Fundamentals of Electronic Circuits and Systems II

pn Junction & Diodes

Milin Zhang Dept of EE, Tsinghua University

Outline

- Introduction to semiconductors
- Diodes

Semiconductor material

SEMICONDUCTORS are materials whose conductivity lies between that of conductors and insulators

1																	18
H 1.01	2					Si	ingl	e-el	em	ent		13	14	15	16	17	4.00 2
Li 6.94	ве 9.01	semiconductors													10 Ne 20.18		
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	4 15 P 30.97	S 32.06	⁵ Cl 35.45	18 Ar 39.95
19 К 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 51.99	25 Mn 54.94	55.85	6 2' Co 58.93	7 21 Ni 58.69	8 2 Cu 63.55	9 30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	Br 79.90	36 Kr 83.80
85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc 98.91	44 Ru 101.07	4 4 Rh 102.91	5 4 Pd 106.42	6 4 Ag 107.87	7 48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	Te	2 53 126.90	54 Xe 131.29
55 Cs	56 Ba	57-71	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	0s	6 7 Ir	7 7 Pt	8 7 Au	9 80 Hg	81 TI 204.38	82 Pb	2 83 Bi 208.98	B B4 Po	At 209.98	86 Rn 222.02
87 Fr 223.02	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	100 Hs	8 109 Mt	9 110 Ds	• 11 Rg	1 112 Cn [285]	113 Nh	114 Fl	4 115 Mc	5 110 Lv [293]	117 Ts	118 Og
			57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 144.91	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.06	71 Lu 174.97
			89 Ac 227.03	90 Th 232.04	91 Pa 231.04	U 238.03	93 Np 237.05	94 Pu 244.06	95 Am 243.06	96 Cm 247.07	97 Bk 247.07	98 Cf 251.08	99 Es [254]	100 Fm 257.10	101 Md 258.10	102 No 259.10	103 Lr [262]

@0K all bonds are intact & no free electrons

- free electron wanders away from its parent atom
- A net positive charge left at the parent atom
- A "hole" left at the parent atom

- free electron wanders away from its parent atom
- A net positive charge left at the parent atom
- A "hole" left at the parent atom
- Current generated when an electric field applied

- free electron wanders away from its parent atom
- A net positive charge left at the parent atom
- A "hole" left at the parent atom
- Current generated when an electric field applied
- Electron from neighboring atom may fill up the hole, but generating a new hole – RECOMBINATION

- free electron wanders away from its parent atom
- A net positive charge left at the parent atom
- A "hole" left at the parent atom
- Current generated when an electric field applied
- Electron from neighboring atom may fill up the hole, but generating a new hole - RECOMBINATION
- Charge of a hole = -charge of an electron

2 carriers in semiconductor: free electron & hole

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors

Doped semiconductors

A key issue of nature silicon crystal:

The concentrations of carriers are too low to conduct appreciable current

10/3/21

Solution: **DOPING**

- Introduce impurity atoms
- To increase concentration of *n*, doping element with a valence of 5, e.g. *P* → *n* type doped silicon
- Each phosphorus atom donates a free electron

the *P* atom \rightarrow **DONOR**

For the *n* type doped silicon
 Majority charge carriers – electrons
 Minority charge carriers - holes
 Silicon atoms

Milin Zhang, Dept of EE, Tsinghua University

Doped semiconductors

A key issue of nature silicon crystal:

The concentrations of carriers are too low to conduct appreciable current

Impurity atom

10/3/21

- To increase concentration of *p*, doping element with a valence of 3, e.g. B
 → *p* type doped silicon
- Each boron atom accepts an electron from a neighboring atom the *B* atom → ACCEPTOR
- For the *p* type doped silicon
 Majority charge carriers holes
 Minority charge carriers electrons

Milin Zhang, Dept of EE, Tsinghua University

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor

Recall: where does current come from?

Movement of carriers (electrons/holes) in semiconductors generates current

Movement I – drift

- Free electrons and holes randomly move in a silicon
- An electrical field *E* is applied in a semiconductor

Movement of carriers (electrons/holes) in semiconductors generates current

Movement I – drift

- Free electrons and holes randomly move in a silicon
- An electrical field *E* is applied in a semiconductor
- Holes moves in the direction of E
- Electrons moves in the opposite direction of *E*

Movement of carriers (electrons/holes) in semiconductors generates current

Movement I – drift

Current density of the holes

Current density of the electrons

Movement of carriers (electrons/holes) in semiconductors generates current

Movement I – drift

Current density of the holes

 $J_p = qp\mu_p E$

Current density of the electrons

 $J_n = qn\mu_n E$

Total drift current density

 $J = J_p + J_n = qp\mu_p E + qn\mu_n E$

Since $I = \sigma E$

• The conductivity $\sigma = q(p\mu_p + n\mu_n)$

Movement of carriers (electrons/holes) in semiconductors generates current

Movement II – diffusion

- Why there is carrier diffusion? carrier density gradient
- Current density of the holes

 $J_p = -qD_p \frac{dp(x)}{dx}$ hole concentration gradient

Current density of the electrons

 $J_n = -qD_n \frac{dn(x)}{dx}$ electron concentration gradient

Movement of carriers (electrons/holes) in semiconductors generates current

2 types of movement – DRIFT & DIFFUSION

- Total drift current density $J = J_p + J_n = qp\mu_p E + qn\mu_n E$
- Total diffusion current density $J = -q \left(D_p \frac{dp(x)}{dx} + D_n \frac{dn(x)}{dx} \right)$
- A relationship between diffusion constant and mobility

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T \quad \leftarrow \text{ thermal voltage } \quad V_T = \frac{kT}{q}$$

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction

The two types doped silicon

Step 1: a *p*-type & a *n*-type semiconductor brought into close contact with each other, a *pn* junction is generated

Step 2: diffusion current generated due to concentration gradient

Step 3: the holes crossed the junction and recombine with the majority (electron) in the *n* type doped silicon

Depletion region

Step 4: an electronic field *E* is generated. Drift current is created due to minority carrier drift in this electronic field

Step 4: an electronic field *E* is generated. Drift current is created due to minority carrier drift in this electronic field

The barrier voltage is known as the junction build-in voltage

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction
 - *pn* junction @open circuit
 - *pn* junction with applied voltage

Recall: pn junction @open circuit

n is more positive than *p* due to the depletion region $I_D = I_S$ due to the barrier voltage

pn junction with forward-bias voltage

pn junction with forward-bias voltage

pn junction with reverse-bias voltage

pn junction with reverse-bias voltage

Reverse breakdown

JUNCTION BREAKDOWN happens when the reverse voltage is very high

- Zener effect
 - Reverse voltage is usually less than 5V
 - Breaks covalent bonds & generates electron-hole pairs
- Avalanche effect
 - Reverse voltage is usually > 7V
 - Breaks covalent bonds in atoms

pn junction with applied voltage

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction
 - *pn* junction @open circuit
 - *pn* junction with applied voltage
 - Reverse breakdown

Diodes
Junction diodes

Diode

A two-terminal device

i - v characteristics of pn junction

i - v characteristics of pn junction

QUESTION: Find the current through the resistor R_s

According to KVL

$$v_s = iR_s + v_D$$

• According to i - v characteristics of the diode

$$v_s = iR_s + V_T In \frac{i}{I_S}$$

1 unknown in 1 equation

BUT WE CANNOT FIND AN ANALYTICAL SOLUTION NUMERICAL SOLUTION AVAILABLE IN 20230253

The constant-voltage-drop model

QUESTION: Find the current through the resistor R_s

According to KVL

$$v_s = iR_s + v_D$$

According to the constant-volt-drop model of diode

$$v_s = iR_s + 0.7$$

$$i = \frac{v_s - 0.7}{R_s}$$

The small-signal model

QUESTION: Find the current through the resistor R_s with $v_s = 10 + \sin(\omega t)$ (V)

• There are 2 parts in v_s

$$v_s = 10 + \sin(\omega t) (V)$$

DC voltage AC voltage with a peak of 1V

QUESTION: Find the current through the resistor R_s with $v_s = 10 + \sin(\omega t)$ (V)

QUESTION: Find the current through the resistor R_s with $v_s = 10V + \sin(\omega t)$

According to KVL

$$v_s = iR_s + v_D$$

• Find the quiescent point by assuming $v_D|_{DC} = 0.7V$

$$I_D = \frac{v_s|_{DC} - 0.7}{R_s} = 0.93mA$$
$$r_d = \frac{V_T}{I_{@Q}} = 26.9\Omega$$

According to KVL

$$v_D\Big|_{AC} = \frac{r_d v_s|_{AC}}{R_s + r_d} = 2.68mV$$

 v_s

+

Example 1

 $R_s = 10k\Omega$

+

 v_D

• Solution 1 – using i - v characteristics of the diode

$$v_s = iR_s + V_T In\frac{i}{I_S}$$

BUT WE CANNOT FIND AN ANALYTICAL SOLUTION

Solution 2 – using constant-voltage-drop model

Solution 3 – using the small-signal model

QUESTION: Find the current through the resistor *R*. Use the constant-voltage-drop model.

Use the constant-voltage-drop model

$$v_{out} = 0.7V \times 3 = 2.1V$$

According to KVL

$$I_R = \frac{v_{in} - v_{out}}{R} = 7.9mA$$

Junction diodes

Diode

- A two-terminal device
- Current flows from Anode to Cathode

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction
 - *pn* junction @open circuit
 - *pn* junction with applied voltage
- Diodes
 - The forward region
 - The reverse region

i - v characteristics of pn junction

The models of diode

CONSTANT-VOLTAGE-DROP MODEL

More realistic model

QUESTION: Find the output voltage with the given input. The resistance of the diode must be considered

• When $v_s < 0$

The diode is reverse biased

$$i = 0$$
 $v_{out} = 0$

• When $v_s > 0$

The diode is forward biased

QUESTION: Find the output voltage with the given input. The resistance of the diode must be considered

• When $v_s < 0$

The diode is reverse biased

$$i = 0$$
 $v_{out} = 0$

• When $v_s > 0$

$$i = \frac{v_s - v_D}{r_D + R_s}$$

 $v_{out} = iR_s$

QUESTION: Find the output voltage with the given input. The resistance of the diode must be considered

QUESTION: Find the output voltage with the given input. The resistance of the diode must be considered

The models of diode

CONSTANT-VOLTAGE-DROP MODEL

IDEAL MODEL

The models of ideal diode

QUESTION: Find the output voltage with the given input. The diode is ideal

• When $t \in [0, t_1)$ *D* is forward-biased $\rightarrow v_{out} = 0$ $v_C = -6V$

QUESTION: Find the output voltage with the given input. The diode is ideal

• When $t \in [0, t_1)$

D is forward-biased

$$\rightarrow v_{out} = 0$$
 $v_C = -6V$

• When
$$t = t_1^+$$

Since voltage on capacitor CANNOT change abruptly

$$\rightarrow v_{out} = 10V$$
 $v_C = -6V$

D is reverse-biased

QUESTION: Find the output voltage with the given input. The diode is ideal

• When $t = t_2^+$

D is forward-biased

Since voltage on capacitor CANNOT change abruptly

$$\rightarrow v_{out} = 0$$
 $v_C = -6V$

QUESTION: Find the output voltage with the given input. The diode is ideal

i - v characteristics of pn junction

- Current increases rapidly
- Voltage drops very small

- Junction breakdown $@V = --V_{ZK}$
- Case 1 Zener effect
 - Current generated by breaking the electron-hole pairs
- Case 2 Avalanche effect
 - Current generated by breaking the covalent bonds in atoms

Zener diode

symbol •

ZENER DIODE is special diodes manufactured to operate in the breakdown region

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8V$ at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_S = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega$ or $0.5k\Omega$.

For the Zener diode model, according to KVL

$$V_Z = V_{Z0} + I_Z r_Z$$

$$\rightarrow V_{Z0} = 6.7V$$

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8V$ at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_S = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega$ or $0.5k\Omega$.

For the zener diode model, according to KVL

$$V_Z = V_{Z0} + I_Z r_Z$$

$$\rightarrow V_{Z0} = 6.7V$$

• If there is no load ($R_L = \infty$), according to KVL

$$v_s = I_Z R_S + V_{Z0} + I_Z r_Z$$

$$\rightarrow I_Z = 6.35 mA$$

$$v_{out} = V_{Z0} + I_Z r_Z = 6.83W$$

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8V$ at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_S = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega$ or $0.5k\Omega$.

• If $R_L = 2k\Omega$, since $R_L \gg r_Z$, approximately,

- $\rightarrow i$ does not change
- $\rightarrow i_{R_L}$ \uparrow compared to no load
- $\rightarrow i_{r_Z} \downarrow$ compared to no load

$$i_{R_L} \approx \frac{V_Z}{R_L} = 3.4 mA = -\Delta i_{r_Z}$$

$$\Delta v_{out} \approx -\Delta i_{r_Z} r_Z = -68 \mathrm{mV}$$

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8$ V at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_S = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega$ or $0.5k\Omega$.

• If $R_L = 2k\Omega$, more precisely, according to KCL

$$\frac{v_s - v_{out}}{R_s} = \frac{v_{out} - V_{Z0}}{r_Z} + \frac{v_{out}}{R_L}$$
$$\rightarrow v_{out} = 6.87V$$
$$\Delta v_{out} = -70 \text{mV}$$

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8$ V at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_S = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega$ or $0.5k\Omega$.

If
$$R_L = 0.5k\Omega$$
, if the zener diode is or
 $I_{R_L} \approx \frac{V_Z}{R_L} = 13.6mA > I_Z$
It's impossible

Thus, the Zener diode is disabled

QUESTION: the zener diode D_Z is specified to have $V_Z = 6.8$ V at $I_Z = 5mA$, $r_Z = 20\Omega$. The supply voltage v_s is nominally 10V but can vary by $\pm 1V$. $R_s = 0.5k\Omega$. Find the output voltage with different load $R_L = \infty$, $2k\Omega \text{ or } 0.5k\Omega$.

If
$$R_L = 0.5k\Omega$$
, if the zener diode is on
 $I_{R_L} \approx \frac{V_Z}{R_L} = 13.6mA > I_Z$
It's impossible

Thus, the Zener diode is disabled

According to KVL

$$v_{out} = v_s \frac{R_L}{R_s + R_L} = 5V$$

Summary: the *pn* junction diode

Diode

- A two-terminal device
- Current flows from Anode to Cathode

Summary: the *pn* junction diode

In forward region

$$i = I_S \left(e^{\frac{v}{V_T}} - 1 \right)$$

Solution to circuit with diodes

 \rightarrow KVL/KCL + i - v characteristics

→ Analytical solution UNAVAILABLE

Alternative practical solutions – MODELLING

Summary: the *pn* junction diode

In reverse region

In breakdown region

Model for Zener diode

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction
- Diodes
 - The i v characteristics
 - The models: Constant-voltage-drop / ideal / Small-signal model
 - The 3 working regions: forward / reverse / reverse breakdown
 - Applications of diodes

Example 5: full-wave rectifier

QUESTION: Find the output voltage with the given input.

Recall: half-wave rectifier

QUESTION: Find the output voltage with the given input. The resistance of the diode must be considered

Example 5: full-wave rectifier

QUESTION: Find the output voltage with the given input.

If the diode resistance is not counted

$$v_{out} = \begin{cases} 0 & when \ v_s < 0 \\ v_s - v_D & when \ v_s > 0 \end{cases}$$

If the diode resistance is not counted

$$v_{out} = \begin{cases} -v_s - v_D & \text{when } v_s < 0 \\ 0 & \text{when } v_s > 0 \end{cases}$$

Example 5: full-wave rectifier

QUESTION: Find the output voltage with the given input.

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Each diode maybe ON/OFF
 - How to solve it? Step 1a: assume D_1 is ON/OFF Step 1b: assume D_2 is ON/OFF Step 1c: assume D_3 is ON/OFF Step 1d: assume D_4 is ON/OFF

A combination of 16 cases, a lot of work!!!

IS THERE A BETTER WAY?

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Assume D₂ is ON
- According to the i v characteristics
 of ideal diode

 $\rightarrow v_3 < 0$

- If D_4 is also ON $\rightarrow v_1 < 0$
- Only 1 possible path for current flow

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Assume D₂ is ON
- According to the
 i v relationship
 of ideal diode
 - $\rightarrow v_3 < 0$
- If D₄ is also ON —

$$v_1 < 0$$

 $v_D = 0$

Only 1 possible path for current flow

requiring
$$\begin{cases} D_1 \text{ is ON } \rightarrow v_{out} < 0 \\ v_{out} > 0 \end{cases}$$

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Assume D_2 is ON
- According to the *i* − *v* relationship of ideal diode → v₃ < 0
- D_4 must be OFF $\rightarrow v_1 > 0$
- According to KCL, current goes through R $\rightarrow v_{out} > 0$
- D_3 is OFF, since $v_3 < v_{out}$
- According to KCL, current goes through D₁

 $\rightarrow v_1 > v_{out}$

QUESTION: Find the output voltage with the given input. The diodes are ideal.

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Assume D_2 is OFF
- According to the *i* − *v* characteristics of ideal diode → v₃ > 0
- If D_4 is also OFF
- According to KCL, no current through R
- Only 1 possible path for current flow

 D_1 and D_3 must be ON at the same time

Conflict of current flow direction!!!

QUESTION: Find the output voltage with the given input. The diodes are ideal.

- Assume D_2 is OFF
- According to the *i* − *v* relationship of ideal diode → v₃ > 0
- D_4 must be ON $\rightarrow v_1 < 0$
- According to KCL, current goes through R $\rightarrow v_{out} > 0$
- D_1 is OFF, since $v_1 < v_{out}$
- According to KCL, current goes through D₄

 $\rightarrow v_3 > v_{out}$

QUESTION: Find the output voltage with the given input. The diodes are ideal.

QUESTION: Find the output voltage with the given input. The diodes are ideal.

Example 7: peak rectifier

QUESTION: Find the output voltage with the given input. Use the constant-voltage-drop model of the diode with $v_D = 0.7V$. $v_{out} = 0$ at t = 0.

Example 7: peak rectifier

QUESTION: Find the output voltage with the given input. Use the constant-voltage-drop model of the diode with $v_D = 0.7V$. $v_{out} = 0$ at t = 0.

Example 7: peak rectifier

QUESTION: Find the output voltage with the given input. Use the constant-voltage-drop model of the diode with $v_D = 0.7V$. $v_{out} = 0$ at t = 0.

Example 8: peak rectifier

QUESTION: Find the output voltage with the given input. The diode is ideal. $v_{out} = 0$ at t = 0. *RC* is much larger than *T*

• When $t < t_1$

$$v_{D_1} = v_{in} - v_{out} > 0$$

The diode is ON. C charges to the peak V_S

$$\rightarrow v_{out} = v_{in}$$

• When $t > t_1$

$$v_{D_1} = v_{in} - v_{out} < 0$$

The diode is OFF.

C discharges through R

Example 8: peak rectifier

QUESTION: Find the output voltage with the given input. The diode is ideal. $v_{out} = 0$ at t = 0. *RC* is much larger than *T*

According to KCL

$$\frac{v_{out}}{R} + C\frac{dv_{out}}{dt} = 0$$

Recall: Source free RC circuit

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

Example 8: peak rectifier

QUESTION: Find the output voltage with the given input. The diode is ideal. $v_{out} = 0$ at t = 0. *RC* is much larger than *T*

According to KCL

$$\frac{v_{out}}{R} + C \frac{dv_{out}}{dt} = 0$$
$$v(t) = V_S e^{-\frac{1}{RC}t}$$

• Since
$$CR \gg T$$

 $v(T) = V_S e^{-\frac{T}{RC}} \approx V_S \left(1 - \frac{T}{RC}\right)$

QUESTION: Find the output voltage with the given input. The diode is not ideal.

• Assume D_1 is ON

Recall: Op-Amp & Feedback

QUESTION: Find the output of the circuit, v_o , and the relationship between i_o and v_{in} .

$$i_{R_1} = \frac{v_n}{R_1} = \frac{v_{in}}{R_1}$$
$$i_{R_2} = \frac{v_o - v_n}{R_2} = \frac{v_o - v_{in}}{R_2}$$
$$i_{R_1} = i_{R_2}$$

IDEAL OP-AMP with NEGATIVE FEEDBACK enables linear region biasing

 $\boldsymbol{v}_o = \frac{R_1 + R_2}{R_1} \boldsymbol{v}_{in}$

QUESTION: Find the output voltage with the given input. The diode is not ideal.

- Step 1: Assume D_1 is ON
- Step 2: check if negative feedback
 - If there is an increase @ v_o v_o ↑
 - The inverting input v_n
 increases correspondingly
 - If the op-amp is biased in the linear region, $v_o =$ $A(v_{in} - v_n)$ decreases

NEGATIVE FEEDBACK is observed

 $v_0 \downarrow$

QUESTION: Find the output voltage with the given input. The diode is not ideal.

- Step 1: Assume D_1 is ON
- Step 2: check if negative feedback
- Step 3a: ideal op-amp
 - \rightarrow open circuit @ inputs

$$\rightarrow i_p = i_n = 0$$

Step 3b: "short" the inputs

$$v_n = v_p = v_{in} = v_o$$
$$i_{R_1} = \frac{v_{in}}{R_1}$$
$$v_1 = v_o + v_{D_1} = v_{in} + v_{D_1}$$

QUESTION: Find the output voltage with the given input. The diode is not ideal.

- Step 1: Assume D_1 is ON
- Step 2: check if negative feedback
- Step 3: solve the circuit

$$v_n = v_p = v_{in} = v_o$$

$$v_1 = v_{in} + v_{D_1}$$

• Step 4: check the assumption

If
$$v_{in} > 0 \qquad \rightarrow v_o > 0$$

If $v_{in} < 0 \qquad \rightarrow v_o < 0$

QUESTION: Find the output voltage with the given input. The diode is not ideal.

Summary: rectifier

Outline

- Introduction to semiconductors
 - Semiconductor material & silicon crystal
 - Doped semiconductors
 - Current flow in semiconductor
 - The *pn* junction
- Diodes
 - The i v characteristics
 - The models: Constant-voltage-drop / ideal / Small-signal model
 - The 3 working regions: forward / reverse / reverse breakdown
 - Applications of diodes
 - Rectifiers
 - Limiting & clamping circuits

Recall: Example 2: limiting circuit

QUESTION: Find the current through the resistor *R*.

Use the constant-voltage-drop model

$$v_{out} = 0.7V \times 3 = 2.1V$$

According to KVL

$$I_R = \frac{v_{in} - v_{out}}{R} = 7.9 mA$$

Example 10: limiting circuit

QUESTION: Find the transfer function between the input and output voltage

- Use the constant-voltage-drop model
- If $v_{in} > 0.7V$, according to KVL

$$v_{out} = 0.7V$$

$$v_{R_1} = v_{in} - 0.7V$$

• If $v_{in} < 0.7V$, D_1 is OFF

$$v_{out} = v_{in}$$

Example 11: DC restorer

QUESTION: Find the output voltage with the given input. The diode is ideal. $v_{out} = 0$ at t = 0.

In phase 1

 D_1 is ON

According to KVL

$$v_{C_1} = v_{in} \quad v_{D_1} = 0$$

$$v_{C_1}(t=t_1)=V_S$$

In phase 2

 D_1 is OFF

Voltage on C_1 CANNOT change abruptly

$$v_{out} = v_{in} - V_S$$

Example 11: DC restorer

QUESTION: Find the output voltage with the given input. The diode is ideal. $v_{out} = 0$ at t = 0.

Outline

Introduction to semiconductors

- Semiconductor material & silicon crystal
- Doped semiconductors
- Current flow in semiconductor
- The *pn* junction

Diodes

- The i v characteristics
- The models: Constant-voltage-drop / ideal / Small-signal model
- The 3 working regions: forward / reverse / reverse breakdown
- Applications of diodes
 - Rectifiers
 - Limiting & clamping circuits

Special diodes

Light-Emitting Diodes (LEDs)

Photodiodes

- Photodiode is a reversebiased *pn* junction
- Convert incident light to a reverse current

Application 1: Fiber-optic receiver

Application 2: Image sensor

Summary

- Introduction to semiconductors Semiconductor material & silicon crystal Anode (+) Cathode (-)Doped semiconductors Current flow in semiconductor The *pn* junction breakdown reverse region 0 0 0 0 0 0 0 0 0 region Diodes • The i - v characteristics Constant-voltage drop model Ideal model Small-signal model • The models: One of the most widely used diode MODEL $v_{D} = 0$ quiescent Voltage drops in a narrow point 0 range, roughly [0.6, 0.8] A constant value of 0.7 is $i = I_S \left(e^{\frac{v}{V_T}} - 1 \right)$ $\left. \frac{\partial i}{\partial v} \right|_{\partial O} = \frac{I_S}{V_T} = \frac{1}{r_d}$ • Applications of diodes / circuit analysis with diodes
 - Special diodes

Reading tasks & learning goals

- Reading tasks
 - Microelectronic Circuits, 6th edition
 - Chapter 3-4
- Learning goals
 - Know the two types of doped semiconductors
 - Know how *pn* junction works
 - Well understand how to analyze a circuit with diode using different models