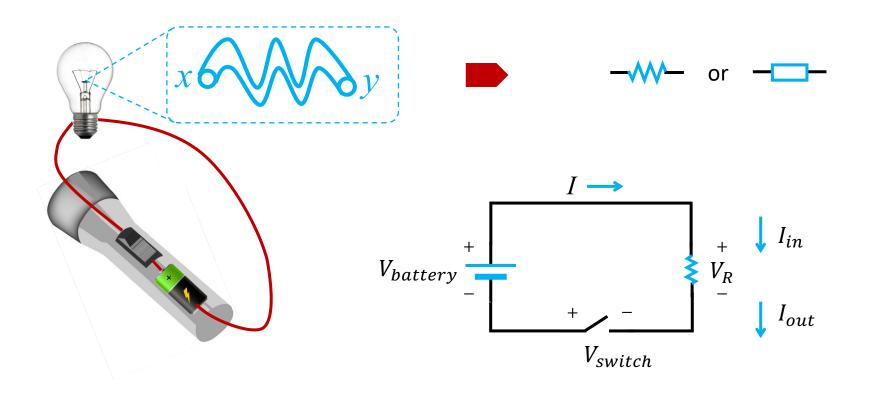
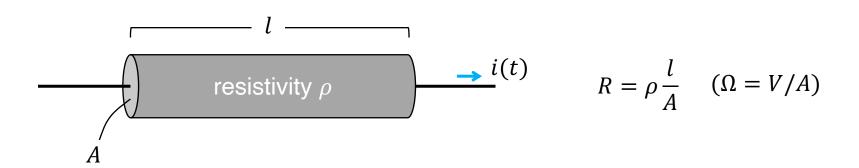


Resistive Circuits


Milin Zhang Dept of EE, Tsinghua University


Outlines

- Linear resistor & Ohm's law
- Power & energy
- KVL/KCL
- Equivalent circuit

Review: a simple circuit

Resistance & Conductance

Resistance, R, represents the ability to resist flow of electric current

Conductance,
$$G = \frac{1}{R}$$
 $(S = A/V)$

_	$1{ imes}10^{-8}arOmega\cdot m$		$2.82\times10^{-8}\Omega\cdot m$
Graphene	$1 \times 10^{-3} \Omega \cdot m$	Aluminum	$2.82\times10^{-3}2\cdot m$
Silver	$1.59 \times 10^{-8} \Omega \cdot m$	Iron	$9.71\times10^{-8}\Omega\cdot m$
Copper	$1.68 \times 10^{-8} \Omega \cdot m$	Platinum	$1.06\times10^{-7}\Omega\cdot m$
Gold	$2.44{ imes}10^{-8}arOmega\cdot m$	Titanium	$4.20 \times 10^{-7} \Omega \cdot m$

What is a resistor?

Resistors are passive electrical components that reduce the flow of electrical current in a circuit.

Axial resistor

Surface Mount Devices (SMD) resistor

Metal Electrode Leadless Face (MELF) resistor

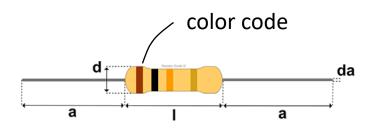
Resistor properties

Resistance

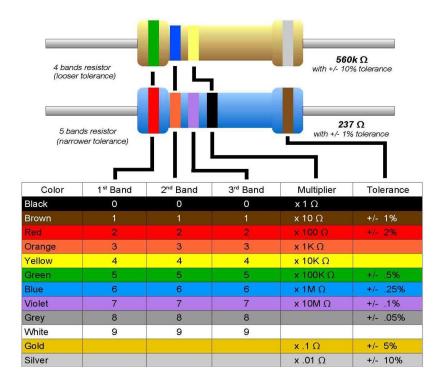
represents the ability to resist flow of electric current

Resistor noise

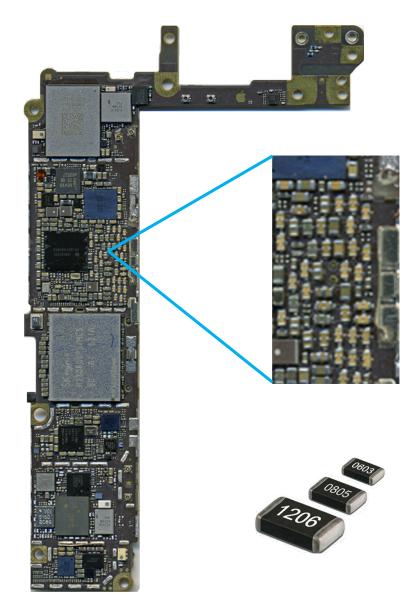
- Thermal noise: main contributor to resistor noise
- Current noise: declines when frequency is increased

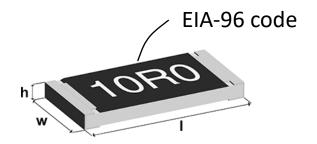

Temperature coefficient of resistance (TCR)

- Relationship between resistance and temperature
- ightharpoonup Measured in $ppm/^{\circ} C$


Power rating

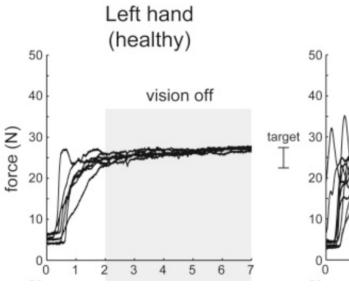
 Maximum energy a resistor can dissipate without damaging or altering the properties

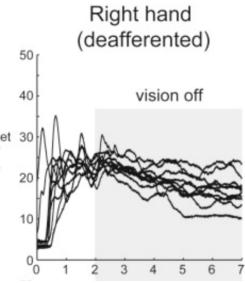

Color code for axial resistors



d	ı	power
1.8 ± 0.3	3.0 ± 0.3	1/8
2.5 ± 0.3	6.5 ± 0.5	1/4
3.2 ± 0.3	8.5 ± 0.5	1/2
5 ± 0.3	11 ± 1	1

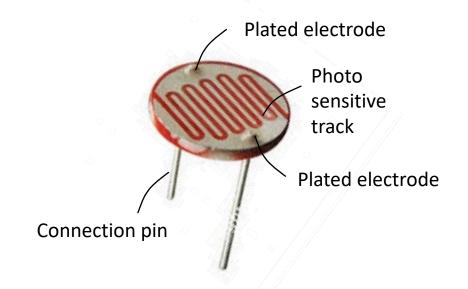
SMD resistors


Size code	Size / mils	power
0201	20 x 10	1/20
0402	40 x 20	1/16
0603	60 x 30	1/10
0805	80 x 50	1/8
1206	120 x 60	1/4
2010	200 x 100	3/4
2512	250 x 120	1


SMD = Surface mounted device

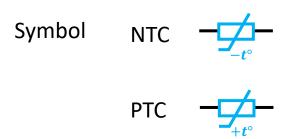
"Resistors" are useful

Force sensitive resistor


[Cortex 2016]

"Resistors" are useful

Photo resistor

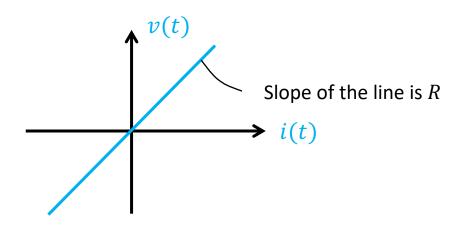


- Light dependent resistor (LDR)
- Sensitivity varies with the light wavelength

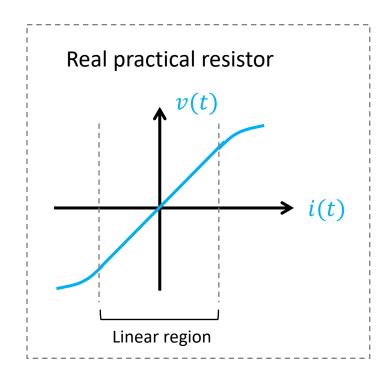
"Resistors" are useful

Thermistor

- Thermistor is temperature sensitive resistor
- Positive temperature coefficient (PTC) thermistor : resistance increases as the temperature increases
- Negative temperature coefficient (NTC) thermistor : resistance decreases as the temperature increases


Outlines

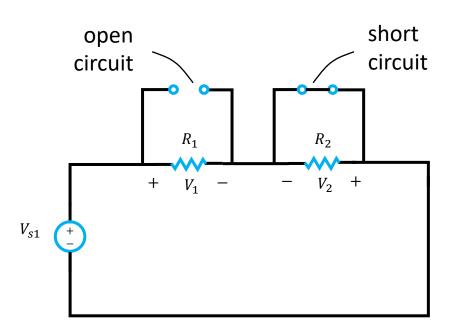
- Linear resistor & Ohm's law
 - Resistance & conductance
 - Ohm's law


Ohm's Law

Ohm's law states that the voltage across a resistance is directly proportional to the current flowing through it.

Mathematical relationship of Ohm's law: v(t) = Ri(t)

- The resistance measured in ohm (Ω)
- The resistance is the constant of proportionality between the voltage and the current

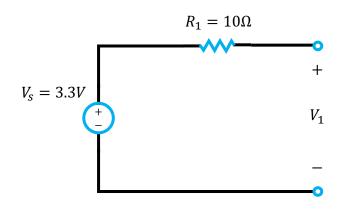


Open Circuit & Short Circuit

- Open circuit: no path for current flow
- $R = \infty$

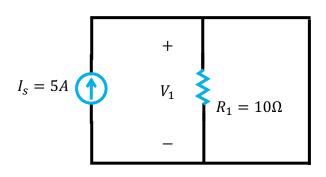
Short circuit: no voltage drop

open switch = open circuit



closed switch = short circuit

- *Note:
- open/short circuit is the basis for modeling a switch behavior.
- No perfect switches

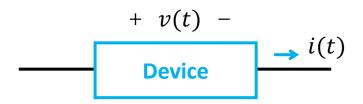

QUESTION: Find the voltage at V_1 in the circuit below:

ANSWER: $V_1 = 3.3V$

? How much current flows through R_1

QUESTION: Find the voltage across the resistor V_1 in the circuit below:

ANSWER: $V_1 = 0V$

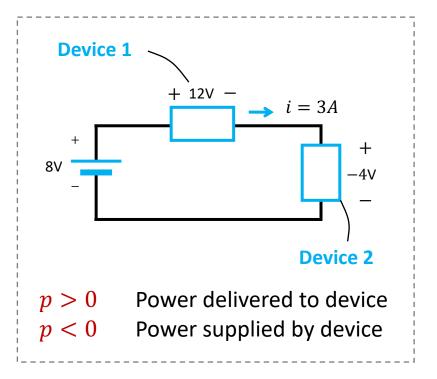

? What is the voltage difference across I_S

Outlines

- Linear resistor & Ohm's law
 - Resistance & conductance
 - Ohm's law
 - Open circuit & short circuit
- Power & energy

Power

The **POWER** delivered to or supplied by a device is the product of the voltage and the current



Instantaneous power

$$p(t) = v(t)i(t)$$

Average power

$$\bar{P} = \frac{1}{T} \int_{t_0}^{t_0 + T} p(t) dt$$

*Note: The average value of any periodic waveform can be computed by integrating the function over a complete period and dividing this result by the period

Power in dB

Decibel (dB) is a unitless measurement for expressing ratios

$$10log_{10}\frac{P}{1W}$$
 \rightarrow dB

$$10log_{10} \frac{P}{1mW} \rightarrow dBm$$

$$20log_{10}\frac{v}{1V}$$
 \rightarrow dBV

$$20log_{10}\frac{v}{1mV}$$
 \rightarrow dBmV

QUESTION: Assume the load of a transceiver is $R_L = 50\Omega$. The voltage measured at the output point is $V_o dBV$. Find the output power in dBm

The output power

$$P_{out} = \frac{V_{out}^2}{R_L}$$

$$= 10log_{10} \frac{P_{out}}{1mW} dBm$$

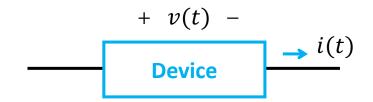
$$= 10log_{10} \frac{V_{out}^2}{R_L} \frac{1}{1mW} dBm$$

$$= \left(10log_{10} \frac{1}{R_L \times 1mW} + 20log_{10} V_{out}\right) dBm$$

$$= (13 + V_o dBV) dBm$$

Energy & Effective I/V

If a constant amount of power P is delivered over an interval T the **ENERGY** w supplied is

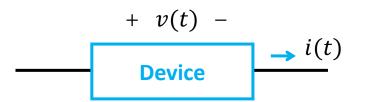

$$w = \int_0^T p(t)dt$$

EFFECTIVE VALUE is found by first determining the square of the current/voltage, then computing the average or mean value

$$v_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v^2(t) dt}$$

$$i_{rms} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} i^2(t) dt$$

Given the voltage $v(t) = V_P \cos(\omega t + \varphi_V)$ Given the current $i(t) = I_P \cos(\omega t + \varphi_I)$


Instantaneous power

$$p(t) = v(t)i(t) = V_P \cos(\omega t + \varphi_V) I_P \cos(\omega t + \varphi_I)$$
$$= \frac{1}{2} V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2} V_P I_P \cos(2\omega t + \varphi_V + \varphi_I)$$

Average power
$$\begin{split} \bar{P} &= \frac{1}{T} \int_{t_0}^{t_0 + T} p(t) dt \\ &= \frac{1}{T} \int_{t_0}^{t_0 + T} \left(\frac{1}{2} V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2} V_P I_P \cos(2\omega t + \varphi_V + \varphi_I) \right) dt \\ &= \frac{1}{2} V_P I_P \cos(\varphi_V - \varphi_I) \quad = \frac{V_P}{\sqrt{2}} \frac{I_P}{\sqrt{2}} \cos(\varphi_V - \varphi_I) \end{split}$$

Given the voltage $v(t) = V_P \cos(\omega t + \varphi_V)$

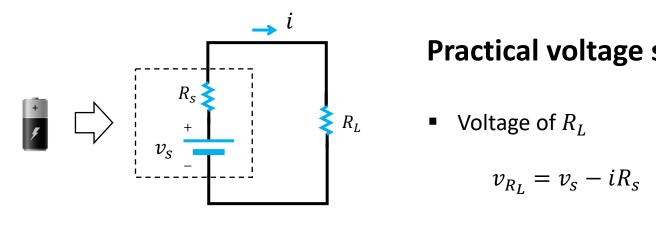
Given the current $i(t) = I_P \cos(\omega t + \varphi_I)$

Instantaneous power

$$p(t) = \frac{1}{2}V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2}V_P I_P \cos(2\omega t + \varphi_V + \varphi_I)$$

Average power

$$\bar{P} = \frac{V_P}{\sqrt{2}} \frac{I_P}{\sqrt{2}} \cos(\varphi_V - \varphi_I) = v_{rms} i_{rms} \cos(\varphi_V - \varphi_I)$$


Effective voltage

$$v_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v^2(t) dt} = \frac{V_P}{\sqrt{2}}$$

Effective current

$$i_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} i^2(t) dt} = \frac{I_P}{\sqrt{2}}$$

Maximum Power Transfer

Practical voltage source

$$v_{R_L} = v_{S} - iR_{S}$$

Power at the load R_L

$$\begin{split} P_L &= v_{R_L} i = (v_S - i R_S) i &= -R_S \left(i^2 - \frac{v_S}{R_S} i \right) = -R_S \left(i - \frac{1}{2} \frac{v_S}{R_S} \right)^2 + \frac{1}{4} \frac{v_S^2}{R_S} \\ &\leq \frac{1}{4} \frac{v_{S,rms}^2}{R_S} \quad \text{The maximum power being absorbed by the load} \end{split}$$

• When
$$R_S = R_L$$

$$P_L = P_{L,max} = \frac{1}{4} \frac{v_{S,rms}^2}{R_S}$$

Outlines

- Linear resistor & Ohm's law
 - Resistance & conductance
 - Ohm's law
 - Open circuit & short circuit
- Power & energy
 - Definition of power
 - Power in dB
 - Definition of energy
 - Effective current/voltage
 - Maximum power transfer
- KVL/KCL

Review: Lumped Matter Discipline (LMD)

 The rate of change of magnetic flux linked with any portion of the circuit must be zero for all time.

$$\oint E \cdot dl = -\frac{\partial \Phi_B}{\partial t} = 0$$

■ The rate of change of the charge at any node in the circuit must be zero for all time. A node is any point in the circuit at which two or more element terminals are connected using wires.

$$\int_{S_{\mathcal{X}}} J \cdot dS - \int_{S_{\mathcal{Y}}} J \cdot dS = \frac{\partial q}{\partial t} = 0$$

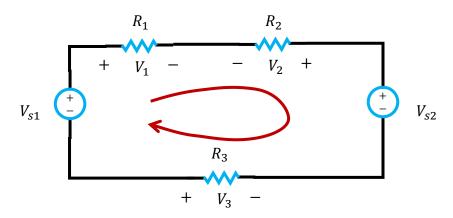
The signal timescales must be much larger than the propagation delay of electromagnetic waves through the circuit.

LMD:

The fundamental of circuit and system theory

Kirchhoff's Voltage Law (KVL)

 The rate of change of magnetic flux linked with any portion of the circuit must be zero for all time.

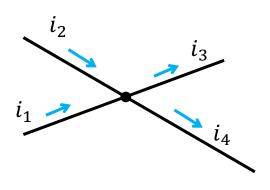

$$\oint E \cdot dl = -\frac{\partial \Phi_B}{\partial t} = 0$$

$$\sum_{n=1}^{N} v_n = 0$$

KVL: Sum of voltages around a closed path is zero

Sum of voltage drops = Sum of voltage rises

- Add up the voltages in a systematic clockwise movement around the loop
- Assign a positive sign to the voltage across an element if the (+) side of that voltage is encountered first, and assign a negative sign if the (-) side is encountered first

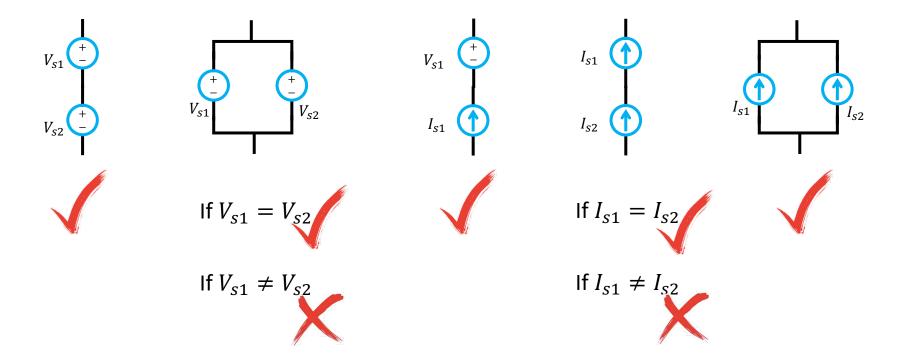

$$V_{s1} - V_1 + V_2 - V_{s2} + V_3 = 0$$

Kirchhoff's Current Law (KCL)

The rate of change of the charge at any node in the circuit must be zero for all time. A node is any point in the circuit at which two or more element terminals are connected using wires.

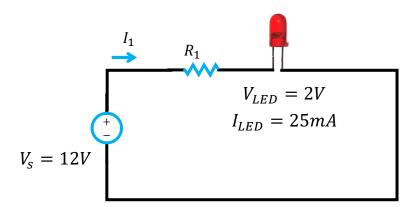
$$\int_{S_x} J \cdot dS - \int_{S_y} J \cdot dS = \frac{\partial q}{\partial t} = 0 \qquad \qquad \sum_{n=1}^{N} i_n = 0$$

KCL: Sum of currents entering a node is zero



$$i_1 + i_2 - i_3 - i_4 = 0$$

- * Note: sign convention in Engineering
- Assign a positive sign to current entering a node
- Assign a negative sign to current entering a node


Example 4: power source connection

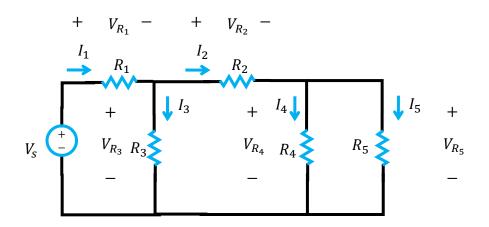
QUESTION: Find if the connection of the circuit is right or wrong

Example 5: Ballast resistor

QUESTION: Find if the resistance of R_1

A ballast resistor is used to limit the current through a device, and to prevent that it burns

According to KVL

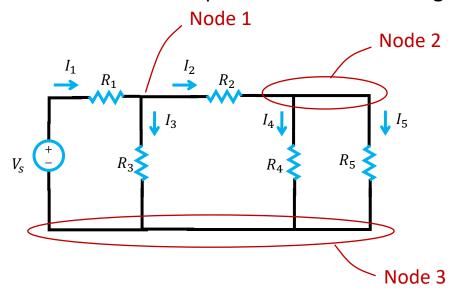

$$V_S - V_{R_1} - V_{LED} = 0$$

$$\Rightarrow V_{R_1} = 10V$$

According to Ohm's law

$$R_1 = \frac{V_{R_1}}{I_{LED}} = 40\Omega$$

QUESTION: Find the output current of the voltage source



Step1 define i and v

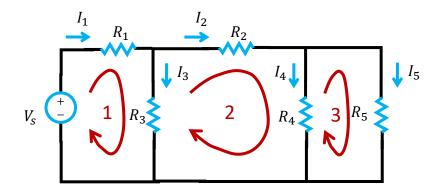
Step 2 According to Ohm's law

$$\begin{cases} V_{R_1} = I_1 R_1 \\ V_{R_1} = I_1 R_1 \end{cases}$$

QUESTION: Find the output current of the voltage source

According to KCL

$$\begin{cases} I_1 - I_2 - I_3 = 0 \\ I_2 - I_4 - I_5 = 0 \\ I_1 - I_3 - I_4 - I_5 = 0 \end{cases}$$


Step1 define i and v

Step 2 According to Ohm's law

$$\begin{cases} V_{R_1} = I_1 R_1 \\ V_{R_1} = I_1 R_1 \end{cases}$$

Step 3 Check the nodes

QUESTION: Find the output current of the voltage source

According to KCL

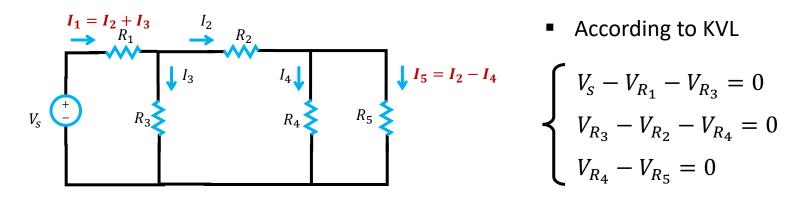
$$\begin{cases} I_1 - I_2 - I_3 = 0 \\ I_2 - I_4 - I_5 = 0 \\ I_1 - I_3 - I_4 - I_5 = 0 \end{cases} \begin{cases} V_S - V_{R_1} - V_{R_3} = 0 \\ V_{R_3} - V_{R_2} - V_{R_4} = 0 \\ V_{R_4} - V_{R_5} = 0 \end{cases}$$

According to KVL

$$\begin{cases} V_S - V_{R_1} - V_{R_3} = 0 \\ V_{R_3} - V_{R_2} - V_{R_4} = 0 \\ V_{R_4} - V_{R_5} = 0 \end{cases}$$

Step1 define i and v

Step 2 According to Ohm's law


$$\begin{cases} V_{R_1} = I_1 R_1 \\ V_{R_1} = I_1 R_1 \end{cases}$$

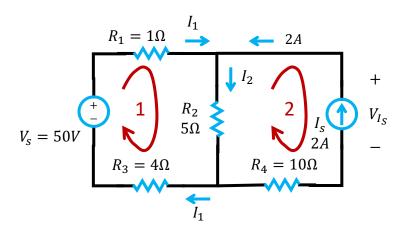
Step 3 Check the nodes

Step 4 Check the loops

Very friendly to numerical calculation!

QUESTION: Find the output current of the voltage source

According to KVL

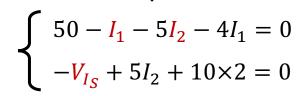

$$\begin{cases} V_S - V_{R_1} - V_{R_3} = 0 \\ V_{R_3} - V_{R_2} - V_{R_4} = 0 \\ V_{R_4} - V_{R_5} = 0 \end{cases}$$

$$\begin{bmatrix} R_1 & R_1 & R_3 \\ -R_2 & R_3 & -R_4 \\ -R_5 & 0 & R_4 + R_5 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} V_S \\ 0 \\ 0 \end{bmatrix}$$

 $\begin{bmatrix} R_1 & R_1 & R_3 \\ -R_2 & R_3 & -R_4 \\ -R_5 & 0 & R_4 + R_5 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} V_S \\ 0 \\ 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} V_S - (I_2 + I_3)R_1 - I_3R_3 = 0 \\ I_3R_3 - I_2R_2 - I_4R_4 = 0 \\ I_4R_4 - (I_2 - I_4)R_5 = 0 \end{bmatrix}$

3 equations in 3 unknowns

QUESTION: Find the output current of the voltage source


$$\begin{cases} 50 - I_1 - 5I_2 - 4I_1 = 0 \\ -V_{I_S} + 5I_2 + 10 \times 2 = 0 \end{cases}$$

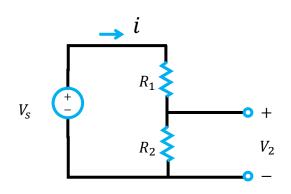
$$I_1 + 2 = I_2$$

3 equations in 3 unknowns

According to KVL

$$\begin{cases} V_{S} - V_{R_{1}} - V_{R_{2}} - V_{R_{3}} = 0 \\ -V_{I_{S}} + V_{R_{2}} + V_{R_{4}} = 0 \end{cases}$$

According to KCL


$$I_1 + 2 = I_2$$

Outlines

- Linear resistor & Ohm's law
 - Resistance & conductance
 - Ohm's law
 - Open circuit & short circuit
- Power & energy
 - Definition of power
 - Power in dB
 - Definition of energy
 - Effective current/voltage
 - Maximum power transfer
- KVL/KCL
- Equivalent circuit

Resistors in series

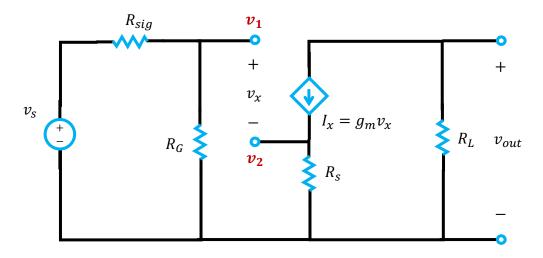
VOLTAGE DIVIDER

According to KVL $V_s = iR_1 + iR_2$

$$V_{S} = iR_{1} + iR_{2}$$

$$V_2 = iR_2 = \frac{R_2}{R_1 + R_2} V_S$$

Voltage divided over resistors


• Equivalent resistance, R_{eq} , (series) is sum of resistances

$$R_{eq} = \sum_{i=1}^{N} R_i$$

Voltage difference across a single resistance of resistors in series

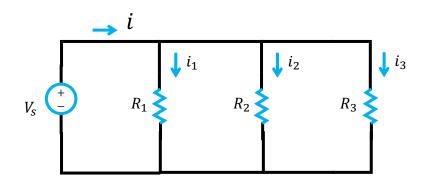
$$V_i = \frac{R_i}{R_{ea}} V_s$$

QUESTION: Find the output voltage on R_L

According to the rule of voltage divided over resistors

$$v_1 = \frac{R_G}{R_{sig} + R_G} v_s$$

According to Ohm's law $v_2 = R_s I_x$


$$v_2 = R_s I_x$$

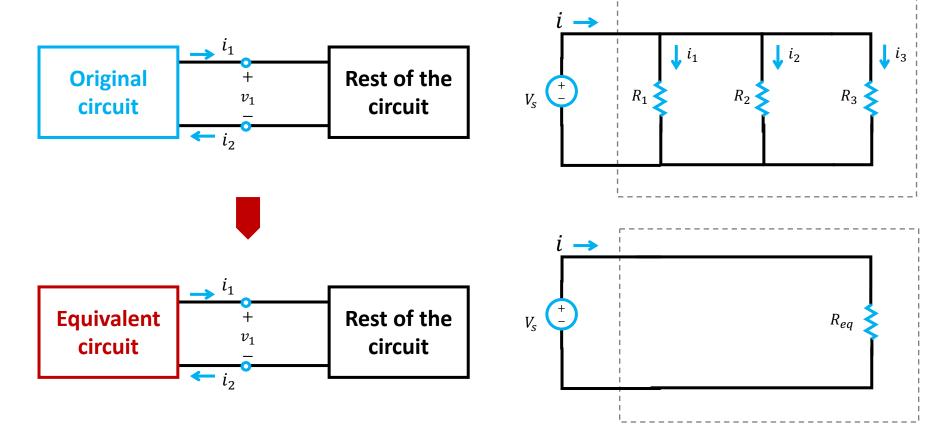
$$= R_s g_m v_x = R_s g_m (v_1 - v_2) \quad \blacktriangleright \quad v_2 = \frac{1}{1 + g_m R_s} v_1$$

According to Ohm's law, the voltage on R_L

$$v_{out} = -g_m v_x R_L$$

Resistors in parallel

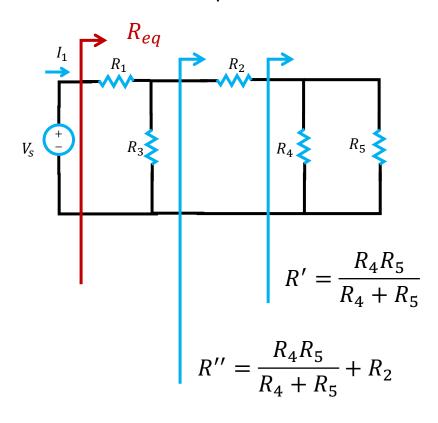
According to KCL


$$i = i_1 + i_2 + i_3 = \frac{V_S}{R_1} + \frac{V_S}{R_2} + \frac{V_S}{R_3}$$
$$= \frac{V_S}{R_{eq}}$$

- Equivalent resistance, R_{eq} , (series) is sum of resistances
- Current flowing through a single resistance of resistors in parallel

$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

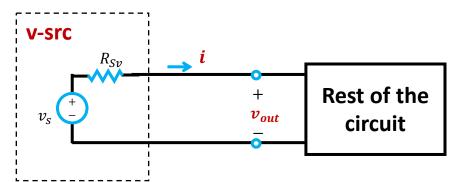
$$i_i = \frac{R_{eq}}{R_i} i_s$$

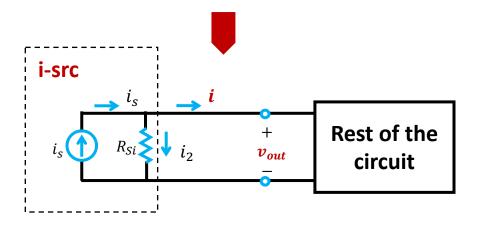

Equivalent circuits

- If the current & voltage at nodes are identical, the circuits are considered "equivalent"
- Identifying equivalent circuits simplifies analysis

QUESTION: Find the value of the equivalent resistance, R_{eq}

Find the output current of the voltage source


ANSWER:


$$R_{eq} = \frac{R_3 R^{\prime\prime}}{R_3 + R^{\prime\prime}} + R_1$$

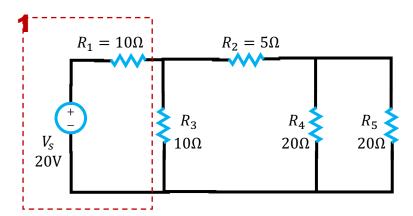
$$I_1 = \frac{V_S}{R_{eq}}$$

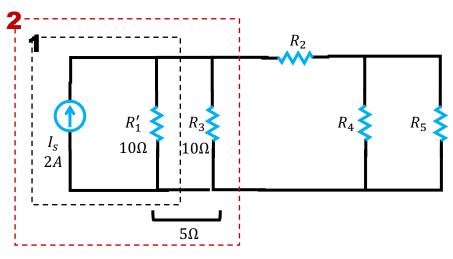
Source Transformation

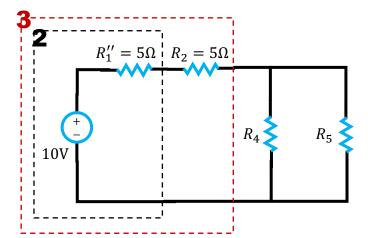
The goal of source transformation is to turn a voltage source into current source, and vice-versa

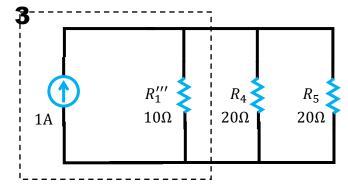
■ For the v-src, according to KVL

$$-v_s + iR_{Sv} + v_{out} = 0$$


■ For the i-src, according to KCL


$$\begin{cases} i_{S} = i + i_{2} \\ i_{2} = \frac{v_{out}}{R_{Si}} \end{cases}$$


$$If R_{Sv} = R_{Si} = R_S$$


$$v_s = i_s R_S$$

QUESTION: Find the current of R_5

ANSWER: $I_{R_5} = 0.25A$

? Shall we calculate the output current of \boldsymbol{V}_s using this method

Outlines

- Linear resistor & Ohm's law
 - Resistance & conductance
 - Ohm's law
 - Open circuit & short circuit
- Power & energy
 - Definition of power
 - Power in dB
 - Definition of energy
 - Effective current/voltage
 - Maximum power transfer
- KVL/KCL
- Equivalent circuit
 - Resistors in series/parallel
 - Source transformation

Reading tasks & learning goals

Reading tasks

- Basic Engineering Circuit Analysis (10th edition)
 - Chapter 2.1 2.6, 2.8, 2.10
 - Chapter 9.1, 9.2, 9.4, 9.5

Learning goals

- Be able to use Ohm's law for circuit analysis
- Be able to calculate power/energy/effective V/I of a circuit
- Be able to use KVL/KCL for circuit analysis
- Know how to combine resistors in series/parallel
- Know how to do source transformation
- Be able to analysis circuit containing dependent sources