Fundamentals of Electronic Circuits and Systems I

Transient Circuit Analysis

Milin Zhang Dept of EE, Tsinghua University

Outlines

 \blacksquare 1st order circuit

 \blacksquare 2nd order circuits

Review: Capacitor & Inductor

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on $@t = 0$
- According to KCL

 $i_C = i_R$

$$
\Rightarrow C\frac{d}{dt}v(t) + \frac{v(t)}{R} = 0
$$

$$
\Rightarrow \frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0
$$

1st order differential equation

Review: Calculus

QUESTION: Find the solution $x(t)$ of the following equation

$$
\frac{d}{dt}x(t) + a_1x(t) = f(t)
$$
 General form of 1st order differential equation

- Step 1: Find any solution to the original equation $x(t) = x_p(t)$
- Step 2: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$
\frac{d}{dt}x(t) + a_1x(t) = 0
$$

■ Step 3: the solution to the original equation can be written as

! " = !) " + !* " **Particular integral solution Complementary solution**

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0
$$

Step 1a: find the **particular integral solution** $v_p(t)$

Assume $v_p(t) = K_1$

■ Step 1b: substitute $i_p(t)$ to the equation

$$
\frac{K_1}{RC} = 0 \qquad \Rightarrow \qquad K_1 = 0
$$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0
$$

§ Step 2a: find the **homogeneous equation**

$$
\frac{d}{dt}v(t) + a_1v(t) = 0 \quad \text{where } a_1 = \frac{1}{RC}
$$

§ Step 2b: find the **complementary solution** $v_c(t)$ to the homogeneous equation

 $v_c(t) = K_2e^{-st}$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0
$$

Step 2c: substitute $v_c(t)$ to the homogeneous equation

$$
\frac{d}{dt}(K_2e^{-st}) + a_1(K_2e^{-st}) = 0
$$

$$
\rightarrow -sK_2e^{-st} + a_1K_2e^{-st} = 0
$$

$$
\Rightarrow s = a_1 \qquad \text{where } a_1 = \frac{1}{RC}
$$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0
$$

Step 3a: find the value of $v(t)$ at one instant of time

 $v(0) = V_0$

Step 3b: substitute $v(0) = V_0$ to $v(t)$

 $v(t) = K_2 e^{-a_1 t}$

$$
\rightarrow \qquad K_2 = V_0
$$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

- If $R = 1k\Omega$, $C = 1\mu F$
- When $t = \tau$, $v(t) = 0.368V_0$
- When $t = 5\tau$, $v(t) = 0.0067V_0$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

Review: an old exmple

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at $t = 0$ are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively.

BEFORE the switch is turned on $(t < 0)$

$$
w(t<0)=\frac{Q_1^2}{2C_1}+\frac{Q_2^2}{2C_2}
$$

EXECTER the switch is turned on ($t \ge 0$). Assume the circuit is in steady state $\omega t = t_1$

$$
w(t_1) = \frac{(Q_1 + Q_2)^2}{2(C_1 + C_2)}
$$

WHY $w(t < 0) \neq w(t_1)$?

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at $t = 0$ are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

Milin Zhang, Dept of EE, Tsinghua University

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at $t = 0$ are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

$$
\frac{d}{dt}i(t) + a_1i(t) = 0
$$

Step 1: find the particular integral solution

 $i_p(t) = 0$

Step 2: find the complementary solution

 $i_c(t) = K_2 e^{-a_1 t}$

Step 3: find the value of $i(t)$ at one instant of time

$$
i(0) = \frac{1}{R_1} \left(\frac{Q_1}{C_1} - \frac{Q_2}{C_2} \right) \qquad \Rightarrow K_2 = i(0)
$$

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at $t = 0$ are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

Outlines

H

- \blacksquare 1st order circuit
	- Source free RC circuit
	- **Source free RL circuit**

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on $\omega t = 0$ \blacksquare
- According to KVL п

$$
L\frac{d}{dt}i(t) + i(t)R = 0
$$

$$
\Rightarrow \frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0
$$

1st order differential equation

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0
$$

Step 1a: find the **particular integral solution** $i_p(t)$

Assume $i_p(t) = K_1$

■ Step 1b: substitute $i_p(t)$ to the equation

$$
\frac{RK_1}{L} = 0 \quad \Rightarrow \qquad K_1 = 0
$$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0
$$

§ Step 2a: find the **homogeneous equation**

$$
\frac{d}{dt}i(t) + a_1i(t) = 0 \quad \text{where } a_1 = \frac{R}{L}
$$

§ Step 2b: find the **complementary solution** $i_c(t)$ to the homogeneous equation

 $v_c(t) = K_2 e^{-st}$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0
$$

Step 2c: substitute $v_c(t)$ to the homogeneous equation

$$
\frac{d}{dt}(K_2e^{-st}) + a_1(K_2e^{-st}) = 0
$$

$$
\rightarrow -sK_2e^{-st} + a_1K_2e^{-st} = 0
$$

$$
\Rightarrow s = a_1 \qquad \text{where } a_1 = \frac{R}{L}
$$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0
$$

Step 3a: find the value of $i(t)$ at one instant of time

 $i(0) = I_0$

Step 3b: substitute $i(0) = I_0$ to $i(t)$

 $i(t) = K_2 e^{-a_1 t}$

 \rightarrow $K_2 = I_0$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

Outlines

- \blacksquare 1st order circuit
	- Source free RC circuit
	- Source free RL circuit
	- **Pulse response**

QUESTION: Assume there is no charge on the capacitor C before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on $\omega t = 0$
- According to KCL

$$
i_C = i_R = i(t) = C \frac{d}{dt} v(t)
$$

According to KVL \blacksquare

$$
i_R R + v(t) = V_S
$$

\n
$$
\Rightarrow RC \frac{d}{dt} v(t) + v(t) = V_S
$$

QUESTION: Assume there is no charge on the capacitor C before the switch is turned on. Find the response after the switch is turned on.

$$
\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S
$$

Step 1a: find the **particular integral solution** $x_p(t)$

Assume $x_p(t) = K_1$

■ Step 1b: substitute $x_p(t)$ to the equation

$$
\frac{K_1}{RC} = \frac{1}{RC} V_S \qquad \Rightarrow \qquad K_1 = V_S
$$

QUESTION: Assume there is no charge on the capacitor C before the switch is turned on. Find the response after the switch is turned on.

Particular integral solution $v_p(t) = V_s$

$$
\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S
$$

§ Step 2a: find the **homogeneous equation**

$$
\frac{d}{dt}v(t) + a_1v(t) = 0 \quad \text{where } a_1 = \frac{1}{RC}
$$

§ Step 2b: find the **complementary solution** $v_c(t)$ to the homogeneous equation

$$
v_c(t) = K_2 e^{-a_1 t}
$$

QUESTION: Assume there is no charge on the capacitor C before the switch is turned on. Find the response after the switch is turned on.

$$
v_p(t) = V_S
$$

Complementary solution

$$
v_c(t) = K_2 e^{-a_1 t}
$$

Full solution $v(t) = v_p(t) + v_c(t)$

$$
\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S
$$

Step 3a: find the value of $v(t)$ at one instant of time

$$
v(0) = 0
$$

Step 3b: substitute $v(0) = 0$ to $v(t)$

$$
v(t) = VS + K2e^{-a1t}
$$

$$
\rightarrow \qquad K_2 = -V_S
$$

QUESTION: Assume there is no charge on the capacitor C before the switch is turned on. Find the response after the switch is turned on.

Charging & discharging of a cap

A more practical circuit

Key points:

- § **Find the initial voltage of the capacitor in phase 1**
- § **Write the equations according to KCL/KVL**
- § **Solve the differential equation**

PHASE 1

§ PHASE 2

Step forcing function

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

When the switch turned to node 1, according to KVL \blacksquare

$$
V_{S1} = i(t)R + L\frac{di(t)}{dt} \qquad \Rightarrow \frac{di(t)}{dt} + i(t)\frac{R}{L} = \frac{V_{S1}}{L}
$$

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- Step 1a: Assume the particular integral solution $i_p(t) = K_1$ п
- Step 1b: Substitute $i_p(t)$ to the equation $\rightarrow K_1 = \frac{V_{S_1}}{R}$
- Step 2: Find the solution to the homogeneous equation П

$$
\frac{di(t)}{dt} + i(t)\frac{R}{L} = 0
$$
 Assume $i_c(t) = K_2 e^{-a_1 t} \rightarrow a_1 = \frac{R}{L}$

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

The full solution $i(t) = i_p(t) + i_c(t) = \frac{V_{S1}}{R} + K_2 e^{-\frac{R}{L}t}$ п

Step 3: find the value at one instant of time $i(0) = 0 \rightarrow K_2 = -\frac{V_{S1}}{R}$ п

• The full solution for
$$
t \in [0, t_1)
$$
 $i(t) = \frac{V_{S1}}{R} - \frac{V_{S1}}{R}e^{-\frac{R}{L}t}$

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- Assume the switch turns to node 2 $\omega t = t_1$ П
- According to KVL п

$$
V_{S2} = i(t - t_1)R + L\frac{di(t - t_1)}{dt} \rightarrow \frac{di(t - t_1)}{dt} + i(t - t_1)\frac{R}{L} = \frac{V_{S2}}{L}
$$

 $i(t) = \frac{V_{S2}}{R} + K_2 e^{-\frac{R}{L}(t-t_1)}$ The full solution must be Ξ

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- find the value at one instant of time $i(t_1) = \frac{V_{S1}}{R}$ \rightarrow $K_2 = \frac{V_{S1}}{R} \frac{V_{S2}}{R}$ П
- The full solution for $t \geq t_1$ п

$$
i(t) = \frac{V_{S2}}{R} + \left(\frac{V_{S1}}{R} - \frac{V_{S2}}{R}\right)e^{-\frac{R}{L}(t - t_1)}
$$

QUESTION: Assume there is no charge on the inductor L before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

Outlines

- \blacksquare 1st order circuit
	- Source free RC circuit
	- Source free RL circuit
	- Pulse response
- § **2nd order circuits**

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

According to KCL

$$
-C\frac{dv(t)}{dt} = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau
$$

$$
\Rightarrow \quad \frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0
$$

Review: Calculus

QUESTION: Find the solution $x(t)$ of the following equation

$$
\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = f(t)
$$
 2nd order differential equation

■ Step 1: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$
\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = 0
$$

Assume $x_c(t) = Ke^{st}$. Substitute it to the equation

$$
s^2Ke^{st} + a_1sKe^{st} + a_2Ke^{st} = 0
$$

Since $Ke^{st} \neq 0$ \rightarrow $s^2 + a_1 s + a_2 = 0$ $\Rightarrow \begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}$ Define $2\zeta\omega_0 = a_1$, $\omega_0^2 = a_2$

Review: Calculus

QUESTION: Find the solution $x(t)$ of the following equation

$$
\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = f(t)
$$
 Define
$$
\begin{cases} 2\zeta\omega_0 = a_1\\ \omega_0^2 = a_2 \end{cases}
$$

■ Step 1: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$
x_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t} \qquad \text{where } \begin{cases} s_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ s_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}
$$

- Step 2: Find any solution to the original equation $x(t) = x_p(t)$
- Step 3: the solution to the original equation can be written as

! " = !\$ " + !& " **Particular integral solution Complementary solution**

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$
\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0
$$

Step 1a: Find the **particular integral solution** $v_p(t)$

Assume $v_p(t) = A$

Step 1b: substitute $v_p(t)$ to the equation

$$
\frac{1}{LC}A = 0 \qquad \rightarrow \qquad A = 0
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$
\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0
$$

§ Step 2a: find the **homogeneous equation**

$$
\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0
$$

Step 2b: find the **complementary** solution $v_c(t)$ to the homogeneous equation

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

$$
\begin{cases}\nS_1 = j\omega_0 \\
S_2 = -j\omega_0\n\end{cases}
$$
 where $\omega_0 = \frac{1}{\sqrt{LC}}$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$
\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0
$$

Step 3a: find the value of $v(0)$ and $\frac{dv(t)}{dt}$ dt $|_{t=0}$

Particular integral solution

$$
v_p(t)=0
$$

Complementary solution

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

where $S_1 = j\omega_0$, $S_2 = -j\omega_0$
Full solution $v(t) = v_p(t) + v_c(t)$

• Step 3b: substitute
$$
v(0)
$$
 and $\frac{dv(t)}{dt}\Big|_{t=0}$ to $v(t)$

$$
\begin{cases}\nv(0) = K_1 + K_2 \\
\frac{dv(t)}{dt}\Big|_{t=0} = K_1 s_1 + K_2 s_2 = -\frac{i(0)}{C}\n\end{cases}
$$

 K_1 and K_2 can be solved

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

 $v(t) = A\cos(\omega_0 t + \theta)$

 $Asin(\omega_0 t + \theta)$

 $\mathcal C$

 \overline{L}

Energy stored in the capacitor/inductor

$$
\begin{cases}\nw_c(t) = \frac{1}{2}Cv^2(t) = \left(\frac{1}{2}Cv^2(0) + \frac{1}{2}Li^2(t)\right)\cos^2(\omega_0 t + \theta) \\
w_L(t) = \frac{1}{2}Li^2(t) = \left(\frac{1}{2}Cv^2(0) + \frac{1}{2}Li^2(t)\right)\sin^2(\omega_0 t + \theta)\n\end{cases}
$$

The total energy doesn't change

$$
w(t) = w_c(t) + w_L(t) = \frac{1}{2}Cv^2(0) + \frac{1}{2}Li^2(t)
$$

 $i(t) =$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

Outlines

- \blacksquare 1st order circuit
	- Source free RC circuit
	- Source free RL circuit
	- Pulse response
- \blacksquare 2nd order circuits
	- Source free LC circuit
	- **Source free RLC circuit**

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

According to KCL

$$
i(t) = -C \frac{dv(t)}{dt}
$$

According to KVL

$$
-v(t) + i(t)R + L\frac{di(t)}{dt} = 0
$$

$$
\Rightarrow \quad \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Step 1a: Find the particular integral solution $v_p(t)$

Assume $v_p(t) = A$

Step 1b: substitute $v_p(t)$ to the equation

$$
\frac{1}{LC}A = 0 \qquad \rightarrow \qquad A = 0
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Step 2a: find the homogeneous equation

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Step 2b: find the complementary solution $v_c(t)$ to the homogeneous equation

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

$$
\Rightarrow \begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases} \qquad \text{where } \begin{cases} 2\zeta \omega_0 = \frac{R}{L} \\ \omega_0^2 = \frac{1}{LC} \end{cases}
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Step 3a: find the value of $v(0)$ and $\frac{dv(t)}{dt}$ dt $|_{t=0}$

Step 3b: substitute $v(0)$ and $\frac{dv(t)}{dt}$ dt $|_{t=0}$ to $v(t)$

$$
\begin{cases}\nv(0) = K_1 + K_2 \\
\frac{dv(t)}{dt}\Big|_{t=0} = K_1 s_1 + K_2 s_2 = -\frac{i(0)}{C}\n\end{cases}
$$

 K_1 and K_2 can be solved

3/27/20 Milin Zhang, Dept of EE, Tsinghua University 53

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Particular integral solution

$$
v_p(t)=0
$$

Complementary solution

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

Where
$$
\begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}
$$

and
$$
\omega_0 = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_0 L}
$$

Full solution $v(t) = v_p(t) + v_c(t)$

A DISCUSSION ON ζ

If $\zeta = 1 \rightarrow$ critically damped

$$
\Rightarrow S_1 = S_2 = -\zeta \omega_0
$$

$$
v_c(t) = K_1 e^{-\zeta \omega_0 t} + K_2 t e^{-\zeta \omega_0 t}
$$

■ If $\zeta > 1$ \rightarrow overdamped

$$
v_c(t) = K_1 e^{(-\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1})t} + K_2 e^{(-\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1})t}
$$

The response is the sum of two decaying exponentials

Milin Zhang, Dept of EE, Tsinghua University

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Particular integral solution

$$
v_p(t) = 0
$$

Complementary solution

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

Where
$$
\begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}
$$

and
$$
\omega_0 = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_0 L}
$$

Full solution $v(t) = v_p(t) + v_c(t)$

A DISCUSSION ON ζ

■ If ζ < 1 \rightarrow underdamped

$$
\begin{cases}\nS_1 = -\zeta \omega_0 + j \omega_0 \sqrt{1 - \zeta^2} \\
S_2 = -\zeta \omega_0 - j \omega_0 \sqrt{1 - \zeta^2}\n\end{cases}
$$

Define $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$

 $v_c(t) = e^{-\zeta \omega_0 t} [A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)]$

The response is an exponentially damped oscillatory response

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

A DISCUSSION ON ζ

- If $\zeta < 1$ \rightarrow underdamped
- If $\zeta = 1 \rightarrow$ critically damped \mathcal{L}
- If $\zeta > 1$ \rightarrow overdamped

$$
v_p(t) = 0
$$

Complementary solution

$$
v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}
$$

Where
$$
\begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}
$$

and
$$
\omega_0 = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_0 L}
$$

Full solution $v(t) = v_p(t) + v_c(t)$

$$
\frac{3}{27/20}
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Milin Zhang, Dept of EE, Tsinghua University

Outlines

- \blacksquare 1st order circuit
	- Source free RC circuit
	- Source free RL circuit
	- Pulse response
- \blacksquare 2nd order circuits
	- Source free LC circuit
	- Source free series RLC circuit
	- **Source free series parallel circuit**

Example 8: parallel connected RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

§ According to KCL

$$
C\frac{dv(t)}{dt} + \frac{v(t)}{R} + \frac{1}{L} \int_{-\infty}^{t} v(t)dt = 0
$$

$$
\Rightarrow \quad \frac{d^2v(t)}{dt^2} + \frac{1}{RC}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Series connected RLC circuit

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0
$$

Example 8: parallel connected RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

+ − $v(t)$ C L \overline{R} + − $\bm i(\bm t$ $v(t)$ \mathcal{C} $\qquad \qquad \mathcal{C}$ \overline{R} Solution: $v(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$ Where $\{$ $S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1}$ $S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}$ and $\omega_0=\frac{1}{\sqrt{LC}}$, $\zeta=\frac{1}{2\omega_0}$ $2\omega_0 RC$ Solution: $v(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$ Where $\{$ $S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1}$ $S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}$ and $\omega_0=\frac{1}{\sqrt{LC}}$, $\zeta=\frac{R}{2\omega_0}$ $2\omega_0L$ $d^2v(t)$ $\frac{1}{dt^2} +$ 1 $R C$ $dv(t)$ $\frac{\partial}{\partial t} +$ 1 $\frac{1}{LC} v(t) = 0$ $d^2v(t)$ $\frac{1}{dt^2} +$ \overline{R} \bm{L} $dv(t)$ $\frac{\partial}{\partial t} +$ 1 $\frac{1}{LC} v(t) = 0$

Outlines

- \blacksquare 1st order circuit
	- Source free RC circuit
	- Source free RL circuit
	- Pulse response
- \blacksquare 2nd order circuits
	- Source free LC circuit
	- Source free series RLC circuit
	- Source free series parallel circuit
	- Response of RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change with an input voltage of step function.

According to KVL \blacksquare

$$
-v(t) + i(t)R + L\frac{di(t)}{dt} = V_S
$$

$$
\Rightarrow \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{V_S}{LC}
$$

+
\n
$$
v(t) = c
$$
\n
$$
c
$$
\n
$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L} \frac{dv(t)}{dt} + \frac{1}{LC} v(t) = 0
$$
\nSolution: $v(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$
\nWhere
$$
\begin{cases}\nS_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\
S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \\
\text{and } \omega_0 = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_0 L}\n\end{cases}
$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change with an input voltage of step function.

 $v_{\rm s}(t)$

 \blacktriangleright t

 $V_{\rm S}$

$$
\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{V_S}{LC}
$$

Step 1a: Find the **particular integral solution** $v_p(t)$

Assume
$$
v_p(t) = A
$$

$$
\frac{1}{LC}A = \frac{V_S}{LC} \qquad \Rightarrow \qquad A = V_S
$$

Outlines

- \blacksquare How to analyze $1st/2nd$ order circuit in time domain?
	- Write the circuit equation according to KVL/KCL
	- Solve the differential equation
		- Step 1a: Find the **particular integral solution** $v_p(t)$
		- Step 1b: substitute $v_p(t)$ to the equation to solve the unknown
		- Step 2a: find the **homogeneous equation**
		- Step 2b: find the **complementary** solution $v_c(t)$ to the homogeneous equation
		- Step 3a: find the initial voltage/current values
		- Step 3b: substitute the initials to the full solution to solve the unknown

Reading tasks & learning goals

- Reading tasks
	- □ Basic Engineering Circuit Analysis, 10th edition
		- Chapter 7
- Learning goals
	- Be able to calculate initial values for inductor currents & capacitor voltages in transient circuits
	- \overline{P} Be able to calculate V/I in 1st order transient circuit
	- □ Be able to calculate V/I in 2nd order transient circuit
	- Know what is time constant, steady state response, transient response, complete response