally, since both have coordinates f, g, h, the foliation of ⌘ and the foliation of ⇤(⌘) must have the
SAME density everywhere.

So the Hodge star is very geometric. Given a foliation, we simply take the “orthogonal complement”
everywhere, while trying to preserve density.

Think about foliation of R3 � {0} by concentric spheres around the origin, and foliation of R3 � {0} by
rays shooting away from the origin. Can you see that they are Hodge dual of each other? ,

Example 13.10.5. In the context of R2, it works like this:
For any 0-form (i.e., functions) f , we have ⇤f = f dx dy. And for 2-forms, things just go back.
For any 1-form f dx+ g dy, we have ⇤(f dx+ g dy) = f dy � g dx, as you can verify computationally.
But hey! Note that ⇤(⇤(f dx+ g dy)) = �(f dx+ g dy). It fails to go back!
This should be somewhat disturbing. Why won’t it go back? The reason is orientation. Hodge dual is

not just the Riesz identification of dual spaces. It is a combination of Riesz and the Poincaré duality, i.e., it
involves the orientation form. In particular, we have the following formula.

In particular, dx is a foliation of R by rays going to the right. Then when we take “orthogonal comple-
ment” everywhere, we try to rotation counter-clockwise by 90 degree, and obtian the foliation of dy. But if
we do the Hodge star agian, then we rotate by 90 degree again, and we actually obtained � dx instead.

So if ⌘ are concentric circles around the origin counter clockwise, then ⇤(⌘) would be rays INTO the
origin (since motion direction is rotated counter clockwise by 90 degree). ,

So, even though the Hodge star is an isomorphism, it is technically “not a duality”, in the sense that it
is not its own inverse. It is only a duality up to a sign sometimes.

Proposition 13.10.6. ⇤(⇤(⌘)) = (�1)k(n�k)⌘ for all (0, k) alternating tensor ⌘ on an n-dim space. (So if
n is odd, Hodge star is its own inverse always.)

Proof. Direct computation.

Example 13.10.7 (Maxwell’s equation). The full Maxwell’s equation in vacuum is the following: we
can describe the electromagnetic structure using a 2-form, the so-called electromagnetic tensor. Note
that the space-time is 4-dim, and thus a 2-tensor can be represented as a 4 by 4 matrix, give as F =2

664

0 Ex/c Ey/c Ez/c
�Ex/c 0 �Bz By

�Ey/c Bz 0 �Bx

�Ez/c �By Bx 0

3

775, where Ei and Bi are describing the electric field and the magnetic fields.

390



(Note that the entries related to time is electrical, whereas the purely spatial entries are all about the
magnetics.) Note that as a matrix it is skew-symmetric, so as a tensor it is alternating, and thus a 2-form.

The Maxwell’s equation in vacuum says that any such F must have dF = d(⇤F ) = 0. No proof is required,
since all you need in physics are experiments. However, note that dF = 0 implies that F is closed. Note
that for a closed foliation, say it is made of closed curves, then we can “fill up the inside” and get a higher
dimensional foliation Aem. This can always be done in a domain without holes, e.g., Rn. So by this “fill up
the inside” process, we see that F = dAem.

Here Aem is the electromagnetic 4-potential, defined as (�, A) where � is the electric potential and A is
the magnetic potential (a vector potential), such that curl(A) = B the magnetic field, and �r�� @

@t
A = E,

the electic field.
Let us see how this acts out. Consider dF = 0. Recall that as a (0,2)-tensor, we write a matrix for F

as

2

664

0 Ex Ey Ez

�Ex 0 �Bz By

�Ey Bz 0 �Bx

�Ez �By Bx 0

3

775. (Btw, I am taking the speed of light as the unit here.) This means that

F = dt ^ (Ex dx+Ey dy +Ez dz)�Bz dx dy �By dz dx�Bx dy dz. Taking exterior derivative, the electric

portion leaves � dt ^ d(Ex dx + Ey dy + Ez dz) = � dt ^ (curl(E) ·

2

4
dy dz
dz dx
dx dy

3

5). The magnetic portion leaves

� dt^(@B
@t

·

2

4
dy dz
dz dx
dx dy

3

5)�div(B) dx dy dz. Now, the coe�cients for the basis dt dx dy, dt dy dz, dt dz dx, dx dy dz

must be zero. So in particular, we obtained the Gauss’s law for magnetism div(B) = 0 and the Maxwell-
Faraday equation @B

@t
+ curl(E) = 0.

Here the Gauss’s law says that, if you treat Bz dx dy + By dz dx + Bx dy dz as a 2-form in R3, then its
exterior derivative is zero. In particular, the magnetic lines are all closed loops, since they cannot have
boundaries! And the Maxwell-Faraday equation says that a changing magnetic field is related to the exterior
deriavtive of the 1-form Ex dx + Ey dy + Ez dz in R3. Note that boundaries are where things start. So
changing magnetic field would GENERATE electric field.

What about the Hodge dual? The hodge dual sends, say, dt dx to dy dz. So the (1, 2) entry of the
matrix for F is sent to the (3, 4)-entry. In general, there might be negative signs involved. You can

verify that ⇤F can be represented by the matrix

2

664

0 �Bx �By �Bz

Bx 0 �Ez Ey

By Ez 0 �Ex

Bz �Ey Ex 0

3

775. And as a 2-form we have

⇤F = � dt^ (Bx dx+By dy+Bz dz)+Ez dx dy+Ey dz dx+Ex dy dz. As you can see, the hodge dual does
have a feeling of duality, yes? Now in vacuum, we have d⇤F = 0, which dually implies that div(E) = 0 and
@E

@t
� curl(B) = 0. The first one is Gauss’s law for electricity, which states that electrical circuits are closed,

as they have no boundary. The second one is the Ampère’s circuit law, which states that a change in electric
field would GENERATE magnetic field.

Note that the term “boundary” here has multiple meanings. For a vector field, say B, you may think of
it as Bx dx+By dy+Bz dz and take curl. Then you are looking at a foliation of R3 by surfaces, orthogonal
to the magnetic lines everywhere. If you think of it as Bz dx dy+By dz dx+Bx dy dz, then you are looking
at a foliation of R3 by curves, i.e., the familiar magnetic lines. The latter view usually feels more natural for
us, whereas for the electric field, the first view usually feels more natural.

The above situations are only true in vacuum. In general, d⇤F = 0 may fail due to the so-called charge
density and current density, together they form a 3-form J = � dx dy dz+j1 dt dy dz+j2 dt dz dx+j3 dt dx dy.
As you can see, the “time” coordinate, the first one, is actually completely spatial, where as the other three
coordinates must form a spatial 2-form that is also related to time, i.e., it has field lines and they are flowing.
Then the Maxwell’s equation becomes d⇤F = J . ,

Example 13.10.8. What does it mean to have dF = d⇤F = 0? Consider the case of a 1-form in R2 with
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dF = d⇤F = 0. Then F and ⇤F are both foliations of curves in R2, and by definition of the Hodge star,
the curves for F are orthogonal to the curves of ⇤F , and they should have the same density everywhere.
Furthermore, none of the curves involved could have boundary, because dF = d⇤F = 0.

One example of solution is F = dx, where all curves are verticle, and then ⇤F = dy, where all curves
are horizontal. Another example with a singularity is defined on R2, with F = dr/r. Here r is the function
sending each p to the distance to the origin. Then F corresponds to circles with greater density as you get
closer to the origin, and ⇤F are rays from the origin to infinity. ,

13.11 Pulling tangents and pushing forms

See Video 151-1, 151-2 and 151-3.

13.12 de Rham cohomology

See Video 152-1 and 152-2.
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三、教学日历 
时间 周次 授课主题 主讲人 

2022.9.15 1 第一讲 中国式现代化导论 
邱勇 

校党委书记 

2022.9.22 2 第二讲 基础设施建设与未来城镇 
聂建国 

土木工程系 

2022.9.29 3 第三讲 数字中国与科技创新 
戴琼海 

自动化系 

2022.10.6 4 国庆调课（第1批小班研讨课程启动） 

2022.10.13 5 第四讲 双碳行动中的中国与世界 
贺克斌 

环境学院 

2022.10.20 6 第五讲 构建共同富裕大格局 
彭凯平 

社科学院 

2022.10.27 7 第六讲 推动文化高质量发展 
胡钰 

新闻学院 

2022.11.3 8 第七讲 中国经济的新阶段 
白重恩 

经管学院 

 

四、教学内容 
第一讲 中国式现代化导论 

当前我们的任务是全面建设社会主义现代化国家，而我们建设的现代化必须

是具有中国特色、符合中国实际的。我国现代化是人口规模巨大的现代化，是全

体人民共同富裕的现代化，是物质文明和精神文明相协调的现代化，是人与自然

和谐共生的现代化，是走和平发展道路的现代化。这是我国现代化建设必须坚持

的方向，要在我国发展的方针政策、战略战术、政策举措、工作部署中得到体现，

推动全党全国各族人民共同为之努力。 

第二讲 基础设施建设与未来城镇 

通过60多年的大规模投资建设，中国基础设施得到明显加强，交通运输、邮

电通信形成了纵横交错覆盖全国的网络体系，三峡工程、西气东输、南水北调、

青藏铁路、京沪“高铁”等一大批重大项目建设顺利完成或向前推进。建构安全、

便捷、高效、绿色、可持续的现代化基础设施建设将进一步为国民经济的发展和

人民生活水平的提高提供物质保证和重要条件，是广大土木工程科技工作者的共

同奋斗目标。 
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第三讲 数字中国与科技创新 

党的十九大以来，党中央全面分析国际科技创新竞争态势，全面部署科技

创新体制改革，出台一系列重大改革举措，提升国家创新体系整体效能，主动

融入全球科技创新网络，积极参与解决人类面临的重大挑战。科技创新是人类

社会发展的重要引擎，是应对许多全球性挑战的有力武器，也是中国构建新发

展格局、实现高质量发展的必由之路。 

第四讲 双碳行动中的中国与世界 

2030年前碳达峰、2060年前碳中和的“双碳”目标彰显了中国应对气候变

化的大国担当，也是开启全面建设社会主义现代化国家新征程的应有之举。全

球经济发展模式正在从资源依赖型走向技术依赖型。当前，我国正在倡导的绿

色高质量的发展方向，我们必须要加强科技创新，不能掉队，实现未来的经济

发展。 

第五讲 构建共同富裕大格局 

党的十八大以来，我们党对共同富裕道路做了新的探索，对共同富裕理论

作了新的阐释，对共同富裕目标作了新的部署。党的十九届五中全会向着更远

的目标谋划共同富裕，提出了“全体人民共同富裕取得更为明显的实质性进

展”的目标。共同富裕本身就是社会主义现代化的一个重要目标。我们不能等

实现了现代化再来解决共同富裕问题，而是要始终把满足人民对美好生活的新

期待作为发展的出发点和落脚点，在实现现代化过程中不断地、逐步地解决好

这个问题。 

第六讲 推动文化高质量发展 

中华优秀传统文化是中华文明的智慧结晶和精华所在，是中华民族的根和

魂，是我们在世界文化激荡中站稳脚跟的根基。我们坚持把马克思主义基本原

理同中国具体实际相结合、同中华优秀传统文化相结合，不断推进马克思主义

中国化时代化，推动了中华优秀传统文化创造性转化、创新性发展。要坚持守

正创新，推动中华优秀传统文化同社会主义社会相适应，展示中华民族的独特

精神标识，更好构筑中国精神、中国价值、中国力量。 

第七讲 中国经济的新阶段 

中国始终支持经济全球化，坚定实施对外开放基本国策。中国将继续促进贸

易和投资自由化便利化，维护全球产业链供应链顺畅稳定，推进高质量共建“一

带一路”。中国将着力推动规则、规制、管理、标准等制度型开放，持续打造市

场化、法治化、国际化营商环境，发挥超大市场优势和内需潜力，为各国合作提

供更多机遇，为世界经济复苏和增长注入更多动力。 
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五、 主要参考材料  
1. 习近平：《习近平谈治国理政》，北京：外文出版社，2014。 

2. 习近平：《习近平谈治国理政（第二卷）》，北京：外文出版社，2017。 

3. 习近平：《习近平谈治国理政（第三卷）》，北京：外文出版社，2020。 

4. 习近平：《习近平谈治国理政（第四卷）》，北京：外文出版社，2022。 

5. 网络资源：“学习强国” https://www.xuexi.cn 

 

六、考核方式 
1. 计分方式：P/F 

2. 课程以“大班讲授+小班研讨”的方式展开教学。 

3. 大班讲授：授课专家以线上线下融合式教学的方式展开授课，选课同学每人

需参加1次线下学习（依托二级选课系统选课，到教室听课）和6次线上学习

（依托荷塘雨课堂听课）。线下和线上均有考勤要求。 

4. 小班研讨： 

a) 本课程将配合大班的讲授内容开设线下小班，以研讨的方式加深同学们

对课程主题的理解。在此环节，本课程共设9个主题、54个班次（即每个

主题开设6个小班）。选课同学每人需参加1次小班讨论。 

b) 第3周，网络学堂将公布小班研讨的班次，同时发布问卷星问卷，供同学

们选定助教老师与讨论时间。 

c) 小班将在第4-8周集中开设，每次时长为1小时。 

d) 在完成小班研讨之后，每位同学需完成线上课后问卷的填写，其中包含

200-300字的研讨总结。 

e) 课后问卷的最晚提交时间是第8周周日24点。 

5. 期末作业： 

a) 作业题目：“谈谈你所理解的中国式现代化”（2000字以内） 

b) 内容要求：请根据本学期的授课内容，选择某一视角，总结自己的学习体

会。因为篇幅所限，不宜大幅摘抄引用；请突出问题意识，体现逻辑思考，

文字平实流畅，忌空谈漫谈。作业需符合学术规范，如遇查重不通过者，

将以不及格处理。 

c) 提交时间：请于第8周周日24点前通过网络学堂提交word版。 

 


