

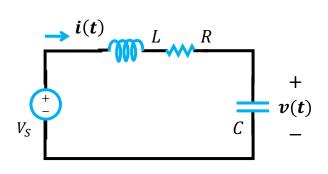
AC Steady-State Analysis

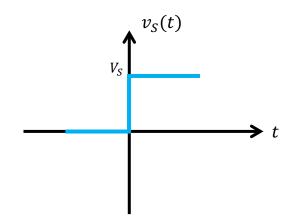
Milin Zhang Dept of EE, Tsinghua University

Recall

- How to analyze 1st/2nd order circuit in time domain?
 - Write the circuit equation according to KVL/KCL
 - Solve the differential equation
 - Step 1a: Find the particular integral solution $v_p(t)$
 - Step 1b: substitute $v_p(t)$ to the equation to solve the unknown
 - Step 2a: find the homogeneous equation
 - Step 2b: find the complementary solution $v_c(t)$ to the homogeneous equation
 - Step 3a: find the initial voltage/current values
 - Step 3b: substitute the initials to the full solution to solve the unknown

Recall: Particular integral solution to step forcing func.





Circuit equations according to KVL/KCL

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{V_S}{LC}$$

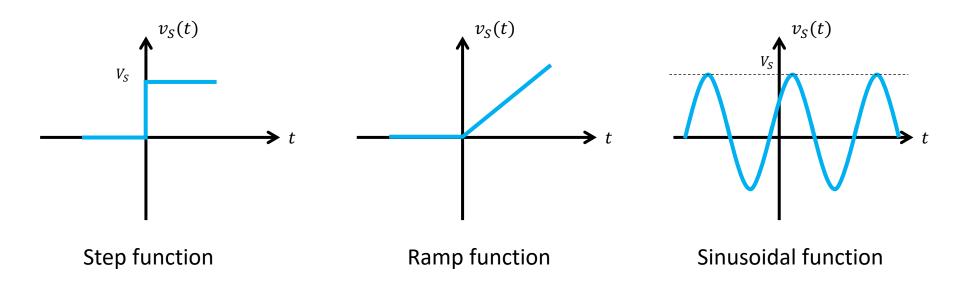
Particular integral solution $v_p(t) = V_S$

$$v_p(t) = V_S$$

Outlines

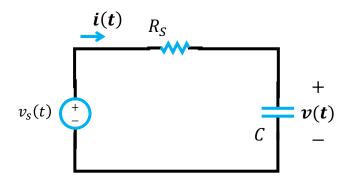
Response to different forcing function

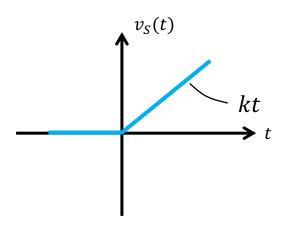
More forcing functions



Assume
$$x_p(t) = K$$

QUESTION: Assume there is no charge on the capacitor C at $t = -\infty$. Find the voltage response to the ramping forcing function.



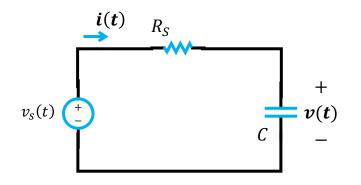


According to KVL

$$i_R R + v(t) = v_S(t)$$

$$\Rightarrow \quad \frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}kt$$

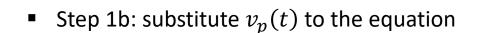
QUESTION: Assume there is no charge on the capacitor C at $t = -\infty$. Find the voltage response to the ramping forcing function.



$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}kt$$

lacktriangle Step 1a: find the particular integral solution $v_p(t)$

Assume
$$v_p(t) = pt + q$$



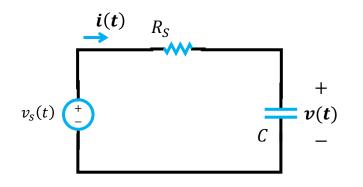
$$kt \longrightarrow t$$

$$p + \frac{pt + q}{RC} = \frac{1}{RC}kt$$

$$\Rightarrow pt + (RCp + q) = kt$$

$$\Rightarrow p = k, q = -RCk$$

QUESTION: Assume there is no charge on the capacitor C at $t = -\infty$. Find the voltage response to the ramping forcing function.



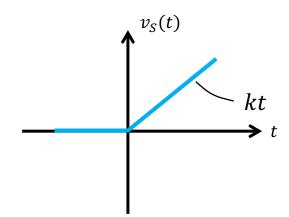
$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}kt$$

• Step 1: find the particular integral solution $v_p(t)$

$$v_p(t) = kt - RCq$$

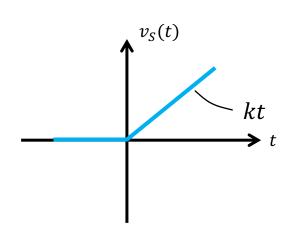
• Step 2: find the complementary solution $v_c(t)$

$$v_c(t) = K_2 e^{-a_1 t}$$
 where $a_1 = \frac{1}{RC}$



QUESTION: Assume there is no charge on the capacitor C at $t=-\infty$. Find the voltage response to the ramping forcing function.





$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}kt$$

Full solution

$$v(t) = kt - RCk + K_2 e^{-a_1 t}$$
 where $a_1 = \frac{1}{RC}$

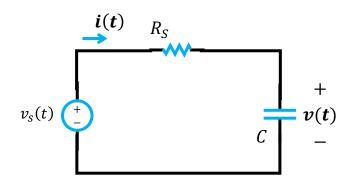
• Step 3a: find the value of v(t) at one instant of time

$$v(0) = 0$$

• Step 3b: substitute v(0) = 0 to v(t)

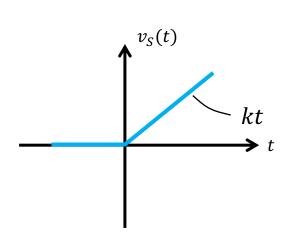
$$\rightarrow$$
 $K_2 = RCk$

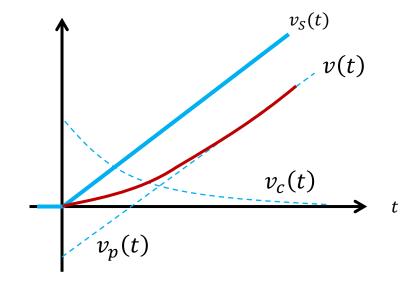
QUESTION: Assume there is no charge on the capacitor C at $t = -\infty$. Find the voltage response to the ramping forcing function.



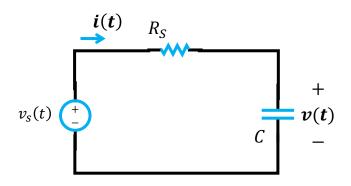
$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}kt$$

Solution
$$v(t) = kt - RCk + RCke^{-\frac{1}{RC}}$$

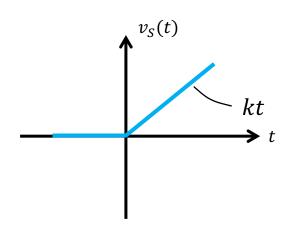


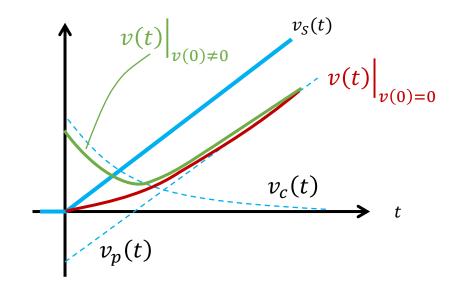


QUESTION: Assume there is no charge on the capacitor C at $t = -\infty$. Find the voltage response to the ramping forcing function.

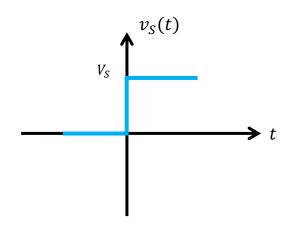


What if $v(0) \neq 0$?



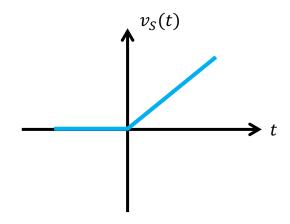


More forcing functions



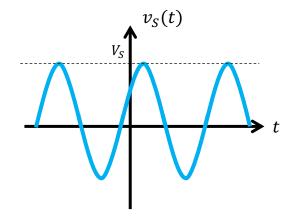
Step function

Assume $x_p(t) = K$



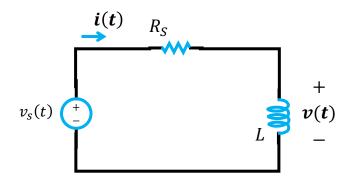
Ramp function

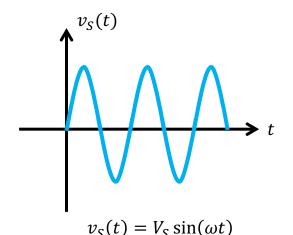
Assume
$$x_p(t) = pt + q$$



Sinusoidal function

QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to the sinusoidal forcing function.



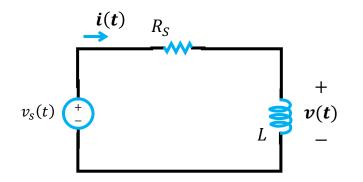


According to KVL

$$i(t)R + v_L(t) = v_S(t)$$

$$\Rightarrow \quad \frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to the sinusoidal forcing function.



$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

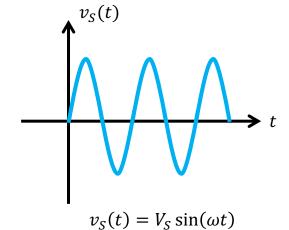
+ at v(t)- Step 1a: find the particular integral solution $i_p(t)$

Assume
$$i_p(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t)$$

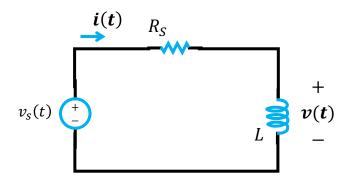
• Step 1b: substitute $i_p(t)$ to the equation

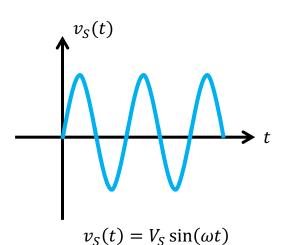
$$V_S \sin(\omega t) = K_1 R \cos(\omega t) + K_2 R \sin(\omega t) + L\omega K_2 \cos(\omega t) - L\omega K_1 \sin(\omega t)$$

$$\Rightarrow \begin{cases}
V_S = K_2 R - L \omega K_1 \\
0 = K_1 R + L \omega K_2
\end{cases}
\Rightarrow \begin{cases}
K_1 = V_S \frac{-\omega L}{R^2 + \omega^2 L^2} \\
K_2 = V_S \frac{R}{R^2 + \omega^2 L^2}
\end{cases}$$



QUESTION: Assume there is no charge on the inductor L at $t = -\infty$. Find the voltage response to the sinusoidal forcing function.





$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

+ $a\iota$ ι v(t)- Step 1: find the particular integral solution $i_p(t)$

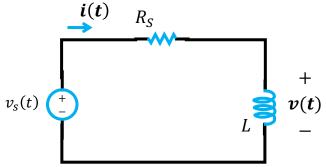
$$i_p(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t)$$

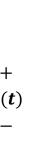
where
$$\begin{cases} K_1 = V_S \frac{-\omega L}{R^2 + \omega^2 L^2} \\ K_2 = V_S \frac{R}{R^2 + \omega^2 L^2} \end{cases}$$

Step 2: find the complementary solution $i_c(t)$

$$i_c(t) = K_3 e^{-\frac{R}{L}t}$$

QUESTION: Assume there is no charge on the inductor L at $t = -\infty$. Find the voltage response to the sinusoidal forcing function.





$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

Full solution

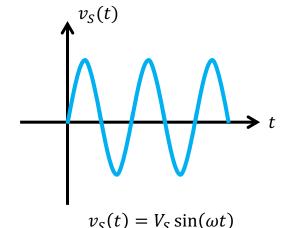
$$i(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t) + K_3 e^{-\frac{R}{L}t}$$

Step 3a: find the value of i(t) at one instant of time

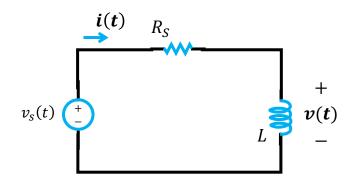
$$i(0) = 0$$

Step 3b: substitute i(0) = 0 to i(t)

$$\Rightarrow K_3 = \frac{\omega L V_S}{R^2 + \omega^2 L^2}$$

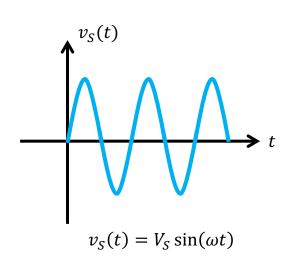


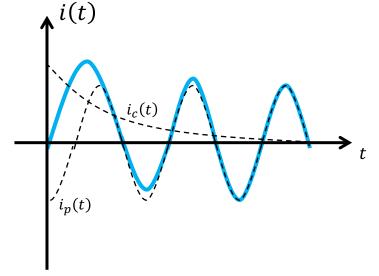
QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to the sinusoidal forcing function.



$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

Solution $i(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t) + K_3 e^{-\frac{R}{L}t}$

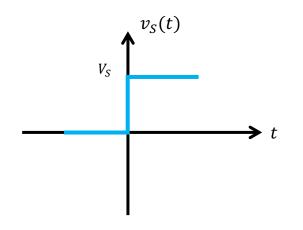




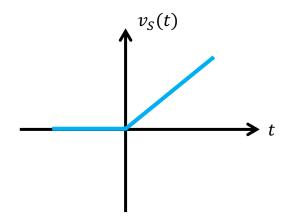
where

$$\begin{cases} K_1 = V_S \frac{-\omega L}{R^2 + \omega^2 L^2} \\ K_2 = V_S \frac{R}{R^2 + \omega^2 L^2} \\ K_3 = V_S \frac{\omega L}{R^2 + \omega^2 L^2} \end{cases}$$

More forcing functions

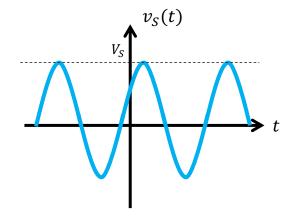


Assume $x_p(t) = K$



Ramp function

Assume
$$x_p(t) = pt + q$$



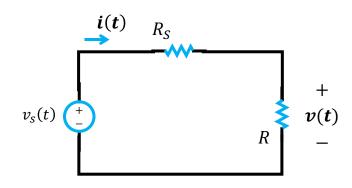
Sinusoidal function

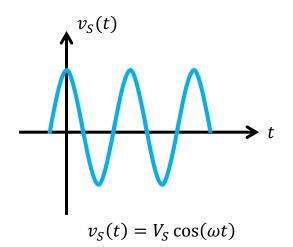
Assume
$$x_p(t) = K_1 \sin(\omega t) + K_2 \cos(\omega t)$$

Outlines

- Response to different forcing function
 - Ramping forcing function
 - Sinusoidal forcing function
- Complex forcing function

Resistors with a sin. forcing func.





With
$$v_{S1}(t) = V_S \cos(\omega t)$$

According to KVL

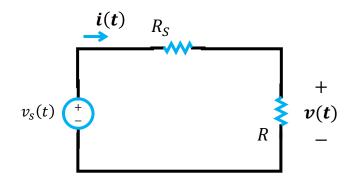
$$v(t) = \frac{R}{R + R_S} v_{s1}(t) = \frac{RV_S}{R + R_S} \cos(\omega t)$$

With
$$v_{S2}(t) = jV_S \sin(\omega t)$$

According to KVL

$$v(t) = \frac{R}{R + R_S} v_{S2}(t) = j \frac{RV_S}{R + R_S} \sin(\omega t)$$

Resistors with a sin. forcing func.

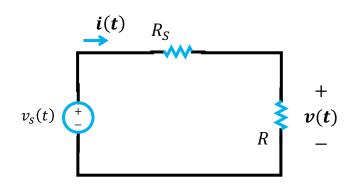


What if $v_S(t) = V_S \cos(\omega t) + jV_S \sin(\omega t)$?

According to KVL

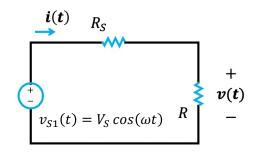
$$v(t) = \frac{R}{R + R_S} v_S(t)$$
$$= \frac{R}{R + R_S} (V_S \cos(\omega t) + jV_S \sin(\omega t))$$

Resistors with a sin. forcing func.

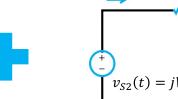


What if $v_S(t) = V_S \cos(\omega t) + jV_S \sin(\omega t)$?

Solution:
$$v(t) = \frac{R}{R + R_S} (V_S \cos(\omega t) + jV_S \sin(\omega t))$$



$$v(t) = \frac{RV_S}{R + R_S} \cos(\omega t)$$



$$v(t) = j \frac{RV_S}{R + R_S} \sin(\omega t)$$

Recall: Euler's eq. & Complex num.

Phasor representation: $A cos(\omega t + \theta) = |z| \angle \theta$

Euler's equation: $e^{j\omega t} = cos(\omega t) + j sin(\omega t)$

• Real part
$$\Re [e^{j\omega t}] = \cos(\omega t)$$

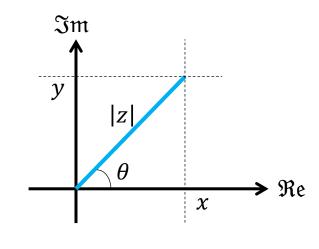
• imaginary part
$$\mathfrak{Im}[e^{j\omega t}] = \sin(\omega t)$$

Complex numbers

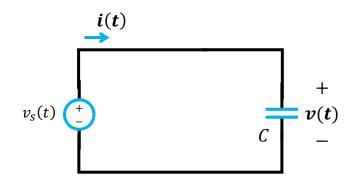
• Rectangular coordinates
$$z = x + jy$$

• Polar coordinates
$$z = |z|e^{j\theta}$$

Where
$$\begin{cases} |z| = \sqrt{x^2 + y^2} \\ \theta = tan^{-1} \left(\frac{y}{x}\right) \end{cases}$$



Complex forcing function



If a complex function is applied to the capacitor

$$v_S(t) = V_S e^{j\omega t}$$

• According to the i-v relationship of capacitor

$$i(t) = C \frac{dv(t)}{dt}$$
$$= C \frac{d}{dt} (V_S e^{j\omega t})$$
$$= j\omega C V_S e^{j\omega t}$$

Complex forcing function

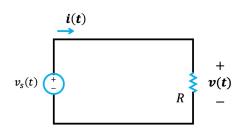
If a complex function is applied to the inductor

$$i_S(t) = I_S e^{j\omega t}$$

• According to the i-v relationship of inductor

$$v(t) = L \frac{di(t)}{dt}$$
$$= L \frac{d}{dt} (I_S e^{j\omega t})$$
$$= j\omega L I_S e^{j\omega t}$$

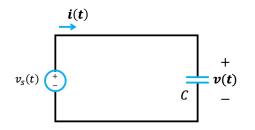
Complex forcing func. on passive dev.



$$v(t) = V_S e^{j\omega t}$$

$$v(t) = V_S e^{j\omega t}$$
$$i(t) = \frac{V_S}{R} e^{j\omega t}$$

$$\frac{v(t)}{i(t)} = R$$



$$v(t) = V_{\rm c}e^{j\omega t}$$

$$v(t) = V_S e^{j\omega t}$$
$$i(t) = j\omega C V_S e^{j\omega t}$$

$$\frac{v(t)}{i(t)} = \frac{1}{j\omega C}$$

$$i(t) = I_S e^{j\omega t}$$

$$i(t) = I_S e^{j\omega t}$$
$$v(t) = j\omega L I_S e^{j\omega t}$$

$$\frac{v(t)}{i(t)} = j\omega L$$

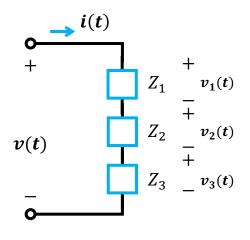
Impedance

Impedance, Z,

is defined as the ratio of the phasor voltage to the phasor current

			
<i>i-v</i> relation	$i = \frac{v}{R}$	$i(t) = C \frac{dv(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
<i>v-i</i> relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	$\frac{1}{j\omega C}$	jωL

Series connection





According to KVL

$$v(t) = v_1(t) + v_2(t) + v_3(t)$$

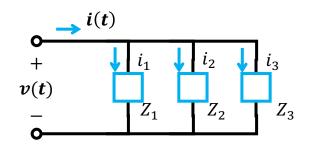
According i-v relationship

$$v(t) = i(t)Z_1 + i(t)Z_2 + i(t)Z_3$$
$$= i(t)(Z_1 + Z_2 + Z_3)$$

For the equivalent circuit

$$v(t) = i(t)Z_{eq}$$

Parallel connection



According i-v relationship

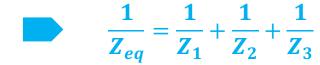
$$v(t) = i_1(t)Z_1 = i_2(t)Z_2 = i_3(t)Z_3$$

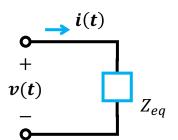
$$v(t) = i(t)Z_{eq}$$

According to KVL

$$v(t) = Z_{eq}(i_1(t) + i_2(t) + i_3(t))$$

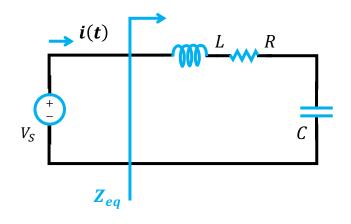
$$= Z_{eq} \left(\frac{v(t)}{Z_1} + \frac{v(t)}{Z_2} + \frac{v(t)}{Z_3} \right)$$





Capacitive & Inductive

QUESTION: Find the value of the equivalent impedance, Z_{eq}

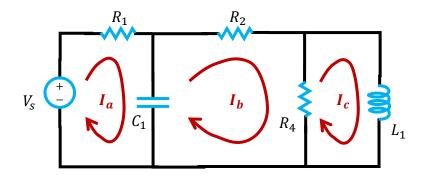


$$Z_{eq} = R + j\omega L + \frac{1}{j\omega C} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

- if $\omega L \frac{1}{\omega C} > 0$ the reactance is inductive
- if $\omega L \frac{1}{\omega C} < 0$ the reactance is capacitive

Example 4: mesh-current with imp.

QUESTION: Find the output current of the voltage source

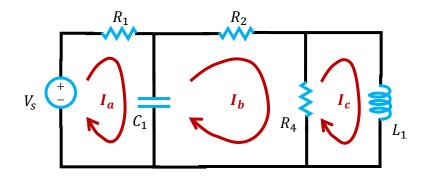


According to KVL

$$\begin{cases}
-V_S + I_a R_1 + (I_a - I_b) \frac{1}{j\omega C} = 0 \\
(I_b - I_a) \frac{1}{j\omega C} + I_b R_2 + (I_b - I_c) R_4 = 0 \\
(I_c - I_b) R_4 + j\omega L I_c = 0
\end{cases}$$

Example 4: mesh-current with imp.

QUESTION: Find the output current of the voltage source



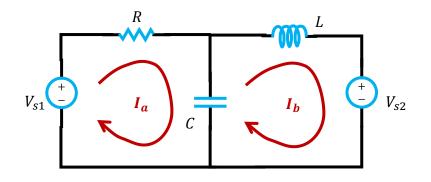
According to KVL

3 equations in 3 unknowns

$$\begin{cases} I_a \left(R_1 + \frac{1}{j\omega C} \right) - I_b \frac{1}{j\omega C} = V_S \\ -I_a \frac{1}{j\omega C} + I_b \left(\frac{1}{j\omega C} + R_2 + R_4 \right) - I_c R_4 = 0 \\ -I_b R_4 + I_c (R_4 + j\omega L) = 0 \end{cases}$$

Example 5: Superposition with imp.

QUESTION: Find the voltage on the capacitor C



According to KVL

$$\begin{cases} -V_{s1} + RI_a + \frac{1}{j\omega C}(I_a - I_b) = 0\\ \frac{1}{j\omega C}(I_b - I_a) + j\omega LI_b - V_{s2} = 0 \end{cases}$$

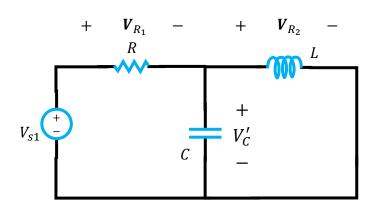
$$I_{a} = \frac{\frac{1}{j\omega C}V_{s1} + \left(R + \frac{1}{j\omega C}\right)V_{s2}}{j\omega LR + \frac{R}{j\omega C} + \frac{L}{C}}$$

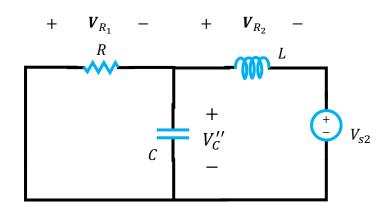
$$I_{b} = \frac{j\left(\omega L - \frac{1}{\omega C}\right)V_{s1} + \frac{1}{j\omega C}V_{s2}}{j\omega LR + \frac{R}{j\omega C} + \frac{L}{C}}$$

$$g \text{ to KVL}$$

$$V_C = \frac{1}{j\omega C} (I_a - I_b) = \frac{\frac{L}{C} V_{s1} - \frac{R}{j\omega C} V_{s2}}{j\omega LR + \frac{R}{j\omega C} + \frac{L}{C}}$$

Example 5: Superposition with imp.





According to voltage division

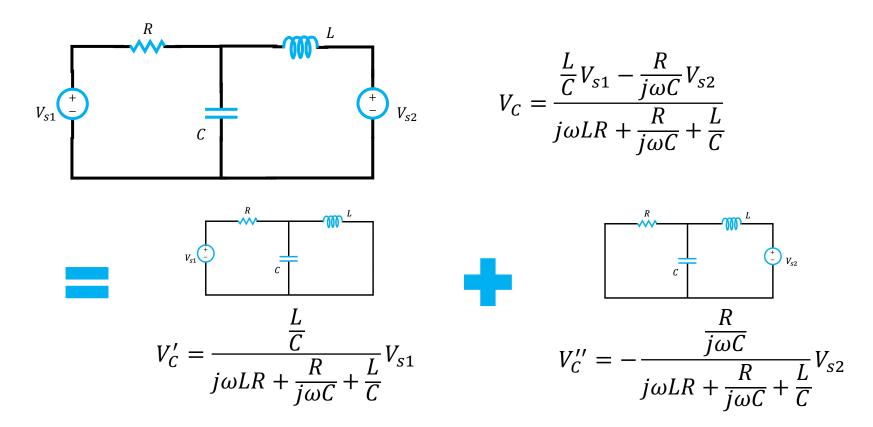
$$V_C' = \frac{j\omega L||\frac{1}{j\omega C}}{R + j\omega L||\frac{1}{j\omega C}}V_{S1}$$
$$= \frac{\frac{L}{C}}{j\omega LR + \frac{R}{j\omega C} + \frac{L}{C}}V_{S1}$$

$$V_C'' = -\frac{R||\frac{1}{j\omega C}|}{j\omega L + R||\frac{1}{j\omega C}|}V_{s2}$$

$$= -\frac{\frac{R}{j\omega C}}{j\omega LR + \frac{R}{j\omega C} + \frac{L}{C}}V_{s2}$$

Example 5: Superposition with imp.

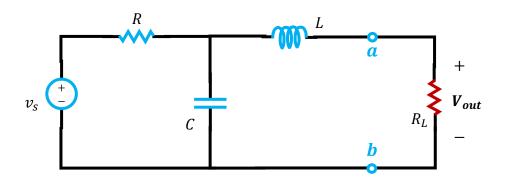
QUESTION: Find the voltage on the capacitor *C*



The superposition property works for ALL LINEAR circuit

Example 6: Thévenin equivalency with imp.

QUESTION: Find the Thévenin equivalent circuit of the network at the terminals a & b



Thévenin's theorem

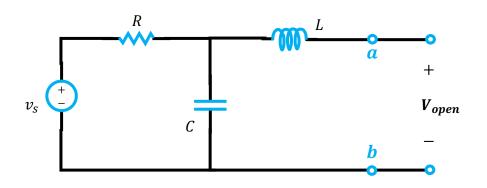
<u>LINEAR</u> two-terminal circuit can be replaced by an equivalent circuit composed of a <u>voltage source</u> and a <u>series impedance</u>

Norton's theorem

LINEAR two-terminal circuit can be replaced by an equivalent circuit composed of a <u>current source</u> and a <u>parallel impedance</u>

Example 6: Thévenin equivalency with imp.

QUESTION: Find the Thévenin equivalent circuit of the network at the terminals a & b



- Step 1: remove the load
- Step 2: find V_{open}

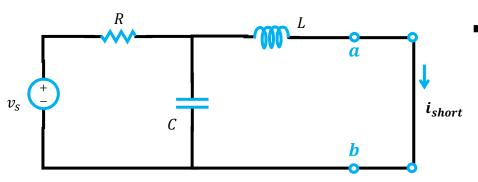
According to voltage division

$$V_{open} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} v_s = \frac{1}{1 + j\omega CR} v_s$$

$$V_{TH}$$

Example 6: Thévenin equivalency with imp.

QUESTION: Find the Thévenin equivalent circuit of the network at the terminals a & b



According to Ohm's law

$$i_{open} = \frac{v_s}{R + \frac{1}{j\omega C}||j\omega L|} \cdot \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + j\omega L}$$

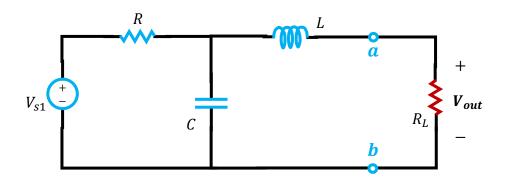
- Step 1: remove the load
- Step 2: find V_{open}
- Step 3: find i_{short}

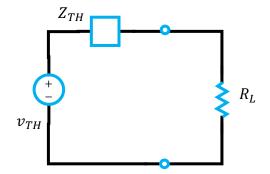
$$= \frac{v_s}{R + j\omega L - \omega^2 LC}$$

$$\iota_N$$

Example 6: Thévenin equivalency with imp.

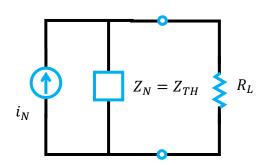
QUESTION: Find the Thévenin equivalent circuit of the network at the terminals a & b



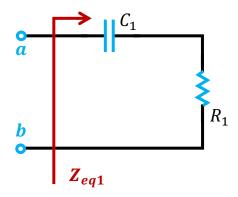


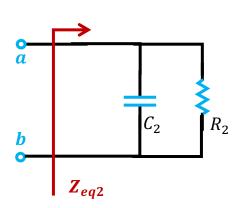
- Step 1: remove the load
- Step 2: find $V_{open} = v_{TH}$
- Step 3: find $i_{short} = i_N$
- Step 4: find Z_{TH}

$$Z_{TH} = \frac{v_{TH}}{i_N} = \frac{R + j\omega L - \omega^2 LC}{1 + j\omega CR}$$



QUESTION: Find the value of and , which makes the two circuit equivalent to each other





The equivalent impedance of the upper circuit

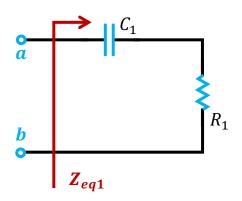
$$Z_{eq1} = R_1 + \frac{1}{j\omega C_1}$$

The equivalent admittance of the lower circuit

$$G_{eq2} = \frac{1}{R_2} + j\omega C_2$$

$$Z_{eq1} = \frac{1}{G_{eq2}} \qquad \text{when} \quad \begin{cases} \Re [Z_{eq1}] = \Re \left[\frac{1}{G_{eq2}}\right] \\ \Im [Z_{eq1}] = \Im \left[\frac{1}{G_{eq2}}\right] \end{cases}$$

QUESTION: Find the value of R_2 and C_2 , which makes the two circuit equivalent to each other



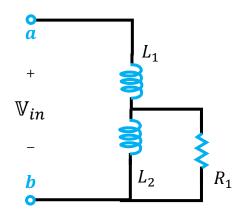
$$C_2$$
 C_2
 C_2
 C_2
 C_2

$$G_{eq1} = \frac{1}{R_1 + \frac{1}{j\omega C_1}} = \frac{R_1 + j\frac{1}{\omega C_1}}{R_1^2 + \omega^2 C_1^2}$$
$$= \frac{R_1\omega^2 C_1^2}{R_1^2 + \omega^2 C_1^2} + j\frac{\omega C_1}{R_1^2 + \omega^2 C_1^2}$$

$$G_{eq2} = \frac{1}{R_2} + j\omega C_2$$

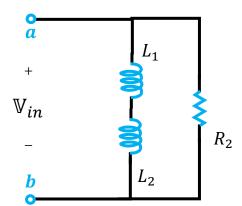
$$\begin{cases} R_2 = \frac{R_1^2 + \omega^2 C_1^2}{R_1 \omega^2 C_1^2} \\ C_2 = \frac{C_1}{R_1^2 + \omega^2 C_1^2} \end{cases}$$

QUESTION: Find the value of R_2 , which makes the power dissipated by R_2 is approximately equivalent to the dissipated by R_1 , when the load resistance R_1 is very high



$$\mathbb{V}_{R_1} = \mathbb{V}_{in} \frac{R_1 || Z_{L_2}}{Z_{L_1} + R_1 || Z_{L_2}}$$

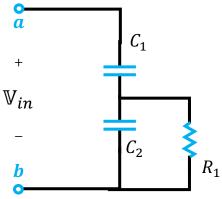
$$\xrightarrow{R_1 \gg \omega L_2} \mathbb{V}_{in} \frac{Z_{L_2}}{Z_{L_1} + Z_{L_2}} = \mathbb{V}_{in} \frac{L_2}{L_1 + L_2}$$

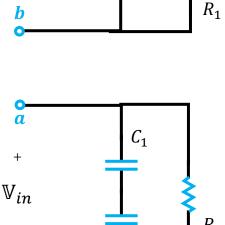


• the power dissipated by R_1 and R_2

$$\begin{cases} P_{R_1} = \frac{\mathbb{V}_{R_1}^2}{R_1} \\ P_{R_2} = \frac{\mathbb{V}_{in}^2}{R_2} \end{cases} \qquad R_2 = \frac{R_1}{p^2}$$
 where $p = \frac{L_2}{L_1 + L_2}$

QUESTION: Find the value of R_2 , which makes the power dissipated by R_2 is approximately equivalent to the dissipated by R_1 , when the load resistance R_1 is very high





According to KVL

$$\mathbb{V}_{R_{1}} = \mathbb{V}_{in} \frac{R_{1}||Z_{C_{2}}}{Z_{C_{1}} + R_{1}||Z_{C_{2}}}$$

$$\xrightarrow{R_{1} \gg \frac{1}{\omega C_{2}}} \mathbb{V}_{in} \frac{Z_{C_{2}}}{Z_{C_{1}} + Z_{C_{2}}} = \mathbb{V}_{in} \frac{C_{1}}{C_{1} + C_{2}}$$

• the power dissipated by R_1 and R_2

$$\begin{cases} P_{R_1} = \frac{\mathbb{V}_{R_1}^2}{R_1} \\ P_{R_2} = \frac{\mathbb{V}_{in}^2}{R_2} \end{cases} \qquad R_2 = \frac{R_1}{p^2}$$
 where $p = \frac{C_1}{C_1 + C_2}$

Outlines

- Response to different forcing function
 - Ramping forcing function
 - Sinusoidal forcing function
- Complex forcing function
 - Impedance & admittance

<i>i-v</i> relation	$i = \frac{v}{R}$	$i(t) = C \frac{dv(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
v-i relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	$\frac{1}{j\omega C}$	jωL

KVL&KCL / Superposition / Equivalency

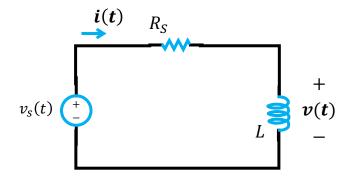
Outlines

- Response to different forcing function
 - Ramping forcing function
 - Sinusoidal forcing function
- Complex forcing function
 - Impedance & admittance

		- -	
i- v relation	$i = \frac{v}{R}$	(5.5)	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
v- i relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	$\frac{1}{j\omega C}$	jωL

- KVL&KCL / Superposition / Equivalency
- AC steady-state analysis

QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to a complex forcing function $\mathbb{V}_S = V_S e^{j\omega t}$.



METHODS 1

According to KVL

$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

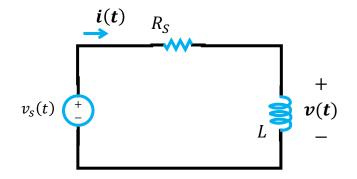
■ The current through *L* must be in the form of

$$i_S(t) = I_S e^{j(\omega t + \varphi)}$$

• Substitute $i_S(t)$ to the equation

$$\frac{d}{dt}(I_S e^{j(\omega t + \varphi)}) + \frac{R}{L}I_S e^{j(\omega t + \varphi)} = \frac{1}{L}V_S e^{j\omega t}$$

QUESTION: Assume there is no charge on the inductor L at $t = -\infty$. Find the voltage response to a complex forcing function $V_S = V_S e^{j\omega t}$.



$$j\omega I_{S}e^{j(\omega t + \varphi)} + \frac{R}{L}I_{S}e^{j(\omega t + \varphi)} = \frac{1}{L}V_{S}e^{j\omega t}$$

$$v(t)$$

$$-$$

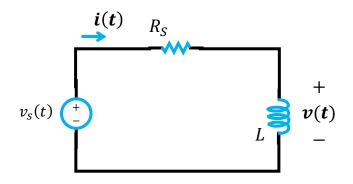
$$j\omega I_{S}e^{j\varphi} + \frac{R}{L}I_{S}e^{j\varphi} = \frac{1}{L}V_{S}$$

$$j\omega I_S e^{j\varphi} + \frac{R}{L} I_S e^{j\varphi} = \frac{1}{L} V_S$$

$$I_{S}e^{j\varphi} = \frac{V_{S}}{R + j\omega L}$$

$$\begin{cases}
I_S = \frac{V_S}{\sqrt{R^2 + \omega^2 L^2}} \\
\varphi = -tan^{-1} \frac{\omega L}{R}
\end{cases}$$

QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to a complex forcing function $\mathbb{V}_S = V_S e^{j\omega t}$.



$$\begin{cases} I_S = \frac{V_S}{\sqrt{R^2 + \omega^2 L^2}} \\ \varphi = -tan^{-1} \frac{\omega L}{R} \end{cases}$$

$$i_{S}(t) = I_{S}e^{j(\omega t + \varphi)}$$

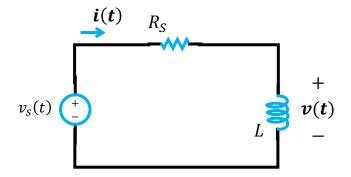
$$= I_{S}\cos(\omega t + \varphi) + jI_{S}\sin(\omega t + \varphi)$$

$$\Re[i_{S}(t)] = I_{S}\cos(\omega t + \varphi)$$

$$= I_{S}(\cos\omega t \cos\varphi + \sin\omega t \sin\varphi)$$

$$= K_{1}\cos(\omega t) + K_{2}\sin(\omega t)$$
where
$$\begin{cases} K_{1} = V_{S}\frac{R}{R^{2} + \omega^{2}L^{2}} \\ K_{2} = V_{S}\frac{-\omega L}{R^{2} + \omega^{2}L^{2}} \end{cases}$$

QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to a complex forcing function $\mathbb{V}_S = V_S e^{j\omega t}$.



Solution from the differential equation

$$i_S(t) = I_S e^{j(\omega t + \varphi)}$$

$$\begin{cases} I_S = \frac{V_S}{\sqrt{R^2 + \omega^2 L^2}} \\ \varphi = -tan^{-1} \frac{\omega L}{R} \end{cases}$$

METHODS 2

- Consider the impedance circuit
- According to KVL

$$\mathbb{V}_{S} = R\mathbb{I}_{S} + j\omega L\mathbb{I}_{S} \qquad \blacksquare \qquad \mathbb{I}_{S} = \frac{\mathbb{V}_{S}}{R + j\omega L}$$

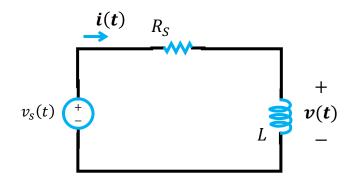
• The real part of \mathbb{I}_S

$$\Re \mathbf{e}[\mathbb{I}_S] = \frac{V_S}{R^2 + \omega^2 L^2} [R\cos(\omega t) + \omega L\sin(\omega t)]$$

$$\Re e[i_S(t)]$$

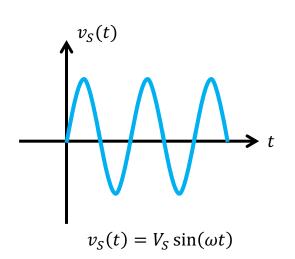
Recall: Sinusoidal forcing function

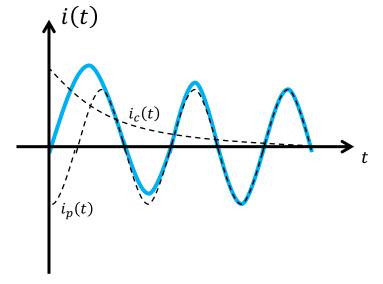
QUESTION: Assume there is no charge on the inductor L at $t=-\infty$. Find the voltage response to the sinusoidal forcing function.



$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = \frac{1}{L}v_S(t)$$

Solution $i(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t) + K_3 e^{-\frac{R}{L}t}$



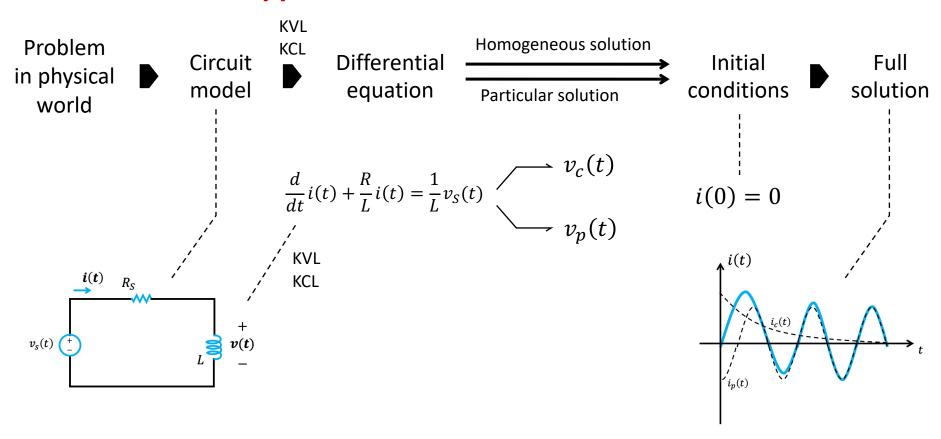


where

$$\begin{cases} K_{1} = V_{S} \frac{-\omega L}{R^{2} + \omega^{2} L^{2}} \\ K_{2} = V_{S} \frac{R}{R^{2} + \omega^{2} L^{2}} \\ K_{3} = V_{S} \frac{\omega L}{R^{2} + \omega^{2} L^{2}} \end{cases}$$

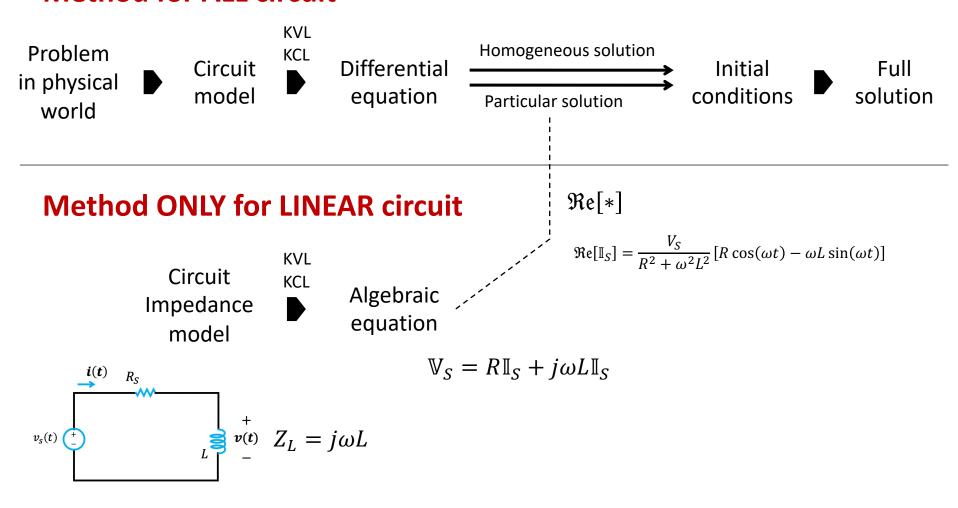
Circuit analysis in TIME domain

Method can be applied to ALL circuit



Circuit analysis in TIME domain

Method for ALL circuit



Outlines

- Response to different forcing function
 - Ramping forcing function
 - Sinusoidal forcing function
- Complex forcing function
 - Impedance & admittance

<i>i-v</i> relation	$i = \frac{v}{R}$	$i(t) = C \frac{dv(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
v- i relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	<u>1</u> <i>jωC</i>	jωL

- KVL&KCL / Superposition / Equivalency
- AC steady-state analysis
 - Impedance circuit analysis for steady-state solution in LINEAR circuit
- Complex Power analysis

Recall: Inst./Avg. power & eff. v/i

Given the voltage
$$v(t) = V_P \cos(\omega t + \varphi_V)$$

Given the current $i(t) = I_P \cos(\omega t + \varphi_I)$

Device

Instantaneous power

$$p(t) = \frac{1}{2}V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2}V_P I_P \cos(2\omega t + \varphi_V + \varphi_I)$$

Average power

$$\bar{P} = \frac{V_P}{\sqrt{2}} \frac{I_P}{\sqrt{2}} \cos(\varphi_V - \varphi_I) = v_{rms} i_{rms} \cos(\varphi_V - \varphi_I)$$

Effective voltage

$$v_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v^2(t) dt} = \frac{V_P}{\sqrt{2}}$$

Effective current

$$i_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} i^2(t) dt} = \frac{I_P}{\sqrt{2}}$$

Complex power

$$\begin{array}{ccc} + & v(t) & - & \\ & & \rightarrow & i(t) \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline \end{array}$$

Given
$$v(t) = V_s \cos(\omega t + \varphi_V)$$
 $\rightarrow V_s \angle \varphi_V$ $\rightarrow \mathbb{V} = V_s e^{j\varphi_V}$

Given
$$i(t) = I_s \cos(\omega t + \varphi_I)$$
 \rightarrow $I_s \angle \varphi_I$ \rightarrow $\mathbb{I} = I_s e^{j\varphi_I}$

DEFINE COMPLEX POWER $\mathbb{S} = \frac{1}{2} \mathbb{V} \mathbb{I}^*$

$$\mathbb{S} = \frac{1}{2} \mathbb{V} \mathbb{I}^*$$

$$\mathbb{S} = \frac{1}{2} \mathbb{V} \mathbb{I}^* = \frac{1}{2} \left(V_S e^{j\varphi_V} \right) \left(I_S e^{-j\varphi_I} \right) = \frac{1}{2} V_S I_S e^{j(\varphi_V - \varphi_I)}$$
$$= \frac{1}{2} V_S I_S \left[\cos(\varphi_V - \varphi_I) + j \sin(\varphi_V - \varphi_I) \right]$$

Complex power

$$\mathbb{S} = \frac{1}{2} V_S I_S \cos(\varphi_V - \varphi_I) + j \frac{1}{2} V_S I_S \sin(\varphi_V - \varphi_I)$$

Average power \overline{P} Reactive power Q

COMPLEX POWER S

• Average power
$$\overline{P} = \Re e \{S\} = V_{rms}I_{rms}\cos(\varphi_V - \varphi_I) = I_{rms}^2R\cos(\varphi_V - \varphi_I)$$

(unit: watt/W)

Reactive power

$$\mathbf{Q} = \mathfrak{I}_{rms} I_{rms} \sin(\varphi_V - \varphi_I) = I_{rms}^2 X \sin(\varphi_V - \varphi_I)$$

(unit: Volt-Ampere Reactive/VAR)

COMPLEX POWER $\mathbb{S} = \overline{P} + jQ$

$$\mathbb{S} = \overline{P} + jQ$$

(unit: Volt-Amp/VA)

Complex power

• COMPLEX POWER $\mathbb{S} = \overline{P} + jQ$

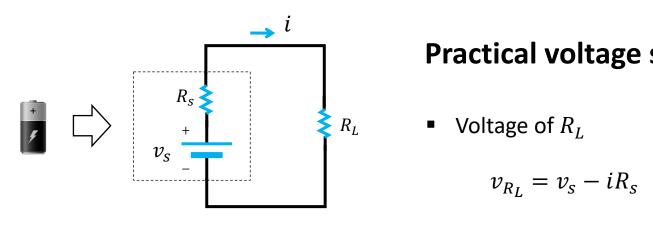
$$\overline{P} = \Re\{S\} = V_{rms}I_{rms}\cos(\varphi_V - \varphi_I)$$

$$Q = \Im \{S\} = jV_{rms}I_{rms}\sin(\varphi_V - \varphi_I)$$

• Define power factor
$$pf = \frac{P}{V_{rms}I_{rms}} = \cos(\varphi_V - \varphi_I)$$

Define power angle
$$\tan(\varphi_V - \varphi_I) = \frac{Q}{P}$$

Recall: Max. Power Trans. in DC Circ.



Practical voltage source

$$v_{R_L} = v_{S} - iR_{S}$$

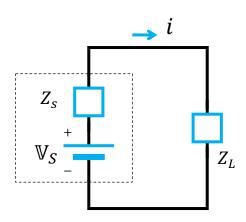
Power at the load R_L

$$\begin{split} P_L &= v_{R_L} i = (v_S - i R_S) i &= -R_S \left(i^2 - \frac{v_S}{R_S} i \right) = -R_S \left(i - \frac{1}{2} \frac{v_S}{R_S} \right)^2 + \frac{1}{4} \frac{v_S^2}{R_S} \\ &\leq \frac{1}{4} \frac{v_{S,rms}^2}{R_S} \quad \text{The maximum power being absorbed by the load} \end{split}$$

• When
$$R_s = R_L$$

$$P_L = P_{L,max} = \frac{1}{4} \frac{v_{s,rms}^2}{R_s}$$

Maximum Average Power Transfer



Assume

$$V_S = V_S \angle \theta_{v_S}$$

$$Z_S = R_S + jX_S$$

$$Z_L = R_L + jX_L$$

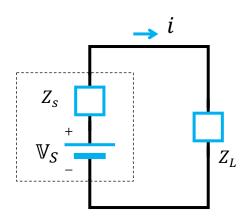
• The current through Z_L is $\mathbb{I}_L = I_L \angle \theta_{i_L}$

$$\mathbb{I}_L = \frac{\mathbb{V}_S}{Z_S + Z_L} = \frac{\mathbb{V}_S}{(R_S + jX_S) + (R_L + jX_L)}$$

■ The voltage on Z_L is $\mathbb{V}_L = V_L \angle \theta_{v_L}$

$$V_{L} = \frac{V_{S}Z_{L}}{Z_{S} + Z_{L}} = \frac{V_{S}(R_{L} + jX_{L})}{(R_{S} + jX_{S}) + (R_{L} + jX_{L})}$$

Maximum Average Power Transfer



$$\begin{cases} I_L = \frac{V_S}{\sqrt{(R_S + R_L)^2 + (X_S + X_L)^2}} \\ V_L = \frac{V_S \sqrt{R_L^2 + X_L^2}}{\sqrt{(R_S + R_L)^2 + (X_S + X_L)^2}} \end{cases}$$

• The average power at the load Z_L

$$\begin{split} P_{L} &= V_{rms} I_{rms} \cos \left(\theta_{v_{L}} - \theta_{i_{L}}\right) & \text{where} \quad \theta_{v_{L}} - \theta_{i_{L}} = cos^{-1} \left(\frac{R_{L}}{\sqrt{R_{L}^{2} + X_{L}^{2}}}\right) \\ &= \frac{V_{rms}^{2} R_{L}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}} \quad \leq \frac{V_{rms}^{2} R_{L}}{(R_{S} + R_{L})^{2}} \leq \frac{1}{4} \frac{V_{rms}^{2}}{R_{S}} \end{split}$$

when
$$\begin{cases} R_S = R_L \\ X_S = -X_L \end{cases} \rightarrow \mathbf{Z}_S = \mathbf{Z}_L^* \qquad P_{L,max} = \frac{1}{4} \frac{V_{rms}^2}{R_S}$$

Outlines

- Response to different forcing function
 - Ramping forcing function
 - Sinusoidal forcing function
- Complex forcing function
 - Impedance & admittance

i- v relation	$i = \frac{v}{R}$	$i(t) = C \frac{dv(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
v- i relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
Impedance	R	$\frac{1}{j\omega C}$	jωL

- KVL&KCL / Superposition / Equivalency
- AC steady-state analysis
 - Impedance circuit analysis for steady-state solution in LINEAR circuit
- Complex Power analysis
 - Definition of complex power/average power/reactive power
 - Maximum average power transfer

Reading tasks & learning goals

- Reading tasks
 - Basic Engineering Circuit Analysis, 10th edition
 - Chapter 8.1-8.8 & 9.1-9.6
- Learning goals
 - Know how to solve response with ramp/sin. forcing functions
 - Understand the basic characteristics of sinusoidal functions
 - Know how to calculate impedance/admittance
 - Know how to perform AC steady-state analysis
 - Know how to calculate real power/reactive power/complex power/power factor in AC circuits
 - Be able to calculate the maximum average power transfer for a load in an AC circuit