第9周习题课

一. 求极值

1 证明对任意 $x \in (0,2)$, 成立不等式 $4x \ln x \ge x^2 + 2x - 3$

证明: 令 $f(x) = 4x \ln x - x^2 - 2x + 3$,考虑 f(x) 在 (0, 2) 内的正负号与极值问题。先求驻点。 $f'(x) = 4 + 4 \ln x - 2x - 2$

令 f'(x) = 0,解出驻点 $x_0 = 1 \in (0,2)$,进一步考查两个单侧极限的情况。

$$\lim_{x \to 0^+} f(x) = 3 > 0 , \quad \lim_{x \to 2^-} f(x) = 8 \ln 2 - 5 > 0$$

又
$$f''(x) = \frac{4}{x} - 2$$
, $f''(x_0) = 2 > 0$, 因此 $f(1) = 0 = \min_{x \in (0,2)} f(x)$ 。

这意味着 $f(x) \ge 0$, 即原不等式成立。

2 求曲线
$$y = (x-2)^{5/3} - \frac{5}{9}x^2$$
 的凹凸区间与拐点。

解: (1)
$$y' = \frac{5}{3}(x-2)^{2/3} - \frac{10}{9}x$$
,

$$y'' = \frac{10}{9}(x-2)^{-1/3} - \frac{10}{9} = \frac{10}{9} \cdot \frac{1 - (x-2)^{1/3}}{(x-2)^{1/3}}.$$

- (2) y'' 的零点是 $x_1 = 3$, y'' 不存在的点是 $x_2 = 2$.
- (3) 列表讨论如下:

x	$(-\infty, 2)$	2	(2, 3)	3	(3,+∞)
f''(x)	_	不存在	+	0	1
曲线	\cap	拐点	U	拐点	\supset
y = f(x)		$(2,-\frac{20}{9})$		(3, -4)	

3 求函数
$$f(x) = \frac{(3x^2+1)(e^x-1)}{x-1}$$
 的渐近线。

$$\Re (1) \quad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{(3x^{2} + 1)(e^{x} - 1)}{x - 1} = -\infty,$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(3x^2 + 1)(e^x - 1)}{x - 1} = +\infty$$

故有垂直渐近线: x=1

(2)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{(3x^2 + 1)(e^x - 1)}{x - 1} = +\infty$$
,

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{(3x^2+1)(e^x-1)}{x-1} = +\infty , \text{ 所以, 无水平渐近线.}$$

(3)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(3x^2 + 1)(e^x - 1)}{x(x - 1)} = +\infty$$
,

所以, 当 $x \rightarrow +\infty$ 时, 没有斜渐近线。

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(3x^2 + 1)(e^x - 1)}{x(x - 1)} = -3 = a ,$$

$$b = \lim_{x \to -\infty} [f(x) - kx] = \lim_{x \to -\infty} [\frac{(3x^2 + 1)(e^x - 1)}{x - 1} + 3x]$$

有斜渐近线: y = -3(x+1)。

二. 不等式证明题

4 设
$$x > 0$$
,证明不等式 $\frac{x}{x^2 + 2x + 2} < \arctan(x+1) - \frac{\pi}{4} < \frac{x}{2}$ 。

$$f'(x) = (2x+2)\arctan(x+1) - \frac{\pi}{4}(2x+2)$$
$$= (2x+2)[\arctan(x+1) - \frac{\pi}{4}] > 0$$

于是当x > 0时 f(x) > 0, 即原左侧不等式成立。

$$\Leftrightarrow \quad \varphi(x) = \arctan(x+1) - \frac{\pi}{4} - \frac{x}{2}, \quad \varphi(0) = 0 ,$$

$$\varphi'(x) = \frac{1}{1 + (x+1)^2} - \frac{1}{2} < 0, \implies \varphi(x) < 0$$

即原右侧不等式成立。

5 证明: 当
$$x \in (0,1)$$
时, $(1+x)\ln^2(1+x) < x^2$

证明:

$$f(x) = (1+x)\ln^2(1+x) - x^2$$

$$f'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$

$$f''(x) = \frac{2[\ln(1+x) - x]}{1+x}$$

显然 $\ln(1+x)-x<0$, $x\in(0,1)$, 因此 f''(x)<0, $x\in(0,1)$, f'(x) 为单调降函数。

因为 f'(0) = 0, f'(x) < 0, $x \in (0,1)$, f(x) 为单调降函数。

因为 f(0) = 0,所以 $f(x) < 0, x \in (0,1)$,即当 $x \in (0,1)$ 时, $(1+x) \ln^2(1+x) < x^2$ 。

6 e < a < b, 求证: $a^b > b^a$ 。

证明: $F(x) = x \ln a - a \ln x$, e < a < x,

$$F'(x) > 0$$
, $F(a) = 0$

$$F(x) > 0$$
, $x > a$

 $a^b > b^a$.

三. 泰勒公式证明题

7 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,证明 $\exists \xi \in (a,b)$ 使得

$$\frac{f(x) - f(a)}{\frac{x - a}{x - b}} - \frac{f(b) - f(a)}{\frac{b - a}{x - b}} = \frac{1}{2}f''(\xi)$$

证明: 记 $F(x) = \frac{f(x) - f(a)}{x - a}$, 则

$$\frac{f(x) - f(a)}{x - a} - \frac{f(b) - f(a)}{b - a} = \frac{F(x) - F(b)}{x - b} = F'(\eta), \quad \eta \in (x, b),$$

$$F'(\eta) = \frac{f'(\eta)(\eta - a) - (f(\eta) - f(a))}{(\eta - a)^2}$$

f(a)在 η 点的 Taylor 公式为

$$f(a) = f(\eta) + f'(\eta)(a - \eta) + \frac{1}{2}f''(\xi)(a - \eta)^2, \quad \xi \in (a, \eta) \subset (a, b)$$
$$F'(\eta) = \frac{f'(\eta)(\eta - a) - (f(\eta) - f(a))}{(\eta - a)^2} = \frac{1}{2}f''(\xi)$$

8 设 f''(x) 在 (a,b) 内连续, $x_0, x_0 + h \in (a,b)$, $f''(x_0) \neq 0$,

$$f(x_0 + h) = f(x_0) + hf'(x_0 + \theta h), \quad \theta \in (0,1)$$

求证: $\lim_{h\to 0}\theta = \frac{1}{2}$.

证明: $f(x_0 + h) = f(x_0) + hf'(x_0 + \theta h)$,

$$f'(x_0 + \theta h) = f'(x_0) + \theta h f'(x_0 + \xi \theta h), \quad \xi \in (0,1), \quad \text{A.}$$

$$f(x_0 + h) = f(x_0) + h[f'(x_0) + \theta h f'(x_0 + \xi \theta h)]$$

由 Taylor 公式, $f(x_0+h)=f(x_0)+hf'(x_0)+\frac{1}{2}h^2f''(x_0+\eta h)$, $\eta\in(0,1)$, 故

$$\theta f'(x_0 + \xi \theta h) = \frac{1}{2} f''(x_0 + \eta h)$$

而 f''(x) 在 (a,b) 内连续, $x_0, x_0 + h \in (a,b)$, $f''(x_0) \neq 0$, 令 $h \to 0$ 可得 $\lim_{h \to 0} \theta = \frac{1}{2}$ 。

9 设 f(x) 三阶可导,且 $f(x+h)=f(x)+f'(x)h+\frac{1}{2}f''(x+\theta h)h^2$,其中 $0<\theta<1$,且 $f'''(x)\neq 0$,求证 $\lim_{h\to 0}\theta=\frac{1}{3}$ 。

证明:
$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(\xi)h^3$$

 $= f(x) + f'(x)h + \frac{1}{2}f''(x+\theta h)h^2$
 $\frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(\xi)h^3 = \frac{1}{2}f''(x+\theta h)h^2$
 $f''(x) + \frac{1}{2}f'''(\xi)h = f''(x+\theta h)$

$$\frac{1}{3}f'''(\xi) = \frac{f''(x+\theta h) - f''(x)}{\theta h} \cdot \theta$$

$$\Leftrightarrow h \to 0, \lim_{h \to 0} \theta = \frac{1}{3}.$$

10 (第 4 章总复习题题 11, p.125) 设函数 f(x) 在闭区间 [0,1] 上二阶可导,且 $f(0) = 0 = f(1) \text{ 。 进一步假设 min} \{ f(x), x \in [0,1] \} = -1 \text{ 。证明存在} \xi \in (0,1), 使得$ $f''(\xi) \geq 8$ 。

证明: 设 f(x) 在点 $x_0 \in (0,1)$ 处取得最小值,则 $f(x_0) = -1$ 且 $f'(x_0) = 0$ 。将函数值 f(0) = 0 和 f(1) = 0 在点 x_0 处作 Taylor 一阶展开,带 Lagrange 余项,则有

$$0 = f(0) = f(x_0) + f'(x_0)(0 - x_0) + \frac{1}{2}f''(\eta_1)(0 - x_0)^2, \quad \eta_1 \in (0, x_0),$$

$$0 = f(1) = f(x_0) + f'(x_0)(1 - x_0) + \frac{1}{2}f''(\eta_2)(1 - x_0)^2, \quad \eta_2 \in (x_0, 1) \circ$$

于是我们就得到 $\frac{1}{2}f''(\eta_1){x_0}^2=1$ 和 $\frac{1}{2}f''(\eta_2)(1-x_0)^2=1$ 。进一步由此得

$$\frac{1}{2}[f''(\eta_1) + f''(\eta_2)] = \frac{1}{x_0^2} + \frac{1}{(1 - x_0)^2} .$$

一方面,上式左边是平均值 $\frac{1}{2}[f''(\eta_1)+f''(\eta_2)]$,介于两个值 $f''(\eta_1)$ 和 $f''(\eta_2)$ 之间。根据 Darboux 定理(导数介值定理)可知,存在一点 ξ 介于 η_1 和 η_2 之间,使得

 $f''(\xi) = \frac{1}{2} [f''(\eta_1) + f''(\eta_2)]$ 。另一方面我们对右边可作如下估计:

$$\frac{1}{x_0^2} + \frac{1}{(1 - x_0)^2} \ge \min \left\{ \frac{1}{\lambda^2} + \frac{1}{(1 - \lambda)^2}, \lambda \in (0, 1) \right\} .$$

不难证明,上述不等式左边当 $\lambda=1/2$ 时取得最小值8。这就证明了存在 $\xi\in(0,1)$,使得 $f''(\xi)\geq 8$ 。证毕。

11 证明: 方程 $x^n + x^{n-1} + \dots + x = 1$ (n > 1) 在 (0,1) 内必有唯一实根 x_n ,并求 $\lim_{n \to \infty} x_n$ 。证明: 记 $F_n(x) = x^n + x^{n-1} + \dots + x - 1$, $F_n(0) = -1$, $F_n(1) = n - 1$,由连续函数介值定理可知, $F_n(x)$ 在在 (0,1) 内必有一实根。

$$F'_n(x) = nx^{n-1} + \dots + 1 > 0$$
,故 $F_n(x)$ 在在(0,1) 内必有唯一实根 x_n 。

$$x_n^n + x_n^{n-1} + \dots + x_n = 1$$

$$x_{n-1}^{n-1} + x_{n-1}^{n-2} + \dots + x_{n-1} = 1$$

相减,
$$x_n^n + [(x_n^{n-1} + \dots + x_n) - (x_{n-1}^{n-1} + x_{n-1}^{n-2} + \dots + x_{n-1})] =$$

$$x_n^n + (x_n - x_{n-1})Q = 0$$

其中Q的各项都为正,故 $x_n - x_{n-1} < 0$, $\{x_n\}$ 单调降,有下界0,故收敛。设 $\lim_{n \to \infty} x_n = A$,

$$\frac{x_n(1-x_n^{\ n})}{1-x_n} = 1$$

$$\frac{A}{1-A} = 1, \quad A = \frac{1}{2}$$

12 设 $f_n(x) = \sin x + \sin^2 x + \dots + \sin^n x$, 证明

(I)
$$\forall n \in \square^+$$
, $f_n(x) = 1$ 在 $\left(\frac{\pi}{6}, \frac{\pi}{2}\right]$ 内有且只有一个根;

(II) 设
$$x_n \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right]$$
 是 $f_n(x) = 1$ 的根,则 $\lim_{n \to \infty} x_n = \frac{\pi}{6}$ 。

证明: (I) 令 $F_n(x) = f_n(x) - 1$, 则 $F_n(\frac{\pi}{2}) \ge 0$, $F_n(\frac{\pi}{6}) = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} - 1 < 0$, 所以存在 $\xi \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right], F_n(\xi) = 0$ 。

$$F_n'(x) = \cos x + 2\sin x \cos x + \dots + n\sin^{n-1}x\cos x > 0, x \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right], \text{ fill } F_n(x) \stackrel{\text{def}}{=} \left(\frac{\pi}{6}, \frac{\pi}{2}\right]^{\text{pre}} \text{ fill } F_n(x) \stackrel{\text{def}}{=} \left(\frac{\pi}{6}, \frac{\pi}{2}\right) \stackrel{\text{def}}{=} \left(\frac{\pi}{6}$$

单调增, $F_n(x)$ 在 $\left(\frac{\pi}{6}, \frac{\pi}{2}\right]$ 只有一个零点。

(II) 设 $x_n \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right]$ 是 $f_n(x) = 1$ 的根,因为 $f_n(x) > f_{n-1}(x)$,所以 $x_{n-1} > x_n$, $\{x_n\}$ 单调减且

有下界,
$$\{x_n\}$$
收敛,记 $\lim_{n\to\infty} x_n = A$,

$$1 = \sin x_n + \sin^2 x_n + \dots + \sin^n x_n = \frac{\sin x_n (1 - \sin^n x_n)}{1 - \sin x_n}$$

两边取极限,
$$1 = \frac{\sin A}{1 - \sin A}$$
, $\sin A = \frac{1}{2}$, $A = \frac{\pi}{6}$ 。

13 设函数 f(x) 在 (0,1) 内具有连续的三阶导数,且 f(0) = 1, f(1) = 2, $f'\left(\frac{1}{2}\right) = 0$,证明在

(0,1) 内至少存在一点 ξ , 使

$$|f'''(\xi)| \ge 24$$

证明:
$$f(0) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(0 - \frac{1}{2}\right) + \frac{1}{2!}f''\left(\frac{1}{2}\right)\left(0 - \frac{1}{2}\right)^2 + \frac{1}{3!}f'''(\xi_1)\left(0 - \frac{1}{2}\right)^3$$

$$f(1) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(1 - \frac{1}{2}\right) + \frac{1}{2!}f''\left(\frac{1}{2}\right)\left(1 - \frac{1}{2}\right)^2 + \frac{1}{3!}f'''(\xi_2)\left(1 - \frac{1}{2}\right)^3$$

两式相减,得

$$f(1) - f(0) = 1 = \frac{1}{48} [f'''(\xi_1) + f'''(\xi_2)]$$

所以在(0,1)内至少存在一点 ξ ,使 $|f'''(\xi)| \ge 24$.

14 设 f(x) 在 $(a,+\infty)$ 内可导,如果 $\lim_{x\to +\infty} [f(x)+xf'(x)\ln x]=l$,求证 $\lim_{x\to +\infty} f(x)=l$ 。

证明:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x) \ln x}{\ln x} = \lim_{x \to +\infty} \left[f(x) + x f'(x) \ln x \right] = l$$

15 设f在[a,b]二阶可导,求证存在 $x_0 \in (a,b)$,使得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(x_0)$$

证明:
$$f(a) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(a - \frac{a+b}{2}\right) + \frac{1}{2}f''(x_1)\left(a - \frac{a+b}{2}\right)^2$$

$$f(b) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(b - \frac{a+b}{2}\right) + \frac{1}{2}f''(x_2)\left(b - \frac{a+b}{2}\right)^2$$

相加,
$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{8} \left[f''(x_1) + f''(x_2)\right]$$
。

由导函数的介值定理,存在 $x_0 \in (a,b)$,使得 $f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(x_0)$ 。

16 设 f 在 [a,b] 一阶可导,在 (a,b) 二阶可导,且满足 f'(a) = f'(b) = 0 ,求证存在 $x_0 \in (a,b)$,使得

$$|f''(x_0)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

证明:
$$f(x) = f(a) + \frac{1}{2} f''(x_1)(x-a)^2$$

$$f(x) = f(b) + \frac{1}{2}f''(x_2)(x-b)^2$$

相减,
$$\frac{1}{2}[f''(x_1)(x-a)^2-f''(x_2)(x-b)^2]=f(b)-f(a)$$

$$\frac{1}{8} [f''(x_1) - f''(x_2)](b - a)^2 = f(b) - f(a)$$

$$f''(x_1) - f''(x_2) = \frac{8}{(b-a)^2} [f(b) - f(a)]$$

若
$$|f''(x_1)| < \frac{4}{(b-a)^2} |f(b)-f(a)|, |f''(x_2)| < \frac{4}{(b-a)^2} |f(b)-f(a)|,$$

则 $|f''(x_1)-f''(x_2)| < \frac{8}{(b-a)^2}|f(b)-f(a)|$,矛盾。故存在 $x_0 \in (a,b)$,使得

$$|f''(x_0)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

17 设
$$f \in C^2[a,b]$$
, 且 $f(a) = f(b) = 0$, 试证

$$\max_{a \le x \le b} |f(x)| \le \frac{1}{8} (b-a)^2 \max_{a \le x \le b} |f''(x)|,$$

(2)
$$\max_{a \le x \le b} |f'(x)| \le \frac{1}{2} (b-a) \max_{a \le x \le b} |f''(x)|$$

证明: (1) 不妨设 f(x) 不恒为零,并设 $|f(x_0)| = \max_{a < x < b} |f(x)|$,则 $f'(x_0) = 0$,

$$f(x) = f(x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$$

$$0 = f(a) = f(x_0) + \frac{1}{2}f''(\xi_1)(a - x_0)^2$$

$$0 = f(b) = f(x_0) + \frac{1}{2}f''(\xi_2)(b - x_0)^2$$
(2)

如果 $x_0 \in \left(a, \frac{a+b}{2}\right)$,由(1)式可得 $\left|f(x_0)\right| = \max_{a \le x \le b} \left|f(x)\right| \le \frac{1}{8}(b-a)^2 \max_{a \le x \le b} \left|f''(x)\right|$;如果

$$x_0 \in \left(\frac{a+b}{2}, b\right)$$
, 由 (2) 式可得 $|f(x_0)| = \max_{a \le x \le b} |f(x)| \le \frac{1}{8} (b-a)^2 \max_{a \le x \le b} |f''(x)|$ 。

(1) 设
$$|f'(x_0)| = \max_{0 \le x \le h} |f'(x)|$$
,

$$0 = f(a) = f(x_0) + f'(x_0)(a - x_0) + \frac{1}{2}f''(\xi_1)(a - x_0)^2$$

$$0 = f(b) = f(x_0) + f'(x_0)(b - x_0) + \frac{1}{2}f''(\xi_2)(b - x_0)^2$$

相减, $|f'(x_0)(b-a)| = \frac{1}{2} \max_{a \le x \le b} |f''(x)| [(b-x_0)^2 + (a-x_0)^2] \le \frac{1}{2} \max_{a \le x \le b} |f''(x)| (b-a)^2$ 。 故

$$\max_{a \le x \le b} |f'(x)| \le \frac{1}{2} (b-a) \max_{a \le x \le b} |f''(x)|.$$

18 设 f(x) 在 $[x_1, x_2]$ 可导, $0 < x_1 < x_2$, 证明 $\exists \xi \in (x_1, x_2)$, 使

$$\frac{1}{x_2 - x_1} \begin{vmatrix} x_1 & x_2 \\ f(x_1) & f(x_2) \end{vmatrix} = f(\xi) - \xi f'(\xi)$$

证明: 记 $F(x) = \frac{f(x)}{x}$, $G(x) = \frac{1}{x}$, Cauchy 中值定理得

$$\frac{F(x_2)-F(x_1)}{G(x_2)-G(x_1)}=\frac{F'(\xi)}{G'(\xi)},$$

代入即可。

19 设 f(x) 二阶导数存在且连续, $c \in (a,b)$,证明在(a,b)内至少存在一点 ξ ,使得

$$\frac{f(a)}{(a-b)(a-c)} + \frac{f(c)}{(c-a)(c-b)} + \frac{f(b)}{(b-a)(b-c)} = \frac{1}{2}f''(\xi)$$

证明:
$$f(a) = f(c) + f'(c)(a-c) + \frac{1}{2}f''(\xi_1)(a-c)^2$$

 $f(b) = f(c) + f'(c)(b-c) + \frac{1}{2}f''(\xi_2)(b-c)^2$

代入,

左=
$$\frac{1}{2}$$
 $\left\{f''(\xi_1)\frac{a-c}{a-b}+f''(\xi_2)\frac{b-c}{b-a}\right\}$ 。

如果 $f''(\xi_1) = f''(\xi_2)$, 则已证毕; 如果 $f''(\xi_1) \neq f''(\xi_2)$, 不妨假设 $f''(\xi_1) < f''(\xi_2)$, 则

$$f''(\xi_1) \le \left\{ f''(\xi_1) \frac{a-c}{a-b} + f''(\xi_2) \frac{b-c}{b-a} \right\} \le f''(\xi_2)$$

由导函数的介值定理,存在 $\xi \in (a,b)$ 使得 $\left\{f''(\xi_1)\frac{a-c}{a-b} + f''(\xi_2)\frac{b-c}{b-a}\right\} = f''(\xi)$,证毕。

20 已知 f(x) 在 a 的 δ 邻域内四阶可导,且 $\left|f^{(4)}(x)\right| \leq M$,设 $0 < h < \delta$,证明

$$\left| f''(a) - \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} \right| \le \frac{M}{12}h^2$$

证明:
$$f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \frac{1}{6}f'''(a)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$

$$f(a-h) = f(a) - f'(a)h + \frac{1}{2}f''(a)h^2 - \frac{1}{6}f'''(a)h^3 + \frac{1}{24}f^{(4)}(\xi_2)h^4$$

代入左式,

21 设 f(x), g(x)在 $(-\infty, +\infty)$ 有定义, f'(x), f''(x)存在,且满足

$$f''(x) + f'(x)g(x) - f(x) = 0$$

若 f(a) = f(b) = 0, a < b ,是 f(x) 的两个相邻的零点,证明在 [a,b] 上, $f(x) \equiv 0$ 。 证明:如果 f(x) 不恒为 0,至少存在一点 x_1 使得 $f(x_1) \neq 0$ 。不妨假设 $f(x_1) > 0$ 。 f(x) 在 [a,b] 上有最大值 $f(x_0) \geq f(x_1) > 0$ 。因为 f(a) = f(b) = 0 , $x_0 \in (a,b)$, $f(x_0)$ 为极大值。代入 $f''(x_0) + f'(x_0)g(x_0) - f(x_0) = 0$, $f''(x_0) = f(x_0) > 0$,与 $f(x_0)$ 为极大值矛盾。所以在 [a,b] 上, $f(x) \equiv 0$ 。