习题讨论课02题目:极限与连续

一、连续与函数在一点处的极限

【定义】

f 在 x₀ 处连续:

- f 在 x_0 处有定义; (允许 f 仅在 x_0 处有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$|x - x_0| < \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

极限 $\lim_{x \to x_0} f(x) = A$:

- x_0 是 f 的定义域 D_f 的一个聚点, 即 f 在 x_0 的任意近旁有定义; (允许 f 在 x_0 处没有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$0 < |x - x_0| < \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - A| < \varepsilon.$$

注: 极限 $\lim_{x\to x_0}f(x)=A$ 是由 (任意) 临近 x_0 处 f 的函数值共同决定的, 与 x_0 处 f 的值无关。

单侧极限。右极限 $f(x_0+)=\lim_{x\to x_0^+}f(x)=A$: (类似定义左极限 $f(x_0-)=\lim_{x\to x_0^-}f(x)=A$)

- f 在 x_0 的右侧任意近旁有定义; (允许 f 在 x_0 处没有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$x_0 < x < x_0 + \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - A| < \varepsilon.$$

【联系】

设 x_0 是 f 的定义域 D_f 的一个聚点。则

• $\lim_{x \to x_0} f(x) = A$ 当且仅当

$$\tilde{f}(x) = \begin{cases} f(x), & x \neq x_0 \\ A, & x = x_0 \end{cases}$$

在 x_0 处连续。

•
$$f(x_0+) = \lim_{x \to x_0^+} f(x) = A \stackrel{\text{def}}{=} \mathbb{A} \mathbb{A}$$

$$\tilde{f}_{+}(x) = \begin{cases} f(x), & x > x_{0}, \\ A, & x = x_{0} \end{cases}$$

在 x_0 处右连续。

• $f(x_0-) = \lim_{x \to x_0^-} f(x) = A \stackrel{\text{def}}{=} \mathbb{A} \mathbb{A}$

$$\tilde{f}_{-}(x) = \begin{cases} f(x), & x < x_0 \\ A, & x = x_0 \end{cases}$$

在 x_0 处左连续。

如果 \tilde{f} 在 x_0 处连续, 而 f 在 x_0 处不连续, 则称 x_0 为 f 的**可去间断点**。 如果 $f(x_0+), f(x_0-)$ 都存在但不相等, 则称 x_0 为 f 的**跳跃间断点**。 可去间断点和跳跃间断点统称为**第一类间断点**。

如果 x_0 是 f 定义域的聚点, 但 f 在 x_0 处既不连续, 也不是第一类间断, 则称 x_0 为 f 的第二类间断点。

【连续和极限的运算性质】

- 线性: f,g 都在 x_0 处连续 $\Rightarrow \lambda f + \mu g$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \Rightarrow \lim_{x \to x_0} (\lambda f(x) + \mu g(x)) = \lambda A + \mu B.$
- 乘法: f, g 都在 x_0 处连续 $\Rightarrow fg$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \Rightarrow \lim_{x \to x_0} (f(x)g(x)) = AB.$
- 除法: f, g 都在 x_0 处连续,且 $g(x_0) \neq 0 \Rightarrow \frac{f}{g}$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \neq 0 \Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \text{ }$
- 复合 (换元): f 在 x_0 处连续, g 在 $f(x_0)$ 处连续 $\Rightarrow g \circ f$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = y_0, g$ 在 y_0 处连续 $\Rightarrow \lim_{x \to x_0} g(f(x)) = g(y_0)$ 。 $\lim_{x \to x_0} f(x) = y_0, \lim_{y \to y_0} g(x) = B \Rightarrow \lim_{x \to x_0} g(f(x)) = B$ 。 (这对吗?)

例 1. 讨论函数 $f(x) = \frac{x^2 - 3x + 2}{x^2 - x}$ 的连续性和间断点。

例 2. 设 $f_1, f_2, ..., f_n$ 是 I 上的连续函数。证明

$$g(x) = \max \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

例 3. 设 f 在区间 (a,b) 到区间 (α,β) 的严格增满射,则 f 是连续函数, f 的反函数 f^{-1} 也是连续函数。因此指数函数 a^x (在 $(-\infty,+\infty)$ 中) 是连续函数,幂 区数 x^α 和对数函数 $\log_a x$ 是区间 $(0,+\infty)$ 中的连续函数。

(任取X0在定义域内,用定义证

注: 如果把上述条件中的严格增改成单调(即还包括严格减、单调不增、单调不减),则 f 是连续函数。请读者自己给出证明。

例 4. 对任意 $\alpha > 0$, 证明 $\lim_{x \to 0^+} x^{\alpha} = 0$.

例 5. 对实数 α , 求极限 $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$ 。 $(\alpha$ 为无理数时,难度为 \bigstar)

_做一遍

二、三角函数

本节内容仅供学生自学阅读。

【三角函数的基本性质】

sin, cos 由以下性质唯一确定

- 1. \cos, \sin 定义域为 $(-\infty, +\infty)$;
- 2. $\cos 0 = \sin \frac{\pi}{2} = 1$, $\cos \pi = -1$;
- 3. 对任意 $x, y \in \mathbb{R}$,

$$\cos(y - x) = \cos x \cos y + \sin x \sin y.$$

4. 对任意 $0 < x < \frac{\pi}{2}$,

$$0 < \cos x < \frac{\sin x}{x} < \frac{1}{\cos x}.$$

【由上述基本性质推导 sin, cos 的其他性质】

在(3)中取 x = y, 并利用(2), 得到

$$1 = \cos^2 x + \sin^2 x. \tag{5}$$

由(5)并结合(2), 得到

$$\sin 0 = \cos \frac{\pi}{2} = \sin \pi = 0. \tag{6}$$

由
$$(6)$$
并结合 (3) ,得到 cos 是偶函数 (取 $y = 0$), (7)

以及
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \left($$
 取 $y = \frac{\pi}{2} \right)$,并且 $\cos x = \sin\left(\frac{\pi}{2} - x\right)$ 。 (8)

(3)中取
$$y = \pi$$
 并结合 (2,6), 得到 $\cos(\pi - x) = -\cos x$ 。 (9)

由
$$(9)$$
知 cos 是 2π 周期函数, 再结合 (8) 知 sin 是 2π 周期函数。 (10)

由
$$(8,9)$$
 可知 \sin 是奇函数。 (11)

由 (3,8) 可知

$$\sin(x+y) = \sin x \cos y + \cos x \sin y. \tag{12}$$

由 (7,11,3,12) 可得

$$\sin(x - y) = \sin x \cos y - \cos x \sin y \tag{13}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \tag{14}$$

并且

$$\sin u - \sin v = 2\sin\frac{u - v}{2}\cos\frac{u + v}{2},\tag{15}$$

$$\cos u - \cos v = -2\sin\frac{u-v}{2}\sin\frac{u+v}{2}.\tag{16}$$

若 $-\frac{\pi}{2} \le v < u \le \frac{\pi}{2}$, 则

$$0 < \frac{u-v}{2} \le \frac{\pi}{2}, \quad -\frac{\pi}{2} < \frac{u+v}{2} < \frac{\pi}{2},$$

因为 \cos 在 $\left[0,\frac{\pi}{2}\right)$ 上为正, 又 \cos 为偶函数, 所以

$$\cos\frac{u+v}{2} > 0.$$

因为 $\sin 在 \left(0, \frac{\pi}{2}\right]$ 上为正, 所以

$$\sin\frac{u-v}{2} > 0.$$

所以
$$\sin u > \sin v$$
,故 $\sin 在 \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 上严格增。 (17)

类似可证
$$\cos$$
 在 $[0,\pi]$ 上严格增。 (18)

由 (12,14,2,4) 可得 $\cos \frac{\pi}{3} = \frac{1}{2}$ 。

当 $0 < x < \frac{\pi}{3}$ 时,由(4)知

$$0 < \sin x < \frac{x}{\cos x} < \frac{x}{\cos \frac{\pi}{3}} = 2x,$$

再由 sin 是奇函数, 得到: 对任意 $|x| < \frac{\pi}{3}, |\sin x| \le 2|x|$ 。 所以 sin 在 x = 0 连续。 (19)

再由(4)和(20)知,
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 。 (21)

由(21)知

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4\left(\frac{x}{2}\right)^2} = \frac{1}{2}.$$
 (22)

三、函数在无穷远处的极限、数列极限

【定义】

• $\lim_{x \to +\infty} f(x) = A\left(\lim_{n \to +\infty} a_n\right)$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f \cap [N, +\infty) \Rightarrow |f(x) - A| < \varepsilon.$$

数列极限是这种极限的特殊情况, $f(n) = a_n$ 是数列的通项公式。

• $\lim_{x \to \infty} f(x) = A$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f \cap (-\infty, N] \Rightarrow |f(x) - A| < \varepsilon.$$

• $\lim_{x \to \infty} f(x) = A$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f, |x| > N \Rightarrow |f(x) - A| < \varepsilon.$$

【联系】

- $\lim_{x \to +\infty} f(x) = A \iff \lim_{y \to 0^+} f\left(\frac{1}{y}\right) = A$ 。 对 $\lim_{x \to -\infty} f(x)$, $\lim_{x \to \infty} f(x)$ 有类似结论。
- $\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$.

【相关概念】

• $y = kx + b \not\in x \to \pm \infty(\infty)$ 时 y = f(x) 的渐近线:

$$\lim_{x \to \pm \infty(\infty)} (f(x) - (kx + b)) = 0.$$

• 以上极限等价于

$$k = \lim_{x \to \pm \infty(\infty)} \frac{f(x)}{x}, \quad b = \lim_{x \to \pm \infty(\infty)} (f(x) - kx).$$

【极限的性质:与不等式的联系】

- 保序。设 $\lim_{x\to a} f(x) = A \ \pi \lim_{x\to a} g(x) = B \ \text{appear}$
 - 若在 a 附近总有 $f(x) \leq g(x)$, 则 $A \leq B$;
 - 若 A < B, 则在 a 附近总有 f(x) < g(x) 。注: 这条性质比上一条更重要。
- 夹挤定理。设 $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=A$ 存在。若在 a 附近总有 $f(x)\leq h(x)\leq g(x)$,则 $\lim_{x\to a}h(x)$ 存在,且 $\lim_{x\to a}h(x)=A$ 。

例 6. 设 $a_n > 0$ 满足, $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = A \in [0, +\infty]$ 。证明 $\lim_{n \to +\infty} \sqrt[n]{a_n} = A$.

用上述结论可以用于以下练习。

- 1. 设 a > 0. 求 $\lim_{n \to +\infty} \sqrt[n]{a}$.
- 3. $\Re \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n!}}$.

4.
$$\vec{x} \lim_{n \to +\infty} \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}}$$
.

例 7. 设
$$a>1$$
。则 $\lim_{x\to +\infty}\frac{x}{a^x}=0$, $\lim_{x\to +\infty}\frac{\log_a x}{x}=0$ 。

例 8. 求 $\lim_{n\to+\infty} \sqrt[n]{n}$ 。

例 9. 求

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} \right)$$

例 10. 求 $y = \frac{2x^2 - 3x + 2}{x + 1}$ 在 $x \to \pm \infty$ 时的渐近线。

例 11. 求 $y = \sqrt{x^2 - x + 1}$ 在 $x \to \pm \infty$ 时的渐近线。

例 12. ($\bigstar \star$) 设数列 { a_n } 满足

$$a_{m+n} \le a_m + a_n, \quad \forall m, n \ge 1,$$

且存在 α 使得对任意 n 都有 $a_n \geq \alpha n$ 。证明 $\lim_{n \to +\infty} \frac{a_n}{n} = \inf_{n \geq 1} \frac{a_n}{n}$ 。

四、涉及平均值的极限, Stolz定理

例 13. 设 $\lim_{n\to+\infty} a_n = A \in \mathbb{R} \cup \{\pm\infty\}$ 。证明

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

用类似办法可以证明以下更一般的结论。

例 14. (★)设 $\lim_{n\to+\infty} a_n = A, b_{ij} \geq 0$ 满足

$$b_{n1} + b_{n2} + \dots + b_{nn} = 1,$$

且对任意 N,

$$\lim_{n \to +\infty} (b_{n1} + b_{n2} + \dots + b_{nN}) = 0.$$

证明

$$\lim_{n \to +\infty} (b_{n1}a_1 + b_{n2}a_2 + \dots + b_{nn}a_n) = A.$$

注: 上述正数 $b_{n1}, b_{n2}, \ldots, b_{nn}$ 可以视为对 a_1, a_2, \ldots, a_n 做平均的权重。以下习题留作练习。

1. (★) 设
$$\lim_{n \to +\infty} a_n = A$$
. 求 $\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k$. 提示: 考虑 $b_{nk} = \frac{C_n^k}{2^n}$. 对任意 K , $\sum_{k=0}^K C_n^k$ 是关于 n 的一个 K 次多项式。

2. (★) 设
$$\lim_{n\to+\infty} a_n = A$$
. 求

$$\lim_{n\to+\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2}.$$

提示:考虑

$$\lim_{n\to+\infty}\frac{a_1+2a_2+\cdots+na_n}{1+2+\cdots+n}.$$

3.
$$(\bigstar)$$
 $\begin{tabular}{l} \begin{tabular}{l} \b$

$$\lim_{n \to +\infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n}.$$

提示: 不妨设所有 $b_n > 0$ 且 B > 0. 考虑

$$\lim_{n\to+\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{b_1+b_2+\cdots+b_n}.$$

例 15 (Stolz). (★) 设 $\{x_n\}$ 严格增无上界, $\lim_{n\to+\infty}\frac{y_n-y_{n-1}}{x_n-x_{n-1}}=A$ 。证明 $\lim_{n\to+\infty}\frac{y_n}{x_n}=A$ 。

以下习题作为练习。

$$1. \ (\bigstar) \ \mbox{ \" B} \ \alpha > -1 \ \mbox{o} \ \ \mbox{\vec{x}} \ \lim_{n \rightarrow +\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}.$$

2.
$$(\bigstar)$$
 $\aleph \lim_{n \to +\infty} \frac{1^{-1} + 2^{-1} + \dots + n^{-1}}{\ln n}$.