
Midterm Exam of Fundamentals of Physics (3), Electromagnetism 

Open book test on April 6, 2022 

Instruction to students. 

a) This exam paper contains FIVE main questions and EIGHTEEN sub-questions. It comprises THREE 

printed pages including this page. 

b) This is one-book (at your choice) open exam. 

c) You are allowed to use a basic calculator in the exam.  

d) If you carry out a computation please write down how you derived the answer. If you only write down 

the answer and it is wrong, no points are given for the question.  

 

Good luck! 

  



1. The electric field due to a static charge distribution has 𝑥 component 𝐸𝑥 = 𝑘𝑥2𝑦𝑧.  

(a) Construct a valid form of the electric field for the other two components  

(b) What are the potential and charge distribution for the electric field? 

 

Answers 

(a) Since ∇ × 𝑬 = (
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
) 𝒙̂ + (

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
) 𝒚̂ + (

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
) 𝒛̂ = 𝟎,  

For 𝑧-axis, 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 0 →

𝜕𝐸𝑦

𝜕𝑥
=

𝜕(𝑘𝑥2𝑦𝑧)

𝜕𝑦
= 𝑘𝑥2𝑧, ∴ 𝐸𝑦 =

1

3
𝑘𝑥3𝑧 + 𝑓𝑦(𝑦, 𝑧)   

For 𝑦-axis, 
𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= 0 →

𝜕𝐸𝑧

𝜕𝑥
=

𝜕(𝑘𝑥2𝑦𝑧)

𝜕𝑧
= 𝑘𝑥2𝑦, ∴ 𝐸𝑧 =

1

3
𝑘𝑥3𝑦 + 𝑓𝑧(𝑦, 𝑧)   

For 𝑥-axis, 
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= 0 →

1

3
𝑘𝑥3 +

𝜕𝑓𝑧(𝑦,𝑧)

𝜕𝑦
=

1

3
𝑘𝑥3 +

𝜕𝑓𝑦(𝑦,𝑧)

𝜕𝑧
  

Let’s choose 𝑓𝑦(𝑦, 𝑧) = 𝑓𝑧(𝑦, 𝑧) = 0 

Then, 𝑬 = 𝑘𝑥2𝑦𝑧 𝒙̂ +
1

3
𝑘𝑥3𝑧 𝒚̂ +

1

3
𝑘𝑥3𝑦 𝒛̂ 

(b) Charge distribution ∇ ∙ 𝑬 = 𝜌/𝜀0 →
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
=

𝜕(𝑘𝑥2𝑦𝑧)

𝜕𝑥
+

𝜕(
1

3
𝑘𝑥3𝑧)

𝜕𝑦
+

𝜕(
1

3
𝑘𝑥3𝑦)

𝜕𝑧
= 2𝑘𝑥𝑦𝑧  

𝜌 = 𝜀0∇ ∙ 𝑬 = 2𝜀0𝑘𝑥𝑦𝑧 

Potential ∇𝑉 = −𝑬 

For 𝑥-axis, 
𝜕𝑉

𝜕𝑥
= −𝑘𝑥2𝑦𝑧 → 𝑉 = −

1

3
𝑘𝑥3𝑦𝑧 + 𝑓(𝑦, 𝑧)  

For 𝑦-axis, 
𝜕𝑉

𝜕𝑦
= −

1

3
𝑘𝑥3𝑧 +

𝜕𝑓(𝑦,𝑧)

𝜕𝑦
= −

1

3
𝑘𝑥3𝑧 →

𝜕𝑓(𝑦,𝑧)

𝜕𝑦
= 0 ∴ 𝑓 = 𝑓(𝑧)  

For 𝑧-axis, 
𝜕𝑉

𝜕𝑧
= −

1

3
𝑘𝑥3𝑦 +

𝜕𝑓(𝑧)

𝜕𝑧
= −

1

3
𝑘𝑥3𝑦 →

𝜕𝑓(𝑧)

𝜕𝑧
= 0 ∴ 𝑓 = 𝑐𝑜𝑛𝑠𝑡  

Finally, 𝑉 = −
1

3
𝑘𝑥3𝑦𝑧 + 𝑐𝑜𝑛𝑠𝑡 

  



2.  Consider two coaxial metal cylindrical tubes of radii 𝑎 and 𝑎 + 𝑑 with length 𝐿 as shown below. 

(a) Find the capacitance of two coaxial metal cylindrical tubes. Here, ignore the edge effect.  

(b) Which length 𝐿 provides the largest capacitance if the total area of two metal tubes and 𝑑 are fixed? 

(c) Given total area of metal plate 𝐴 and fixed distance 𝑑, which shape will provide the largest 

capacitance among plate, cylinder and sphere? Please list them in descending order and explain how 

you obtain the conclusion.  

 

Answers 

(a) Let’s assume the total charge density 𝑄 for inside the tube and take a tube surface to use Gauss Law 
with the radius 𝑠 and length 𝐿. Then, from the Gauss Law 

If 𝑎 < 𝑠 < 𝑎 + 𝑑,  ∮ 𝑬 ∙ 𝑑𝒂 = 𝐸 2𝜋𝑠𝐿 = 𝑄/𝜀0,  𝑬 =
𝑄

2𝜋𝜀0𝐿

1

𝑠
𝒔̂  

The potential difference between tubes is given as  

𝑉 = − ∫
𝑄

2𝜋𝜀0𝐿

1

𝑠
𝑑𝑠

𝑎+𝑑 

𝑎
= −

𝑄

2𝜋𝜀0𝐿
ln

(𝑎+𝑑)

𝑎
  

The capacitance 𝐶 =
𝑄

𝑉
=

2𝜋𝜀0𝐿

ln
(𝑎+𝑑)

𝑎

 

(b) Let the total area of metal plate 𝐴, then 𝐴 = 2𝜋𝑎𝐿 + 2𝜋(𝑎 + 𝑑)𝐿 = 2𝜋(2𝑎 + 𝑑)𝐿 → 𝐿 =
𝐴

2𝜋(2𝑎+𝑑)
 

𝐶 =
2𝜋𝜀0𝐿

ln
(𝑎+𝑑)

𝑎

=
𝜀0𝐴

(2𝑎+𝑑) ln
(𝑎+𝑑)

𝑎

=
𝜀0𝐴

𝑎(2+
𝑑

𝑎
) ln(1+

𝑑

𝑎
)

=
𝜀0𝐴/𝑑

𝑎

𝑑
(2+

𝑑

𝑎
) ln(1+

𝑑

𝑎
)
   

If we define 𝑥 =
𝑑

𝑎
, 𝐶 =

𝜀0𝐴

𝑑

𝑥

(2+𝑥) ln(1+𝑥)
.  

Since 
𝑑𝐶

𝑑𝑥
=

−𝑥(2+𝑥)+2(1+𝑥)ln (1+𝑥)

(1+𝑥)(2+𝑥)2[ln(1+𝑥)]2 < 0 ∵ 𝑥 > ln (1 + 𝑥), it has the maximum at 𝑥 = 0, that is 𝑎 → ∞ or 

𝐿 → 0. In the limit of 𝐿 → 0, the capacitance of the tubes becomes same to that of plate capacitor.   

(c) The capacitance of sphere is shown in Example 2.12, which is given as  

𝐶𝑠𝑝ℎ𝑒𝑟𝑒 = 4𝜋𝜀0
𝑎𝑏

(𝑏−𝑎)
= 𝜀0

4𝜋𝑎(𝑎+𝑑)

𝑑
= 𝜀0

4𝜋𝑎2(1+
𝑑

𝑎
)

𝑑
=

𝜀0𝐴

𝑑

(1+
𝑑

𝑎
)

(1+(1+
𝑑

𝑎
)

2
)
.   

Since 𝐴 = 4𝜋𝑎2 + 4𝜋(𝑎 + 𝑑)2 = 4𝜋𝑎2 (1 + (1 +
𝑑

𝑎
)

2
) for sphere.  

Let 𝑥 =
𝑑

𝑎
, then 𝐶𝑠𝑝ℎ𝑒𝑟𝑒 =

𝜀0𝐴

𝑑

(1+𝑥)

(1+(1+𝑥)2)
, which as maximum at  𝑥 = 0, that is 𝑎 → ∞.  



Therefore, plate capacitor has the largest capacitance.  

Now let’s compare the tube and sphere capacitor near 𝑥 = 0. We can compare them by using graphs or 

Taylor expansion near zero as shown below  

𝑥

(2+𝑥) ln(1+𝑥)
−

(1+𝑥)

(1+(1+𝑥)2)
=

𝑥(1+(1+𝑥)2)−(1+𝑥)(2+𝑥) ln(1+𝑥)

(2+𝑥) ln(1+𝑥)(1+(1+𝑥)2)
~

5

6
𝑥3

(2+𝑥) ln(1+𝑥)(1+(1+𝑥)2)
> 0   

 

 

𝑥

(2+𝑥) ln(1+𝑥)
  

 

  

  

   
(1+𝑥)

(1+(1+𝑥)2)
 

  



3. An infinite conducting plane has a hemispherical bump on it with radius 𝑅. A point charge 𝑞 is located 

a distance 2𝑅 above the top of the hemisphere, as shown below. The conductor is grounded. Let’s try to 

use image charge method to solve the following problems. 

(a) Find the position and amount of charges of image charges needed to make the electric field 

perpendicular to the plane and the hemisphere at all points or to satisfy the boundary condition that 

𝑉 = 0 on the conducting plane.  

(b) Find the potential and (c) electric field above the conducting plane.  

(d) Find the force on the charge 𝑞. 

(e) Compared to the case without bump and the same height (3𝑅 from the plane), which force is larger 

and how much larger?   

 

Answers 

(a) We need the following three image charges to satisfy the boundary conditions of hemisphere and 
plane 

• Image charge to satisfy the boundary condition of the hemisphere: 𝑞ℎ = −
𝑅

3𝑅
𝑞 = −

1

3
𝑞, the 

distance from the center of the hemisphere:  𝑏ℎ =
𝑅2

3𝑅
=

1

3
𝑅 

• Image charge to satisfy the boundary condition of the plane for charge 𝑞: 𝑞𝑝 = −𝑞, the distance 

from the plane: 𝑏𝑝 = −3𝑅 

• Image charge to satisfy the boundary condition of the plane for charge 𝑞ℎ: 𝑞ℎ𝑝 = −𝑞ℎ =
1

3
𝑞, the 

distance from the plane: 𝑏ℎ𝑝 = −𝑏ℎ =
1

3
𝑅 

(b) Potential  

𝑉(𝑠, 𝑧) = 𝑉𝑞 + 𝑉𝑞ℎ
+ 𝑉𝑞𝑝

+ +𝑉𝑞ℎ𝑝
,  

For cylindrical coordinate, 

𝑉𝑞(𝑠, 𝑧) =
𝑞

4𝜋𝜀0

1

√𝑠2+(𝑧−3𝑅)2
 , 𝑉𝑞ℎ

(𝑠, 𝑧) =
−𝑞/3

4𝜋𝜀0

1

√𝑠2+(𝑧−𝑅/3)2
 ,  

𝑉𝑞𝑝
(𝑠, 𝑧) =

−𝑞

4𝜋𝜀0

1

√𝑠2+(𝑧+3𝑅)2
 , 𝑉𝑞ℎ𝑝

(𝑠, 𝑧) =
𝑞/3

4𝜋𝜀0

1

√𝑠2+(𝑧+𝑅/3)2
  



For spherical coordinate, 

𝑉𝑞(𝑟, 𝜃) =
𝑞

4𝜋𝜀0

1

√𝑟2+(3𝑅)2−2𝑟(3𝑅) cos 𝜃
=

𝑞

4𝜋𝜀0

1

√𝑟2+9𝑅2−6𝑟𝑅 cos 𝜃
  

𝑉𝑞ℎ
(𝑟, 𝜃) =

−𝑞/3

4𝜋𝜀0

1

√𝑟2+(
1

3
𝑅)

2
−2𝑟(

1

3
𝑅) cos 𝜃

= −
1

3

𝑞

4𝜋𝜀0

1

√𝑟2+
1

9
𝑅2−

2

3
𝑟𝑅 cos 𝜃

= −
𝑞

4𝜋𝜀0

1

√9𝑟2+𝑅2−6𝑟𝑅 cos 𝜃
  

𝑉𝑞𝑝
(𝑟, 𝜃) =

−𝑞

4𝜋𝜀0

1

√𝑟2+9𝑅2+6𝑟𝑅 cos 𝜃
  

𝑉𝑞ℎ𝑝
(𝑟, 𝜃) =

𝑞

4𝜋𝜀0

1

√9𝑟2+𝑅2+6𝑟𝑅 cos 𝜃
  

(c) Electric field 

𝑠 > 𝑅  

Let’s use the cylindrical coordinate 

𝑬 = −∇𝑉(𝑠, 𝑧) = −
𝜕𝑉

𝜕𝑠
𝒔̂ −

𝜕𝑉

𝜕𝑧
𝒛̂  

−
𝜕𝑉

𝜕𝑠
=

𝑞𝑠

4𝜋𝜀0
(

1

(𝑠2+(𝑧−3𝑅)2)
3
2 

−
1

3

1

(𝑠2+(𝑧−
𝑅

3
)

2
)

3
2

 

−
1

(𝑠2+(𝑧+3𝑅)2)
3
2 

+
1

3

1

(𝑠2+(𝑧+
𝑅

3
)

2
)

3
2

 

)  

−
𝜕𝑉

𝜕𝑧
=

𝑞

4𝜋𝜀0
(

(𝑧−3𝑅)

(𝑠2+(𝑧−3𝑅)2)
3
2 

−
1

3

(𝑧−
𝑅

3
)

(𝑠2+(𝑧−
𝑅

3
)

2
)

3
2

 

−
(𝑧+3𝑅)

(𝑠2+(𝑧+3𝑅)2)
3
2 

+
1

3

(𝑧+
𝑅

3
)

(𝑠2+(𝑧+
𝑅

3
)

2
)

3
2

 

)  

The conductor plane should be 𝑧 = 0. 

−
𝜕𝑉

𝜕𝑠
|𝑧=0 = 0  

−
𝜕𝑉

𝜕𝑧
|𝑧=0 =

𝑞

4𝜋𝜀0
(

(−6𝑅)

(𝑠2+9𝑅2)
3
2 

+
1

9
𝑅

(𝑠2+
1

9
𝑅2)

3
2 

)  

𝑠 < 𝑅  

Let’s use the spherical coordinate. 

𝑬 = −∇𝑉(𝑟, 𝜃) = −
𝜕𝑉

𝜕𝑟
𝒓̂ −

1

𝑟

𝜕𝑉

𝜕𝜃
𝜽̂  

−
𝜕𝑉

𝜕𝑟
=

𝑞

4𝜋𝜀0
(

𝑟−3𝑅 cos 𝜃

(𝑟2+9𝑅2−6𝑟𝑅 cos 𝜃)
3
2 

−
9𝑟−3𝑅 cos 𝜃

(9𝑟2+𝑅2−6𝑟𝑅 cos 𝜃)
3
2 

−
𝑟+3𝑅 cos 𝜃

(𝑟2+9𝑅2+6𝑟𝑅 cos 𝜃)
3
2 

+
9𝑟+3𝑅 cos 𝜃

(9𝑟2+𝑅2−6𝑟𝑅 cos 𝜃)
3
2 

)  

−
1

𝑟

𝜕𝑉

𝜕𝜃
=

𝑞

4𝜋𝜀0

1

𝑟
(

3𝑅𝑟 sin 𝜃

(𝑟2+9𝑅2−6𝑟𝑅 cos 𝜃)
3
2 

−
3𝑅𝑟 sin 𝜃

(9𝑟2+𝑅2−6𝑟𝑅 cos 𝜃)
3
2 

−
3𝑅𝑟 sin 𝜃

(𝑟2+9𝑅2+6𝑟𝑅 cos 𝜃)
3
2 

+
3𝑅𝑟 sin 𝜃

(9𝑟2+𝑅2+6𝑟𝑅 cos 𝜃)
3
2 

)  

The conductor plane should be 𝑟 = 𝑅 



−
𝜕𝑉

𝜕𝑟
|𝑟=𝑅 =

𝑞

4𝜋𝜀0
(

10𝑅

(10𝑅2−6𝑅2 cos 𝜃)
3
2 

−
10𝑅

(10𝑅2+6𝑅2 cos 𝜃)
3
2 

)  

−
1

𝑟

𝜕𝑉

𝜕𝜃
|𝑟=𝑅 = 0  

(d) Force on charge 𝑞 is from all the image charges 

𝐹 =
𝑞

4𝜋𝜀0
(

𝑞ℎ

(3𝑅−
1

3
𝑅)

2 +
𝑞𝑝

(3𝑅+3𝑅)2 +
𝑞ℎ𝑝

(3𝑅+
1

3
𝑅)

2) =
𝑞

4𝜋𝜀0
(

−
1

3
𝑞

(
8

3
𝑅)

2 +
−𝑞

(6𝑅)2 +
+

1

3
𝑞

(
10

3
𝑅)

2) = −
643

14400

𝑞2

4𝜋𝜀0𝑅2  

(e) Force on charge 𝑞 without hemisphere is  

𝐹 =
𝑞

4𝜋𝜀0
(

−𝑞

(3𝑅+3𝑅)2) <
𝑞

4𝜋𝜀0
(

−
1

3
𝑞

(
8

3
𝑅)

2 +
−𝑞

(6𝑅)2 +
+

1

3
𝑞

(
10

3
𝑅)

2)  

  



4. Consider the conductors of infinitely long stick and tubes, where the shapes are as shown below. 

Qualitatively draw the equipotential lines and electric field lines. When you draw them, please pay 

attention on three regions, near to the center and near to each electrode.  For the potential, consider 

that the property of solution of Laplace equation, which is, the value of potential at a point is the 

average of those around the point. And for the electric field, clearly show that the density is the filed 

lines is proportional to the strength of the field.  

 

Draw (a) a few 
equipotential 
lines and (b) 
electric field lines 
for the left 
geometries of the 
conductors in 2D.  
 

Draw (c) a few 
equipotential lines and 
(d) electric field lines for 
the left geometries of 
the conductors in 2D. (e) 
Find the exact 
mathematical form of 
electric field near the 
center. Represent it with 
unit vectors. Consider 
∇ ∙ 𝑬 = 0.   



(e) The electric field should not have z-component and no z-dependence. Therefore, it can be written as 

𝑬 = 𝐸𝑥(𝑥, 𝑦)𝒙̂ + 𝐸𝑦(𝑥, 𝑦)𝒚̂.  

From ∇ ∙ 𝑬 = 0,   
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
= 0, which leads to  

𝜕𝐸𝑥

𝜕𝑥
= −

𝜕𝐸𝑦

𝜕𝑦
= 𝐴 

Therefore, 𝐸𝑥 = 𝐴𝑥 + 𝑓𝑥(𝑦) and 𝐸𝑦 = −𝐴𝑦 + 𝑓𝑦(𝑥). 

Let’s consider the curl ∇ × 𝑬 = 𝟎,  
𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑥
= 0 →

𝜕𝑓𝑥

𝜕𝑦
=

𝜕𝑓𝑦

𝜕𝑥
= 𝐵 

Therefore, 𝑓𝑥(𝑦) = 𝐵𝑦 + 𝐶𝑥 and 𝑓𝑦(𝑥) = 𝐵𝑥 + 𝐶𝑦 

That is, 𝐸𝑥 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑥 and 𝐸𝑦 = −𝐴𝑦 + 𝐵𝑥 + 𝐶𝑦. 

At 𝐸𝑥(𝑥 = 0, 𝑦 = 0) = 𝐸𝑦(𝑥 = 0, 𝑦 = 0) = 0, it leads to  𝐶𝑥 = 𝐶𝑦 = 0. 

From the Fig. (d), the solution should be 𝑬 = 𝐵(𝑦𝒙̂ + 𝑥𝒚̂) . 



 5. Consider a hollowed charged sphere with radius 𝑅 and 

uniform charge density 𝜌 as shown in the following figure. 

The inner radius of the spherical cavity is 𝑅/2 . 

(a) When 𝑟 > 𝑅, find the exact potential 𝑉. 

(b) Find the dipole moment 𝒑. 

(c) Find the electric field 𝑬 up to the dipole term.  

 

Answers 

We can understand the problem as the whole sphere is filled with uniform charge density 𝜌, and the 
hollow region is filled with −𝜌. 

(a) 𝑉(𝑟, 𝜃) =
1

4𝜋𝜀0
(

4

3
𝜋𝑅3𝜌

𝑟
−

4

3
𝜋(

𝑅

2
)

3
𝜌

(𝑟2+(
𝑅

2
)

2
−𝑟𝑅 cos 𝜃)

1/2) =
𝑅3𝜌

3𝜀0
(

1

𝑟
−

1

8

1

(𝑟2+(
𝑅

2
)

2
−𝑟𝑅 cos 𝜃)

1/2 ) 

(b)  𝒑 = ∑ 𝑞𝑖𝒓𝒊
′ =

4

3
𝜋𝑅3𝜌 𝟎 + (−

4𝜋

3

𝑅3

8
𝜌)

𝑅

2
𝒛̂ = −

𝜋𝑅4𝜌

12𝒊 𝒛̂ 

(c) Total charge q =
4

3
𝜋𝑅3𝜌 −

4

3
𝜋 (

𝑅

2
)

3
𝜌 =

7

6
𝜋𝑅3𝜌 

𝑉𝑚𝑜𝑛𝑜(𝑟, 𝜃) =
1

4𝜋𝜀0

7

6
𝜋𝑅3𝜌

𝑟
=

7

24𝜀0

𝑅3𝜌

𝑟
  

𝑉𝑑𝑖𝑝(𝑟, 𝜃) =
1

4𝜋𝜀0

𝒓̂∙𝒑

𝑟2 =
1

4𝜋𝜀0

𝜋𝑅4𝜌

12
cos 𝜃

𝑟2 =
1

48𝜀0

𝑅4𝜌 cos 𝜃

𝑟2   

𝑬𝑚𝑜𝑛𝑜 = −
𝜕𝑉𝑚𝑜𝑛𝑜

𝜕𝑟
=

7

24𝜀0

𝑅3𝜌

𝑟2 𝒓̂ 

𝑬𝑑𝑖𝑝 =
𝑝

4𝜋𝜀0𝑟3 (2 cos 𝜃 𝒓̂ + sin 𝜃 𝜽̂) =
𝑅4𝜌

48𝜀0𝑟2 (2 cos 𝜃 𝒓̂ + sin 𝜃 𝜽̂)  

 

 

. 

𝑬 

 


