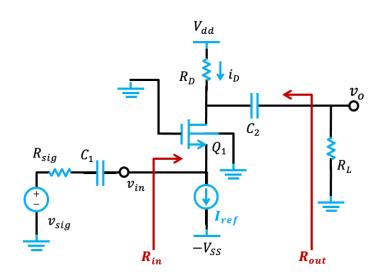
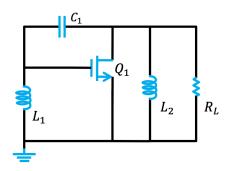

《电子电路与系统基础 II》期末考试试题 A 卷 2021.1.2 学号: 姓名:

共四大题,卷面满分100分。全部题目在答题纸上作答,在本试题纸上作答无效。


- 一、(30 分)如下图所示电路,已知 $V_{dd}=12V$,阈值电压 $|V_{th}|=0.7$ V, $\mu_n C_{ox}=50\mu A/V^2$, $\mu_p C_{ox}=100\mu A/V^2$, $\left(\frac{w}{L}\right)_1=10$, $\left(\frac{w}{L}\right)_2=20$, $\left(\frac{w}{L}\right)_3=40$, $\left(\frac{w}{L}\right)_4=\left(\frac{w}{L}\right)_5=20$, $\left(\frac{w}{L}\right)_6=10$, $I_{ref}=2$ mA, $R_{D1}=R_{D2}=4$ k Ω , $V_A=100$ V
 - 1) 画出 Q_6 类型晶体管的横截面示意图(需标注不同区域的半导体类型、端口位置以及端口名称)

 - 3)图(b)所示电路,已知输入电压 v_{in1} 、 v_{in2} 的直流分量为 4V,分析 Q_4 、 Q_5 的工作状态
 - 4) 若 Q_6 工作在饱和区,求电路的交流小信号总增益 $G_v = \frac{v_{out}}{(v_{in2} v_{in1})}$



- 二、(25 分)如下图所示电路,已知 Q_1 工作在饱和区, I_{ref} 为理想电流源, V_{da} 为理想直流电压源,需考虑背栅效应
 - 1) 画出 Q_1 的高频小信号等效模型
 - 2) 忽略沟道长度调制效应,不考虑 Q_1 的高频效应,假设 C_1 、 C_2 容值无穷大,求电路的交流小信号总电压增益 $A_v=\frac{v_o}{v_{in}}$
 - 3)考虑沟道长度调制效应,不考虑 Q_1 的高频效应,求如图所示的电路等效输入电阻 R_{in}
 - 4)考虑沟道长度调制效应,不考虑 Q_1 的高频效应,求如图所示的电路等效输出电阻 R_{out}
 - 5)忽略沟道长度调制效应和背栅效应,考虑 Q_1 的高频效应,写出系统的传递函数 $H(s) = \frac{V_{out}(s)}{V_{in}(s)}$

- 三、(25 分)已知数字逻辑高电平以 1 来表示,低电平以 0 来表示。电路的电源电压为 $V_{dd}=3V$,晶体管的阈值电压为 $V_{th}=0.7V$
 - 1) 用 CMOS 结构画出逻辑 $Y_1 = \overline{A + (BC + DE)F}$
 - 2) 如果初始状态A=1、(BC+DE)=1、F=0,在 $t=t_1$ 时刻,A 变化为 0,假设输出节点上的等效电容为 C_L ,求 Y_1 变化到 $\frac{V_{dd}}{2}$ 所需的时间及消耗的能量
 - 3) 如果情况 1 的初始状态为A = 1、(BC + DE) = 1、F = 0,情况 2 中初始状态为A = 0、(BC + DE) = 1、F = 1,在 $t = t_1$ 时刻,(BC + DE)不变,A、F均变化为A = 0、F = 0,哪一种情况下输出 Y_1 的延时更短? (注:第 3 问无需推导,但要给出合理的解释)

四、(20 分)如图所示电路,已知 Q_1 工作在饱和区,忽略沟道长度调制效应、不考虑背栅效应,求该电路的振荡频率和起振条件

