

Bipolar Junction Transistors

Milin Zhang Dept of EE, Tsinghua University

BJT – a milestone in IC history

Bipolar Junction Transistor = BJT

First Transistor @ 1947

William Shockley

John Bardeen

Walter Brattain

BJT – a milestone in IC history

Bipolar Junction Transistor = BJT

Outline

- Introduction to BJT
 - WHAT does it look like
 - HOW does it work
- The characteristic curves
- Circuit analysis techniques with BJT

Structure of BJT

Structure of BJT

Cross section of an npn BJT

There are 2 pn junctions

- Emitter-base junction (EBJ)
- Collector-base junction (CBJ)

Simplified structure of an npn BJT

BJT modes of operations

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

- There are two pn junctions
- Depletion regions are generated in both sides of both EBJ and CBJ

- A forward-bias applied to EBJ
- width of depletion region of EBJ ↓
- The base region is very thin. But there are too much electrons ...

- Electrons enter the collector region
- Emitter current is dominated by the electrons

- A reversed-bias applied to CBJ
- Current generated in collector region
- The BJT is biased in **ACTIVE** mode

Currents of BJT in active mode

Currents of BJT in active mode

• collector current
$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$
 $\left(I_S = \frac{A_E q D_n n_i^2}{N_A W}\right)$

• base current $i_B = \frac{i_C}{\beta}$

$$i_B = \frac{A_E q D_p n_i^2}{N_D L_P} e^{\frac{v_{BE}}{V_T}} + \frac{A_E q W n_i^2}{\tau_b N_A} e^{\frac{v_{BE}}{V_T}}$$

Only related to the ~ physical structure of the BJT

$$= \left(\frac{D_p N_A W}{D_n N_D L_P} + \frac{W^2}{2D_n \tau_b}\right) I_S e^{\frac{v_{BE}}{V_T}}$$

 β – common-emitter current gain typical value of β is 50 – 200

Summary: BJT in active mode

- collector current $i_C = I_S e^{\frac{v_{BE}}{V_T}}$
- base current $i_B = \frac{i_0}{\beta}$
- emitter current $i_E = i_B + i_C = \frac{\beta + 1}{\beta} i_C = \frac{1}{\alpha} i_C$

A model for active mode

A model for active mode

Since

$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$
 $i_E = I_{SE} e^{\frac{v_{BE}}{V_T}}$ $i_E = \frac{i_C}{\alpha}$

• Thus $\rightarrow I_{SE} = \frac{I_S}{\alpha}$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode

Active mode

Recall: BJT modes of operations

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

BJT in reverse mode

- α_R is much lower than α in active mode
- Typical value of α_R is 0.01 0.05

$$i_B = \frac{i_E}{\beta_R}$$
 $i_E = \alpha_R i_C$

EM model for BJT

Active mode

Reverse mode

EM model for BJT

According to KCL

$$i_C = -i_{D_C} + \alpha_F i_{D_E}$$

• According to i-v characteristics of D_E and D_C

$$i_{D_C} = I_{SC} \left(e^{\frac{v_{BC}}{V_T}} - 1 \right) = \frac{I_S}{\alpha_R} \left(e^{\frac{v_{BC}}{V_T}} - 1 \right)$$

$$i_{D_E} = I_{SE} \left(e^{\frac{v_{BE}}{V_T}} - 1 \right) = \frac{I_S}{\alpha_F} \left(e^{\frac{v_{BE}}{V_T}} - 1 \right)$$

lacksquare Take i_{D_C} and i_{D_E} to i_C

$$i_C = -\frac{I_S}{\alpha_R} \left(e^{\frac{v_{BC}}{V_T}} - 1 \right) + I_S \left(e^{\frac{v_{BE}}{V_T}} - 1 \right)$$

EM model for BJT

$$\begin{cases} i_{E} = i_{DE} - \alpha_{R} i_{DC} = \frac{I_{S}}{\alpha_{F}} \left(e^{\frac{v_{BE}}{V_{T}}} - 1 \right) - I_{S} \left(e^{\frac{v_{BC}}{V_{T}}} - 1 \right) \\ i_{C} = -i_{DC} + \alpha_{F} i_{DE} = -\frac{I_{S}}{\alpha_{R}} \left(e^{\frac{v_{BC}}{V_{T}}} - 1 \right) + I_{S} \left(e^{\frac{v_{BE}}{V_{T}}} - 1 \right) \end{cases}$$

$$i_C = -\frac{I_S}{\alpha_R} \left(e^{\frac{v_{BC}}{V_T}} - 1 \right) + I_S \left(e^{\frac{v_{BE}}{V_T}} - 1 \right)$$
$$+ \alpha_F I_S \left(e^{\frac{v_{BC}}{V_T}} - 1 \right) - \alpha_F I_S \left(e^{\frac{v_{BC}}{V_T}} - 1 \right)$$

$$= \left(\alpha_F - \frac{1}{\alpha_R}\right) I_S \left(e^{\frac{v_{BC}}{V_T}} - 1\right) + \alpha_F i_E$$

Recall: Currents of BJT in Active Mode

• collector current
$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$
Saturation current $I_S = \frac{A_E q D_n n_i^2}{N_A W}$

• i_C is NOT dependent on v_{CB}

BJT in Saturation Mode

$$\mathbf{i}_{C} = \left(\alpha_{F} - \frac{1}{\alpha_{R}}\right) I_{S} \left(e^{\frac{\mathbf{v}_{BC}}{V_{T}}} - 1\right) + \alpha_{F} i_{E}$$

When v_{BC} is increasing $\rightarrow i_C$ decreases

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode
 - Reverse mode
 - Saturation mode
 - □ npn v.s. pnp

npn v.s. pnp

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode
 - Reverse mode
 - Saturation mode
 - □ npn v.s. pnp

Characteristics curves

From dev. structure to circuit model

$$i_C = I_S e^{rac{v_{BE}}{V_T}}$$
 where $V_T = rac{kT}{q}$

$$i_B = \frac{i_C}{\beta} = \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}}$$

$$i_E = rac{i_C}{lpha} = rac{I_S}{lpha} e^{rac{v_{BE}}{V_T}}$$
 where $lpha = rac{eta}{1+eta}$

i - v characteristics

As we already knew, in active mode

$$i_C = \beta i_B$$
 $i_E = (1 + \beta) i_B$

- Mathematically $i_E = i_B + i_C$
- Image the transistor is a super big node
- According to KCL $i_E = i_B + i_C$

KCL/KVL works for transistor circuit anaylsis

$i_C - v_{BE}$ characteristics

$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$

Example 1

QUESTION: The transistor has $\beta=100$ and exhibits a v_{BE} of 0.7V at $i_C=1mA$. Find the resistance of R_C and R_E when the transistor is biased in active region at $i_C=2mA$ and $v_{CB}=5V$ with $V_C=V_E=15V$

According to KVL

$$V_C = i_C R_C + v_{CB}$$
 \rightarrow $R_C = 5k\Omega$

• According to $i_C - v_{BE}$ characteristics $i_C = I_S e^{\frac{v_{BE}}{V_T}}$

Since
$$i_C = 1mA$$
 @ $v_{BE} = 0.7V$

$$v_{BE}\Big|_{i_C=2mA} = 0.7 + V_T In\left(\frac{2mA}{1mA}\right) = 0.717V$$

According to KVL

$$V_E = i_E R_E + v_{BE} \qquad \rightarrow \quad i_E R_E = 15.717V$$

Example 1

QUESTION: The transistor has $\beta=100$ and exhibits a v_{BE} of 0.7V at $i_C=1mA$. Find the resistance of R_C and R_E when the transistor is biased in active region at $i_C=2mA$ and $v_{CB}=5V$ with $V_C=V_E=15V$

• Since $\beta = 100$

$$\alpha = \frac{\beta}{\beta + 1} = 0.99$$

• According to $i_C - i_E$ characteristics

$$i_E = \frac{i_C}{\alpha} = 2.02mA$$

• According to i - v characteristics of resistor

$$R_E = 7.07k\Omega$$

Recall: BJT in Saturation Mode

$$\mathbf{i}_{C} = \left(\alpha_{F} - \frac{1}{\alpha_{R}}\right) I_{S} \left(e^{\frac{\mathbf{v}_{BC}}{V_{T}}} - 1\right) + \alpha_{F} i_{E}$$

When v_{BC} is increasing $\rightarrow i_C$ decreases

$I_C - v_{CB}$ Characteristics

$$i_{C} = \left(\alpha_{F} - \frac{1}{\alpha_{P}}\right)I_{S}\left(e^{\frac{v_{BC}}{V_{T}}} - 1\right) + \alpha_{F}i_{E}$$
 $i_{C} = \alpha_{F}i_{E}$ when $v_{CB} = 0$

$$i_C = \alpha_F i_E$$

when
$$v_{CB} = 0$$

$i_C - v_{CB}$ Characteristics

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode
 - Reverse mode
 - Saturation mode
 - □ npn v.s. pnp

v = i - v characteristics

breakdown

Active mode

 $i_C - v_{CB}$

 $i_E \downarrow$

 $\alpha_F i_E$

reverse mode

Recall: A Model for Active Mode

WHY the Early Effect

$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$

where
$$I_S = \frac{A_E q D_n n_i^2}{N_A W}$$

$$v_{CE}$$
 1

$$i_C = I_S e^{\frac{v_{BE}}{V_{\rm T}}} \left(1 + \frac{v_{CE}}{V_A} \right)$$

$$r_o \equiv \left[\frac{\partial i_C}{\partial v_{CE}} \right|_{v_{BE}} \right]^{-1}$$

$$= \frac{V_A + V_{CE}}{I_C} \approx \frac{V_A}{I_C}$$

The nonzero slop of the $i_{\it C}-v_{\it CE}$ characteristics straight lines indicates that the output resistance looking into the collector is NOT infinite.

- We already have β_{DC} for large signal, defined as $\beta_{DC} = \frac{I_C}{I_B}$
- Define incremental β_{AC} as $\left. \beta_{AC} = \frac{\Delta i_C}{\Delta i_B} \right|_{v_{CE}}$

β_{AC} is smaller in saturation mode than in active mode

The saturation voltage $v_{CEsat} = v_{CEoff} + I_{Csat}R_{CEsat}$ Typical value 0.1 - 0.3V

Where
$$R_{CEsat}$$
 is defined as $R_{CEsat} \equiv \frac{\partial v_{CE}}{\partial i_C} \bigg|_{\substack{i_B = I_B \\ i_C = I_{Csat}}}$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode
 - Reverse mode
 - Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - $\neg i v$ characteristics

Active mode

reverse mode

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

The transfer characteristic

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

@ Cutoff mode

EBJ is off

 $v_{BE} < v_{BEon}$

Typical value of v_{BEon} is 0.5V

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

@ Saturation mode

EBJ is on $v_{BE} > v_{BEon}$

CBJ is on $v_{BC} = v_{BE} - v_{CE} > v_{BCon}$

Typical value of v_{BCon} is 0.4V

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

@ Active mode

EBJ is on v_B

CBJ is off

$$v_{BE} > v_{BEon}$$

$$v_{BC} = v_{BE} - v_{CE} < v_{BCon}$$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Active mode
 - Reverse mode
 - Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

breakdown

Recall: Cutoff/Saturation Mode

$$v_{in} < v_{BEon}$$

$$i_C = 0$$

$$v_o = V_{dd} - i_C R_C = V_{dd}$$

$$v_o < v_{in} - v_{BCon}$$

$$v_{CE} = V_{CEsat}$$

$$I_{Csat} = \frac{V_{dd} - V_{CEsat}}{R_C}$$

Transistor in Cutoff/Saturation Mode

Cutoff mode

Saturation mode

$$v_o = v_{in}$$

When $S_{ctrl} = V_H$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - Transistor in cutoff/saturation mode
 - Transistor in active mode

Recall: Example 1

QUESTION: The transistor has $\beta=100$ and exhibits a v_{BE} of 0.7V at $i_C=1mA$. Find the resistance of R_C and R_E when the transistor is biased in active region at $i_C=2mA$ and $v_{CB}=5V$ with $V_C=V_E=15V$

$$V_C = i_C R_C + v_{CB} \qquad \rightarrow \quad R_C = 5k\Omega$$

Since
$$i_C = 1mA$$
 @ $v_{BE} = 0.7V$

$$v_{BE}\Big|_{i_C=2mA} = 0.7 + V_T In\left(\frac{2mA}{1mA}\right) = 0.717V$$

$$V_E = i_E R_E + v_{BE} \qquad \rightarrow \quad i_E R_E = 15.717V$$

$$i_E = \frac{i_C}{\alpha} = 2.02 mA$$
 where $\alpha = \frac{\beta}{\beta + 1} = 0.99$

$$R_F = 7.07k\Omega$$

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_B=100k\Omega$, $R_C=2k\Omega$, V_{dd} =10V, $V_{BB}=5V$, and $\beta=100$.

According to KVL

$$V_{BB} = i_B R_B + v_{BE}$$

• According to $m{i}_{\it{C}} - m{v}_{\it{BE}}$ characteristics $i_{\it{C}} = I_{\it{S}} e^{rac{m{v}_{\it{BE}}}{V_{\it{T}}}}$

$$V_E = \frac{I_S}{\beta} e^{\frac{\boldsymbol{v}_{BE}}{V_T}} R_B + \boldsymbol{v}_{BE}$$

1 unknown in 1 equation

BUT WE CANNOT FIND AN ANALYTICAL SOLUTION
NUMERICAL SOLUTION AVAILABLE IN 20230253

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_B=100k\Omega$, $R_C=2k\Omega$, V_{dd} =10V, $V_{BB}=5V$, and $\beta=100$.

- According to KVL
- $V_{BB} = i_B R_B + v_{BE}$

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_B=100k\Omega$, $R_C=2k\Omega$, V_{dd} =10V, $V_{BB}=5V$, and $\beta=100$.

The graphical analysis tech is NOT quantitative.

Find the load line according to KVL

$$V_{dd} = i_C R_C + v_{CE}$$

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_B = 100k\Omega$, $R_C = 2k\Omega$, V_{dd} =10V, $V_{BB}=5V$, and $\beta=100$. Assume $|V_{BE}|=0$. 7V in active mode.

- Let's **ASSUME** the transistor is biased in active mode
- \downarrow i_C According to characteristics of the transistor + $V_{BE} \approx 0.7V$

$$V_{BE} \approx 0.7V$$

According to KVL & transistor characteristics

$$\begin{cases} V_{BB} = i_B R_B + V_{BE} \\ V_{dd} = i_C R_C + V_{CE} \\ i_C = \beta i_B = 4.3 mA \end{cases} \qquad \begin{cases} i_B = 0.043 mA \\ i_C = 4.3 mA \\ V_{CE} = 1.4 V \end{cases}$$

Check ASSUMPTION

$$V_{BC} = -0.7V < V_{BCon}$$

Active mode

Summary: DC analysis for BJT

Method 1 – quantitative analysis

Method 2 – graphical analysis

- © Easy to operate
- **not a quantitative result**
- Method 3 $|V_{BE}| \approx V_{th} = 0.7V$ in active mode
 - Step 1: assume the transistor is in active region
 - Step 2: solve the circuit
 - Step 3: check assumption

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

Assume the transistor is biased in active region

$$i_C = \beta i_B$$
 $V_{BE} \approx V_{th} = 0.7V$

According to KVL & KCL

$$\begin{cases} \frac{V_{bb} - V_B}{R_{B1}} = \frac{V_B}{R_{B2}} + i_B \\ V_B = V_{BE} + (\beta + 1)i_B R_E \end{cases}$$

2 unknown in 2 equations

ANY better way?

Recall: Circuit equivalent

Thévenin's theorem

LINEAR two-terminal circuit can be replaced by an equivalent circuit composed of a voltage source and a series resistor

Norton's theorem

LINEAR two-terminal circuit can be replaced by an equivalent circuit composed of a current source and a parallel resistor

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

According to Thévenin's theorem

$$R_{B_TH} = R_{B1} || R_{B2} = 33.3k\Omega$$

$$V_{B_TH} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{dd} = 5V$$

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

$$\begin{cases} R_{B_TH} = 33.3k\Omega \\ V_{B_TH} = 5V \end{cases}$$

Assume the transistor is biased in active region

$$i_C = \beta i_B$$
 $V_{BE} \approx V_{th} = 0.7V$

According to KVL & KCL

$$\begin{cases} V_{B_TH} = i_B R_{B_TH} + V_{BE} + i_E R_E \\ V_C = V_{dd} - i_C R_C \\ i_E = i_B + i_C = (\beta + 1) i_B \end{cases}$$

$$\begin{cases} i_B = 0.0128mA \\ V_C = 8.6V \\ V_E = i_E R_E = 3.88V \end{cases}$$

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

$$\begin{cases} R_{B_TH} = 33.3k\Omega \\ V_{B_TH} = 5V \end{cases}$$

• The voltage of V_{BE} and V_{CE} can be calculated as

$$V_{BE} = V_{B_TH} - i_B R_{B_{TH}} - V_E = 0.694V$$

 $V_{CE} = V_{dd} - i_C R_C - V_E = -3.664V$

Check ASSUMPTION

$$V_{BE} = 0.694V$$
 $> V_{BEon}$
 $V_{BC} = -3.664V$ $< V_{BCon}$

Active mode

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

$$\begin{cases} R_{B_TH} = 33.3k\Omega \\ V_{B_TH} = 5V \end{cases}$$

The ASSUMPTION

$$i_C = \beta i_B$$

$$V_{BE} \approx V_{th} = 0.7V$$

DC analysis results

$$V_{BC} = 0.05 \text{ fV}$$
 $V_{BC} = -3.664 \text{ V}$

WHY the voltage of V_{RE} is different?

A more precise method

$$V_{B_TH} = \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}} R_{B_TH} + V_{BE} + \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}} R_E$$

1 unknown in 1 equation

BUT WE CANNOT FIND AN ANALYTICAL SOLUTION

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward
Reverse Active	Reverse	Forward

- Method 1 quantitative analysis
- Method 2 graphical analysis
- Method 3 $|V_{BE}| \approx V_{th} = 0.7V$ in active mode

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques

Recall: the Transfer Characteristic

Signal Amplification

- Step 1 find a proper bias point / quiescent point
- Step 2 characterized by DC voltages V_{BE} and V_{CE}

$$V_{CE} = V_{dd} - R_C I_S e^{\frac{V_{BE}}{V_T}}$$

• Step 3 a sufficiently small voltage v_{BE} superimposed on V_{BE}

Signal Amplification

Locating the Bias Point

CASE 1

- BJT is biased @ relative low bias point Q
- A sufficiently small AC amplitude is applied

AN IMPROPER BIAS POINT MAY CAUSE A TOO LOW SMALL SIGNAL VOLTAGE GAIN

Locating the Bias Point

CASE 2

- BJT is biased @ a fine quiescent point
- A larger AC amplitude is applied
- The peak of the output is clipped

A NOT SMALL ENOUGH AC INPUT MAY CAUSE A DISASTER TO LINEARITY PERFORMANCE

Locating the Bias Point

- The bias point Q is determined by V_{BE}
- The GAIN A_v is determined by the location of Q
- The allowable SIGNAL SWING at the output must be considered

LOCATING THE BIAS POINT IS IMPORTANT IN SMALL SIGNAL AMPLIFICATION

? How to locate the bias point

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques
 - Locating the bias point is important
 - HOW to locate the bias point

Recall: Example 2

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_B = 100k\Omega$, $R_C = 2k\Omega$, V_{dd} =10V, $V_{BB}=5V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

- Let's **ASSUME** the transistor is biased in **active mode**

$$V_{BE} \approx 0.7V$$

$$\begin{cases} V_{BB} = i_B R_B + V_{BE} \\ V_{dd} = i_C R_C + V_{CE} \\ i_C = \beta i_B = 4.3 mA \end{cases} \qquad \begin{cases} i_B = 0.043 mA \\ i_C = 4.3 mA \\ V_{CE} = 1.4 V \end{cases}$$

Check ASSUMPTION

$$V_{BC} = -0.7V < V_{BCon}$$

Active mode

■ Method 1 – Locate the bias point by fixing V_{BE}

 I_C is **too sensitive** to the change of V_{BE}

Method 2 – Locate the bias point by fixing I_B

 According transistor characteristics, in active mode

$$I_C = \beta I_B$$

The large variations of β results in large variation in I_C

■ Method 3 – Using Constant-Current Source

- I_E is independent of β and R_B
- How to realize a current source?
 - Current mirror explained in next chapter

Recall: Example 3

QUESTION: Find out the voltage of V_{BE} and V_{CE} with $R_{B1}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{C}=5k\Omega$, $R_{E}=3k\Omega$, $V_{dd}=V_{BB}=15V$, and $\beta=100$. Assume $|V_{BE}|=0.7V$ in active mode.

According to Thévenin's theorem

$$R_{B_TH} = R_{B1} || R_{B2} = 33.3k\Omega$$

$$V_{B_TH} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{dd} = 5V$$

- Assume the transistor is biased in active region
- The voltage of V_{BE} and V_{CE} can be calculated as

$$V_{BE} = V_{B_TH} - i_B R_{B_{TH}} - V_E = 0.694V$$

 $V_{CE} = V_{dd} - i_C R_C - V_E = -3.664V$

Check assumption

According to KVL & Thévenin's theorem

$$I_E = \frac{V_{B_TH} - V_{BE}}{R_E + R_B/(\beta + 1)}$$
 where $V_{B_TH} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{dd}$

• Since
$$V_{B_TH} \gg V_{BE}$$
, $R_E \gg \frac{R_B}{\beta + 1}$

A better tolerance to the variation of V_{BE}

Method 4 – Classical Discrete-Circuit Arrangement

• What is R_E used for?

- \circ If there is a decrease @ i_C
- \circ The voltage drop on R_C decreases
- \circ i_E and v_E decrease correspondingly
- \circ v_{BE} increases, causing an increasing of $i_{\mathcal{C}}$

NEGATIVE FEEDBACK is observed

 R_E stabilizes the bias current

Method 5 – Two-Power-Supply Version

According to KVL & transistor characteristics

$$V_{SS} = I_B R_B + V_{BE} + I_E R_E$$

$$I_E = (\beta + 1)I_B$$
 if the transistor is in active mode

$$i_E = \frac{V_{SS} - V_{BE}}{R_E + R_B / (\beta + 1)}$$

According to KVL & transistor characteristics

$$V_{dd} = I_C R_C + I_B R_B + V_{BE}$$

$$I_E = (\beta + 1)I_B$$
 if the transistor is in active mode

$$i_E = \frac{V_{dd} - V_{BE}}{R_C + R_B/(\beta + 1)}$$

Method 6 – Collector-to-Base Feedback Resistor

• What is R_B used for?

- \circ If there is a decrease @ i_C
- \circ The voltage drop on R_C decreases, v_C increases
- \circ i_B decrease correspondingly
- \circ v_{BE} increases, causing an increasing of i_C

NEGATIVE FEEDBACK is observed

 R_B stabilizes the bias point

Summary: Locate the Bias Point

WHY? Key to small signal amplification

- Q is determined by V_{BE}
- Q determines the **GAIN** A_v
- Q has effects on the OUTPUT SIGNAL SWING

Summary: Locate the Bias Point

WHY?

Key to small signal amplification

- Q is determined by $oldsymbol{V_{BE}}$
- Q determines the GAIN A_v
- Q has effects on the OUTPUT SIGNAL SWING

HOW?

fixing I_R

fixing I_E

Cutoff mode

better

choice

 $v_{CE}\left(\boldsymbol{v_o}\right)$

Cutoff mode

better

choice

for Q

Classical Discrete-Circuit Arrangement

Two-Power-Supply Version

Cutoff mode

choice for Q

Collector-to-Base Feedback Resistor

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques
 - Locate the bias point
 - Small-signal operation & model

Small-Signal Operation

- The transistor is biased @ $v_{be} = v_{BE}$
- A small AC signal is applied to input

Small-Signal Operation

$$v_{in} = V_{BE} + v_{be} sin(\omega t + \varphi) = V_{BE} + v_{in,AC}$$

According to the transistor characteristic

$$i_{C} = I_{S}e^{\frac{v_{BE}}{V_{T}}} = I_{S}e^{\frac{v_{BE}+v_{in,AC}}{V_{T}}} = I_{S}e^{\frac{v_{in,AC}}{V_{T}}}e^{\frac{v_{in,AC}}{V_{T}}}$$

$$= I_{C}e^{\frac{v_{in,AC}}{V_{T}}}$$

$$= I_{C}e^{\frac{v_{in,AC}}{V_{T}}}$$

$$| \mathbf{f} v_{in,AC} \ll V_{T} |$$

$$\approx I_{C}\left(1 + \frac{v_{in,AC}}{V_{T}}\right)$$

$$i_{C} = I_{C} + \frac{I_{C}}{V_{T}} v_{in,AC} = I_{C} + g_{m} v_{in,AC}$$

$$Define$$

$$i_{C}@DC$$

$$i_{C}@AC$$
TRANSCONDUCTANCE $g_{m} = \frac{I_{C}}{V_{T}}$

Transconductance g_m

$$v_{in} = V_{BE} + v_{in,AC}$$

$$i_C = I_C + g_m v_{in,AC}$$

TRANSCONDUCTANCE
$$\left. g_m = \frac{\partial i_C}{\partial v_{BE}} \right|_{i_C = I_C}$$

Voltage Gain A_v

$$v_{in} = V_{BE} + v_{AC}$$

$$i_C = I_C + g_m v_{AC}$$

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \Big|_{i_C = I_C} = \frac{I_C}{V_T}$$

According to KVL

$$v_{o} = V_{dd} - i_{C}R_{C} = V_{dd} - \left(i_{C}\Big|_{DC} + i_{C}\Big|_{AC}\right)R_{C}$$

$$= V_{dd} - I_{C}R_{C} - i_{C}\Big|_{AC}R_{C}$$

$$V_{CE} \qquad g_{m}v_{AC}$$

Define voltage gain

$$A_v = \frac{v_o|_{AC}}{v_{in}|_{AC}} = \frac{-g_m v_{AC} R_C}{v_{AC}} = -g_m R_C$$

Input Resistance @ Base

$$v_{in} = V_{BE} + v_{AC}$$
$$i_C = I_C + g_m v_{AC}$$

• According to the definition of R_{in}

$$R_{in} = \frac{\Delta v_{in}}{\Delta i_{in}} = \frac{\Delta v_{BE}}{\Delta i_{B}}$$

According to the transistor characteristic in active mode

$$i_B = \frac{i_C}{\beta} = \frac{I_C}{\beta} + \frac{1}{\beta} \frac{I_C}{V_T} v_{AC}$$

$$\Delta i_B = \frac{1}{\beta} \frac{I_C}{V_T} v_{AC} = \frac{1}{\beta} g_m v_{AC}$$

Thus,

nus,
$$R_{in} = \frac{\Delta v_{BE}}{\Delta i_B} = \frac{v_{AC}}{\Delta i_B} = \frac{V_T}{I_B} \quad \text{or} \quad = \frac{\beta}{g_m}$$

Summary: Small-Signal Operation

$$v_{in} = V_{BE} + v_{be}sin(\omega t + \varphi) = V_{BE} + v_{AC}$$

Voltage gain
$$A_v = \frac{v_o|_{AC}}{v_{in}|_{AC}} = -g_m R_C$$

Transconductance
$$g_m = \frac{\partial i_C}{\partial v_{BE}}\Big|_{i_C = I_C} = \frac{I_C}{V_T}$$

Input resistance @ Base
$$R_{in} = \frac{V_T}{I_B} = \frac{\beta}{g_m}$$

$$v_{in} = V_{BE} + v_{be} sin(\omega t + \varphi) = V_{BE} + v_{AC}$$

$$\text{Voltage gain} \quad A_v = \frac{v_o|_{AC}}{v_{in}|_{AC}} = -g_m R_C$$

$$\text{Transconductance} \quad g_m = \frac{\partial i_C}{\partial v_{BE}} \bigg|_{i_C = I_C} = \frac{I_C}{V_T}$$

$$\text{Input resistance @ Base} \quad R_{in} = \frac{V_T}{I_B} = \frac{\beta}{g_m}$$

SIMPLIFIED HYBRID- π MODEL

SIMPLIFIED T MODEL

SIMPLIFIED HYBRID- π MODEL

- According to hybrid- π model
- $i_b = \frac{v_{be}}{r_{\pi}}$

SIMPLIFIED T MODEL

According to T model

$$i_b = \frac{v_{be}}{r_e} - g_m v_{be} = \frac{v_{be}}{r_e} (1 - g_m r_e) = \frac{v_{be}}{r_e} (1 - \alpha) = \frac{v_{be}}{(1 + \beta)r_e} = \frac{v_{be}}{r_{\pi}}$$

HYBRID- π MODEL and T MODEL are equivalent

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$. The threshold voltage $V_{th}=0.7V$.

Step 1: perform DC analysis

- Let's ASSUME the transistor is biased in active mode
- According to KVL & transistor characteristics

$$\begin{cases} v_{in} \Big|_{DC} = i_B R_B + V_{th} \\ V_C = V_{dd} - i_C R_C \\ i_C = \beta i_B \end{cases} \qquad \begin{cases} i_B = 0.023 mA \\ V_C = 3.1 V \end{cases}$$

Check ASSUMPTION

$$V_{BE} = 0.7V$$
 $> V_{BEon}$
 $V_{BC} = -2.4V$ $< V_{BCon}$

Active mode

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$. The threshold voltage $V_{th}=0.7V$.

Step 2: perform AC analysis

 Step 2.1: replace the transistor with the small-signal model

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$. The threshold voltage $V_{th}=0.7V$.

Step 2: perform AC analysis

- Step 2.1: replace the transistor with the small-signal model
- Step 2.2: turn off DC sources
 - SHORT all voltage sources
 - OPEN all current sources
- Step 2.3: Calculate small-signal model parameters

$$g_m = \frac{I_C}{V_T} = \frac{2.3mA}{25mV} = 92mA/V$$

$$r_{\pi} = \frac{\beta}{g_m} = 1.086k\Omega$$

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$. The threshold voltage $V_{th}=0.7V$.

Step 2: perform AC analysis

Step 2.4: Analyze resulting circuit

$$v_o = -g_m v_{be} R_C$$

$$= -g_m R_C \frac{r_{\pi}}{R_B + r_{\pi}} v_{in}$$

The voltage gain

$$A_v = \frac{v_o}{v_{in}} = -g_m R_C \frac{r_\pi}{R_B + r_\pi}$$
$$= -3.04$$

Recall: the Early Effect

$$r_o = \frac{V_A + V_{CE}}{I_C} \approx \frac{V_A}{I_C}$$

SIMPLIFIED HYBRID- π MODEL

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$, $V_A=100V$. The threshold voltage $V_{th}=0.7V$.

Step 2: perform AC analysis

Step 2.4: Analyze resulting circuit

$$v_o = -g_m v_{be}(R_C || r_o)$$

$$= -g_m(R_C || r_o) \frac{r_\pi}{R_B + r_\pi} v_{in}$$

The voltage gain

$$A_v = \frac{v_o}{v_{in}} = -g_m(R_C||r_o)\frac{r_\pi}{R_B + r_\pi}$$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques
 - Locate the bias point
 - Small-signal operation & model
 - Characterizing Amplifiers

SIMPLIFIED HYBRID- π MODEL

$r_{\pi} \geqslant v_{be} \qquad g_{m}v_{be}$ Define $r_{\pi} = \frac{\beta}{g_{m}}$

SIMPLIFIED T MODEL

Recall: Example 4

QUESTION: Find out the voltage of v_o with $v_{in}=3V+0.1sin(\omega t+\varphi)$, $R_B=100k\Omega$, $R_C=3k\Omega$, $V_{dd}=10V$, and $\beta=100$. The threshold voltage $V_{th}=0.7V$.

Step 1: perform DC analysis

$$V_{BE} = 0.7V$$
 $> V_{BEon}$ Active mode $V_{BC} = -2.4V$

Step 2: perform AC analysis

$$v_{o} = -g_{m}v_{be}R_{c} = -g_{m}R_{c}\frac{r_{\pi}}{R_{B} + r_{\pi}}v_{in}$$

$$A_{v} = \frac{v_{o}}{v_{in}} = -g_{m}R_{c}\frac{r_{\pi}}{R_{B} + r_{\pi}} = -3.04$$

The AC amplitude of v_{in} is amplified

Define OPEN-CIRCUIT VOLTAGE GAIN

$$A_{vo} \equiv \frac{v_o}{v_{in}}\bigg|_{R_L = \infty}$$

Define INPUT RESISTANCE $R_{in} \equiv \frac{v_{in}}{i}$

How to calculate OUTPUT RESISTANCE R_{out}

How to calculate OUTPUT RESISTANCE R_{out}

Step 1: remove load and apply a testing voltage

How to calculate OUTPUT RESISTANCE R_{out}

- Step 1: remove load and apply a testing voltage
- Step 2: turn off the input source
 - SHORT all voltage sources
 - OPEN all current sources
- Step 3: calculate the output resistance $R_{out} = \frac{v_{test}}{i_{test}}$

• According to KVL
$$v_o = \frac{R_L}{R_L + R_o} A_{vo} v_{in}$$

- Define the voltage gain of the amplifier $A_v \equiv \frac{v_o}{v_{in}} = \frac{R_L}{R_L + R_o} A_{vo}$
- Define the overall voltage gain $G_v \equiv \frac{v_o}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}} \frac{R_L}{R_L + R_o} A_{vo}$

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques
 - Locate the bias point
 - Small-signal operation & model
 - Characterizing Amplifiers
 - Basic BJT Amplifier Configurations

SIMPLIFIED HYBRID- π MODEL $B \circ C$ $r_{\pi} \stackrel{\downarrow}{\downarrow} v_{be}$ $Define <math>r_{\pi} = \frac{\beta}{g_{m}} \circ E$ SIMPLIFIED T MODEL $F_{g_{m}v_{be}} \circ C$ $F_{e} \stackrel{\downarrow}{\downarrow} v_{be}$ $F_{e} \stackrel{\downarrow}{\downarrow} v_{be}$ $F_{e} \stackrel{\downarrow}{\downarrow} v_{be}$ $F_{e} \stackrel{\downarrow}{\downarrow} v_{be}$ $F_{e} \stackrel{\downarrow}{\downarrow} v_{be}$

- Assume the transistor is biased in active mode
- There are three ports: Base, Collector and Emitter
- An amplifier requires two voltages: v_{in} and v_{o}

Common-Emitter (CE) Amplifier

• The Emitter is "shared" by v_{in} and v_o

Common-Base (CB) Amplifier

lacktriangle The Base is "shared" by v_{in} and v_o

Common-Collector (CC) Amplifier

• The Collector is "shared" by v_{in} and v_o

- Assume the transistor is biased in active mode
- There are three ports: Base,
 Collector and Emitter
- An amplifier requires two voltages: v_{in} and v_{o}

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

Step 1: perform DC analysis

- Step 1.1: ASSUME the transistor is biased in active mode
- Step 1.2: calculate all the DC currents and voltages according to KVL/KCL
- Step 1.3: Check ASSUMPTION

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

Step 2: perform AC analysis

- Step 2.1: turn off DC sources
 - SHORT all voltage sources
 - OPEN all current sources

$$Z_{C_E} = \frac{1}{sC_E}$$

The bypass capacitor C_E provides a very LOW impedance to ground at all signal frequencies of interest

The coupling capacitor \mathcal{C}_1 and \mathcal{C}_2 act as perfect short circuit at all signal frequencies of interest

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

Step 2: perform AC analysis

- Step 2.1: turn off DC sources
 - SHORT all voltage sources
 - OPEN all current sources

The capacitors can APPROXIMATELY be as short circuit @ AC

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

Step 2: perform AC analysis

- Step 2.1: turn off DC sources
 - SHORT all voltage sources
 - OPEN all current sources
 - Step 2.2: Calculate small-signal model parameters, β and r_{π}
- Step 2.3: replace the transistor with the small-signal model
- Step 2.4: Analyze the resulting circuit

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

According to KVL

$$v_{in} = v_{be} = \frac{R_B || r_{\pi}}{R_{sig} + R_B || r_{\pi}} v_{sig}$$

 $v_o = -g_m v_{be} (R_C || R_L || r_o)$

The overall voltage gain

$$G_{v} = \frac{v_{o}}{v_{sig}}$$

$$= -\frac{R_{B}||r_{\pi}}{R_{sig} + R_{B}||r_{\pi}} g_{m}(R_{C}||R_{L}||r_{o})$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

■ Calculate the open-circuit voltage gain @ $R_L = \infty$

$$A_{vo} = \frac{v_o}{v_{in}} = -g_m(R_C||r_o)$$

Since
$$R_C \ll r_o \rightarrow A_{vo} \approx -g_m R_C$$

The input resistance

$$R_{in} = R_B || r_\pi \approx r_\pi$$
 Since $R_B \gg r_\pi$

The output resistance

$$R_{out} = R_C || r_o \approx R_C$$
 Since $r_o \gg R_C$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

The VOLTAGE GAIN is relative high

$$G_v = \frac{v_o}{v_{sig}} = -\frac{R_B||r_{\pi}}{R_{sig} + R_B||r_{\pi}} g_m(R_C||R_L||r_o)$$

$$A_{vo} = \frac{v_o}{v_{in}} = -g_m(R_C||r_o)$$

The INPUT RESISTANCE is relative low

$$R_{in} = R_B || r_{\pi} \approx r_{\pi}$$

The OUTPUT RESISTANCE is relative high

$$R_{out} = R_C || r_o \approx R_C$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , R_E , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

- What is R_E used for?
 - \circ If there is a decrease @ i_C
 - \circ v_C increases due to R_C
 - \circ i_E and v_E decrease correspondingly
 - \circ v_{BE} increases, and $i_{\mathcal{C}}$ increases

NEGATIVE FEEDBACK is observed

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , R_E , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

- Step 1: perform DC analysis (SKIP)
- Step 2: perform AC analysis
 - Step 2.1: turn off DC sources (SKIP)
 - Step 2.2: Calculate small-signal model parameters, β and r_{π} (SKIP)
 - Step 2.3: replace the transistor with the small-signal model (SKIP)
 - Step 2.4: Analyze the resulting circuit

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , R_E , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

According to KVL

$$v_{in} = (i_B + g_m r_\pi i_B) R_E + r_\pi i_B$$
$$v_{out} = -\beta i_B (R_C || R_L)$$

The input resistance

$$R_{in} = R_B || \frac{cest}{i_{test}}$$

$$= R_B || ((1 + g_m r_\pi) R_E + r_\pi)$$
Since $R_B \gg r_\pi$

$$\approx (1 + g_m r_\pi) R_E + r_\pi$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , R_E , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

The overall voltage gain

$$G_{v} = \frac{v_{out}}{v_{sig}} = \frac{v_{b}}{v_{sig}} \frac{v_{out}}{v_{b}}$$

$$= -\frac{R_{in}}{R_{sig} + R_{in}} \frac{g_{m}r_{\pi}(R_{C}||R_{L})}{(1 + g_{m}r_{\pi})R_{E} + r_{\pi}}$$

$$\downarrow \text{Since } R_{in} \approx (1 + g_{m}r_{\pi})R_{E} + r_{\pi}$$

$$\approx -\frac{g_{m}r_{\pi}(R_{C}||R_{L})}{R_{r_{m}} + (1 + g_{m}r_{\pi})R_{r_{m}} + r_{\pi}}$$

	CE w/o emitter res.	CE w/ emitter res.
R_{in}	r_{π}	$(1+g_mr_\pi)R_E+r_\pi \qquad \uparrow$
G_{v}	$-\frac{R_B r_{\pi}}{R_{sig}+R_B r_{\pi}}g_m(R_C R_L)$	$-\frac{g_m r_{\pi}(R_C R_L)}{R_{sig} + (1 + g_m r_{\pi})R_E + r_{\pi}} \downarrow$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

Step 1: perform DC analysis (SKIP)

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

- Step 1: perform DC analysis (SKIP)
- v_o Step 2: perform AC analysis
 - Step 2.1: turn off DC sources (SKIP)
 - step 2.2: Calculate small-signal model parameters, β and $r_π$ (SKIP)
 - Step 2.3: replace the transistor with the small-signal model (SKIP)
 - Step 2.4: Analyze the resulting circuit

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

According to KVL

$$v_{out} = -g_m v_{be}(R_C || R_L)$$

$$v_{in} = -v_{be} = \frac{R_{in}}{R_{sig} + R_{in}} v_{sig}$$

The input resistance

$$R_{in} = \frac{v_{test}}{i_{test}} = \frac{v_{in}}{i_{in}}$$

$$=\frac{-\iota_b r_\pi}{-\iota_b - g_m \iota_b r_\pi} = \frac{r_\pi}{1+\beta}$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β . Ignore the Early effect.

■ The overall voltage gain

$$G_v = \frac{v_{out}}{v_{sig}} = \frac{v_{in}}{v_{sig}} \frac{v_{out}}{v_{in}}$$

$$= \frac{R_{in}}{R_{sig} + R_{in}} g_m(R_C || R_L)$$

$$= \frac{1}{R_{sig} \frac{1+\beta}{\beta} + \frac{1}{g_m}} (R_C || R_L)$$

$$\approx \frac{1}{R_{sig} + \frac{1}{g_m}} (R_C || R_L)$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

Step 1: perform DC analysis (SKIP)

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

- Step 1: perform DC analysis (SKIP)
- Step 2: perform AC analysis
 - Step 2.1: turn off DC sources (SKIP)
 - step 2.2: Calculate small-signal model parameters, β and $r_π$ (SKIP)
 - Step 2.3: replace the transistor with the small-signal model (SKIP)
 - Step 2.4: Analyze the resulting circuit

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} ,

 R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

The input resistance

$$R_{in} = R'_{in}||R_B = \frac{v_{be}}{i_b}||R_B$$

$$= \frac{i_B r_\pi + (i_B + g_m i_B r_\pi)(r_o||R_L)}{i_B}||R_B$$

$$= [r_\pi + (1 + \beta)(r_o||R_L)]||R_B$$

$$R_{B_TH} = R_{sig} || R_B$$
 $v_{B_TH} = \frac{R_B}{R_{sig} + R_B} v_{sig}$

$$R_{in} = R'_{in} || R_B$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

$$R_{B_TH} = R_{sig}||R_B$$

$$v_{B_TH} = \frac{R_B}{R_{sig} + R_B} v_{sig}$$

$$R_{in} = R'_{in} || R_B$$

$$R_{out} = r_o || \frac{R_{TH} + r_{\pi}}{1 + \beta} \approx \frac{R_{TH} + r_{\pi}}{1 + \beta}$$

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

The CC amplifier is also called EMITTER FOLLOWER

The output voltage

$$v_{o} = i_{B}(R'_{in} - r_{\pi}) = \frac{v_{B_{TH}}}{R_{B_{TH}} + R'_{in}} (R'_{in} - r_{\pi})$$

$$= \frac{R_{B}}{R_{sig} + R_{B}} \frac{(1 + \beta)(r_{o}||R_{L})}{R_{sig}||R_{B} + R'_{in}} v_{sig}$$

The overall gain

$$G_{v} = \frac{v_{o}}{v_{sig}} = \frac{R_{B}}{R_{sig} + R_{B}} \frac{(1+\beta)(r_{o}||R_{L})}{R_{sig}||R_{B} + R'_{in}} v_{sig}$$

$$\downarrow \text{If } R_{B} \gg R_{sig}, R_{in} \gg R_{sig}||R_{B}$$

$$\approx 1$$

Summary: 3 BJT Amp. Configurations

Outline

- Introduction to BJT
 - Device structure
 - How does it work?
 - Cutoff / Active / Reverse / Saturation mode
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic
- Circuit analysis techniques with BJT
 - DC analysis techniques
 - AC analysis techniques
 - Locate the bias point
 - Small-signal operation & model
 - Characterizing Amplifiers
 - Basic BJT Amplifier Configurations
 - The frequency response

SIMPLIFIED HYBRID- π MODEL

SIMPLIFIED T MODEL

The Frequency Response

Small-Signal Model

SIMPLIFIED HYBRID- π MODEL

THE HIGH FREQUENCY MODEL

Recall: Example 5: CE Amplifier

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

CE Amplifier w/ High Freq. Model

QUESTION: Find out the voltage gain, the input and output resistances with given v_{in} , R_{sig} , R_B , R_C , C_1 , C_2 , C_E , V_{dd} , V_{SS} , and β .

We will go through frequency response in details for MOS transistor circuits

Outline

- Introduction to BJT
 - Device structure
 - How does it work? 4 modes
 - □ npn v.s. pnp
- The characteristic curves
 - v = i v characteristics
 - The transfer characteristic

- DC analysis techniques
- AC analysis techniques
- The frequency response

SIMPLIFIED HYBRID- π MODEL

SIMPLIFIED T MODEL

Reading tasks & learning goals

- Reading tasks
 - Microelectronic Circuits, 6th edition
 - Chapter 6
- Learning goals
 - Know the structure of a BJT and how it works
 - Well understand the characteristic of BJT
 - Well understand how to locate the bias point of a BJT in circuit
 - Understand how to describe the performance of an amplifier
 - Well understand how to analyze a circuit with BJT in active mode
 - Know the BJT amplification circuit configuration and analysis