
Midterm Exam of Fundamentals of Physics (3), Electromagnetism 

Open book test from 10:40am to 12:15 pm on April 3, 2023 

Instruction to students. 

a) This exam paper contains FOUR main questions and TWENTY sub-questions. It comprises THREE 

printed pages including this page. 

b) You can bring two books (at your choice) in the exam. 

c) You are allowed to use a basic calculator in the exam.  

d) If you carry out a computation please write down how you derived the answer in the answer sheets. 

If you only write down the answer and it is wrong, no points are given for the question.  

 

Good luck! 

  



Problem 1:  

Consider an electric field that the 𝑥 component is given as 𝐸𝑥 = 𝑘𝑥𝑦, where 𝑘 is a constant. 

(1) Construct a valid form of the electric field for the other two components.  

(2) For a given 𝑥 component of the electric field, 𝐸𝑥 = 𝑘𝑥𝑦, if there is no charge near the origin of the 
coordinates and the field is translationally invariant along 𝑧 direction, construct the electric field of 
the other two components and the potential for the electric field. 

(3) Check the divergence theorem of the integral 

form (∫ (𝛻 ∙ 𝑽)𝑑𝜏
𝑉

= ∮ 𝑽 ∙ 𝑑𝒂
𝑆

) for the electric field 

found in the problem above (1.(2)) at the cylinder as 
shown in Fig.1. 

(4) Check Stokes theorem of the of the integral form 

(∫ (𝛻 × 𝑽) ∙ 𝑑𝒂
𝑠

= ∮ 𝑽 ∙ 𝑑𝒍
𝑷

) for the electric field 

found in the problem above (1.(2)) at a circular ring 
on the 𝑥𝑦 plane with the radius 𝑎 as shown in Fig.2.  

Solution:  

(1) Since ∇ × 𝑬 = (
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
) �̂� + (

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
) �̂� + (

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
) �̂� = 𝟎,  

For 𝑧-axis, 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 0 →

𝜕𝐸𝑦

𝜕𝑥
=

𝜕(𝑘𝑥𝑦)

𝜕𝑦
= 𝑘𝑥, ∴ 𝐸𝑦 =

1

2
𝑘𝑥2 + 𝑓𝑦(𝑦, 𝑧)   

For 𝑦-axis, 
𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= 0 →

𝜕𝐸𝑧

𝜕𝑥
=

𝜕(𝑘𝑥𝑦)

𝜕𝑧
= 0, ∴ 𝐸𝑧 = 𝑓𝑧(𝑦, 𝑧)   

For a simple choice, let’s put 𝑓𝑦(𝑦, 𝑧) = 𝑓𝑧(𝑦, 𝑧) = 0.  

Then 𝑬 = 𝑘𝑥𝑦 �̂� +
1

2
𝑘𝑥2 �̂� 

(2) From above 𝐸𝑦 =
1

2
𝑘𝑥2 + 𝑓𝑦(𝑦, 𝑧) and 𝐸𝑧 = 𝑓𝑧(𝑦, 𝑧).  

Since the field is translationally invariant along 𝑧-direction, no electric field along 𝑧-direction, that is, 

𝐸𝑧 = 0 and 𝑓𝑦(𝑦, 𝑧) = 𝑓𝑦(𝑦).   

Since no charge near center,  ∇ ∙ 𝑬 =
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
= 0, which is,  𝑘𝑦 +

𝜕𝑓𝑦(𝑦)

𝜕𝑦
= 0. 

∴ 𝑓𝑦(𝑦) = −
1

2
𝑘𝑦2 + 𝐶. For simplicity, let’s put 𝐶 = 0. Then 𝐸𝑦 =

1

2
𝑘(𝑥2 − 𝑦2). 

Then 𝑬 = 𝑘𝑥𝑦 �̂� +
1

2
𝑘(𝑥2 − 𝑦2)�̂� 

For the potential, -∇𝑉 = 𝑬.  

That is, 
𝜕𝑉

𝜕𝑥
= −𝑘𝑥𝑦 → 𝑉 = −

𝑘

2
𝑥2𝑦 + 𝐶(𝑦) and  

𝜕𝑉

𝜕𝑦
= −

𝑘

2
𝑥2 +

𝜕𝐶

𝜕𝑦
= −

𝑘

2
(𝑥2 − 𝑦2), then 

𝜕𝐶

𝜕𝑦
= +

𝑘

2
𝑦2. 

∴ 𝐶(𝑦) = +
𝑘

6
𝑦3. Finally, 𝑉 = −

𝑘

2
𝑥2𝑦 +

𝑘

6
𝑦3 



 (3) Since ∇ ∙ 𝑬 = 0, the left side is zero, ∫ (∇ ∙ 𝑬)𝑑𝜏
𝑉

= 0.  

Let’s show the right side is also zero,  ∮ 𝑬 ∙ 𝑑𝒂
𝑆

= 0. 

Since 𝐸𝑧 = 0, we do not need to consider the top and the bottom surfaces of the cylinder in Fig. 1.  

 Let’s use the cylindrical coordinates.  

From Eq. (1.74) and Eq. (1.75), �̂� = cos 𝜙 �̂� − sin 𝜙 �̂�, �̂� = sin 𝜙 �̂� + cos 𝜙 �̂�.  

Therefore, 𝑬 = 𝑘𝑥𝑦 �̂� +
1

2
𝑘(𝑥2 − 𝑦2)�̂� = 𝑘 𝑠 cos 𝜙 𝑠 sin 𝜙 �̂� +

1

2
𝑘((𝑠 cos 𝜙)2 − (𝑠 sin 𝜙)2)�̂� =

1

2
𝑘𝑠2 sin 2𝜙 �̂� +

1

2
𝑘𝑠2 cos 2𝜙 �̂� =

1

2
𝑘𝑠2(sin 2𝜙 �̂� + cos 2𝜙 �̂�) 

We can write 𝑑𝒂 = 𝑎𝑑𝜙𝑑𝑧�̂�, and then  

∮ 𝑬 ∙ 𝑑𝒂
𝑆

= ∫ ∫
1

2
𝑘𝑠2(sin 2𝜙 �̂� + cos 2𝜙 �̂�) ∙ 𝑎𝑑𝜙𝑑𝑧�̂�

2𝜋

0

𝑙

2

−
𝑙

2

=
1

2
𝑘𝑎3𝑙 ∫ sin 2𝜙 𝑑𝜙

2𝜋

0
  

=
1

2
𝑘𝑎3𝑙 [−

1

2
cos 2𝜙]

0

2𝜋
= 0  

(4) Since ∇ × 𝑬 = 𝟎, the left side is zero, ∫ (𝜵 × 𝑬) ∙ 𝒅𝒂
𝒔

= 0. 

Let’s show the right side is also zero,  ∮ 𝑬 ∙ 𝑑𝒍
𝑷

= 0. 

We can write 𝑑𝒍 = 𝑎𝑑𝜙�̂�, ∮ 𝑬 ∙ 𝑑𝒍
𝑷

= ∫
1

2
𝑘𝑠2(sin 2𝜙 �̂� + cos 2𝜙 �̂�) ∙ 𝑎𝑑𝜙�̂�

2𝜋

0
=

1

2
𝑘𝑎3 ∫ cos 2𝜙 𝑑𝜙

2𝜋

0
=

1

2
𝑘𝑎3 [

1

2
sin 2𝜙]

0

2𝜋
= 0. 

 

  



Problem 2:  

(1–3) Consider a number of point charges, 𝑁, each with the charge of 𝑄/𝑁, 
which are evenly distributed around a circle of radius 𝑎 as shown in the right 
figure. 

(1) Find out the electric field and the potential at the location of one of the 
charges, due to all the other charges. (You can leave your answer in the form 
of a sum.)  

(2) Find the electrostatic energy of the whole system.  

(3) In the limit of the number of charges increases infinitely, how do the 
strengths of the electric field, potential and the total energies go? Are they 
diverge or converge to finite values?  

(4–6) Consider a circular ring of a radius 𝑎 with a uniform line charge density 
𝜆 and the total charge Q as shown in the right figure.   

(4) Find out the electric field and the potential along the 𝑧-axis when 𝑠 ≥ 𝑎, 

where 𝑠 = √𝑦2 + 𝑧2 .  

(5) What is the total energy of the system?  

(6) Compare the energies of the systems between point charges and the 
uniform line charge densities. Are they consistent? If not, discuss the reason.   

 

(Hint) ∫
𝑑𝜃

√𝛽−𝛼 cos 𝜃

𝜋

0
=

2 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝐾[
2𝛼

𝛼+𝛽
]

√𝛼+𝛽
, 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝐾[𝑥] ≈

𝜋

2
+

𝜋

8
𝑥 +

9𝜋

128
𝑥2  

 

Solution:  

(1) Let’s first find the potential of the 0th charge in the right figure.   

𝑉 =
1

4𝜋𝜖0
∑

𝑄

𝑁

1

𝑟𝑛

𝑁
𝑛=1 =

1

4𝜋𝜖0
∑

𝑄

𝑁

1

|2𝑎 sin(
𝜋𝑛

𝑁
)|

𝑁
𝑛=1 =

𝑄

8𝜋𝜖0𝑎
∑

1

𝑁

1

|sin(
𝜋𝑛

𝑁
)|

𝑁
𝑛=1   

Let’s find the electric field of the 0th charge, which should be vertical  

direction, or �̂� direction.    

 𝐸𝑧 =
1

4𝜋𝜖0
∑

𝑄

𝑁

1

𝑟𝑛
2

𝑁
𝑛=1 | sin

𝜃𝑛

2
| =

1

4𝜋𝜖0
∑

𝑄

𝑁

1

(2𝑎 sin(
𝜋𝑛

𝑁
))

2
𝑁
𝑛=1 | sin (

𝜋𝑛

𝑁
) | 

=
𝑄

16𝜋𝜖0𝑎2
∑

1

𝑁

1

|sin(
𝜋𝑛

𝑁
)|

𝑁
𝑛=1 .  

(2) The electrostatic energy for the 0th charge is given by 𝑞0𝑉 =
𝑄

𝑁
𝑉, which should be same to all the 

other charges. Therefore, according to Eq. (2.42), the total energy is written as 

𝑊 =
1

2
𝑁𝑞𝑉 =

1

2
𝑄𝑉 =

1

2

𝑄2

8𝜋𝜖0𝑎
∑

1

𝑁

1

| sin(
𝜋𝑛

𝑁
)|

𝑁
𝑛=1 .  



 

 (3) The potential, electric field and the energy have the same form of the summation as ∑
1

𝑁

1

sin(
𝜋𝑛

𝑁
)

𝑁
𝑛=1 . 

When 𝑁 increases (while 𝑄 is a constant), we can assume that most of terms sin (
𝜋𝑛

𝑁
) can be 

approximated by sin (
𝜋𝑛

𝑁
) ≈

𝜋𝑛

𝑁
. This  leads to the summation as  ∑

1

𝑁

1

sin(
𝜋𝑛

𝑁
)

𝑁
𝑛=1 ≈ ∑

1

𝑁

1
𝜋𝑛

𝑁

𝑁
𝑛=1 = ∑

1

𝜋𝑛
𝑁
𝑛=1 , 

which diverges.   

(4) Let’s first find the potential at the point of 𝑧. 

 𝑉(𝑧) =
1

4𝜋𝜖0
∫

𝜆

r
𝑑𝑙 =

1

4𝜋𝜖0
∫

𝜆 𝑎𝑑𝜙

√𝑧2+𝑎2−2𝑧𝑎 cos 𝜙

2𝜋

0
=

𝜆𝑎

4𝜋𝜖0
2

2 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝐾[
2𝑧𝑎

𝑧2+𝑎2+2𝑧𝑎
]

√𝑧2+𝑎2+2𝑧𝑎
 

=
𝜆𝑎

𝜋𝜖0

𝜋

2
+

𝜋

8
 (

2𝑧𝑎

(𝑧+𝑎)2)+
9𝜋

128
 (

2𝑧𝑎

(𝑧+𝑎)2)
2

+⋯

(𝑧+𝑎)
=

𝜆𝑎

2𝜖0
(

1

𝑧+𝑎
+

1

2

𝑎𝑧

(𝑧+𝑎)3 +
9

16

(𝑎𝑧)2

(𝑧+𝑎)5 + ⋯ )  

Along the 𝑧 axis, the electric field should be also along the 𝑧 direction.  

𝐸𝑧(𝑧) = −
𝜕𝑉

𝜕𝑧
=

𝜆𝑎

2𝜖0
(

1

(𝑧+𝑎)2 +
1

2

𝑎(2𝑧−𝑎)

(𝑧+𝑎)4 +
9

16

𝑧𝑎2(3𝑧−2𝑎)

(𝑧+𝑎)6 + ⋯ )  

(5) The total energy of the system is given by the Eq. (2.43), 

𝑊 =
1

2
∫ 𝜌𝑉 𝑑𝜏 =

1

2
∫ 𝜆𝑉 𝑑𝑙 =

2𝜋𝑙𝜆

2
𝑉 =

1

2
𝑄𝑉 =

1

2

𝑄2

4𝜋𝜖0
(

1

𝑧+𝑎
+

1

2

𝑎𝑧

(𝑧+𝑎)3 +
9

16

(𝑎𝑧)2

(𝑧+𝑎)5 + ⋯ ) |𝑧=𝑎  

=
1

2

𝑄2

4𝜋𝜖0
(

1

2𝑎
+

1

2

𝑎2

(2𝑎)3 +
9

16

(𝑎2)
2

(2𝑎)5 + ⋯ ) =
1

2

𝑄2

4𝜋𝜖0

1

2𝑎
(1 +

1

4
+

9

256
+ ⋯ )    

(6) Although the total charge 𝑄 are same, the total energies of the rings with point charges and with line 

charge density 𝜆 are different. The energy of point charged ring diverges, but that of line charged ring 

has a certain value. The difference comes mainly from the fact that the point charge has infinitely small 

distance. When the distances between point charges are getting smaller, the energy diverges. But the 

line charge density does not have such an unphysical problem.   

(*) This statement is not correct, since 𝑉(𝑧) in problem 2.(4) is also diverging. In this situation, it is 

difficult to compare even in qualitatively. I am sorry for my mistake and I should give all of you full score 

(5) for this problem.  

 

 

  



Problem 3:  

Consider two semi-infinite grounded conducting planes that meet 
at right angles. In the region between them, there is a dipole 𝒑, 
situated as shown in Fig. 5. 

(1) Find the positions and angles of image dipoles and write down 
(2) the potential and the electric field from all the dipoles. And 
show that the potential satisfies all the boundary conditions.  

 
(3) Find the force on the dipole 𝒑. 

(4) How much work did it take to bring the dipole 𝒑 in from infinity?  

Solution:  

(1) We can consider the dipole as infinitely close two-charge system  

as shown in the right figure. Then similar to the problem 3.11,  

we can set the image charges as shown in the right figure.   

The original dipole at 𝒔𝟏 = 𝑎�̂� + 𝑏�̂� is written as  

𝒑𝟏 = 𝑝(cos 𝜃 �̂� + sin 𝜃 �̂�) = 𝑝𝑥�̂� + 𝑝𝑦�̂�  

Therefore, the image dipoles can be constructed as follows. 

At 𝒔𝟐 = −𝑎�̂� + 𝑏�̂�, 𝒑𝟐 = 𝑝𝑥�̂� − 𝑝𝑦�̂�,   

at 𝒔𝟑 = −𝑎�̂� − 𝑏�̂�, 𝒑𝟑 = −𝑝𝑥�̂� − 𝑝𝑦�̂�, 

at 𝒔𝟒 = 𝑎�̂� − 𝑏�̂�, 𝒑𝟒 = −𝑝𝑥�̂� + 𝑝𝑦�̂�. 

(2) Let’s construct the potential and make sure the boundary conditions. And let 𝑘 =
1

4𝜋𝜖0
 for simplicity.  

The potential from 𝒑𝟏 is given by 𝑉1 = 𝑘
𝒑𝟏∙(𝒓−𝒔𝟏)̂

|𝒓−𝒔𝟏|2 = 𝑘
𝒑𝟏∙(𝒓−𝒔𝟏)

|𝒓−𝒔𝟏|3 = 𝑘
𝑝𝑥(𝑥−𝑎)+𝑝𝑦(𝑦−𝑏)

((𝑥−𝑎)2+(𝑦−𝑏)2+𝑧2)
3
2 

  

Similarly, 𝑉2 = 𝑘
𝑝𝑥(𝑥+𝑎)−𝑝𝑦(𝑦−𝑏)

((𝑥+𝑎)2+(𝑦−𝑏)2+𝑧2)
3
2

, 𝑉3 = 𝑘
−𝑝𝑥(𝑥+𝑎)−𝑝𝑦(𝑦+𝑏)

((𝑥+𝑎)2+(𝑦+𝑏)2+𝑧2)
3
2

, and 𝑉4 = 𝑘
−𝑝𝑥(𝑥−𝑎)+𝑝𝑦(𝑦+𝑏)

((𝑥−𝑎)2+(𝑦+𝑏)2+𝑧2)
3
2

 

Boundary conditions (a) at 𝑥 = 0, total 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 = 0 and (b) at 𝑦 = 0, total 𝑉 = 0.   

At 𝑥 = 0, 𝑉1 = 𝑘
−𝑝𝑥𝑎+𝑝𝑦(𝑦−𝑏)

(𝑎2+(𝑦−𝑏)2+𝑧2)
3
2

, 𝑉2 = 𝑘
𝑝𝑥𝑎−𝑝𝑦(𝑦−𝑏)

(𝑎2+(𝑦−𝑏)2+𝑧2)
3
2

, 𝑉3 = 𝑘
−𝑝𝑥𝑎−𝑝𝑦(𝑦+𝑏)

(𝑎2+(𝑦+𝑏)2+𝑧2)
3
2

, and 𝑉4 =

𝑘
𝑝𝑥𝑎+𝑝𝑦(𝑦+𝑏)

(𝑎2+(𝑦+𝑏)2+𝑧2)
3
2

. 

Therefore 𝑉 = 0 since 𝑉1 + 𝑉2 = 0 and 𝑉3 + 𝑉4 = 0.  

At 𝑦 = 0, 𝑉1 = 𝑘
𝑝𝑥(𝑥−𝑎)−𝑝𝑦𝑏

((𝑥−𝑎)2+𝑏2+𝑧2)
3
2

, 𝑉2 = 𝑘
𝑝𝑥(𝑥+𝑎)+𝑝𝑦𝑏

((𝑥+𝑎)2+𝑏2+𝑧2)
3
2

, 𝑉3 = 𝑘
−𝑝𝑥(𝑥+𝑎)−𝑝𝑦𝑏

((𝑥+𝑎)2+𝑏2+𝑧2)
3
2

, and 𝑉4 =

𝑘
−𝑝𝑥(𝑥−𝑎)+𝑝𝑦𝑏

((𝑥+𝑎)2+𝑏2+𝑧2)
3
2

. 

Therefore 𝑉 = 0 since 𝑉1 + 𝑉4 = 0 and 𝑉2 + 𝑉3 = 0.  

The electric filed is obtained by using 𝑬 = −∇𝑉 = −(∇𝑉1 + ∇𝑉2 + ∇𝑉3 + ∇𝑉4).  



Here, −∇ (
𝒑𝒊∙(𝒓−𝒔𝒊)

|𝒓−𝒔𝒊|3 ) = 𝒑𝒊 ∙ (𝒓 − 𝒔𝒊)
(𝒓−𝒔𝒊)

|𝒓−𝒔𝒊|4 −
𝒑𝒊

|𝒓−𝒔𝒊|3,   

since −∇ (
𝑝𝑥𝑥+𝑝𝑦𝑦

(𝑥2+𝑦2+𝑧2)3/2 
) =

2(𝑝𝑥𝑥+𝑝𝑦𝑦)

(𝑥2+𝑦2+𝑧2)3
(𝑥�̂� + 𝑦�̂� + 𝑧�̂�) −

𝑝𝑥�̂�+𝑝𝑦�̂�

(𝑥2+𝑦2+𝑧2)3/2. 

Therefore,  𝑬 = 𝑘 ∑ [𝒑𝒊 ∙ (𝒓 − 𝒔𝒊)
(𝒓−𝒔𝒊)

|𝒓−𝒔𝒊|5 −
𝒑𝒊

|𝒓−𝒔𝒊|3]𝟒
𝒊=𝟏 . 

(*) Because the problems of (3) and (4) are outside the contents of the exam, the full score will be given 

to all of the students. And if anyone solves the problems will have extra points.  

(3) The force on the dipole can be calculated from the Eq. (4.5), 𝑭 = (𝒑 ∙ ∇)𝑬 in Chapter 4. It is quite 

complicated. Let’s first consider a simple case that 𝜃 = 0, which leads 𝒑𝟏 = 𝑝𝑥�̂� and 𝑭 = 𝑝𝑥
𝜕

𝜕𝑥
𝑬. There 

should not be any force along 𝑧-axis at 𝑧 = 0, and let’s ignore 𝑧 coordinate.  

𝑬𝟐 = −∇𝑉2 =
2𝑝𝑥(𝑥+𝑎)((𝑥+𝑎)�̂�+(𝑦−𝑏)�̂�)

((𝑥+𝑎)2+(𝑦−𝑏)2)5/2 −
𝑝𝑥�̂�

((𝑥+𝑎)2+(𝑦−𝑏)2)3/2   

𝑬𝟑 = −∇𝑉3 =
−2𝑝𝑥(𝑥+𝑎)((𝑥+𝑎)�̂�+(𝑦+𝑏)�̂�)

((𝑥+𝑎)2+(𝑦+𝑏)2)5/2 −
−𝑝𝑥�̂�

((𝑥+𝑎)2+(𝑦+𝑏)2)3/2  

𝑬𝟒 = −∇𝑉4 =
−2𝑝𝑥(𝑥−𝑎)((𝑥−𝑎)�̂�+(𝑦+𝑏)�̂�)

((𝑥−𝑎)2+(𝑦+𝑏)2)5/2 −
−𝑝𝑥�̂�

((𝑥−𝑎)2+(𝑦+𝑏)2)3/2  

𝜕

𝜕𝑥
[

2𝑥

(𝑥2+𝑦2)5/2
(𝑥�̂� + 𝑦�̂�) −

1

(𝑥2+𝑦2)3/2 �̂�] = (−
10𝑥3

(𝑥2+𝑦2)7/2 +
7𝑥

(𝑥2+𝑦2)5/2) �̂� +(−
10𝑥2𝑦

(𝑥2+𝑦2)7/2 +
2𝑦

(𝑥2+𝑦2)5/2) �̂� 

, where we can replace 𝑥 → (𝑥 ± 𝑎), 𝑦 → (𝑦 ± 𝑏) depending on the locations of the dipoles.  

At 𝒔𝟏 = 𝑎�̂� + 𝑏�̂�, from 𝒔𝟐, 𝑥 → 2𝑎, 𝑦 → 0.  

𝜕

𝜕𝑥
𝑬𝟐 = 𝑘𝑝𝑥 (−

10𝑥3

(𝑥2+𝑦2)7/2 +
7𝑥

(𝑥2+𝑦2)5/2) �̂� = −
3𝑘

16

𝑝𝑥

𝑎4 �̂�.  

From 𝒔𝟒, 𝑥 → 0, 𝑦 → 2𝑏 

𝜕

𝜕𝑥
𝑬𝟒 = 𝑘

2𝑦

(𝑥2+𝑦2)5/2 �̂� =
𝑘

8

𝑝𝑥

𝑏4 �̂�.  

From 𝒔𝟑, 𝑥 → 2𝑎, 𝑦 → 2𝑏 

𝜕

𝜕𝑥
𝑬𝟑 = 𝑘𝑝𝑥 (

−3𝑎3+7𝑎𝑏2

16(𝑎2+𝑏2)7/2 �̂� +
6𝑎2𝑏+𝑏3

8(𝑎2+𝑏2)7/2 �̂�)  

Therefore the force 𝑭 = 𝑘𝑝𝑥
2 [(

−3𝑎3+7𝑎𝑏2

16(𝑎2+𝑏2)7/2 −
3

16𝑎4) �̂� + (
6𝑎2𝑏+𝑏3

8(𝑎2+𝑏2)7/2 +
1

8𝑏4) �̂�].  

(4) The energy taken to bring the dipole 𝒑 in from infinity should be same to the energy of the system, 

which is given as 𝑈 = −𝒑 ∙ 𝑬 in Eq. (4.6). Therefore, the total energy is  

𝑈 = −𝑘𝒑𝟏 ∙ ∑ [𝒑𝒊 ∙ (𝒓 − 𝒔𝒊)
(𝒓−𝒔𝒊)

|𝒓−𝒔𝒊|4 −
𝒑𝒊

|𝒓−𝒔𝒊|2]𝟒
𝒊=𝟏   

  



Problem 4:  

Consider conductors of the following shapes that are infinitely long in the 𝑧 direction as shown below. 
Qualitatively draw equipotential lines and electric field lines. When drawing, focus on two areas: 
near the center and one of the electrodes. Draw at least 10 lines for each region and describe the 
features of the picture as much as possible. Consider that the potential is a property of the solution 
of Laplace's equation, i.e. the value of the potential at a point is the average of the values around it. In 
the case of an electric field, the density clearly shows that the field lines are proportional to the 
strength of the field. 
 
(1) Equipotential lines near the 
center and one of the electrodes 
(2) Electric field lines near the 
center and one of the electrodes 
 

(3) Equipotential lines near the 
center and one of the 
electrodes 
(4) Electric field lines near the 
center and one of the 
electrodes 

(5) Equipotential lines near the 
center and one of the 
electrodes  
(6) Electric field lines near the 
center and one of the 
electrodes 

 

Solutions: 

1. General idea about equipotential line.  

1) The equipotential line cannot be crossed.   

2) A conductor is an equipotential (P98). 

3) Density of equipotential lines is proportional to the strength of the potential. 

4) The potential is a property of the solution of Laplace's equation, i.e. the value of the potential at a 

point is the average of the values around it.  

2. General idea about electric field line.   

1) Electric field line starts from positive voltage to negative voltage.  

2) Electric filed line cannot be crossed. 

3) Electric field line should be perpendicular to the surface of the conductor. 

4) Electric field line should be perpendicular to the equipotential lines.   

(*) If you can submit the equipotential lines and electric field lines by using computer program or any 

way, we will include them on the score of this mid-term exam.  

 


