习题课(第4周)数列,实数

- 1. 设 A, B 均是由**非负实数**构成的有界数集,定义 $AB = \{xy \mid x \in A, y \in B\}$ 。证明:
 - (1) $\sup AB = \sup A \cdot \sup B$; (2) $\inf AB = \inf A \cdot \inf B$

证明: (1) 设 $a = \sup A, b = \sup B$,若a = 0或b = 0,则由条件: A, B均是由**非负实数**构成的有界数集,可知 $A = \{0\}$ 或 $B = \{0\}$,结论显然成立.

下面设a, b>0。

由确界的定义, $\forall x \in A, y \in B$ 均有 $0 \le x \le a, 0 \le y \le b$,因此 $0 \le xy \le ab$,即ab 是集合 AB 的一个上界。

另一方面
$$\forall \varepsilon > 0$$
, $\exists x_{\varepsilon} \in A, y_{\varepsilon} \in B$, 使得 $x_{\varepsilon} > a - \frac{\varepsilon}{a+b}, y_{\varepsilon} > b - \frac{\varepsilon}{a+b}$, 因此
$$x_{\varepsilon} y_{\varepsilon} > (a - \frac{\varepsilon}{a+b})(b - \frac{\varepsilon}{a+b}) = ab - \frac{\varepsilon}{a+b}(a+b) + (\frac{\varepsilon}{a+b})^2 > ab - \varepsilon$$

注: (I) $\varepsilon > 0$,所以实数 $\frac{\varepsilon}{a+b} > 0$,由确界的定义, $\exists x_{\varepsilon} \in A$,使得 $x_{\varepsilon} > a - \frac{\varepsilon}{a+b}$ 。 (II) (2) 的证明中,也要用到

$$\forall \varepsilon > 0 \,,\,\,\, 对于\frac{\varepsilon}{a+b},\,\exists x_\varepsilon \in A, y_\varepsilon \in B \, 使得 \, x_\varepsilon < a + \frac{\varepsilon}{a+b}, y_\varepsilon < b + \frac{\varepsilon}{a+b}$$
的技巧。

(2) 略

(III) 本题若没有条件"A,B均是由**非负实数**构成的有界数集",会发生什么情况?

2. 设 A, B 均是非空有界数集,定义 $A+B = \{x+y \mid x \in A, y \in B\}$ 。证明:

(1)
$$\inf(A+B) = \inf A + \inf B$$
; (2) $\sup(A+B) = \sup A + \sup B$

证明: 仅证(1):(2)的证法类似于(1)。

设 $a = \inf A, b = \inf B$,由确界的定义, $\forall x \in A, y \in B$ 均有 $x \ge a, y \ge l$,因此 $x + y \ge a + l$,即 a + b 是集合 A + B 的一个下界;

另一方面由确界的定义,
$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in A, y_{\varepsilon} \in B$$
,使得 $x_{\varepsilon} < a + \frac{\varepsilon}{2}, y_{\varepsilon} < b + \frac{\varepsilon}{2}$,因此

 $x_{\varepsilon} + y_{\varepsilon} < a + b + \varepsilon$, $\mathbb{P}\inf(A + B) = a + b = \inf A + \inf B$.

3.
$$\forall k > 0, a > 1$$
, 证明: $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.

证明: (1) 设k=1, 记 $\delta=a-1>0$, 则

$$\frac{n^{k}}{a^{n}} = \frac{n}{(1+\delta)^{n}} = \frac{n}{1+n\delta + \frac{1}{2}n(n-1)\delta^{2} + \dots + \delta^{n}} \le \frac{n}{\frac{1}{2}n(n-1)\delta^{2}} = \frac{2}{(n-1)\delta^{2}}$$

.....

(2)
$$k > 0$$
, $\frac{n^k}{a^n} = \left(\frac{n}{(a^{-k})^n}\right)^k$, $\overrightarrow{m} k > 0$ $a > 1$, $\overrightarrow{m} = \lim_{n \to \infty} \left(\frac{n}{(a^{-k})^n}\right)^k = \left(\lim_{n \to \infty} \frac{n}{(a^{-k})^n}\right)^k = \left(\lim_{n \to \infty} \frac{n}{(a^{-k})^n}\right)^k = 0$.

4. (1) 证明:数列
$$\left\{ \left(1 + \frac{1}{n}\right)^{n+1} \right\}$$
单调减;

(2) 证明: 数列
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 收敛;

(3) 求数列
$$\left\{ \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right\}$$
 的极限。

解: (1)
$$\left(1+\frac{1}{n-1}\right)^n \left(\frac{n}{n+1}\right)^n = \left(\frac{n}{n-1}\right)^n \left(\frac{n}{n+1}\right)^n = \left(1+\frac{1}{n^2-1}\right)^n > 1+\frac{n}{n^2-1} > 1+\frac{1}{n}$$

所以
$$\left(1+\frac{1}{n-1}\right)^n > \left(1+\frac{1}{n}\right)\left(\frac{n+1}{n}\right)^n = \left(1+\frac{1}{n}\right)^{n+1}$$
, 数列 $\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$ 单调减;

$$(2) \quad a_{n+1} - a_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} - \ln(n+1)\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n\right)$$

$$= \frac{1}{n+1} - \ln \frac{n+1}{n} = \frac{1}{n+1} \left(1 - (n+1)\ln\left(1 + \frac{1}{n}\right)\right)$$

$$= \frac{1}{n+1} \left[1 - \ln\left(1 + \frac{1}{n}\right)^{n+1}\right]$$

由 (1), 数列
$$\left\{ \left(1 + \frac{1}{n}\right)^{n+1} \right\}$$
 单调减,且 $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+1} = e$,所以 $\left(1 + \frac{1}{n}\right)^{n+1} > e$,

 $a_{n+1} - a_n < 0$,数列 $\{a_n\}$ 单调减。下面证明数列 $\{a_n\}$ 有界。

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \left(\sum_{k=2}^{n} \left[\ln k - \ln(k-1)\right]\right)$$

$$=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\sum_{k=2}^{n}\ln\left(1+\frac{1}{k-1}\right).$$

因为数列
$$\left\{\left(1+\frac{1}{n}\right)^n\right\}$$
单调增,趋于 e ,所以 $\ln\left(1+\frac{1}{n}\right)^n<1$, $\ln\left(1+\frac{1}{n}\right)<\frac{1}{n}$ 。故

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \sum_{k=2}^{n} \ln\left(1 + \frac{1}{k-1}\right) > \frac{1}{n} > 0$$
,

数列 $\{a_n\}$ 有界。因此数列 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$ 收敛;

(3) 因为数列 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$ 收敛,所以记

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right) = C,$$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n = C + o(1), n \to \infty$$

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} = \left(1 + \frac{1}{2} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$= \left(\ln(2n) + C + o(1)\right) - \left(\ln n + C + o(1)\right), \quad n \to \infty$$

$$= \ln 2$$
 °

5. (P18, 4) 证明极限 $\lim_{n\to\infty} a_n$ 存在:

(1)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n}$$

解: 单调增, $a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n} \le 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$ 收敛, 所以 $\{a_n\}$ 有界。

(2)
$$a_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right) \cdots \left(1 + \frac{1}{2^n}\right)$$

解:
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n}$$
 单调增。

因为
$$\left\{\left(1+\frac{1}{n}\right)^n\right\}$$
单调增,趋于 e ,所以 $\left(1+\frac{1}{n}\right)^n < e$, $n\ln\left(1+\frac{1}{n}\right) < 1$, $\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$ 。

$$\ln a_n = \ln \left(1 + \frac{1}{2}\right) + \ln \left(1 + \frac{1}{2^2}\right) + \dots + \ln \left(1 + \frac{1}{2^n}\right) < \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$$
 收敛。所以所以 $\{a_n\}$ 有上

界。

(3)
$$a_n = \left(1 + \frac{1}{2^2}\right) \left(1 + \frac{1}{3^2}\right) \cdots \left(1 + \frac{1}{n^2}\right)$$

解:单调增。

因为
$$\left\{\left(1+\frac{1}{n}\right)^n\right\}$$
单调增,趋于 e ,所以 $\left(1+\frac{1}{n}\right)^n < e$, $n\ln\left(1+\frac{1}{n}\right) < 1$, $\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$ 。
$$\ln a_n = \ln\left(1+\frac{1}{2^2}\right) + \ln\left(1+\frac{1}{3^2}\right) + \dots + \ln\left(1+\frac{1}{n^2}\right) < \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
收敛。所以所以 $\left\{a_n\right\}$ 有上界。

类似的: P. 19, 第 16, 17 题

设
$$u_n = \left(1 + \frac{1}{n}\right)^{n+1}$$
 (易知数列 $\{u_n\}$ 收敛于 e).

(1) 研究数列 $\{u_n\}$ 的单调性;

(2) 利用 (1) 的结果证明
$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$
 对于任意正整数 n 都成立.

(3) 证明: 数列
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 收敛.

解: (1)

$$u_{n} = \left(1 + \frac{1}{n}\right)^{n+1}$$

$$\frac{u_{n-1}}{u_{n}} = \frac{\left(1 + \frac{1}{n-1}\right)^{n}}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{1 + \frac{1}{n-1}}{1 + \frac{1}{n}}\right)^{n} \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^{2}-1}\right)^{n} \cdot \frac{n}{n+1}$$

$$\geq \left(1 + \frac{n}{n^{2}-1}\right) \cdot \frac{n}{n+1} = \frac{n^{3} + n^{2} - n}{n^{3} + n^{2} - n - 1} > 1$$

所以数列 $\{u_n\}$ 单调减.

(2) 因为
$$\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$$
 单调减, $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ 单调增,且都趋于 e ,所以
$$(1+\frac{1}{n})^{n+1}>e\ ,\ \ (1+\frac{1}{n})^{n}$$

两边取对数,得

$$(n+1)\ln(1+\frac{1}{n}) > 1 \Longrightarrow \ln(1+\frac{1}{n}) > \frac{1}{n+1}$$
$$n \cdot \ln(1+\frac{1}{n}) < e \Longrightarrow \ln(1+\frac{1}{n}) < \frac{1}{n}$$

所以
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n};$$

(3)
$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln(1+\frac{1}{n})$$
,由第 16 题 (2) 知 $a_{n+1} - a_n < 0$, $\{a_n\}$ 单调减。又

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n > \ln(1 + \frac{1}{1}) + \ln(1 + \frac{1}{2}) + \ln(1 + \frac{1}{3}) + \dots + \ln(1 + \frac{1}{n}) - \ln n$$

$$= \ln 2 + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} - \ln n = \ln \frac{n+1}{n} > 0$$

所以, $\lim_{n\to\infty}a_n$ 存在。

类似的: $a_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}$,可以证明 $\{a_n\}$ 单调减,且 $2(\sqrt{k+1} - \sqrt{k}) \le \frac{1}{\sqrt{k}}$,所以

$$a_{n} = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n} = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\left(\sum_{k=1}^{n} \left[\sqrt{k} - \sqrt{k-1}\right]\right)$$

$$\geq 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - \left(\sum_{k=1}^{n-1} \frac{1}{\sqrt{k}} + 2\right) \geq -2$$

有界。

6. P.24,第10题

假设序列{x,} 由如下递推关系生成,证明它们收敛,并求它们的极限。

(1)
$$x_{n+1} = \frac{x_n + x_{n-1}}{2}$$
, $\forall n \ge 2$, x_1 , x_2 给定实数;

(2)
$$x_{n+1} = \sqrt{x_n x_{n-1}}$$
, $\forall n \ge 2$, x_1 , x_2 为给定正数。

证明: (1) 由递推关系式 $x_{n+1} = \frac{x_n + x_{n-1}}{2}$ 我们得到

$$x_{n+1} - x_n = -\frac{1}{2}(x_n - x_{n-1}) = \dots = \left(-\frac{1}{2}\right)^{n-1}(x_2 - x_1)$$

进一步我们有

$$\begin{split} x_{n+1} - x_1 &= \sum_{k=1}^n \left(x_{k+1} - x_k \right) = \sum_{k=1}^n \left(-\frac{1}{2} \right)^{k-1} (x_2 - x_1) \\ &= \frac{1 - (-1/2)^n}{1 + 1/2} (x_2 - x_1) \to \frac{2}{3} (x_2 - x_1) \;, \\ \\ \text{因此 } x_n &\to \frac{2}{3} (x_2 - x_1) + x_1 = \frac{2x_2 + x_1}{3} \;. \end{split}$$

(2)
$$\exists y_n = \ln x_n$$
, $\forall y_{n+1} = \frac{y_n + y_{n-1}}{2}$.

根据(1)的结论,我们得到 $y_n \to \frac{2y_2 + y_1}{3}$ 。于是 $x_n \to (x_1 x_2^2)^{2/3}$ 。

注: 上述证明思想可用于研究由如下递推关系

$$x_{n+1} = \lambda x_n + (1 - \lambda) x_{n-1}, \quad \lambda \in (0, 1)$$

所生成的序列 $\{x_n\}$, 其中 x_1 , x_2 , 给定。类似可以证明

$$x_n \rightarrow \frac{x_2 + (1 - \lambda) \ x_1}{2 - \lambda}$$

7. 设
$$a_1 = a > 1$$
, a 为常数, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{a_1}{a_n} \right)$, $(n = 1, 2, \dots)$, 证明极限

 $\lim_{n\to\infty} a_n$ 存在,并求此极限。

证明: 思路是运用单调有界准则。

由平均值不等式得到:

$$a_{n+1} = \frac{1}{2}(a_n + \frac{a_1}{a_n}) \ge \frac{1}{2} \cdot 2\sqrt{a_n \cdot \frac{a_1}{a_n}} = \sqrt{a} > 1$$

 a_n 有下界,只须再证单调减。注意上述结果对一切n成立,于是

$$a_{n+1} \le \frac{1}{2}(a_n + \frac{a_n^2}{a}) = a_n \quad (n = 1, 2, \dots)$$

即 a_n 单调减有下界,必有极限。记 $\lim_{n\to\infty} a_n = A$ 。

由极限的唯一性,等式 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{a_1}{a_n} \right)$ 等号两边取极限,可得方程

$$A = \frac{1}{2} \left(A + \frac{a}{A} \right)$$

解此方程得到 $\lim_{n\to\infty} a_n = A = \sqrt{a}$ (舍弃了负根)。

8. P. 24, 第5题

设序列
$$\{x_n\}$$
满足 $x_n \in (0,1)$,且 $(1-x_n)x_{n+1} > \frac{1}{4}$, $\forall n \ge 1$ 。 求证 $\lim_{n \to +\infty} x_n = \frac{1}{2}$ 。

证明:利用算术平均与几何平均不等式得 $\frac{1}{2} < \sqrt{(1-x_n)x_{n+1}} \le \frac{1-x_n+x_{n+1}}{2}$ 可得 $x_{n+1}-x_n>0$,

即序列 $\{x_n\}$ 严格单调上升且有上界。

因此 $\lim_{n\to\infty} x_n$ 存在,记作 x^* 。由于 $x_n\in(0,1)$,故有 $x^*\in[0,1]$ (为什么要用闭区间?)。

在不等式
$$(1-x_n)x_{n+1} > \frac{1}{4}$$
中,令 $n \to +\infty$ 得 $(1-x^*)x^* \ge \frac{1}{4}$ 。

另一方面,二次函数 (1-x)x 在区间 [0, 1]上的最大值为 $\frac{1}{4}$,且仅在点 $x = \frac{1}{2}$ 处达到。因此 $x^* = \frac{1}{2}$ 。这就证明了 $\lim_{n \to +\infty} x_n = \frac{1}{2}$ 。

- 9. Stolz 定理是否能反用,即数列 $\{b_n\}$ 严格单调增, $\lim_{n\to\infty}b_n=+\infty$, $\lim_{n\to\infty}rac{a_n}{b_n}=A$,是否能得到 $\lim_{n\to\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=A$?
- 解: Sto1z 定理: 数列 $\{b_n\}$ 严格单调增, $\lim_{n\to\infty}b_n=+\infty$,若 $\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=A$,则 $\lim_{n\to\infty}\frac{a_n}{b_n}=A$ 。

Stolz 定理是不能反用,即数列 $\{b_n\}$ 严格单调增, $\lim_{n\to\infty}b_n=+\infty$, $\lim_{n\to\infty}\frac{a_n}{b}=A$ 不一定能得

到
$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=A\ .$$

反例:

设 $a_n = (-1)^n$, $b_n = n$, 则数列 $\{b_n\}$ 严格单调增, $\lim_{n \to \infty} b_n = +\infty$ 。

显然
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{(-1)^n}{n} = 0$$
,但是
$$\lim_{n\to\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n\to\infty} \frac{(-1)^{n+1} - (-1)^n}{(n+1) - n} = \lim_{n\to\infty} 2(-1)^{n+1}$$
不存在。

10. 设
$$\lim_{n\to\infty} a_n = A$$
, $\lim_{n\to\infty} b_n = B$, 证明: $\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = AB$ 。

证明: $\ \ \mathrm{id}\ \alpha_n = a_n - A, \beta_n = b_n - B$, 则 $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0$, 故 $\exists M > 0, \mid \alpha_n \mid \leq M, \mid \beta_n \mid \leq M$ 。

$$\frac{a_{1}b_{n} + a_{2}b_{n-1} + \dots + a_{n}b_{1}}{n} = \frac{(A + \alpha_{1})(B + \beta_{n}) + (A + \alpha_{2})(B + \beta_{n-1}) + \dots + (A + \alpha_{n})(B + \beta_{1})}{n}$$

$$= AB + \frac{A}{n}\sum_{k=1}^{n}\beta_{k} + \frac{A}{n}\sum_{k=1}^{n}\alpha_{k} + \frac{1}{n}\sum_{k=1}^{n}\alpha_{k}\beta_{n-k+1}$$

由平均收敛定理, $\lim_{n\to\infty}\frac{A}{n}\sum_{k=1}^{n}\alpha_{k}=\lim_{n\to\infty}\frac{A}{n}\sum_{k=1}^{n}\beta_{k}=0$,

$$\left|\frac{1}{n}\sum_{k=1}^{n}\alpha_{k}\beta_{n-k+1}\right| \leq \frac{M}{n}\sum_{k=1}^{n}\left|\alpha_{k}\right|, \quad \lim_{n\to\infty}\frac{M}{n}\sum_{k=1}^{n}\left|\alpha_{k}\right| = 0,$$

所以
$$\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \cdots + a_nb_1}{n} = AB$$
。

11. P. 19, 第 13 题 (P. 24, 第 6 题)

设
$$\lim_{n\to\infty} a_n = a$$
, 求 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2}$ 。

解:解法一(Stolz 定理)

$$\begin{split} x_{n+1} - x_n &= (n+1)a_{n+1}, \quad y_{n+1} - y_n = (n+1)^2 - n^2 = 2n+1 \,. \\ \overline{\text{mi}} \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} &= \lim_{n \to \infty} \frac{(n+1)a_{n+1}}{2n+1} = \lim_{n \to \infty} \frac{n+1}{2n+1} \cdot \lim_{n \to \infty} a_{n+1} = \frac{a}{2} \,, \quad \text{Mid} \\ \lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} &= \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{2} \end{split}$$

解法二 (用定义)

因为 $\lim_{n\to\infty}a_n=a$,所以 $\forall \varepsilon>0,\exists N_1\in \mathbb{N}^+, \forall n>N_1$, $a-\varepsilon< a_n< a+\varepsilon$. (为简单起见,下面只证明一边的不等式)

$$\frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} + \frac{(N_1 + 1)a_{N_1 + 1} + (N_1 + 2)a_{N_1 + 2} + \dots + na_n}{n^2}$$

$$< \frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} + \frac{(N_1 + 1)(a + \varepsilon) + (N_1 + 2)(a + \varepsilon) + \dots + n(a + \varepsilon)}{n^2}$$

$$= \left[\frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} - \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + N_1 (a + \varepsilon)}{n^2} \right]$$

$$+ \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + n(a + \varepsilon)}{n^2}$$

$$= \left[\frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} - \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + N_1 (a + \varepsilon)}{n^2} \right]$$

$$+ \frac{1 + 2 + \dots + n}{n^2} (a + \varepsilon)$$

所以

$$\frac{a_1 + 2a_2 + \dots + na_n}{n^2} - \frac{a}{2} < \frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} - \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + N_1 (a + \varepsilon)}{n^2} + \frac{a + \varepsilon}{2n} + \frac{\varepsilon}{2}$$
显然,对于上述 N_1 , $\lim_{n \to \infty} \left[\frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} - \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + N_1 (a + \varepsilon)}{n^2} + \frac{a + \varepsilon}{2n} \right] = 0$,
所以 $\exists N_2 \in \mathbb{N}^+, \forall n > N_2$, $\frac{a_1 + 2a_2 + \dots + N_1 a_{N_1}}{n^2} - \frac{(a + \varepsilon) + 2(a + \varepsilon) + \dots + N_1 (a + \varepsilon)}{n^2} + \frac{a + \varepsilon}{2n} < \frac{\varepsilon}{2}$ 。
取 $N = \max\{N_1, N_2\}$, $\forall n > N$, $\frac{a_1 + 2a_2 + \dots + na_n}{n^2} - \frac{a}{2} < \varepsilon$ 。 另一个不等号也同样可证。具体略。

- 12. (教材 24页 10,11题)
- (1) 利用 Cauchy 收敛准则证明单调有界数列收敛;
- (2) 利用区间套定理证明单调有界数列收敛。

证明: (1) 反证法: 假设 $\{a_n\}$ 为单调递增有上界的数列,但发散。

由 Cauchy 收敛准则, $\exists \varepsilon_0>0$, $\forall N\in \mathbb{N}^*$,都存在 m,n: m>n>N,但是 $|a_m-a_n| \geq \varepsilon_0 \, .$

对于
$$N=1$$
,存在 $m_1>n_1>1$,使得 $|a_{m_1}-a_{n_1}| \geq \varepsilon_0$.

对于
$$N = m_1$$
,存在 $m_2 > n_2 > m_1$,使得 $|a_{m_2} - a_{n_2}| \ge \varepsilon_0$.

.....

对于
$$N = m_k$$
,存在 $m_{k+1} > n_{k+1} > m_k$,使得 $a_{m_k} - a_{n_k} \ge \varepsilon_0$.

......

因为 $\{a_n\}$ 为单调递增的数列,所以

$$a_{m_k} > a_{n_k} + \varepsilon_0 \ge a_{m_{k-1}} + \varepsilon_0 > (a_{n_{k-1}} + \varepsilon_0) + \varepsilon_0 = a_{n_{k-1}} + 2\varepsilon_0 \ge a_{m_{k-2}} + 2\varepsilon_0 \ge \cdots \ge a_{m_1} + (k-1)\varepsilon_0$$
 从而子列 $\{a_{m_k}\}$ 无界. 矛盾!

(2) 假设 $\{x_n\}$ 为单调递增有上界的数列。

任取 a_1, b_1 使得 a_1 不是 $\{x_n\}$ 的上界, b_1 是上界。

将区间
$$[a_1,b_1]$$
分为 $[a_1,\frac{a_1+b_1}{2}]$, $[\frac{a_1+b_1}{2},b_1]$ 两个子区间。

若
$$\frac{a_1+b_1}{2}$$
是 $\{x_n\}$ 的上界,则记 $a_2=a_1,b_2=\frac{a_1+b_1}{2}$;

若
$$\frac{a_1 + b_1}{2}$$
 不是 $\{x_n\}$ 的上界,则记 $a_2 = \frac{a_1 + b_1}{2}$, $b_2 = b_1$.

•••••••

由此取得区间套 $\{[a_n,b_n]\}$.

根据区间套定理,存在
$$c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$
.

下面证明 c 是数列 $\{x_n\}$ 的极限。

对于任意的正数 ε , 因为 $\lim_{n\to\infty} (b_n - a_n) = 0$, 所以 $\exists N_1$, $\forall n > N_1$, $|b_n - a_n| < \varepsilon$.

因为 a_{N_1} 不是上界,所以存在N 使得 $x_N>a_{N_1}$. 从而 $\forall n>N$, $x_n\geq x_N>a_{N_1}$. 因为 b_{N_1} 是 $\left\{x_n\right\}$ 的上界,所以 $\forall n>N$: $|x_n-c|\leq b_{N_1}-a_{N_1}<\varepsilon$. 所以 $\lim_{n\to\infty}x_n=c$ 。