Fundamentals of Electronic Circuits and Systems I

Circuit Analysis in Frequency Domain

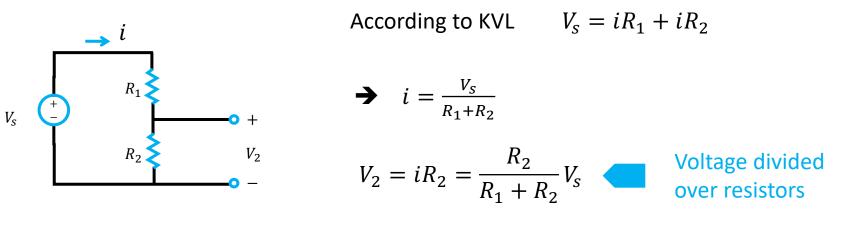
Milin Zhang Dept of EE, Tsinghua University

Outlines

- Transfer function
- Filters
- Bode plot
- Circuit element models in s-domain

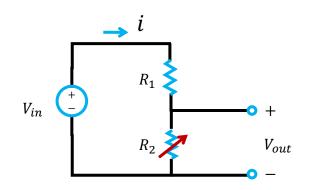
Recall: voltage divider

VOLTAGE DIVIDER



QUESTION: calculate the voltage transfers from input to output based on varying R_2

VOLTAGE DIVIDER

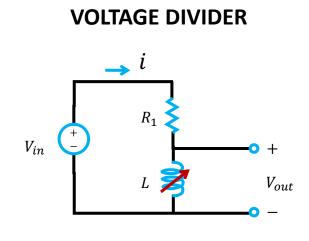


$$V_{out} = iR_2 = \frac{R_2}{R_1 + R_2} V_{in}$$

Ratio between input & output voltages

$$G(R_2) = \frac{V_{out}}{V_{in}} = \frac{R_2}{R_1 + R_2}$$

QUESTION: calculate the voltage transfers from input to output based on varying L



According to KVL

$$\mathbb{V}_{out} = iZ_L = \frac{j\omega L}{R_1 + j\omega L} \mathbb{V}_{in}$$

The transfer function

$$\mathbb{G}(\omega) = \frac{\mathbb{V}_{out}}{\mathbb{V}_{in}} = \frac{j\omega L}{R_1 + j\omega L} = \frac{1}{\frac{R_1}{j\omega L} + 1}$$

This is a "frequency-dependent" variable voltage divider. Transfer is dependent on the value of ω

TRANSFER FUNCTION of a circuit or system describes the output response to an input excitation as a function of the angular frequency ω

$$\mathbb{G}(\omega) = \frac{\mathbb{V}_{out}(\omega)}{\mathbb{V}_{in}(\omega)} \quad \leftarrow \text{Voltage gain}$$

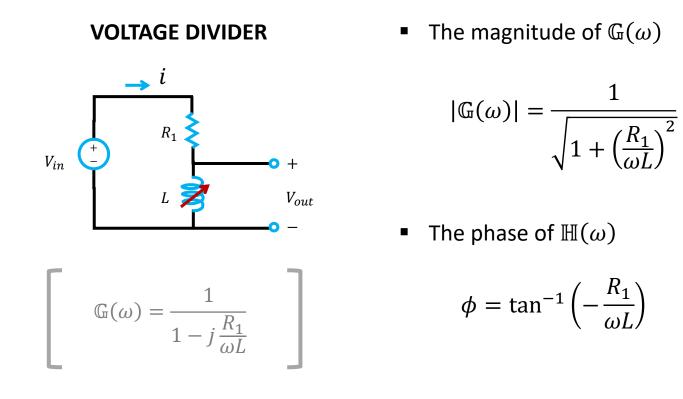
$$= M(\omega)e^{j\phi(\omega)}$$

where

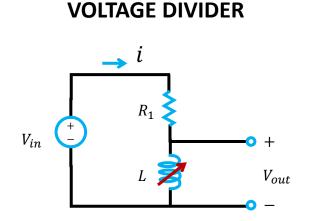
$$M(\omega) = |\mathbb{G}(\omega)| \qquad \qquad \phi(\omega) = \tan^{-1} \left[\frac{\Im \mathbb{M}[\mathbb{G}(\omega)]}{\Re \mathbb{R}[\mathbb{G}(\omega)]} \right]$$

Magnitude Phase

QUESTION: calculate the voltage transfers from input to output based on varying L



QUESTION: calculate the voltage transfers from input to output based on varying L



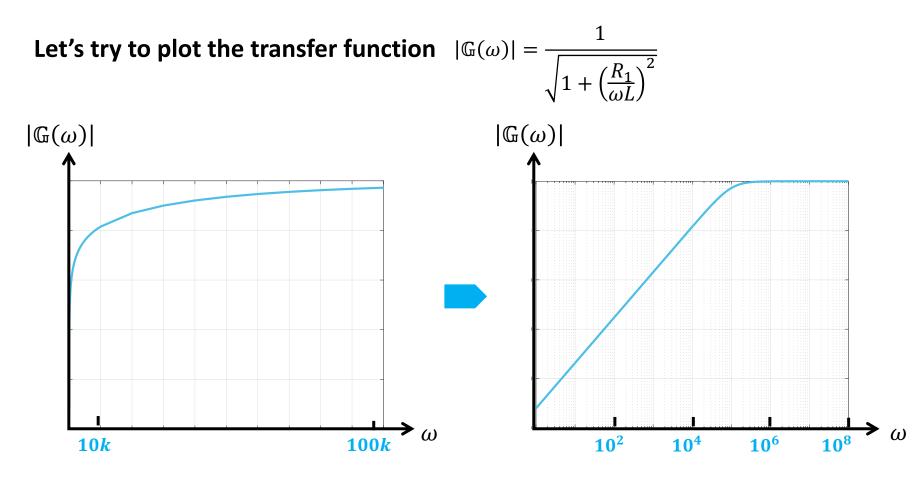
$$\mathbb{G}(R_2) = \frac{\mathbb{V}_{out}}{\mathbb{V}_{in}} = \frac{j\omega L}{R_1 + j\omega L} = \frac{1}{\frac{R_1}{j\omega L} + 1}$$
$$\omega = 2\pi f$$

If frequency is very high

 $\mathbb{G}(R_2) \to 1$

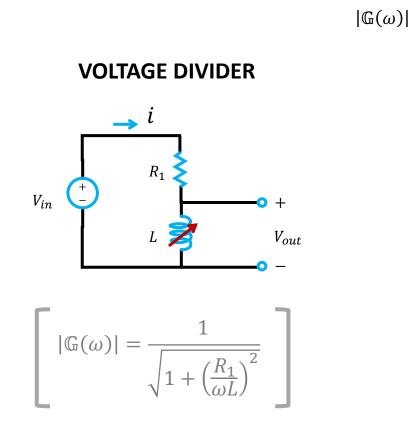
If frequency is very low

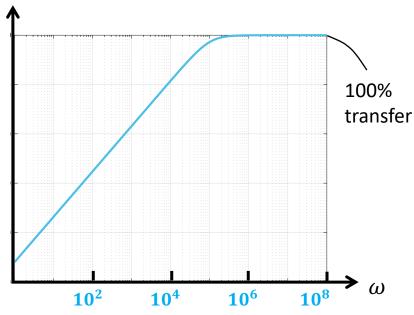
$$\mathbb{G}(R_2) \approx \frac{j\omega L}{R_1} \to 0$$



While plot the transfer function, the x-axis is usually plot in logarithmic scale

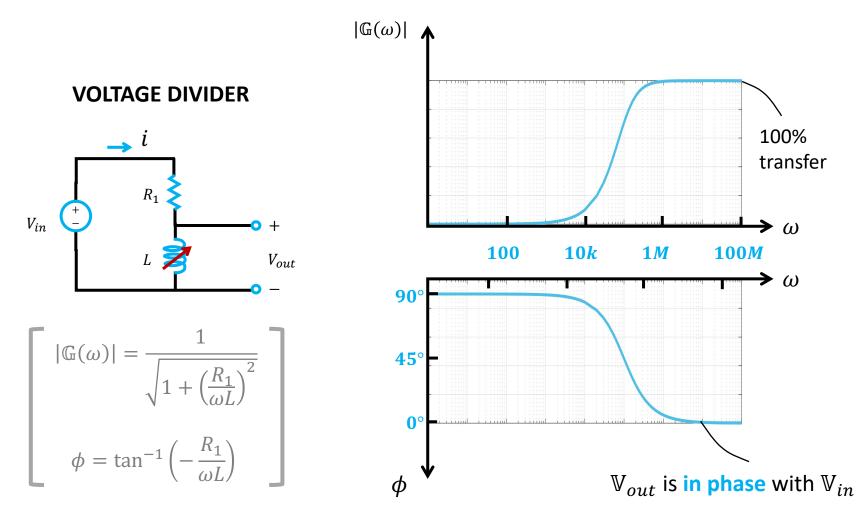
QUESTION: calculate the voltage transfers from input to output based on varying L





- Transfer is dependent on ω
- If frequency is very high $\mathbb{G}(\omega) \to 1$
- If frequency is very low $\mathbb{G}(\omega) \to 0$

QUESTION: calculate the voltage transfers from input to output based on varying L_2

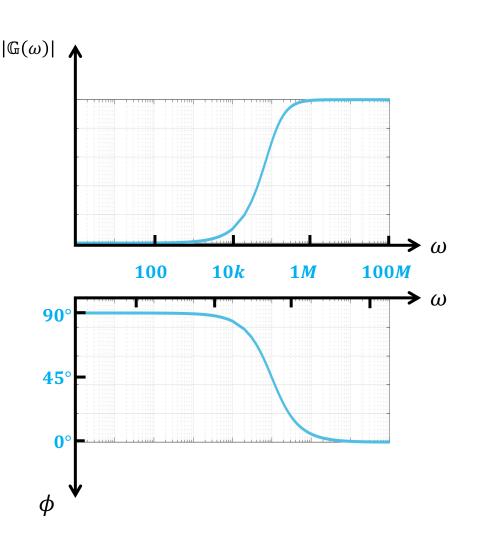


High pass filter

This is a HIGH PASS FILTER Which passes high frequencies and block low frequencies

 $\overset{\mathbb{V}_{in}}{\longrightarrow}\overset{\mathbb{V}_{out}}{\longrightarrow}$

- If V_{in} has high frequency, nearly all of V_{in} will transfer to output
- If V_{in} has low frequency, little of
 V_{in} will transfer to output



Different forms of the transfer function

TRANSFER FUNCTION of a circuit or system describes the output response to an input excitation as a function of the angular frequency ω

$$\begin{split} \mathbb{G}_{v}(\omega) &= \frac{\mathbb{V}_{out}(\omega)}{\mathbb{V}_{in}(\omega)} & \leftarrow \text{Voltage gain} \\ \mathbb{G}_{i}(\omega) &= \frac{\mathbb{I}_{out}(\omega)}{\mathbb{I}_{in}(\omega)} & \leftarrow \text{Current gain} \\ \mathbb{Z}(\omega) &= \frac{\mathbb{V}_{out}(\omega)}{\mathbb{I}_{in}(\omega)} & \leftarrow \text{Transimpedance} \\ \mathbb{Y}(\omega) &= \frac{\mathbb{I}_{out}(\omega)}{\mathbb{V}_{in}(\omega)} & \leftarrow \text{Transadmittance} \end{split}$$

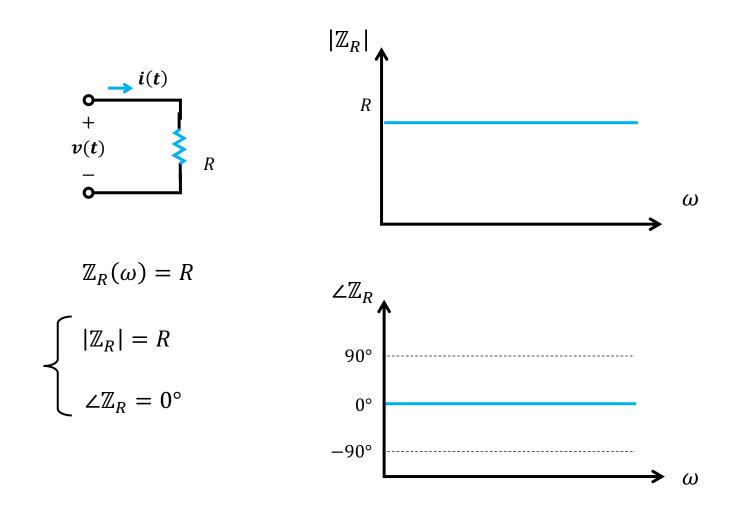
Recall: Impedance

Impedance, Z,

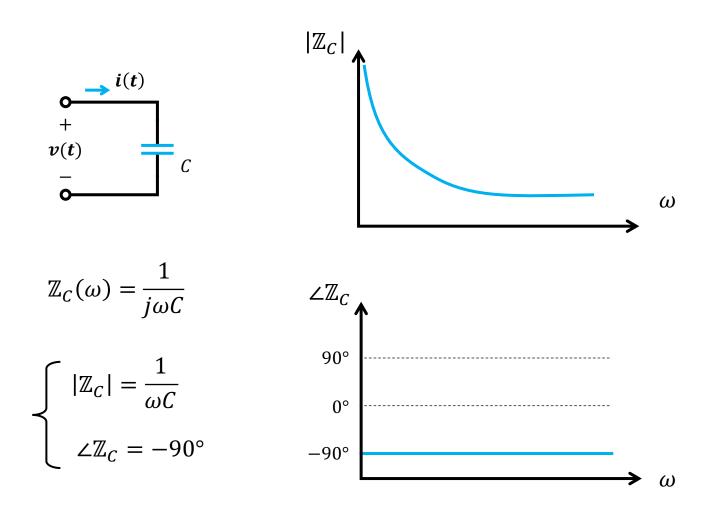
is defined as the ratio of the phasor voltage to the phasor current

			-000-
<i>i-v</i> relation	$i = \frac{v}{R}$	$i(t) = C \frac{d\nu(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
v- i relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	<u>1</u> <i>jωC</i>	jωL

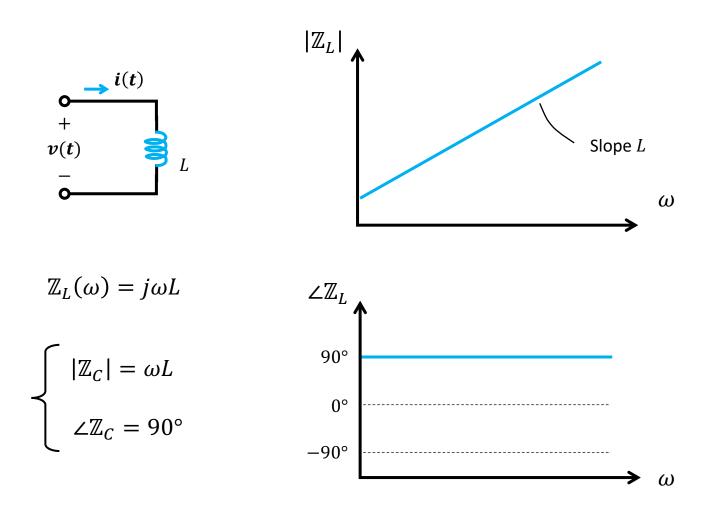
Transfer function of a resistor



Transfer function of a capacitor



Transfer function of an inductor

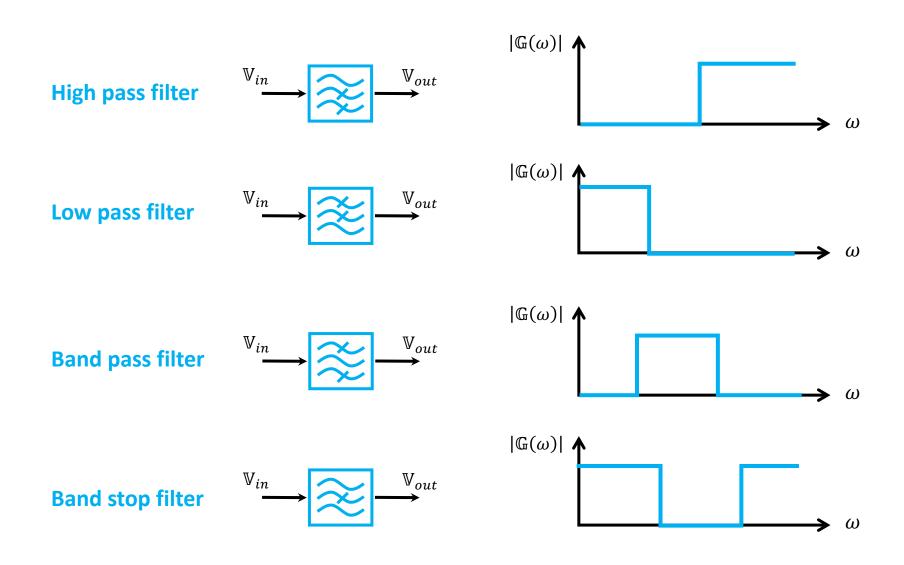


Outlines

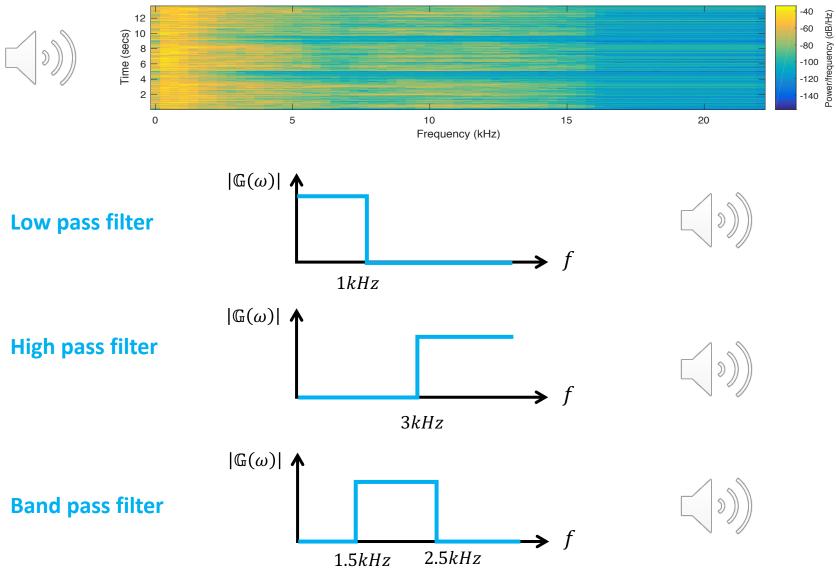
- Transfer function
 - Voltage gain
 - Transimpedance

Filters

Common ideal filters

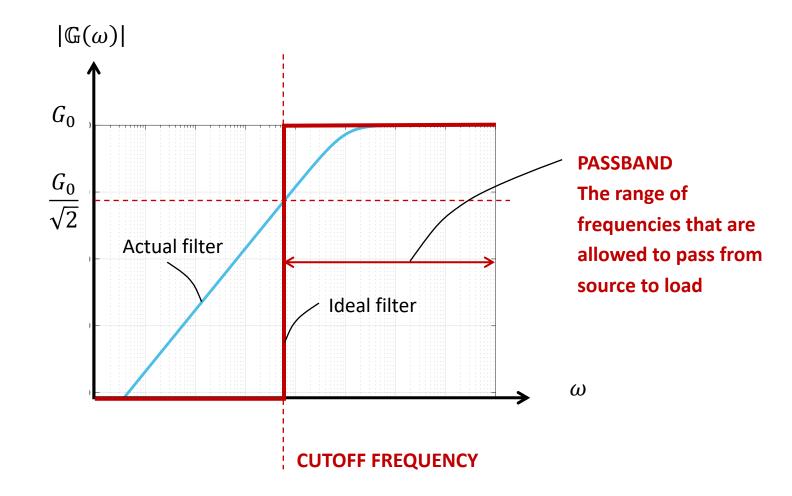


Common ideal filters

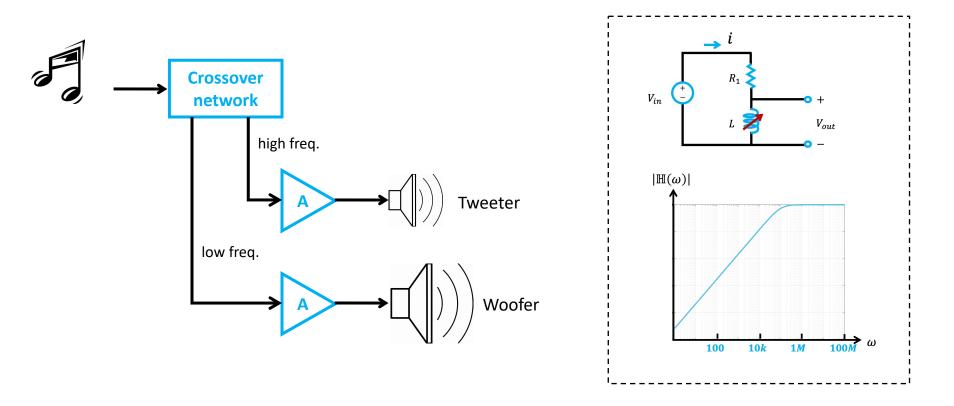


Milin Zhang, Dept of EE, Tsinghua University

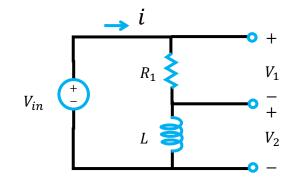
Ideal v.s. actual filters



QUESTION: design a stereo amplifier with two output channels to split the high and low frequencies.



QUESTION: design a stereo amplifier with two output channels to split the high and low frequencies.



According to KVL

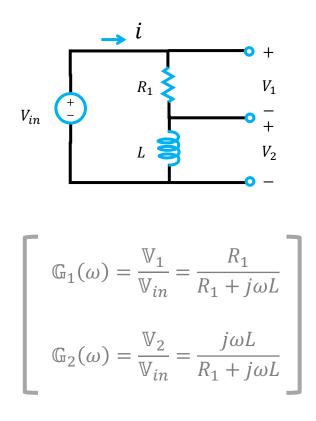
$$\mathbb{V}_1 = iR_1 = \frac{R_1}{R_1 + j\omega L} \mathbb{V}_{in}$$

$$\mathbb{V}_2 = iZ_L = \frac{j\omega L}{R_1 + j\omega L} \mathbb{V}_{in}$$

The transfer function

$$\mathbb{G}_{1}(\omega) = \frac{\mathbb{V}_{1}}{\mathbb{V}_{in}} = \frac{R_{1}}{R_{1} + j\omega L}$$
$$\mathbb{G}_{2}(\omega) = \frac{\mathbb{V}_{2}}{\mathbb{V}_{in}} = \frac{j\omega L}{R_{1} + j\omega L}$$

QUESTION: design a stereo amplifier with two output channels to split the high and low frequencies.



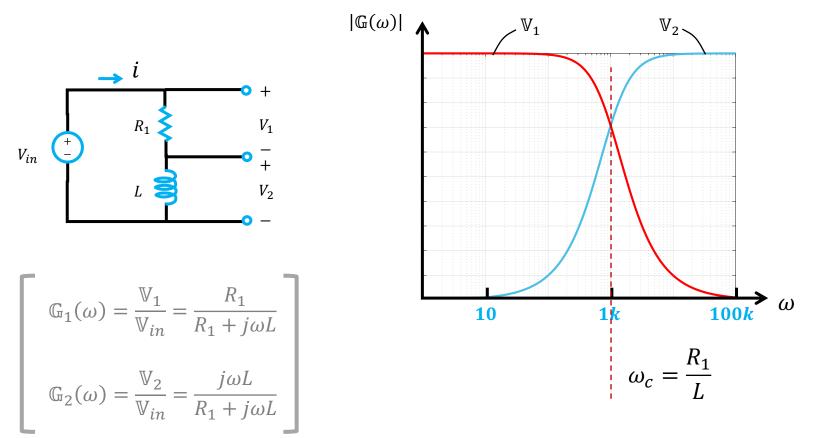
$$|\mathbb{G}_{1}(\omega)| = \frac{1}{\sqrt{1 + \frac{\omega^{2}L^{2}}{R_{1}^{2}}}}$$

When $|\mathbb{G}_{1}(\omega_{c})| = \frac{1}{\sqrt{2}}$
 $\Rightarrow \omega_{c1} = \frac{R_{1}}{L}$

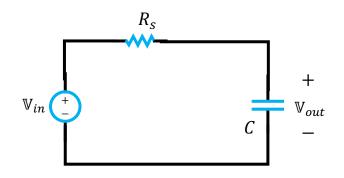
Similar for the cutoff freq. of $\mathbb{G}_2(\omega)$

$$\omega_{c2} = \frac{R_1}{L}$$

QUESTION: design a stereo amplifier with two output channels to split the high and low frequencies.



QUESTION: find the transfer function of the circuit below



According to KVL

$$\mathbb{V}_{out} = iZ_C = \frac{Z_C}{R_s + Z_C} \mathbb{V}_{in}$$

• If Z_C is very low

How to vary
$$Z_C$$
?

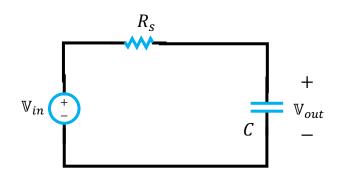
- Not practical to vary *C*
- Much easier to vary ω

$$\mathbb{G}(\omega) = \frac{Z_C}{R_s + Z_C} \xrightarrow{Z_C \to 0} 0$$

If Z_C is very high

$$\mathbb{G}(\omega) = \frac{Z_C}{R_s + Z_C} \xrightarrow{Z_C \to \infty} 1$$

QUESTION: find the transfer function of the circuit below



The transfer function

$$\mathbb{G}(\omega) = \frac{Z_C}{R_s + Z_C}$$

This is also a "frequency-

dependent" variable

voltage divider.

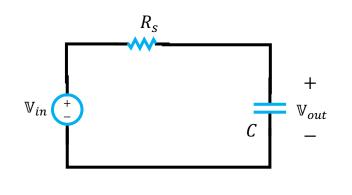
Transfer is dependent on

the value of ω

$$=\frac{\frac{1}{j\omega C}}{R_s + \frac{1}{j\omega C}}$$

$$=\frac{1}{j\omega CR_s+1}$$

QUESTION: find the transfer function of the circuit below



$$Z_C = \frac{1}{j\omega C} \to 0$$
 short circuit

$$\mathbb{G}(\omega) \to 0$$

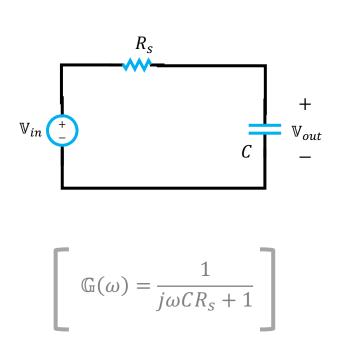
$$\mathbb{G}(\omega) = \frac{1}{j\omega CR_s + 1}$$

If frequency is very low, Z_C is very high

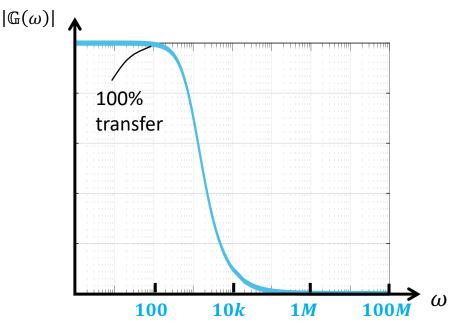
$$Z_C = \frac{1}{j\omega C} \to \infty$$
 open circuit

$$\mathbb{G}(\omega) \to 1$$

QUESTION: find the transfer function of the circuit below

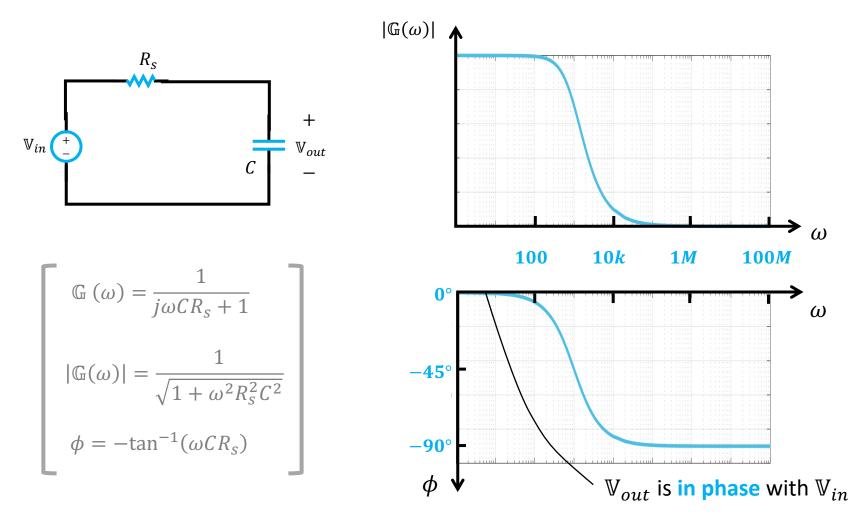


This is a LOW PASS FILTER Which passes low frequencies and block high frequencies



- Transfer is dependent on ω
- If frequency is very low $\mathbb{G}(\omega) \to 1$
- If frequency is very high $\mathbb{G}(\omega) \to 0$

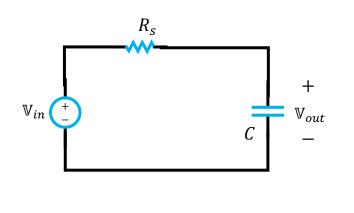
QUESTION: find the transfer function of the circuit below



Example 2

т

QUESTION: find the transfer function of the circuit below



$$\mathbb{G}(\omega) = \frac{1}{j\omega CR_s + 1}$$
$$\phi = -\tan^{-1}(\omega CR_s)$$

• If
$$v_{in}(t) = V_S \sin(\omega t)$$

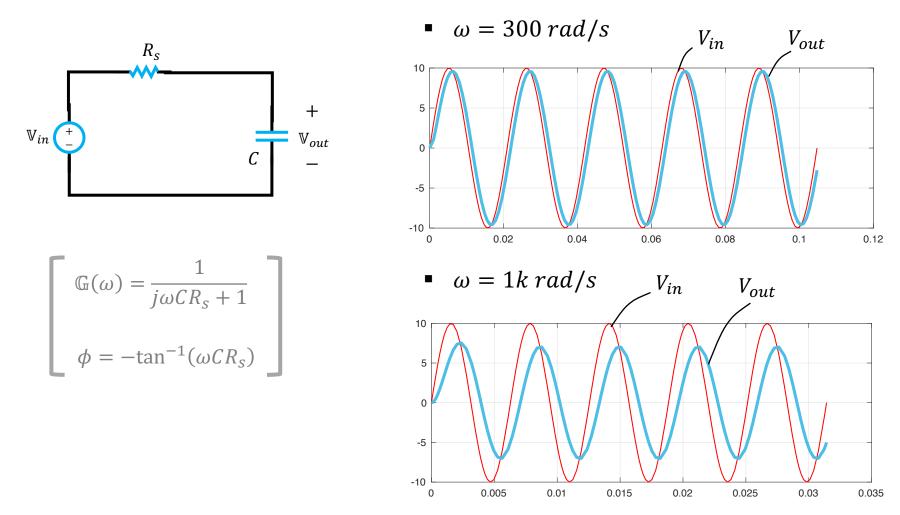
According to KVL

$$\frac{d}{dt}v(t) + \frac{1}{R_sC}v(t) = \frac{1}{R_sC}v_{in}(t)$$

$$v(t) = K_1\cos(\omega t) + K_2\sin(\omega t) + K_3e^{-\frac{1}{R_sC}t}$$
where
$$\begin{cases}
K_1 = \frac{-\omega R_sC}{1 + \omega^2 R_s^2 C^2}V_s \\
K_2 = \frac{1}{1 + \omega^2 R_s^2 C^2}V_s
\end{cases}$$

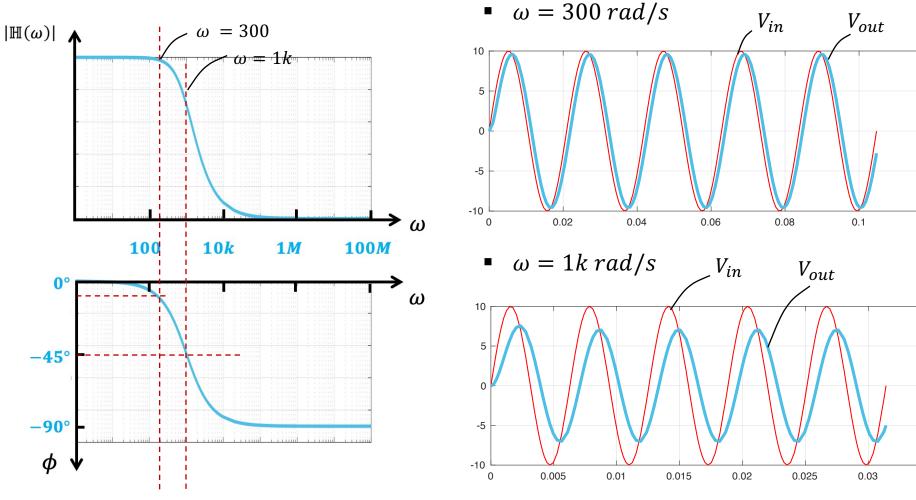
 $K_3 = \frac{\omega R_s C}{1 + \omega^2 R_s^2 C^2} V_s$

QUESTION: find the transfer function of the circuit below



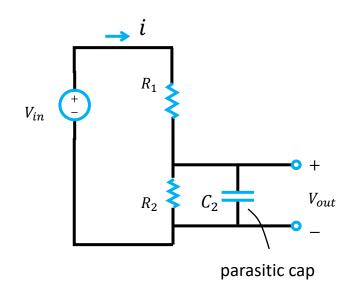
Milin Zhang, Dept of EE, Tsinghua University

QUESTION: find the transfer function of the circuit below



Milin Zhang, Dept of EE, Tsinghua University

QUESTION: a voltage divider usually does work well at high frequency due to the parasitic capacitance. In order to remedy this capacitance issue, a small capacitor in parallel with the series resistor is applied. This capacitor is called compensate capacitor. Find the proper value of the compensate capacitor.



If there is no parasitic cap, according to KVL

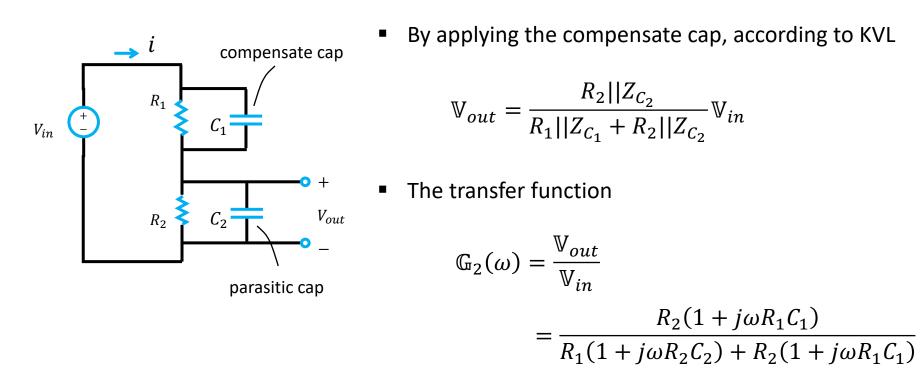
$$\mathbb{V}_{out} = iR_2 = \frac{R_2}{R_1 + R_2} \mathbb{V}_{in}$$

If consider the parasitic cap, according to KVL

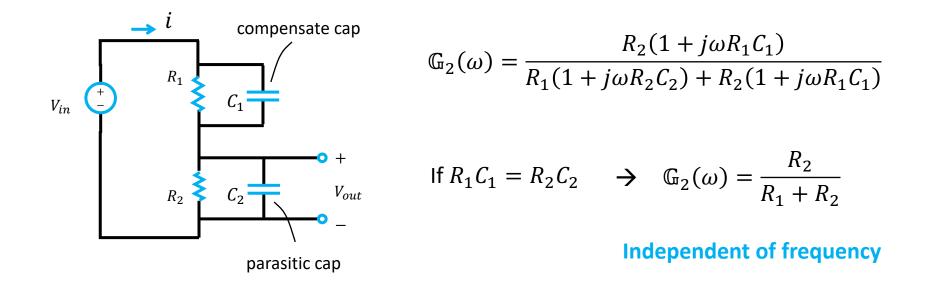
$$\mathbb{V}_{out} = \frac{R_2 || Z_{C_2}}{R_1 + R_2 || Z_{C_2}} \mathbb{V}_{in}$$

$$\mathbb{G}_{2}(\omega) = \frac{\mathbb{V}_{out}}{\mathbb{V}_{in}} = \frac{R_2}{R_1 + R_2 + j\omega R_1 R_2 C_2}$$

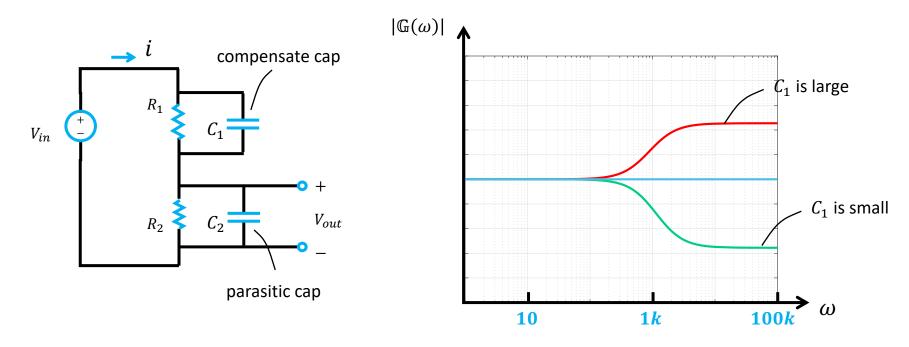
QUESTION: a voltage divider usually does work well at high frequency due to the parasitic capacitance. In order to remedy this capacitance issue, a small capacitor in parallel with the series resistor is applied. This capacitor is called compensate capacitor. Find the proper value of the compensate capacitor.



QUESTION: a voltage divider usually does work well at high frequency due to the parasitic capacitance. In order to remedy this capacitance issue, a small capacitor in parallel with the series resistor is applied. This capacitor is called compensate capacitor. Find the proper value of the compensate capacitor.

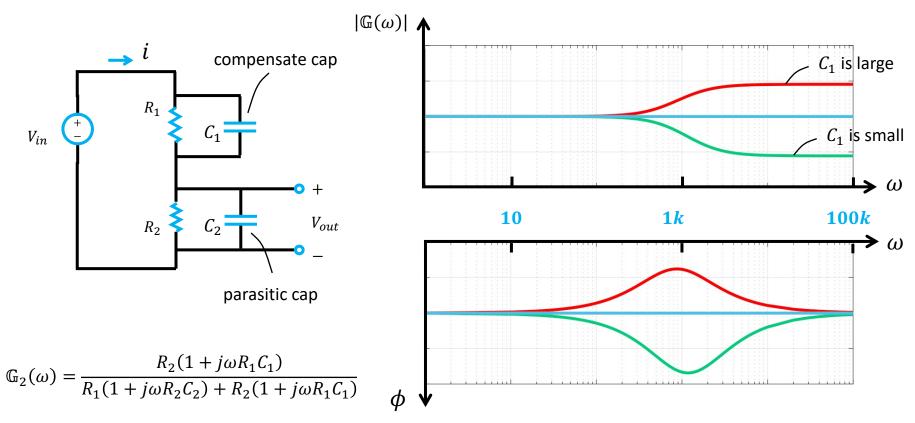


QUESTION: a voltage divider usually does work well at high frequency due to the parasitic capacitance. In order to remedy this capacitance issue, a small capacitor in parallel with the series resistor is applied. This capacitor is called compensate capacitor. Find the proper value of the compensate capacitor.



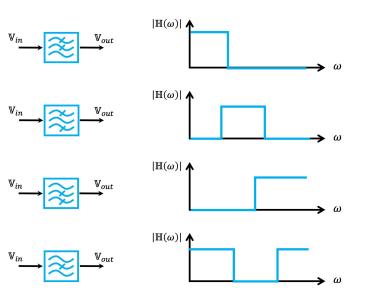
$$\mathbb{G}_{2}(\omega) = \frac{R_{2}(1+j\omega R_{1}C_{1})}{R_{1}(1+j\omega R_{2}C_{2})+R_{2}(1+j\omega R_{1}C_{1})}$$

QUESTION: a voltage divider usually does work well at high frequency due to the parasitic capacitance. In order to remedy this capacitance issue, a small capacitor in parallel with the series resistor is applied. This capacitor is called compensate capacitor. Find the proper value of the compensate capacitor.

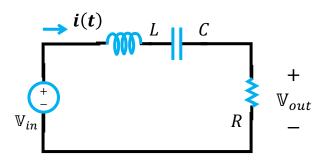


Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor



QUESTION: calculate the voltage transfers from input to output based on varying *R*



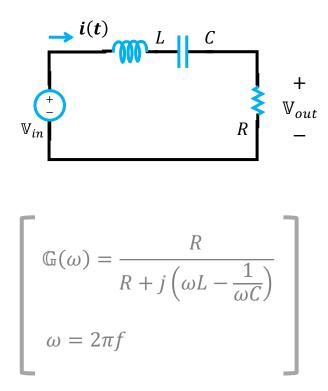
According to KVL

$$\mathbb{V}_{out} = \mathbb{I}R = \frac{R}{R + Z_L + Z_C} \mathbb{V}_{in}$$

The transfer function

$$\mathbb{G}(\omega) = \frac{\mathbb{V}_{out}}{\mathbb{V}_{in}} = \frac{R}{R + Z_L + Z_C}$$
$$= \frac{R}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$

QUESTION: calculate the voltage transfers from input to output based on varying *R*



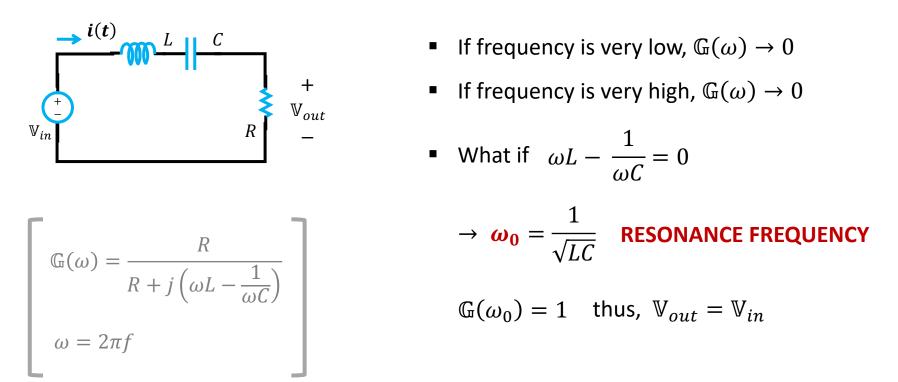
• If frequency is very low , $\omega
ightarrow 0$

$$\mathbb{G}(\omega) = \frac{R}{R + j\left(\omega L - \frac{1}{\omega C}\right)} \to 0$$

• If frequency is very high, $\omega \to \infty$

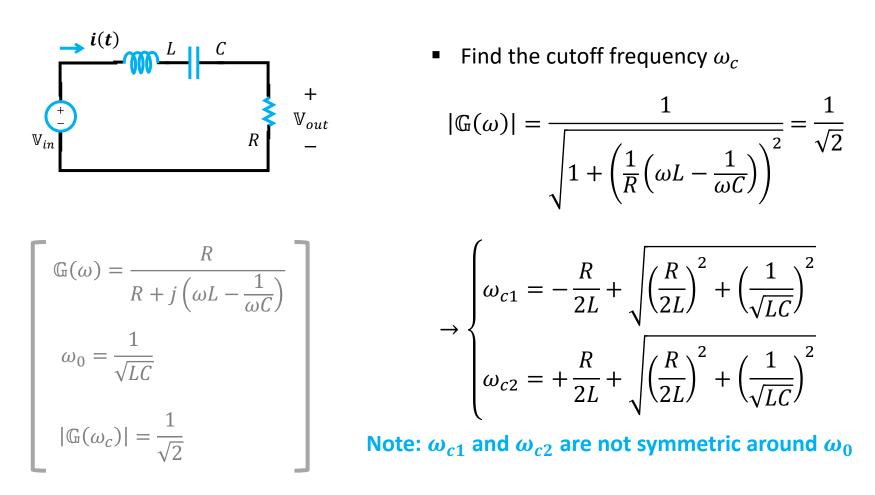
$$\mathbb{G}(\omega) = \frac{R}{R + j\left(\omega L - \frac{1}{\omega C}\right)} \to 0$$

QUESTION: calculate the voltage transfers from input to output based on varying *R*

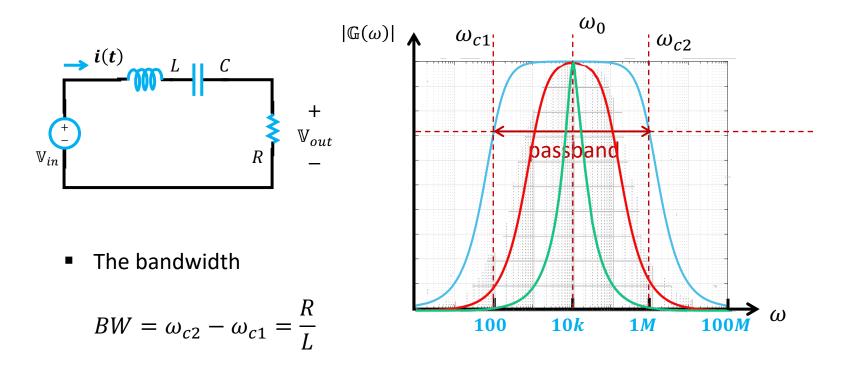


The RESONANCE FREQUENCY, ω_0 , at which the impedance of the circuit is purely real. The circuit itself at ω_0 is called IN RESONANCE.

QUESTION: calculate the voltage transfers from input to output based on varying *R*



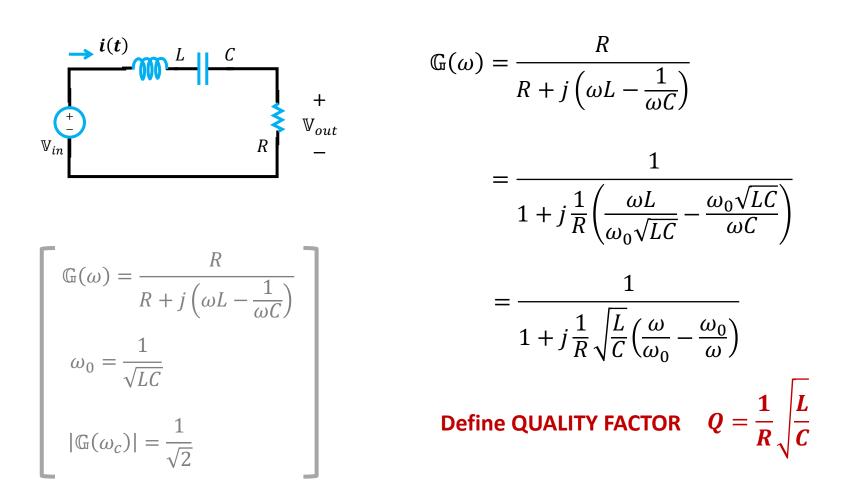
QUESTION: calculate the voltage transfers from input to output based on varying *R*



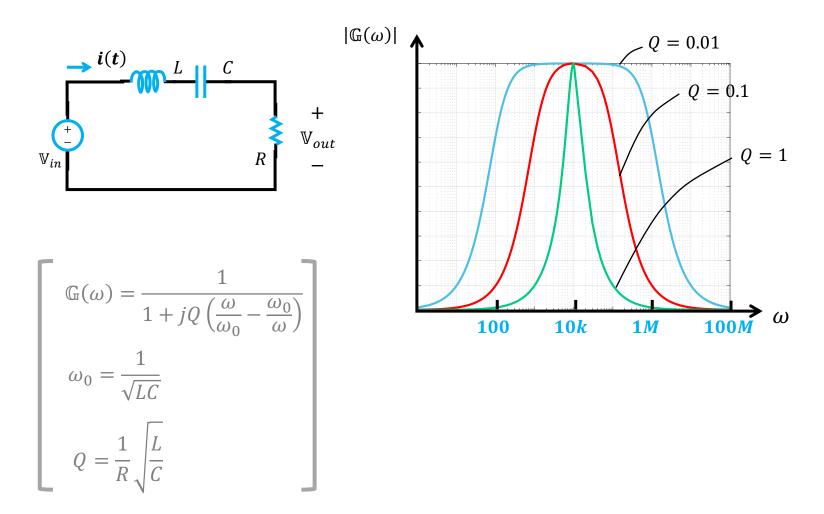
This is a BAND PASS FILTER

which passes some particular band of frequencies and reject all frequencies outside the range

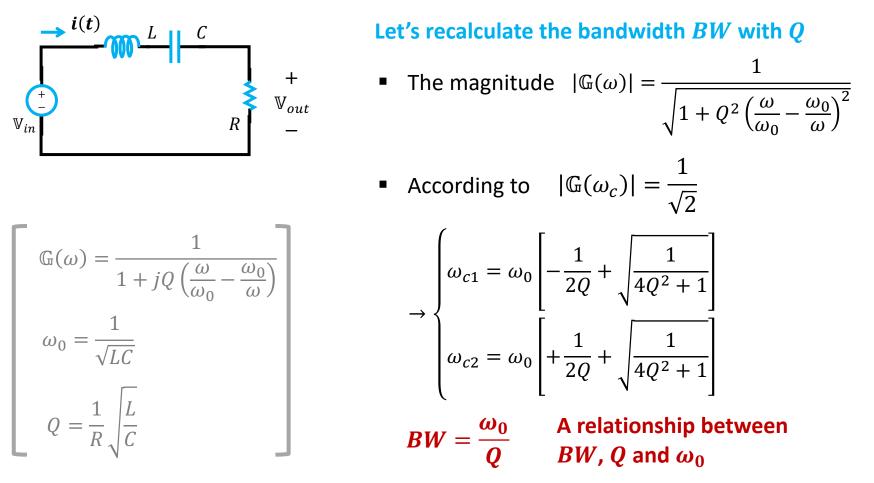
QUESTION: calculate the voltage transfers from input to output based on varying *R*



QUESTION: calculate the voltage transfers from input to output based on varying *R*

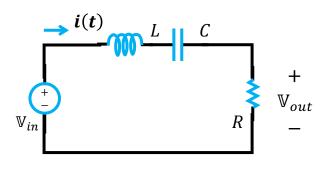


QUESTION: calculate the voltage transfers from input to output based on varying *R*



Milin Zhang, Dept of EE, Tsinghua University

QUESTION: calculate the voltage transfers from input to output based on varying *R*



Let's go back to time domain @ resonant freq ω_0

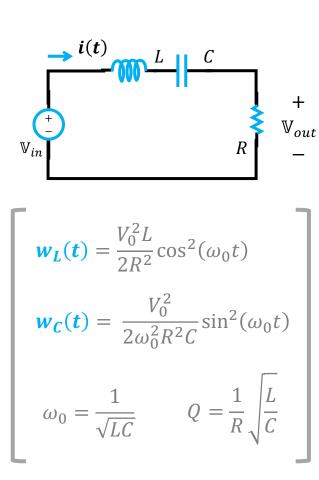
• Assume
$$v_{in}(t) = V_0 \cos(\omega_0 t)$$

• The equivalent impedance
$$@\omega_0, Z_{eq} = R$$

- According to KVL, the current of the circuit $i(t) = \frac{V_0}{R} \cos(\omega_0 t)$
- Energy stored in *L*, $w_L(t) = \frac{1}{2}Li^2(t) = \frac{V_0^2L}{2R^2}\cos^2(\omega_0 t)$

• Energy stored in *C*,
$$w_C(t) = \frac{1}{2}Cv_C^2(t) = \frac{1}{2}C\left(\frac{1}{C}\int idt\right)^2 = \frac{V_0^2}{2\omega_0^2 R^2 C}\sin^2(\omega_0 t)$$

QUESTION: calculate the voltage transfers from input to output based on varying *R*



Let's go back to time domain @ resonant freq ω_0

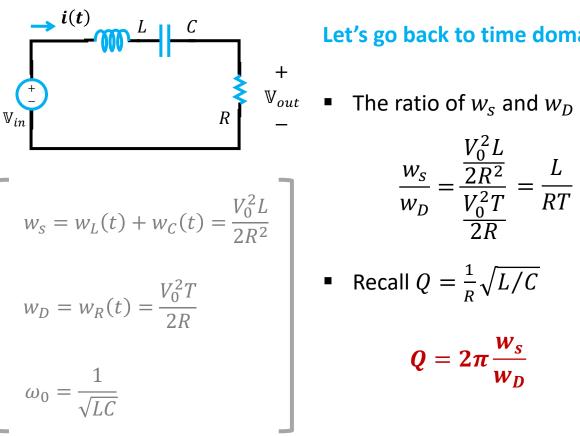
+ \mathbb{V}_{out} • Total stored energy

$$w_s = w_L(t) + w_C(t) = \frac{V_0^2 L}{2R^2}$$

Total dissipated energy per cycle

$$w_D = \int_0^T i^2(t) R dt = \frac{V_0^2 T}{2R}$$

QUESTION: calculate the voltage transfers from input to output based on varying R



Let's go back to time domain @ resonant freq ω_0

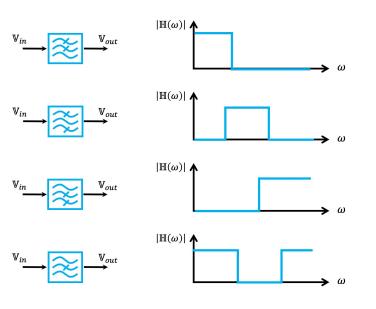
$$\frac{w_s}{w_D} = \frac{\frac{V_0^2 L}{2R^2}}{\frac{V_0^2 T}{2R}} = \frac{L}{RT} = \frac{\omega_0 L}{2\pi R}$$
Recall $Q = \frac{1}{R} \sqrt{L/C}$

$$Q = 2\pi \frac{w_s}{w_D}$$
Q is the rat stored to end

io of energy nergy lost at the resonant frequency

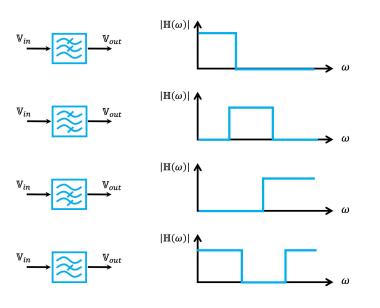
Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor $Q = 2\pi \frac{w_s}{w_p}$



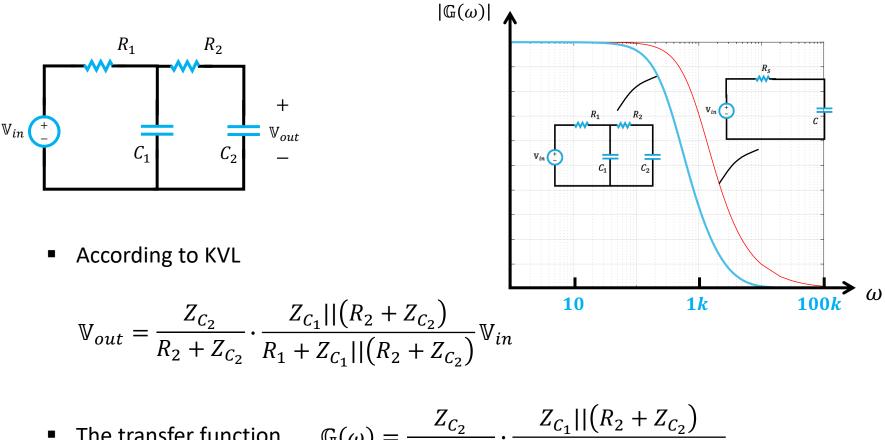
Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor $Q = 2\pi \frac{W_s}{W_p}$
 - Cascading filters



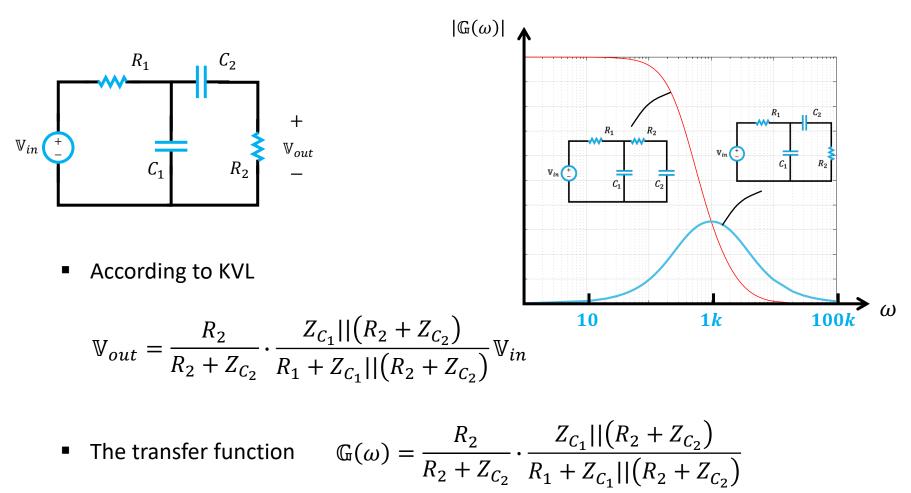
Example 5: Cascading filters

QUESTION: find the transfer function of the circuit below



• The transfer function $\mathbb{G}(\omega) = \frac{Z_{C_2}}{R_2 + Z_{C_2}} \cdot \frac{Z_{C_1}||(R_2 + Z_{C_2})}{R_1 + Z_{C_1}||(R_2 + Z_{C_2})}$

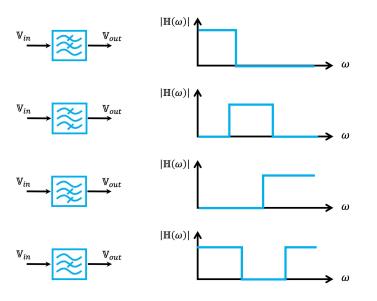
QUESTION: find the transfer function of the circuit below



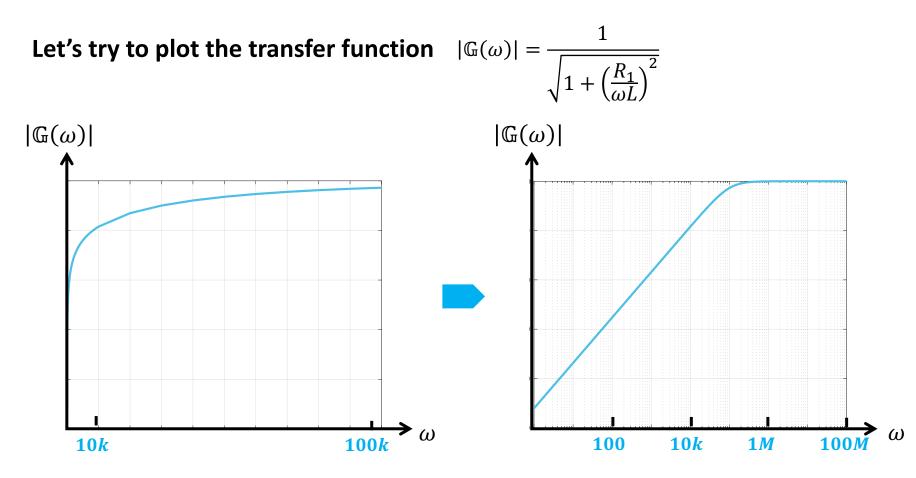
Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor $Q = 2\pi \frac{w_s}{w_p}$
 - Cascading filters

Bode plot



Recall: logarithmic scale

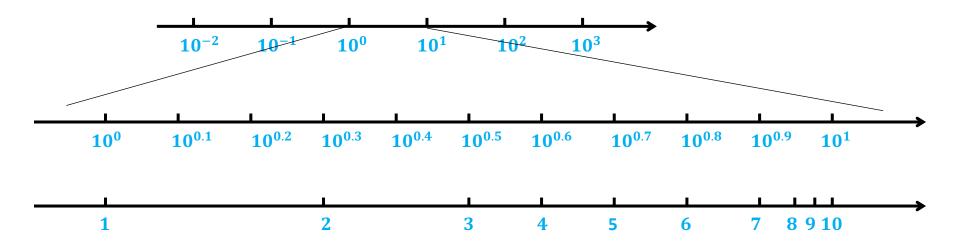


While plot the transfer function, the x-axis is usually plot in logarithmic scale

Logarithms v.s. Decibels

Linear scale

Powers of ten scale



Logarithms scale is a non-linear scale

Recall: Power in dB

Decibel (dB) is a unitless measurement for expressing ratios

• For power
$$10log_{10}\frac{P}{1W} \rightarrow dB$$

 $10log_{10}\frac{P}{1mW} \rightarrow dBm$
• For voltage $20log_{10}\frac{v}{1V} \rightarrow dBV$
 $20log_{10}\frac{v}{1mV} \rightarrow dBmV$

Power gain in dB

Define power gain as

$$\frac{P_{out}}{P_{in}}$$

Power gain in dB

$$10\log_{10}\frac{P_{out}}{P_{in}}$$

Special cases

If
$$P_{out} = P_{in}$$
 Power Gain $(dB) = 10 \log_{10} \frac{P_{out}}{P_{in}} = 0 dB$

If
$$P_{out} = \frac{1}{2}P_{in}$$
 Power Gain $(dB) = 10log_{10}\frac{P_{out}}{P_{in}} = -3dB$

$$f P_{out} = 2P_{in}$$
 Power Gain $(dB) = 10log_{10} \frac{P_{out}}{P_{in}} = 3dB$

Voltage gain in dB

Power Gain (dB) =
$$10\log_{10}\frac{P_{out}}{P_{in}}$$

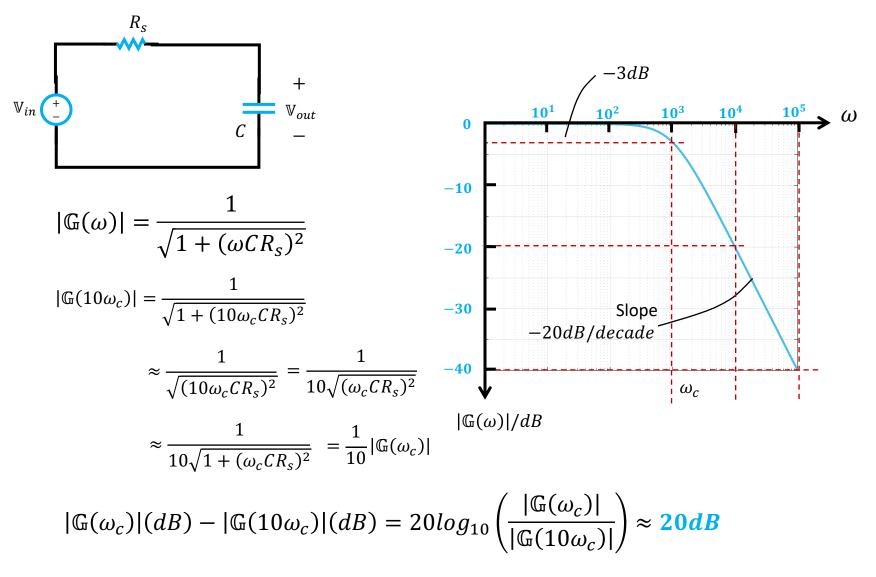
$$= 10 \log_{10} \left(\frac{V_o^2}{R_o} / \frac{V_i^2}{R_i} \right)$$

$$= 10 \log_{10} \left(\frac{V_o}{V_i}\right)^2 + 10 \log_{10} \left(\frac{R_i}{R_o}\right)$$
$$\downarrow \quad \text{If } R_i = R_o$$
$$= 20 \log_{10} \left(\frac{V_o}{V_i}\right) + 10 \log_{10}(1)$$

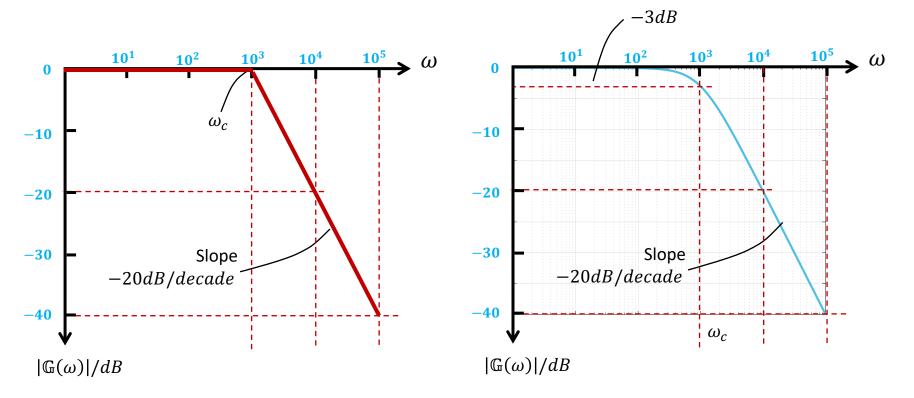
If $R_i = R_o$

Power Gain (dB) =
$$10\log_{10}\frac{P_{out}}{P_{in}} = 20\log_{10}\left(\frac{V_o}{V_i}\right) = Voltage Gain$$

Transfer function with logs & dB plot



BODE PLOT generates a "straight-line" approximation of the transfer function



The slope of the dB plot is called the "roll-off" rate The amplitude of the output signal is attenuated faster with higher roll-off

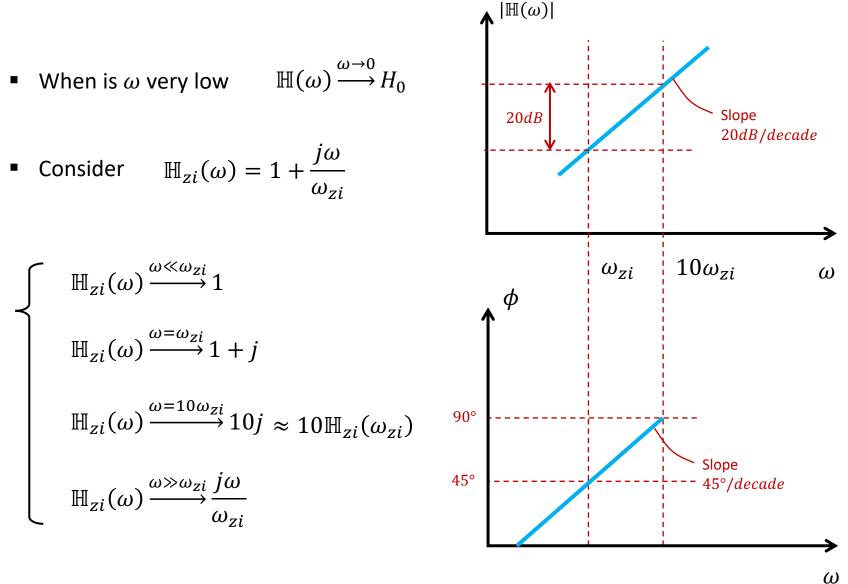
Transfer function in general form

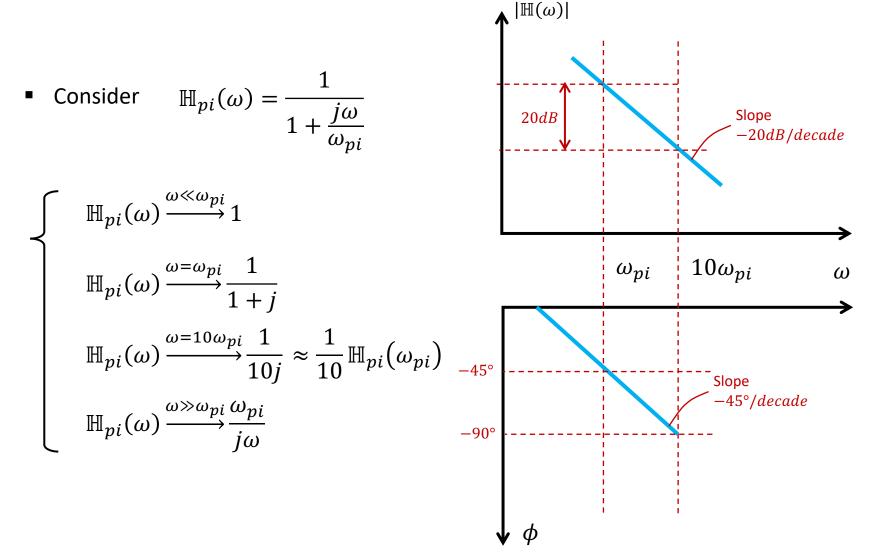
$$\mathbb{H}(\omega) = H_0 \frac{\left(1 + \frac{j\omega}{\omega_{z1}}\right) \left(1 + \frac{j\omega}{\omega_{z2}}\right) \cdots \left(1 + \frac{j\omega}{\omega_{zm}}\right)}{\left(1 + \frac{j\omega}{\omega_{p1}}\right) \left(1 + \frac{j\omega}{\omega_{p2}}\right) \cdots \left(1 + \frac{j\omega}{\omega_{pn}}\right)}$$

$$\begin{split} & \omega_{z1} < \omega_{z2} < \cdots < \omega_{zm} \\ & \omega_{p1} < \omega_{p2} < \cdots < \omega_{pn} \end{split}$$

$$= H_0 \frac{A_{z1} \angle \phi_{z1} \cdot A_{z2} \angle \phi_{z2} \cdots A_{zm} \angle \phi_{zm}}{A_{p1} \angle \phi_{p1} \cdot A_{p2} \angle \phi_{p2} \cdots A_{pn} \angle \phi_{pn}}$$

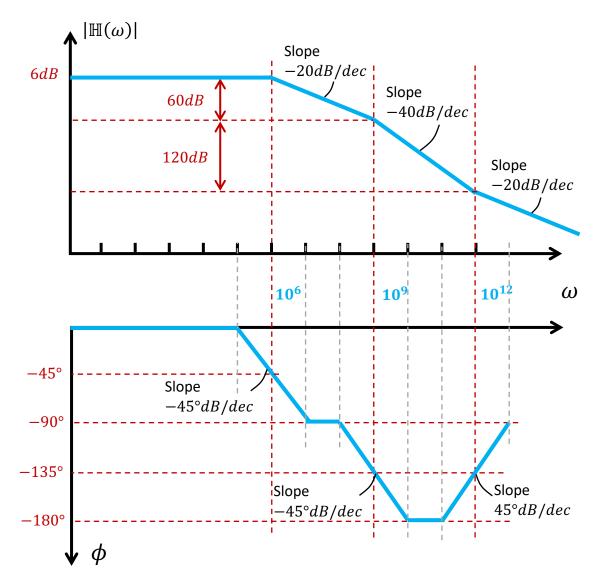
$$\begin{cases} |\mathbb{H}(\omega)| = |H_0| \frac{A_{z1} \cdot A_{z2} \cdots A_{zm}}{A_{p1} \cdot A_{p2} \cdots A_{pn}} \\ \\ \angle \mathbb{H}(\omega) = \phi_{z1} + \phi_{z2} + \cdots + \phi_{zm} - \phi_{p1} - \phi_{p2} - \cdots - \phi_{pn} \end{cases} \end{cases}$$





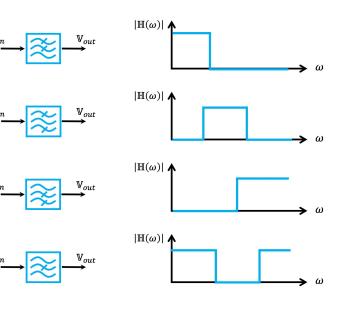
$$\mathbb{H}(\omega) = 2 \frac{\left(1 + \frac{j\omega}{10^{12}}\right)}{\left(1 + \frac{j\omega}{10^6}\right)\left(1 + \frac{j\omega}{10^9}\right)}$$

 $|\mathbb{H}(\omega=0)|=20log_{10}2=6dB$



Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor $Q = 2\pi \frac{w_s}{w_p}$
 - Cascading filters
- Bode plot
- Circuit element models in s-domain



The Laplace transform

YOU WILL LEARN IT LATER IN SIGNAL & SYSTEM

The Laplace transform of a function is defined as

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$$
 where $s = \sigma + j\omega$

The inverse Laplace transform is defined as

$$\mathcal{L}^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \int_{\sigma_1 - j\infty}^{\sigma_1 + j\infty} F(s) e^{-st} dt$$

The useful Laplace transform pairs

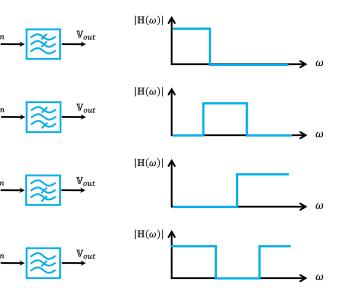
$$\delta(t) \leftrightarrow 1$$
 $u(t) \leftrightarrow \frac{1}{s}$ $e^{-at} \leftrightarrow \frac{1}{s+a}$ $t \leftrightarrow \frac{1}{s^2}$

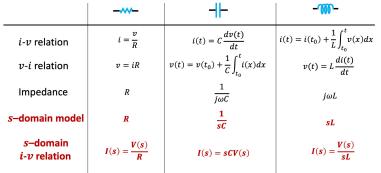
Circuit element models

		- -	
<i>i-v</i> characteristic	$i = \frac{v}{R}$	$i(t) = C \frac{d\nu(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
<i>v-i</i> characteristic	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	$\frac{1}{j\omega C}$	jωL
<i>s</i> –domain model	R	$\frac{1}{sC}$	sL
<i>s</i> –domain <i>i-v</i> characteristic	$I(s) = \frac{V(s)}{R}$	I(s) = sCV(s)	$I(s) = \frac{V(s)}{sL}$

Outlines

- Transfer function
- Filters
 - Common ideal filters
 - Actual filters
 - High pass filters / low pass filters
 - Band pass filters / band stop filters
 - Quality factor $Q = 2\pi \frac{W_s}{W_s}$
 - Cascading filters
- Bode plot
- Circuit element models in s-domain





Reading tasks & learning goals

- Reading tasks
 - Basic Engineering Circuit Analysis, 10th edition
 - Chapter 12.1-12.4, 12.5 before active filters
- Learning goals
 - Understand the variable-frequency performance of R, L and C
 - Be able to sketch and to understand a Bode plot
 - Know how to analyze series and parallel resonant circuits
 - Understand the concept of magnitude/frequency/Quality factor
 - Understand the characteristics of basic filters
 - Understand s-domain representations of basic circuit elements