Fundamentals of Electronic Circuits and Systems I

Transient Circuit Analysis

Milin Zhang Dept of EE, Tsinghua University

Outlines

1st order circuit

2nd order circuits

Review: Capacitor & Inductor

			-000-
<i>i-v</i> relation	$i = \frac{v}{R}$	$i(t) = C \frac{d\nu(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
<i>v-i</i> relation	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
p (power transferred in)	p = vi	p = vi	p = vi
w (stored energy)	0	$w = \frac{1}{2}Cv^{2}(t) = \frac{Q^{2}(t)}{2C}$	$w = \frac{1}{2}Li^2(t) = \frac{\lambda^2(t)}{2L}$
Series combination	$R_{eq} = R_1 + R_2$	$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{eq} = L_1 + L_2$
Parallel combination	$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{eq} = C_1 + C_2$	$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$
DC behavior	NO	open circuit	short circuit
Instantaneous change of v		×	\checkmark
Instantaneous change of <i>i</i>			×

3/27/20

Milin Zhang, Dept of EE, Tsinghua University

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on @t = 0
- According to KCL

 $i_C = i_R$

$$\Rightarrow \quad C\frac{d}{dt}v(t) + \frac{v(t)}{R} = 0$$

$$\Rightarrow \quad \frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0$$

1st order differential equation

Review: Calculus

QUESTION: Find the solution x(t) of the following equation

$$\frac{d}{dt}x(t) + a_1x(t) = f(t)$$
 General form of 1st order differential equation

- Step 1: Find any solution to the original equation $x(t) = x_p(t)$
- Step 2: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$\frac{d}{dt}x(t) + a_1x(t) = 0$$

Step 3: the solution to the original equation can be written as

$$x(t) = x_p(t) + x_c(t)$$
Complementary solution
Particular integral solution

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0$$

• Step 1a: find the particular integral solution $v_p(t)$

Assume $v_p(t) = K_1$

• Step 1b: substitute $i_p(t)$ to the equation

$$\frac{K_1}{RC} = 0 \quad \Rightarrow \quad K_1 = 0$$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0$$

Step 2a: find the homogeneous equation

$$\frac{d}{dt}v(t) + a_1v(t) = 0 \quad \text{where } a_1 = \frac{1}{RC}$$

Step 2b: find the complementary solution
 v_c(t) to the homogeneous equation

 $v_c(t) = K_2 e^{-st}$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0$$

• Step 2c: substitute $v_c(t)$ to the homogeneous equation

$$\frac{d}{dt}(K_2e^{-st}) + a_1(K_2e^{-st}) = 0$$

$$\rightarrow -sK_2e^{-st} + a_1K_2e^{-st} = 0$$

$$\rightarrow$$
 $s = a_1$ where $a_1 = \frac{1}{RC}$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{v(t)}{RC} = 0$$

• Step 3a: find the value of v(t) at one instant of time

 $v(0) = V_0$

• Step 3b: substitute $v(0) = V_0$ to v(t)

 $v(t) = K_2 e^{-a_1 t}$

$$\rightarrow$$
 $K_2 = V_0$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

- If R = 1k Ω , C = 1 μ F
- When $t = \tau$, $v(t) = 0.368V_0$
- When $t = 5\tau$, $v(t) = 0.0067V_0$

QUESTION: Assume the capacitor C has been charged to V_0 before the switch is turned on. Find the response after the switch is turned on.

Review: an old exmple

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t = 0 are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively.

BEFORE the switch is turned on (t < 0)

$$w(t < 0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

AFTER the switch is turned on (t ≥ 0). Assume the circuit is in steady state @ t = t₁

$$w(t_1) = \frac{(Q_1 + Q_2)^2}{2(C_1 + C_2)}$$

WHY $w(t < 0) \neq w(t_1)$?

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t = 0 are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

Milin Zhang, Dept of EE, Tsinghua University

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t = 0 are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

$$\frac{d}{dt}i(t) + a_1i(t) = 0$$

Step 1: find the particular integral solution

$$i_p(t) = 0$$

Step 2: find the complementary solution

$$i_c(t) = K_2 e^{-a_1 t}$$

Step 3: find the value of *i*(*t*) at one instant of time

$$i(0) = \frac{1}{R_1} \left(\frac{Q_1}{C_1} - \frac{Q_2}{C_2} \right) \longrightarrow K_2 = i(0)$$

Milin Zhang, Dept of EE, Tsinghua University

Example 2

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t = 0 are $q_1(0) = Q_1$ and $q_2(0) = Q_2$, respectively. The resistance of the switch is R_1 when it is turned on.

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on @t = 0
- According to KVL

$$L\frac{d}{dt}i(t) + i(t)R = 0$$

$$\Rightarrow \quad \frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0$$

1st order differential equation

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0$$

• Step 1a: find the particular integral solution $i_p(t)$

Assume $i_p(t) = K_1$

• Step 1b: substitute $i_p(t)$ to the equation

$$\frac{RK_1}{L} = 0 \quad \Rightarrow \qquad K_1 = 0$$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0$$

Step 2a: find the homogeneous equation

$$\frac{d}{dt}i(t) + a_1i(t) = 0 \qquad \text{where } a_1 = \frac{R}{L}$$

Step 2b: find the complementary solution
 i_c(t) to the homogeneous equation

 $v_c(t) = K_2 e^{-st}$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0$$

• Step 2c: substitute $v_c(t)$ to the homogeneous equation

$$\frac{d}{dt}(K_2e^{-st}) + a_1(K_2e^{-st}) = 0$$

$$\rightarrow -sK_2e^{-st} + a_1K_2e^{-st} = 0$$

$$\rightarrow$$
 $s = a_1$ where $a_1 = \frac{R}{L}$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}i(t) + \frac{R}{L}i(t) = 0$$

• Step 3a: find the value of *i*(*t*) at one instant of time

 $i(0) = I_0$

• Step 3b: substitute $i(0) = I_0$ to i(t)

 $i(t) = K_2 e^{-a_1 t}$

 \rightarrow $K_2 = I_0$

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

QUESTION: Assume the capacitor L has been charged to I_0 before the switch is turned on. Find the response after the switch is turned on.

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit
 - Pulse response

QUESTION: Assume there is no charge on the capacitor *C* before the switch is turned on. Find the response after the switch is turned on.

- Assume the switch is turned on @t = 0
- According to KCL

$$i_C = i_R = i(t) = C \frac{d}{dt} v(t)$$

According to KVL

$$i_R R + v(t) = V_S$$

 $\rightarrow RC \frac{d}{dt}v(t) + v(t) = V_S$

QUESTION: Assume there is no charge on the capacitor *C* before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S$$

• Step 1a: find the particular integral solution $x_p(t)$

Assume $x_p(t) = K_1$

• Step 1b: substitute $x_p(t)$ to the equation

$$\frac{K_1}{RC} = \frac{1}{RC} V_S \quad \Rightarrow \quad K_1 = V_S$$

QUESTION: Assume there is no charge on the capacitor *C* before the switch is turned on. Find the response after the switch is turned on.

$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S$$

Step 2a: find the homogeneous equation

$$\frac{d}{dt}v(t) + a_1v(t) = 0 \quad \text{where } a_1 = \frac{1}{RC}$$

Step 2b: find the complementary solution
 v_c(t) to the homogeneous equation

$$v_c(t) = K_2 e^{-a_1 t}$$

 $v_p(t) = V_s$

QUESTION: Assume there is no charge on the capacitor *C* before the switch is turned on. Find the response after the switch is turned on.

Particular integral solution

$$v_p(t) = V_S$$

Complementary solution

$$v_c(t) = K_2 e^{-a_1 t}$$

Full solution $v(t) = v_p(t) + v_c(t)$

$$\frac{d}{dt}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S$$

• Step 3a: find the value of v(t) at one instant of time

$$v(0)=0$$

• Step 3b: substitute v(0) = 0 to v(t)

$$v(t) = V_S + K_2 e^{-a_1 t}$$

$$\rightarrow$$
 $K_2 = -V_S$

QUESTION: Assume there is no charge on the capacitor *C* before the switch is turned on. Find the response after the switch is turned on.

Charging & discharging of a cap

A more practical circuit

Key points:

- Find the initial voltage of the capacitor in phase 1
- Write the equations according to KCL/KVL
- Solve the differential equation

PHASE 1

PHASE 2

Step forcing function

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

When the switch turned to node 1, according to KVL

$$V_{S1} = i(t)R + L\frac{di(t)}{dt} \longrightarrow \frac{di(t)}{dt} + i(t)\frac{R}{L} = \frac{V_{S1}}{L}$$

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- Step 1a: Assume the particular integral solution $i_p(t) = K_1$
- Step 1b: Substitute $i_p(t)$ to the equation $\rightarrow K_1 = \frac{V_{S1}}{R}$
- Step 2: Find the solution to the homogeneous equation

$$\frac{di(t)}{dt} + i(t)\frac{R}{L} = 0 \qquad \text{Assume } i_c(t) = K_2 e^{-a_1 t} \quad \Rightarrow \quad a_1 = \frac{R}{L}$$

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

• The full solution $i(t) = i_p(t) + i_c(t) = \frac{V_{S1}}{R} + K_2 e^{-\frac{R}{L}t}$

• Step 3: find the value at one instant of time $i(0) = 0 \rightarrow K_2 = -\frac{V_{S1}}{R}$

• The full solution for
$$t \in [0, t_1)$$
 $i(t) = \frac{V_{S1}}{R} - \frac{V_{S1}}{R}e^{-\frac{R}{L}t}$

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- Assume the switch turns to node 2 @ $t = t_1$
- According to KVL

$$V_{S2} = i(t - t_1)R + L \frac{di(t - t_1)}{dt} \rightarrow \frac{di(t - t_1)}{dt} + i(t - t_1)\frac{R}{L} = \frac{V_{S2}}{L}$$

• The full solution must be $i(t) = \frac{V_{S2}}{R} + K_2 e^{-\frac{R}{L}(t-t_1)}$

Example 5: charging of an inductor

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

- find the value at one instant of time
- $i(t_1) = \frac{V_{S1}}{R} \rightarrow$

$$K_2 = \frac{V_{S1}}{R} - \frac{V_{S2}}{R}$$

• The full solution for $t \ge t_1$

$$i(t) = \frac{V_{S2}}{R} + \left(\frac{V_{S1}}{R} - \frac{V_{S2}}{R}\right)e^{-\frac{R}{L}(t-t_1)}$$

Example 5: charging of an inductor

QUESTION: Assume there is no charge on the inductor *L* before the switch is turned on. Find the response after the switch is switching between node 1 and 2.

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit
 - Pulse response
- 2nd order circuits

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

According to KCL

$$-C\frac{dv(t)}{dt} = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau$$

$$\rightarrow \quad \frac{d^2 v(t)}{dt^2} + \frac{1}{LC} v(t) = 0$$

Review: Calculus

QUESTION: Find the solution x(t) of the following equation

$$\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = f(t)$$
 2nd order differential equation

• Step 1: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = 0$$

Assume $x_c(t) = Ke^{st}$. Substitute it to the equation

$$s^2 K e^{st} + a_1 s K e^{st} + a_2 K e^{st} = 0$$

Since $Ke^{st} \neq 0$ $\Rightarrow s^2 + a_1 s + a_2 = 0$ Define $2\zeta\omega_0 = a_1, \, \omega_o^2 = a_2$ $\Rightarrow \begin{cases} S_1 = -\zeta\omega_0 + \omega_0\sqrt{\zeta^2 - 1} \\ S_2 = -\zeta\omega_0 - \omega_0\sqrt{\zeta^2 - 1} \end{cases}$

Review: Calculus

QUESTION: Find the solution x(t) of the following equation

$$\frac{d^2}{dt^2}x(t) + a_1\frac{d}{dt}x(t) + a_2x(t) = f(t) \qquad \text{Define} \quad \begin{cases} 2\zeta\omega_0 = a_1\\ \omega_0^2 = a_2 \end{cases}$$

• Step 1: Find a solution $x(t) = x_c(t)$ to the homogeneous equation

$$x_{c}(t) = K_{1}e^{s_{1}t} + K_{2}e^{s_{2}t} \qquad \text{where } \begin{cases} S_{1} = -\zeta\omega_{0} + \omega_{0}\sqrt{\zeta^{2} - 1} \\ S_{2} = -\zeta\omega_{0} - \omega_{0}\sqrt{\zeta^{2} - 1} \end{cases}$$

- Step 2: Find any solution to the original equation $x(t) = x_p(t)$
- Step 3: the solution to the original equation can be written as

$$x(t) = x_p(t) + x_c(t)$$
Complementary solution
Particular integral solution

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0$$

• Step 1a: Find the particular integral solution $v_p(t)$

Assume $v_p(t) = A$

• Step 1b: substitute $v_p(t)$ to the equation

$$\frac{1}{LC}A = 0 \qquad \rightarrow \qquad A = 0$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0$$

Step 2a: find the homogeneous equation

$$\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0$$

 Step 2b: find the complementary solution v_c(t) to the homogeneous equation

$$v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$$

$$\begin{cases} S_1 = j\omega_0 \\ S_2 = -j\omega_0 \end{cases} \quad \text{where} \quad \omega_0 = \frac{1}{\sqrt{LC}} \end{cases}$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

$$\frac{d^2v(t)}{dt^2} + \frac{1}{LC}v(t) = 0$$

• Step 3a: find the value of v(0) and $\frac{dv(t)}{dt}\Big|_{t=0}$

Particular integral solution

$$v_p(t) = 0$$

Complementary solution

$$v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$$

where $S_1 = j\omega_0$, $S_2 = -j\omega_0$
Full solution $v(t) = v_p(t) + v_c(t)$

• Step 3b: substitute
$$v(0)$$
 and $\frac{dv(t)}{dt}\Big|_{t=0}$ to $v(t)$

$$\begin{cases} v(0) = K_1 + K_2 \\ \frac{dv(t)}{dt} \Big|_{t=0} = K_1 s_1 + K_2 s_2 = -\frac{i(0)}{C} \end{cases}$$

 K_1 and K_2 can be solved

Milin Zhang, Dept of EE, Tsinghua University

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

Energy stored in the capacitor/inductor

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2} L = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2} Cv^{2}(t) = \left(\frac{1}{2}Cv^{2}(0) + \frac{1}{2}Li^{2}(t)\right) cos^{2}(\omega_{0}t + \theta)$$

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2}Li^{2}(t) = \left(\frac{1}{2}Cv^{2}(0) + \frac{1}{2}Li^{2}(t)\right) sin^{2}(\omega_{0}t + \theta)$$

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2}Li^{2}(t) = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{2}Li^{2}(t) + \frac{1}{2}Li^{2}(t)$$
The total energy doesn't change

The total energy doesn't change

$$w(t) = w_{C}(t) + w_{L}(t) = \frac{1}{2}Cv^{2}(0) + \frac{1}{2}Li^{2}(t)$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change after the switch is turned on.

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit
 - Pulse response
- 2nd order circuits
 - Source free LC circuit
 - Source free RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

According to KCL

$$i(t) = -C \frac{dv(t)}{dt}$$

According to KVL

$$-v(t) + i(t)R + L\frac{di(t)}{dt} = 0$$

$$\Rightarrow \quad \frac{d^2 v(t)}{dt^2} + \frac{R}{L} \frac{dv(t)}{dt} + \frac{1}{LC} v(t) = 0$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0$$

• Step 1a: Find the particular integral solution $v_p(t)$

Assume $v_p(t) = A$

• Step 1b: substitute $v_p(t)$ to the equation

$$\frac{1}{LC}A = 0 \qquad \rightarrow \qquad A = 0$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0$$

Step 2a: find the homogeneous equation

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0$$

 Step 2b: find the complementary solution v_c(t) to the homogeneous equation

$$v_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$$

$$\Rightarrow \begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases} \quad \text{where} \begin{cases} 2\zeta \omega_0 = \frac{R}{L} \\ \omega_0^2 = \frac{1}{LC} \end{cases}$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0$$

• Step 3a: find the value of v(0) and $\frac{dv(t)}{dt}\Big|_{t=0}$

• Step 3b: substitute v(0) and $\frac{dv(t)}{dt}\Big|_{t=0}$ to v(t)

$$\begin{cases} v(0) = K_1 + K_2 \\ \frac{dv(t)}{dt} \Big|_{t=0} = K_1 s_1 + K_2 s_2 = -\frac{i(0)}{C} \end{cases}$$

 K_1 and K_2 can be solved

Milin Zhang, Dept of EE, Tsinghua University

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Particular integral solution

$$v_p(t) = 0$$

Complementary solution

$$v_{c}(t) = K_{1}e^{s_{1}t} + K_{2}e^{s_{2}t}$$
Where
$$\begin{cases} S_{1} = -\zeta\omega_{0} + \omega_{0}\sqrt{\zeta^{2} - 1} \\ S_{2} = -\zeta\omega_{0} - \omega_{0}\sqrt{\zeta^{2} - 1} \end{cases}$$
and $\omega_{0} = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_{0}L}$
Full solution $v(t) = v_{p}(t) + v_{c}(t)$

A DISCUSSION ON ζ

• If $\zeta = 1 \rightarrow$ critically damped

$$\Rightarrow \quad S_1 = S_2 = -\zeta \omega_0$$

$$v_c(t) = K_1 e^{-\zeta \omega_0 t} + K_2 t e^{-\zeta \omega_0 t}$$

• If $\zeta > 1 \rightarrow$ overdamped

$$v_c(t) = K_1 e^{\left(-\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1}\right)t} + K_2 e^{\left(-\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}\right)t}$$

The response is the sum of two decaying exponentials

Milin Zhang, Dept of EE, Tsinghua University

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Particular integral solution

$$v_p(t) = 0$$

Complementary solution

$$v_{c}(t) = K_{1}e^{s_{1}t} + K_{2}e^{s_{2}t}$$
Where
$$\begin{cases} S_{1} = -\zeta\omega_{0} + \omega_{0}\sqrt{\zeta^{2} - 1} \\ S_{2} = -\zeta\omega_{0} - \omega_{0}\sqrt{\zeta^{2} - 1} \end{cases}$$
and $\omega_{0} = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_{0}L}$
Full solution $v(t) = v_{p}(t) + v_{c}(t)$

A DISCUSSION ON ζ

• If $\zeta < 1 \rightarrow$ underdamped

$$\begin{cases} S_1 = -\zeta \omega_0 + j\omega_0 \sqrt{1 - \zeta^2} \\ S_2 = -\zeta \omega_0 - j\omega_0 \sqrt{1 - \zeta^2} \end{cases}$$

Define $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$

 $v_c(t) = e^{-\zeta \omega_0 t} [A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)]$

The response is an exponentially damped oscillatory response

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

A DISCUSSION ON ζ

- If $\zeta < 1 \rightarrow$ underdamped
- If $\zeta = 1 \rightarrow$ critically damped
- If $\zeta > 1 \rightarrow$ overdamped

$$v_p(t) = 0$$

Complementary solution

$$v_{c}(t) = K_{1}e^{s_{1}t} + K_{2}e^{s_{2}t}$$
Where
$$\begin{cases} S_{1} = -\zeta\omega_{0} + \omega_{0}\sqrt{\zeta^{2} - 1} \\ S_{2} = -\zeta\omega_{0} - \omega_{0}\sqrt{\zeta^{2} - 1} \end{cases}$$
and $\omega_{0} = \frac{1}{\sqrt{LC}}, \zeta = \frac{R}{2\omega_{0}L}$
Full solution $v(t) = v_{p}(t) + v_{c}(t)$

$$\frac{3/27/20}{2}$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

Milin Zhang, Dept of EE, Tsinghua University

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit
 - Pulse response
- 2nd order circuits
 - Source free LC circuit
 - Source free series RLC circuit
 - Source free series parallel circuit

Example 8: parallel connected RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

According to KCL

$$C\frac{dv(t)}{dt} + \frac{v(t)}{R} + \frac{1}{L}\int_{-\infty}^{t} v(t)dt = 0$$

$$\Rightarrow \quad \frac{d^2 v(t)}{dt^2} + \frac{1}{RC} \frac{dv(t)}{dt} + \frac{1}{LC} v(t) = 0$$

Series connected RLC circuit

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = 0$$

Example 8: parallel connected RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change.

 $+ \underbrace{v(t)}_{-} \underbrace{C} \xrightarrow{R} \underbrace{L}$ v(t) \downarrow C $\frac{d^2 v(t)}{dt^2} + \frac{R}{L} \frac{dv(t)}{dt} + \frac{1}{LC} v(t) = 0$ $\frac{d^2 v(t)}{dt^2} + \frac{1}{\frac{DC}{dt}} \frac{dv(t)}{dt} + \frac{1}{\frac{LC}{dt}} v(t) = 0$ Solution: $v(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$ Solution: $v(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$ Where $\begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}$ Where $\begin{cases} S_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \\ S_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1} \end{cases}$ and $\omega_0 = \frac{1}{\sqrt{LC}}$, $\zeta = \frac{1}{2\omega_0 RC}$ and $\omega_0 = \frac{1}{\sqrt{LC}}$, $\zeta = \frac{R}{2\omega_0 L}$

Outlines

- 1st order circuit
 - Source free RC circuit
 - Source free RL circuit
 - Pulse response
- 2nd order circuits
 - Source free LC circuit
 - Source free series RLC circuit
 - Source free series parallel circuit
 - Response of RLC circuit

QUESTION: Find how the voltage on the capacitor and the current through the inductor change with an input voltage of step function.

According to KVL

$$-v(t) + i(t)R + L\frac{di(t)}{dt} = V_S$$

$$\Rightarrow \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{V_S}{LC}$$

QUESTION: Find how the voltage on the capacitor and the current through the inductor change with an input voltage of step function.

 $v_{S}(t)$

► t

 V_{S}

$$\frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{V_S}{LC}$$

• Step 1a: Find the particular integral solution $v_p(t)$

Assume
$$v_p(t) = A$$

$$\frac{1}{LC}A = \frac{V_S}{LC} \quad \Rightarrow \quad A = V_S$$

Outlines

- How to analyze 1st/2nd order circuit in time domain?
 - Write the circuit equation according to KVL/KCL
 - Solve the differential equation
 - Step 1a: Find the particular integral solution $v_p(t)$
 - Step 1b: substitute $v_p(t)$ to the equation to solve the unknown
 - Step 2a: find the homogeneous equation
 - Step 2b: find the complementary solution $v_c(t)$ to the homogeneous equation
 - Step 3a: find the initial voltage/current values
 - Step 3b: substitute the initials to the full solution to solve the unknown

Reading tasks & learning goals

- Reading tasks
 - Basic Engineering Circuit Analysis, 10th edition
 - Chapter 7
- Learning goals
 - Be able to calculate initial values for inductor currents & capacitor voltages in transient circuits
 - Be able to calculate V/I in 1st order transient circuit
 - Be able to calculate V/I in 2nd order transient circuit
 - Know what is time constant, steady state response, transient response, complete response