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Forewords on the Course 

This is your first physics course in college. It focuses on the classical 

mechanics and an introduction to theory of special relativity. For the 

mechanics part, we shall have a thorough discussion on the Newtonian 

Formalism of classical mechanics. 

I realized the majority of you had already learned quite a lot (if not all) 

materials covered in mechanics part of this course. However, you 

probably will still find my treatment may be quite different from what 

you learned in high school. Such treatment is not a show-off or put the 

old stuff in new dress; it is the orthodox one which is most efficient or 

best to handle the subjects and you will find its shadow (I mean similar 

methods or models) in all branches of physics you are going to study. 

During the study of this course, I hope you may pay attention to the 

following aspects: 

1) Use the ‘orthodox’ methods taught in the class, such as vectors, 

differentiation and integration, solving ordinary differential equations etc., 

even though the problems may be handled by what you learned in high 

school. These methods will accompany you a long way, so learn it, master 

it and apply it. 

2) Understanding the fundamental physical principles and building up 

“physical pictures”, instead of memorizing formula. There will be too 

many formulas to remember and they are all derived from physical 
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principles. So understand the principle and apply it is the most efficient 

way of learning. The “physical picture” is a little abstract. It is your 

understanding of the physical principle, your modeling based on the 

principles etc. It may easily get lost in the calculation and reduce the 

physics (mathematician will argue reversely☺) to a bunch of math 

formulas and forget what the formula is trying to tell you. A clear 

physical picture will guide you through or even explain phenomena 

without computation. Paul. A. Dirac once said (my recollection, may not 

be exact word by word): I think I understand a physical problem is when I 

know the answer before I solve the differential equations.  

3) Adopting reasonable approximation whenever applicable. Physics is to 

reduce complexity into simple models with reasonable approximations. 

So in the calculation, you will need reasonable approximation too. 

Whenever you need it, do not hesitate using it. There aren’t many 

problems in real world you can solve it exactly. Here by approximation 

what I mean is not replacing g=9.8 with 10 in the computation (this kind 

of order of magnitude estimation is definitely useful and needed, but not 

my focus here). The approximation is to discard the lesser effect at the 

beginning in order to get simple solutions, such as the application of 

Taylor expansion, using harmonic approximation for potential wells close 

to the equilibrium point (see chapter 6 of the notes). 

4) Practicing with what you learned in the lecture. I will try to explain 
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principles and applications as clear as possible, so that I hope most of you 

will feel understanding the lecture afterwards. But this is no guarantee 

that you master the materials. You need practice for the completion of the 

learning cycle. The practice will be in forms of homework problems and 

application by you trying to explain physics of some daily experience or 

phenomena. In the preparation of the lecture note, I read books and 

thought that I understood the stuff. I still had troubles in solving some 

problems or explaining some phenomena. The reason is two fold: one is 

due to skill or mathematical methods, you need practice to be skillful, and 

you need certain math technique in solving the problem. This is obvious 

but the less important part. The more important part is this: when I have 

trouble in problem solving, 99% is due to wrong physical modeling or 

negligence of some subtleties in the physical principles which escaped 

attention in the first reading. You could only find and understand these 

subtleties in problem solving or applications. I hope I will uncover most 

of these subtleties in lecture, but to fully understand them require practice 

yourself. So do the homework yourself or discuss physical problems with 

your peer or TA or me.  

The lecture is composed of two distinct and related parts: Newtonian 

Mechanics which will be taught in about 10-week span of time (I hope), 

covering first 10 chapters of my notes, so about one week per chapter 

(The chapter 2,4,5 will take less than a week, while 6,7 will be more, if 



 iv 

we are short in time, chapter 9 on the motion in central field may be 

skipped); the rest will be devoted to introduction of special relativity (1 

week on chap.11 and 2-week for chap. 12, 13 each)which may be a 

complete new to most of you (I presume). 

 

Grade system for the course (theoretical part): 

5% homework: Note the TA will not grade the homework. You still need 

to hand in the homework so that TA knows that you finished it. I will not 

ask TA to grade them. Instead the TAs need to workout the solutions for 

the homework and post them on internet so that you can ‘grade’ your 

homework yourself. To test that you indeed workout the homework 

without just copying from others, there will be 20 points worth in exams 

where the problem in the exam is just the homework or a simple 

variation.  

45%: Midterm (taken at 9
th
 week) 

50%: Finals 

Both exams will be open-book. You can bring in the following: 

a) Copy of my lecture notes 

b) Pieces of paper where you make summary yourself 

c) Calculator, dictionary.  

These are all you can bring, and NO more other materials such as 

homework answers.  
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Chapter 1 What is Mechanics? Concepts of Particle；；；；Motion and 

Force in Newtonian Mechanics 

1.1 Description of motion 

Mechanics is the study of the motion of particle (or particles). Here I 

may need to talk a bit more on what is particle and what is motion, 

though I believe all of you had already developed a feeling for these 

terms.  

The particle in this course is an infinitesimal point stripped off its 

geometric property, a pure idealization to simplify the problem. It is the 

building block of the real material body and an idealization (a model) of 

real fundamental particles. The point representing the particle will have 

intrinsic properties which will govern its interaction with other particles 

or the fields (modern treatment for the interaction with the field is 

interactions between the particles). These properties are mass (will be 

defined later), charge (related to the interaction with electric field) and 

spin (an angular momentum related to interaction with magnetic field). 

The above is applied to all mechanics, below the discussion will be 

limited to Newtonian mechanics (also called classical mechanics for 

historical reason to distinguish it from quantum and relativity theory).
1
 

                                                        

1 Besides the original Newtonian formalism of classical mechanics, there are other equivalent formalisms 

developed in 19th century, based on the least action principle (also called Hamilton principle). The classical 
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The motion of the particle is described by the space-time events. We 

choose a reference frame, a coordinate system to locate the positions of 

the particle at different time. In classical mechanics, the space is 3 

dimensional Euclid-space which can be represented by rectilinear 

orthogonal (means perpendicular) coordinate system, such as Cartesian or 

other equivalents (Spherical, Cylindrical etc.). Time is another 

independent variable (a parameter that is not affected by the space) that 

changes evenly in all frames (linearly). 
2
  

With this rectilinear Euclid-space and steady time flow assumption, the 

Newtonian mechanics describes the motion of a particle by obtaining the 

position of the particle at different time: for example 

… in 1-dimesion case, or more succinctly by a function 

of time , which is called trajectory of the particle.  The motion is 

fully described by this trajectory (the variation of space with time), and 

other properties of motion can be derived from it, such as velocity (the 

rate of change of position vs. time): 

      (1-1) 

                                                                                                                                                               

mechanics by this formalism shall be covered in the course of theoretical mechanics (also called analytical 

mechanics, a bad terminology in my opinion) which will pave the way to quantum mechanics, i.e. through that 

formalism, the links between classical and quantum mechanics is much clearer. 

2 Of course, this Euclid space and independent steady time flow in all reference frame assumption adopted in 

Newtonian Mechanics breaks down in relativity. The time flow will depend on the speed of the reference frame in 

special relativity, which we shall discuss later in the special relativity section. There the time will mix with space 

and will be treated as another dimension in space-time. The rectlinear Euclid space will break down in general 

relativity, the massive object will ‘bent’ the space-time.  

1 1 2 2 3 3( , );( , ); ( , )x t x t x t

( )x t

( )dx t
v x

dt
= ≡ ɺ
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and acceleration (the rate of change of velocity vs. time; or second order 

variation of position vs. time)  

      (1-2) 

This description, though complete, is not very satisfactory, it requires 

infinite pairs of . How did we obtain the trajectory ? By 

experiments of course! That is how every theory (at least scientific theory) 

develops. Through the observation  (celestial motion of the stars and 

planets) and experiments (balls rolling down the slope or dropped from 

Pisa tower), regularities will appear and summary will be made (Kepler’s 

laws of planets motion and Galileo’s idea of inertia), and finally all the 

pieces will be put together like jigsaws to form a nice theory (Newtonian 

mechanics), with minimum but fundamental assumptions or postulates 

(also termed laws in old days); then applying logic derivation (in the 

language of math), phenomena explained and predictions made, and the 

theory will be subjected to the rigorous and wide test through further 

experiments. If and only if no contradictions observed, people will accept 

the theory. The theory will be modified or completely overhauled and 

reformulated as new and better experimental data become available. All 

theories developed follow these steps (only exception to my knowledge is 

probably general relativity, brain child of a weirdo and genius with no 

2 ..

2

dv d x
a x

dt dt
= = ≡

( , )i ix t ( )x t
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compelling experimental facts at the time of its birth 
3
). The power of a 

successful theory lies in the facts not only explaining the existing 

experimental evidences (this is a test for the correctness of any theory), 

but also in making correct predictions which can be tested by 

experiments.  

Now back to the motion of a particle, from the observation of its 

trajectory, Newtonian mechanics developed.  Now the question is: can 

we predict the motion of a particle with minimum knowledge (knowing 

the complete trajectory is nice but may be impossible in some situations).  

Of course you know the answer is yes, but let’s proceed at first with this 

prediction of motion to see how far we can go just with common logic 

and without resorting to Newtonian theory.  

To predict the motion, you will need a starting point obviously, this is 

called initial conditions. Suppose (still in the 1-d space for simplicity) we 

know the initial starting position . This is not enough information 

to proceed to make any prediction. Suppose we add initial velocity  

to our knowledge, we then can predict accurately the position of the 

particle a short time (very short, approaches to 0) later , with 

. If we want to proceed further,  at 

initial time would not be sufficient again, because we need to find the 
                                                        

3 There were experimental facts indeed, such as the precession motion of Mercury unaccounted by the classical 

mechanics, but that is not very compelling. I should also mention that using ‘weirdo’ in the note means no negative 

as in common use. All genius (which means exceptional uncommon, or extraordinary) are weirdo in some aspects. 

But be warned don’t imitate genius by behaving weird, the reverse is definitely untrue, not all weirdo are genius☺   

0 0( , )x t

0 0( , )v t

1 1( , )x t

1 0 0 1 0, 0x x v t t t t= + ∆ ∆ = − → 0 0( , )x v
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velocity  at  in order to proceed, and the  can be obtained if we 

add the initial acceleration . So without any help from Sir Newton, we 

can proceed to the third position at  by knowing the initial position, 

velocity and acceleration. This argument will go on, so if you want to find 

the 4
th
 position , you will need position and velocity at ; which in 

turn requires position, velocity and acceleration at ; which requires 

at the starting point. The situation will quickly go out of hand 

if you want to predict motion after reasonable steps.  You will need 

many time derivatives initially. These initial time derivatives would be 

same amount of information as 
4
, so not much progress from 

knowing the complete trajectory.   

Now Sir Newton comes to rescue by telling you that you can calculate the 

acceleration of the particle provided you know two things, the force and 

the mass.  The force
5
 is due to the interaction with the surrounding 

which may have a simpler distribution formula over space-time.
6
 The 

                                                        

4 You may find this description of motion from a starting point is equivalent to the Taylor expansion of functions 

in calculus.  

5 The force in Newtonian mechanics is a very vague concept based largely on daily experience and it plays a 

central role. Roughly speaking, it is a measure of interaction between different particles. Modern physics tends to 

avoid force by replacing it with energy (though the energy itself is also a pretty elusive idea, see the discussion in 

Feynman’s vol.1 chap.4.1.) But force though vague in definition, still a very useful concept. The forces considered 

in this course are within classical limit, such as gravitation and electromagnetic.  

6 Newton reveals one form of force, the gravitation force; its modern view is interaction with gravitation field and 

such interaction is conducted by the so called gravitons. (i.e. the two massive objects interact by exchanging 

gravitons)  Other fundamental forces in physics are electromagnetic force (Coulomb’s law), and it is interaction 

of charged particles with the electro-magnetic field (the interaction is by exchanging photons); and nuclear force 

within the short distance (10-15m, the dimension of the nuclei), the interaction (so called strong interaction) is by 

exchanging gluons. Browsing the WIKI under ‘fundamental interaction’ for some background. 

1v 1x 1v

0a

2t

3 3( , )x t 2t

1t

0 00 0, , ,x x x x
ii iii

ɺ

( )x t
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mass will be an intrinsic property of the particle which is independent of 

space and time (a constant in Newtonian). Thus allow you to determine 

the acceleration of particles over space and time. So in Newtonian 

mechanics, you only need to know the initial velocity and position, and 

the rest of the motion of the particle shall be determined provided the 

force distribution and the mass is known. The Newton equation of motion 

(his second law) is essentially a second order differential equation of 

position over time, and knowing the initial position and velocity will give 

you a specific solution of the trajectory. Sometimes we restate the above 

by saying that the state of a particle in space-time is described by 

specifying its position and velocity
7
, and its motion (i.e. its state at later 

time) can be predicted with the knowledge of the force distribution.  

 

1.2 Dependence of Force on Variables  

1.2-1 The General Form of Force; Explicit and Implicit Dependence on 

Variables 

From the above discussion, we only stated that in Newtonian mechanics, 

the motion will be affected by interaction between particles. This 

interaction can be described as force and it will determine the 

                                                        

7 This is the reason that in other formalisms of classical mechanics, the fundamental functions to replace the force 

are functions of position, velocity and time but no more, such as Lagrangian and Hamiltonian function you will 

encounter in theoretical mechanics.  
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acceleration of the motion. Once the force and mass and initial conditions 

are fixed, the motion shall be fixed too. We did not know however what 

the force exactly is, especially how its distribution over space and time, 

expressed in function with variables of space and time.  I do not intend 

to give you all the function forms of forces, some of which you already 

know probably, such as Hook’s law, Universal gravitation, Coulomb’s law, 

etc.  Here I would rather talk a little about the general dependence of the 

force on the space and time variables within classical limit (low velocity 

and macroscopic world).  

Suppose our system only consists of two particles existing in an ideal 

environment that no other interactions exist except that between the 

particles (not one particle this time, there will be no force if our complete 

system only has one particle). Such system is called a closed system, it is 

obvious an idealization but a useful one, it is equivalent to put our 

particles in outer space far away from any mass object in universe and 

also in vacuum with electro-magnetic shield.  

The most general form of force would be a function of all the possible 

variables describing the mechanical state of the particle, i.e. position, 

velocity and time.  So , A, B specify 

the particles, the position and velocity will also change with time. If there 

is a time explicitly in the force function, such as 

, then we say the force has explicit 

( ( ), ( ), ( ), ( ), )A B A BF f x t x t v t v t t=

( ) ( ) cosA B A BF x x v v t= − + − +
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dependence on time
8
. If there is no time variables in the function, the 

force will still change with time, but this time it is implicitly through the 

change of position and velocity, such dependence of time would be called 

implicit dependence.  

The general form of force above would let us determine the motion of the 

two particles, provided we know the initial states (given by initial 

position and velocity) of the particles, we shall start there, from the force 

knowing the acceleration, and thus knowing the position and velocity of 

both particles at later time, so we can know the states of the particles at 

all time. Just from the mechanical point of view, the force in a completely 

closed system can be a function of position, velocity and time. 

However, you probably know that the fundamental forces between two 

particles are only functions of position (In this course, we only consider 

the classical domain and the fundamental forces are gravitation and 

electrostatic forces), actually only upon relative position, i.e. 

 in 1-dimensional case here, not explicitly depend on time 

and velocity.  This is indeed how the nature works, and have you ever 

wondered what is the reason? 

 

                                                        

8 In this case, the change of force with respect to time would be:  

( )A BF f x x= −

A B A B

A B A B

df f x f x f v f v f

dt t t t t tx x v v

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂



 9

1.2-2 Homogeneous and Isotropic Space-Time, Inertial Frames and 

Relativity Principle 

The reason of the forces above only depend on relative positions of the 

particles is what we called homogeneous and isotropic of space-time in 

the reference frame we choose, such reference frame is called inertial 

frame; another reason is relativity principle in physics. So the following 

talks may be a little advanced for this opening course in mechanics
9
, but I 

shall put it as plain as possible.  

Homogeneous in physics and chemistry usually means the property 

would be same in all positions in space. i.e. it is related to the 

translational symmetry. For example, a tank of water, its density (the 

number of water molecules inside a small volume) and other physical, 

chemical properties on the average speaking would be same everywhere 

inside the tank (except at the edge of tank, but we may think the tank is 

infinitely large), then we say the water is homogeneous in the tank. 

Homogeneous in space-time means that all the positions (in x and in t) 

would be equivalent for the closed system. This means translational 

invariance. i.e. the closed system behave equivalently no matter what is 

the origin you choose for the space or time, you translate the whole 

system along the x-axis or time axis, and making the observation, the 

results would be same before and after the translation.  

                                                        

9 That means it won’t appear in the test. 
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To put this more clearly, suppose you have a closed system of two 

particles, you observe their motion in Beijing on Monday; then you repeat 

the experiment with same initial conditions (i.e. same initial state of 

particles) on Tuesday, you would get same result (Here, the closed system 

means isolated from the outside world, so weather change or the motion 

of earth…will all be shielded and won’t interfere with the experiment). 

This is what you believe and tested true in all experiments. This is the 

translational invariance along time or homogeneity of time.  Now you 

translate the whole system to Tianjin, and repeat the experiment there 

with same initial conditions, you will get same results as in Beijing. This 

is called translational invariance of space, or homogeneity of space
10

.  

The above is not to prove that space and time is homogeneous, but from 

past experience and experimental tests, we believe this should be the case. 

So this is a fundamental postulate which has far more profound impact in 

all branches of physics. You may like to know that from the homogenous 

of space (translational invariance, sometimes also called translational 

symmetry), we can see the momentum of a closed system will be 

conserved---conservation of momentum. From the homogeneous of time 

(translational invariance in time), the energy of the closed system will be 

                                                        

10 The strict definition would be the Lagrangian (a function of space-time and will be defined in theoretical 

mechanics) will be invariant with translation. For more general discussions like in this notes, please refer to 

Feynman’s Vol.1, chap.52. 
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conserved---conservation of energy.
11

 

Isotropic means the physical properties and interactions would be same 

in all directions, i.e. independent of direction. It is related to the rotational 

symmetry. For example, that tank of water is homogeneous but also 

isotropic in an average sense. If you plant a bomb inside, the explosion 

sets off the sound wave will travel equivalently in all directions. This 

won’t be true in ice crystal where the interaction will be directional 

dependent due to the ordered lattice structure of the crystal.  Isotropic 

in space means the choice of the coordinate axis of our frame won’t 

affect the physical properties for the closed system. This is rotational 

invariance. Noticed the rotation of the coordinate axis would be 

equivalent to rotation of the whole system in the reversed direction of 

same amount with fixed coordinate axis. So the above can also be stated 

that if you rotate the whole closed system with arbitrary angle along any 

direction, the physical property would be same.   

For example, in our 1-dimensional case, we rotate the x-axis 180-degree, 

the motion of the particle would be same (or equivalently you rotate the 

two particle 180 degrees, make A particle ahead, B particle behind, same 

results). Of course rotation is better illustrated at least in 2-dimension. 
                                                        

11 To prove the conservation laws from the invariance of space and time would be best dealt with the Lagrangian 

in theoretical mechanics. If interested, please read Landau and Lifshitz “Mechanics” 3rd edition, Chap. 1 and 2. 

The Newtonian formalism won’t fit for this task. Of course we can work out the conservation relations for 

mechanical system from the Newton’s laws, just not easy to see the link with the invariance in space and time. A 

general theorem, relating the symmetry and conservation of physical quantity is called Noether’s theorem, see 

Goldstein, “classical mechanics” 2nd edition, 12-7. 
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Suppose you carried the two particle experiment along the North-South 

direction initially and then along the East-West direction, both with same 

initial conditions, the results would be expected and be tested same. This 

is the meaning of rotational invariance. (A student may argue that if you 

rotate the two particles and make it along up-down direction, the gravity 

would change the results. Yes, but don’t forget we are talking about the 

closed system which will be isolated from outside interactions. By 

introducing the gravity, the system would not be closed anymore, but 

subjected to an outside field. Of course we shall deal with this, but not 

now. So to negate the gravity, we may do the experiment in a weightless 

environment, such as a free fall elevator, and the student who argued 

would be in the elevator to make observation☺). Isotropic in space 

(rotational invariance) will give us conservation of angular momentum 

for the closed system. Isotropic in time would mean time reversal 

invariance, since time is in its own dimension, ‘rotation’ in time means 

making a reversal of time flow, to make time go backward. i.e. t will be 

replaced by –t in all functions and relations.  Just imagine you record the 

motion of particles in a closed system, make it a movie and play the 

movie backward, and all motions playing backward would also obey the 

same physical law. i.e. two particles initially attracted each other and 

accelerated towards each other and collide; if you play it in reversed order, 

the two particles may appear initially with larger speed and flying apart 
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under attraction force will slow down. Both obey same physical laws. In 

this sense, the motions of a closed system in classical mechanics would 

all be reversible. This is the meaning of isotropic in time.
12

  

Relativity principle means that the physical laws govern the motion 

would be same for all inertial frames (the frame which satisfies 

homogeneous and isotropic of space-time). The different inertial frames 

can be different by a constant velocity.  For example, you carry the two 

particle closed system, aboard a train moving with constant velocity and 

carry out the experiment on the moving train. Your observation would be 

same as that carried on the ground. This is to say you cannot know you 

are on a moving train by doing physical experiments on the train (throw 

the ball, play the pool etc), because all the observation would be same as 

in another inertial frame such as on the ground, and all the inertial frames 

are equivalent in studying physical laws.  This implies you cannot 

determine the absolute velocity of the frame but only the relative velocity 

between different inertial frames. The common example is that two 

moving trains run across parallel with each other, the guy on the trains 

won’t be able to tell whether it is his train is moving or his train is 

stationary but the other train is moving in the opposite direction, only the 
                                                        

12 Someone may raise objection here, that something (actually a lot of things) in real world are not reversible. A 

glass fall on the floor and broke into pieces never put back again (if you argue your girlfriend left you and never 

come back, I cannot answer and you probably are sitting in the wrong class). Actually from the mechanical point 

of view, the reversed process is certainly possible, but since in this case, it involves so large number of particles, 

and it requires thermodynamics and statistical mechanics to calculate the probability for the reversed process. That 

turns out to be extremely small, close to zero in any practical sense.  
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relative motion can be determined. Such relativity principle was first 

pointed out by Galileo and is called Galileo Relativity principle which 

only applies to mechanical system. Einstein extended this to all physical 

laws, and we shall come back to this principle when we talk about special 

relativity.  

 

1.2-3 The Force between Particles in a Closed System Depends Explicitly 

on Position 

Now let’s come back to the question at the end of section 1.2-1, the force 

between the particles in a closed system in an inertial frame is in the form 

of , only depend explicitly on positions of the particle. 

Base on the discussion of last section, we now can give the reason for 

such dependence.  

First, the force will only depend on the relative positions of the two 

particles. If it depends on the absolute positions of individual particle, 

then this will violate the homogeneous of space (translational invariance). 

Suppose we translate the system by an amount of d along the x-axis (this 

can be done by choosing a new origin of the coordinate system with –d, 

or shuffle the whole system down the axis by d). Then the form of force 

would become , if it depends on velocity and time, this 

translation will not affect the velocity since d is a constant, and time can 

( )A BF f x x= −

( , )A Bf x d x d+ +
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be chosen the same as before. If the dependence is not only on the 

relative position in which the translation of d could be cancelled, then 

there will be a change of force due to the translation. Then the motion of 

our two and only two particles system would be different, will not be 

translational invariant anymore. So the dependence of force could only be 

on the relative positions.  We can further show that the force is also 

along the line connecting the two particles. Of course we have to go to 

higher dimension for this. Now suppose that the force between the two 

particles is not along the connecting line, but with an angle, see the figure 

below. Then the force will make the two particles rotate counterclockwise. 

Now if we rotate the two particles around X axis with 180-degree, then 

the rotation would become clockwise. But from symmetry, the system 

should be rotational invariant around the X-axis.  That is possible only if 

the force is collinear with the two particles. 

(Comment: This is true if we only consider the two particles and the two 

particles do not have any internal degrees of freedom, such as spin of 

electron etc, that will vary upon the rotation. Of course this is an 

approximation only valid in cases when we do not need to consider such 

internal degrees of freedom in classical mechanics. There are cases that 

the forces between the particles do not along the line of connections if the 

above condition is not valid) 
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Similar argument would also apply to the time dependence of force. The 

force in a closed system cannot depend explicitly on time. Otherwise, it 

will violate the homogeneous of time. i.e. if force explicitly depend on 

time, . Then if we translate in time (reschedule the experiment 

from Monday to Tuesday), the force will be different and the following 

motions of the particles will be different too.  

How about the force dependence on velocity of the particles? The 

argument will be a little different and complicated from above, and I shall 

only give a brief discussion here and leave the detail later (by the end of 

this course when we have learnt special relativity). In Newtonian 

mechanics, the interaction between the particles (the propagation of the 

force) is considered instantaneous, takes no time. i.e. if the particle B is 

introduced into a system originally only has A, the A will immediately 

feel the force from B. Such instantaneous is a built-in in the Newtonian 

mechanics, an assumption which turns out faulty (the modern view is that 

the interaction between particles is not instantaneous, but through the 

field created by the particle as source, such as Gravitation filed by 

massive particle, and electro-magnetic field by charged particle. The 

(... )F f t=

X 
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propagation is actually the propagation of the field, and the force 

experienced by the other party are due to the interaction with the field. An 

analogy will be throwing a stone into a pond of water, the disturbance 

will propagate as water wave and when this wave reaches the a piece of 

wood a distance away, the wood will subject to the force and start 

shaking). Such instantaneous interaction is also termed as non-locality. It 

implies the force will not depend on the velocity of the particle, whether 

they travel fast or slow or to any direction, the force always propagates 

with infinite velocity. 

We shall derive the transformation of forces by the end of this course 

using special relativity, i.e. for one inertial observer the force is F, and for 

another observer in another inertial frame (say a train moving with 

constant velocity v relative to the first frame), the force is F’, there will be 

relations between F and F’ which I call transformation relation between 

the forces. We shall find there that if we can neglect relativistic effect 

(v/c~0), the forces will take same form in all inertial frames(this is 

equivalent to say c is infinity mathematically and in accordance with 

non-locality of classical mechanics, i.e. interaction is instantaneous); 

however strictly speaking, the force will depend on the velocity due to the 

relativistic effect. In this sense here the independence of force on velocity 

is result of neglecting such relativistic effect in Newtonian mechanics. 

Then the forces in particle A, B system, say the force felt by A created by 
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the field from particle B. We can choose a frame in which the B is 

stationary (motionless) and thus the field of B only depends on the 

relative position to B, so will the force felt by A. 

So In conclusion, all fundamental forces are in forms of , 

depends explicitly only on relative positions in classical physics. Of 

course due to the motion of particles, the position will change with time 

and the force will change too, so it depends implicitly with time.  

 

1.2-4 Superposition Principle of Force and Force in an Open System 

A smart you may raise objection once again that you know there are 

forces depending explicitly on velocity (such as frictional force, air 

resistance, etc), and on time (such as a charge in a time varying electric 

field). The difference in this situation is we are dealing with an open 

system. We have to include interactions of the part of the world that we 

are interested with the rest of the world.  The closed system we are 

dealing with in previous discussion (only two particles) is a very 

simplified idealization. The real problem will involve too many parties to 

treat it as a closed system. You still can include everything into a closed 

system, but the treatment with that many particles is just not simple 

anymore. 

Consider we extend our two-particle closed system to a 3 particle system, 

( )i jf r r−
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with particles A, B, C. Now the force on one of the particles will have 

two contributions from the other two: 

   (1-3) 

If there are more than 3 in the system, the general form of force on A: 

      (1-4) 

The relations expressed in 1-3 and 1-4 are called superposition principle, 

that the forces exerted by many parties are just summation of forces by 

each individual contribution as if it is acting alone.  It is simple and 

straightforward and greatly simplified interactions. Science would be 

quite different (more complicated) without it. This superposition is also a 

postulate, a principle not from derivation but based on experimental facts, 

from peoples pulling heavy objects to atomic interactions. This principle 

implies if we understand the interaction between two particles, we can in 

principle understand many particles interaction. But as particles number 

increases, the analysis becomes more complicated even with the help of 

superposition principle. 

Back to our idealized closed system, but with 3 particles. To find out the 

motion of particles, we need to have initial conditions, including positions 

and velocities of the three particles (6 variables in 1-dimensional, and 18 

in 3-D). For example, to determine the motion of A, from its initial state, 

we can calculate its position and velocity at later time. Then from the 

positions of all particles at this later time, we can calculate the force on A 

1 2( ) ( )A BA CA B A C AF F F f x x f x x= + = − + −

( )A j j A

j

F f x x= −∑
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and calculate further motions at even later time, it goes on like this. This 

procedure may workout for small number of particles, but quickly goes 

out of control in real world, where number of particles would be on the 

order of Avagadro number 10
23

. Of course there is simplification even for 

macroscopic object: if the object does not have any internal change 

(geometric shape, mass etc) and we do not need to consider the 

interactions between the atoms/molecules that the object is made of, it 

may be treated as a mass point. But generally if we include everything 

into our system, making it closed, the number of interacting parties would 

be too big to handle, so approximation has to be made.  

Let’s come back again to the simplified model of 3 particles. If I am only 

interested in the motion of A, I shall include A in my system, and treat 

B,C as outside world. My system with only A will be an open system, and 

interaction will not be restricted within the system like the closed one. 

Then I shall try to approximate the force from B,C (these forces are very 

often called interaction with external field). If the B, C are doing some 

periodic motion and I do not care about them. Then the force on A will 

appear as a function of position of A and time. So the force experienced 

by a body in an open system may have explicit dependence of time and 

even velocity. For example, in the situation of air resistance, a bullet is 

flying through air. The bullet-only is an open system, it is interacting with 

billions air molecules, whose interaction with the bullet will be averaged 
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and approximated to give a simplified force form. The number of 

molecules colliding with the bullet per unit time would certainly depend 

on the velocity of the bullet, so the empirical force form would depend on 

velocity of the bullet. Most empirical force expressions ( for 

elastic extension;  for friction force; for air resistance 

etc.) are the results of such averaged and approximated effect of the 

outside world (the molecules in the spring, on the surface or in the air) to 

the object of interest.  

The beauty of Newtonian (or classical) mechanics is that if we know the 

force, we can determine the motion of the object of interest provided with 

initial state. So given a force (or equivalently the potential field) and 

predict the motion is the task for mechanics; knowing and understanding 

the form of force will be tasks in other branches of physics and chemistry.  

 

1.3 The Limitation of Newtonian Mechanics 

You probably learned that classical mechanics breaks down at high speed 

and in microscopic world. That is quite true, we now know the limitations 

and possibly the reason of the breakdown of the Newtonian mechanics. 

There are faulty assumptions in the formalism and these lead to the 

breakdown. 

1) The space-time is absolute and independent, time is flowing evenly in 

F kx= −

F Nµ= 2F bv= −
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all reference frames, the interaction is non-local. 

Such assumption turns out faulty at high speed, i.e. v/c (c speed of 

light in vacuum) is not <<1, the interaction would be local, propagate 

with a limiting speed c. This leads to the special relativity. 

2) The space-time is rectilinear Euclid type. 

This turns out untrue in gravitation field (or accelerated frames). The 

massive object will make a curved space-time. This is treated in the 

theory of general relativity. Of course you have to be close to a 

massive object to see this effect (gravitational lensing of celestial 

object) or conducting very fine experiment on earth (Pound’s 

experiment for frequency shift of light in a gravitational field) 

3) The position and velocity can be determined and thus the trajectory 

description is valid. 

We have talked extensively on this classical description of motion in 

previous sections.  Such description is so natural from our common 

sense (well, the absolute and rectilinear space-time is also very natural 

from common sense), it breaks down in the microscopic world, where 

the little devil Planck constant  will creep 

in, and we will have the ‘bizarre’ uncertainty relation which rules out 

the possibility of determining the velocity and position simultaneously. 

This would make the classical description of the state invalid. New 

description and new formalism of mechanics is needed, and this is the 

346.6 10 sech Joule ond−= × i
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realm of quantum mechanics.  

A demanding you would argue now if above are true, then why one still 

needs to learn classical mechanics. I probably can think of 3 reasons: 

1) The classical mechanics is not wrong. It is incomplete, just cannot 

handle all observations and experimental results. Provided suitable 

situations (loosely speaking, macroscopic world, low speed and far 

away from massive stars, which basically dealt with 99% of average 

person’s daily life), the classical mechanics works with charm.  

2) New theory does not appear from nowhere like magic. The study of 

mechanics will pave the way and equip you with necessary 

background (both physical and mathematical) to advance into modern 

theories. 

3) All new theories have to be tested by the classical theory. They have to 

be able to reproduce the results of classical (show equivalence with 

classical theory) under the condition where classical theory prove to 

be correct. This is called correspondence principle. The special 

relativity should reproduce Newtonian mechanics when the v/c<<1; 

and quantum mechanics should reproduce Newtonian mechanics 

(actually it turns out more easy to show the relation between the 

quantum and Hamilton’s formalism of classical mechanics) when one 

can neglect h, treat it as zero.   

Finally I will give a very brief comment on the current accomplishment 
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of physical theories. The general relativity deals with gravitational field; 

and quantum theory deals with electro-magnetic field (quantum 

mechanics combined with special relativity, it handles all phenomena in 

chemistry, and large part in physics, except gravitation and inside nuclei). 

The quantum theory is also successful to explain the nuclei dynamics---so 

called chromodynamics. However, the attempt to include general 

relativity with quantum theory (i.e. use quantum mechanics to treat 

gravitation field) is unsuccessful. This part of theory is properly termed 

GUTs (Grand Unification Theories; Technically the unification of 

quantum description of nuclear physics is called GUTs, but I reckon it is 

more proper to name GUTs as unification to all physical interactions 

known to man), since it would be a theory including all known 

interactions, it also implies you really need guts to dive into it. 

 

Chapter 2  Kinematic in One-Dimension 

Kinematic is a study of motion of some party by describing its state, i.e. 

position and velocity, and how the state changes with time. This does not 

concern the ‘cause’ (the force or potential field) of the motion. The study 

of the cause of the motion and its effect is called dynamics. However, 

such division in my opinion is not important. In these early chapters, 

before formally introducing the Newton Laws, I will focus on the 
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kinematics. I shall use it as an illustration of some basic concepts and 

mathematical techniques. In this chapter, only consider a single particle 

moving in one-dimension, this is the simplest system you can get. The 

physics and math are relatively easy, but I shall use this to introduce 

differentiation and integration of calculus. Please also refer to the 

supplementary 1 for some details on the math. Next chapter, I shall treat 

the motion in higher dimensions and an important concept vector will be 

introduced. 

As stated in Chap.1, for a particle the motion is described by its position 

and velocity. The position changes with time and if we know how this 

change is, we can use a function x(t) to describe it. This is the trajectory 

of the particle in 1-D.  The rate of change of the position function over 

time is called velocity (its magnitude is called speed), it can be positive 

(travelling along the defined positive direction +x) or negative (along the 

–x direction). The velocity is also a function over time. The relation 

between the velocity and position is given in (1-1) but I shall repeat it 

here.  

   (2-1) 

This states that velocity is the time derivative of position function. Here 

the v(t) is the instantaneous velocity at time t. So knowing the trajectory 

x(t), finding the velocity is straightforward, just differentiation. For the 

details of differentiation and derivatives of some basic functions, please 

( ) ( )
d

v t x t x
dt

= = ɺ
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see the supplementary materials or books on calculus.  

Reversely, if we know the velocity v(t), we can also calculate the position 

change over time. x(t) is an antiderivative of the velocity function.  

   (2-2)
13

 

C is a constant that can be determined by the initial condition, i.e. at t=t0, 

x=x0, then the C will be fixed. The simple example is that if we know 

v(t)=gt, then from (2-2), we will get . And if 

our initial condition is at t=0, x=x0, then C=x0. The above would be: 

. The distance of free fall of an object. 

The (2-2) can also be written in a definite integral form: 

   (2-3)
14

 

So knowing either function of position or velocity, we can calculate the 

other.  

Just as the velocity is the rate of change of position over time, we can 

define the rate of change of velocity too, that is of course called 

acceleration. i.e. 

   (2-4) 

It is first order time derivative of velocity, and put the expression of 

velocity in terms position, then the acceleration is the second order time 
                                                        

13 See the supplement under antiderivative for detail. 

14 This is the fundamental theorem of calculus, also see that in the supplementary. 
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derivative of position: 

   (2-5) 

Listed in (2-5) are some commonly used notations. There is no need to 

introduce higher order time derivatives, because physical laws only 

related to the acceleration.  

With the definition of above, the kinematics of 1-dimension motion will 

be calculations involving differentiation and integration. 

(1) If we know x(t), then solving v(t) by (2-1), take time derivative of x(t). 

Then taking time derivative of v(t) (2-4) to get a(t). 

(2) If we know v(t), then its time derivative would give us acceleration 

a(t), and its definite integration (2-3) will give us x(t), of course we 

will need initial position to determine the x(t) completely in this case. 

(3) If we know the a(t), then we can use integration to get v(t) first, this 

will require a initial velocity (i.e. v0 at t0). Then using integration of 

v(t) we will get position, here we will need initial position.  So in 

general, we will need two initial conditions in this case.
15

 

The third case may need an example, consider the familiar motion with 

constant acceleration. If all we know acceleration is constant, .  

Then  

                                                        

15 This is because we are dealing with second order differential equation. And the specific solution to remove the 

constants involved in integration will require two (the same number as the order of differential equation) 

conditions 

2

2

( )
( ) ( ( ))

d d d x t
a t x t x

dt dt dt
= = = ɺɺ

( )a t A=
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There are two undetermined constants, because we only know the 

acceleration. Suppose now if we know the initial velocity, v0 at t=0; then 

C1=v0; if we know the initial position x0 at t=0, then C2=x0. 

The above relation would be reduced to the familiar form of constant 

acceleration: 

   (2-6) 

         (2-7) 

You can eliminate t from the above two and get: 

    (2-8) 

We shall see that (2-8) express the work-energy theorem in 1-dimension.  

For those who are familiar with ordinary differential equation, the x(t) 

can be solved directly from: . The general solution of x(t) would be 

 (B, C constant need to be determined from initial 

conditions), the results are same.  

If the acceleration is not constant, but some function of time, the 

calculation would be a little complicated, but still straightforward 

integration. However, if the acceleration not only depends on time but on 

position or velocity too, then it is the problem of solving differential 

equations and won’t be covered here.  

1 1( )v t Adt C At C= + = +∫
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Another example (this kind of problem is generally called related rate): 

 

As the figure above, if we know the car moving along the x direction, at 

certain point, the velocity viewed along the D is v, a constant. Then what 

is the velocity and acceleration of the car along x direction? (In the 

problem, h is a constant, D, x will change over time, and the changing 

rate of D is given as constant) 

Ans:  

The method is the implicit derivative discussed in the supplementary.  

You can further take time derivative to get acceleration along x: 

 

Comment: Whenever we are dealing with integration or solving 

differential equations, the specific solution will depend on the initial 

conditions, as the motion with constant acceleration demonstrated. 

Another example is KK’s Example 1.11 (pg 22), the motion of a free 

charge under an oscillating electric field.  
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The reason lies in the initial condition given in the problem, the charge’s 

trajectory will be an oscillation plus a drift. Could you figure out under 

what condition (initial condition) that the charge will be only an 

oscillation?  This example also demonstrated that given the acceleration, 

the trajectory (solved by integration or solving differential equation) will 

depend on the initial conditions. (The solution to differential equations 

depends on the equation as well as initial conditions or boundary values) 

 

Chapter 3 Motions in 2-Dimension 

In this chapter we are going to discuss the motion in higher dimensions 

than the 1-D case in Chapter 2. Though the focus is in 2-Dimension, the 

results can be generated to the 3-D or even higher dimensions. 
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In the higher dimension, with the increase of degree of freedom, there are 

physical quantities that cannot be represented by a single number. 

Consider the position and displacement for instance: In 1-D case, suppose 

we start at some initial point A, and travel a distance d along the x-axis, 

the new position B would be , if d is positive >0, the B will be to 

the right of A; if d is negative <0, then it is to the left of A. So in one 

dimension, the positions can be just labeled by a single number, either 

positive or negative; or a single value d would define the relation between 

the two positions A and B, d is called displacement between A and B. 

In higher dimensions, the displacement between positions cannot be 

specified by a single number. If we travel a distance d from A, that won’t 

specify the final position, it could be on a circle or sphere centered at A. 

To specify the final position, thus the displacement between A and B, we 

need not only distance but also direction. So the displacement between 

AB will be a quantity with information on both value and direction.  

There are many physical quantities similar to the displacement, such 

physical quantities are vectors. There are other physical quantities which 

only have a value, such as mass, temperature, etc. Such quantities are 

called scalar. 

3.1 Definition of Vector and Geometric Representation 

A vector is a quantity with both value and direction. It is represented 

Ax d+
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geometrically with a pointing ‘arrow’, the length of the arrow tells the 

magnitude (that is how big the arrow is), and the arrow is pointing 

towards certain direction.  The two vectors are equal require both same 

magnitude and same direction.  

 

The figure above on the left is a geometric representation of a vector 

labeled as , |AB| represents the magnitude (also called Norm of the 

vector or Module or length), and direction is the arrow from A to B. 

Conventionally a single bold faced letter or a letter with arrow head are 

used to represent the vector. i.e. R=  are both legitimate symbols 

for vector. The vectors shown in the figure are all equal, because they 

have same length (magnitude) and same direction. You can treat them as 

equal displacement between the two points.  

The vectors are quantities with magnitude and direction, is the reverse 

true also? i.e. is any value with magnitude and direction a vector? The 

answer is not necessary. The vectors have to satisfy certain algebra, i.e. 

the rules of their linear combination which we shall discuss next.
16

 

                                                        

16 A good example of physical quantity with magnitude and direction but is not a vector will be finite angle of 

AB
→

a AB
→

=
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3.2 Linear Combination of Vectors 

Linear combination means aA+bB, where a, b are some scalar number. 

The linear combination of vectors will give you another vector.  First the 

addition of vectors obeys parallelogram rule 

 

As shown in the figure (the one on the right), vectors A,B forms a 

parallelogram, the addition of two results in the vector A+B which is the 

diagonal. Or as shown in the figure on the left, put A,B head to tail, and 

A+B is shown in the figure. This is also called triangle rule. It is easy to 
                                                                                                                                                               

rotation. A not very good example of physical quantity that appears has both value and direction but not a vector is 

current. Consider a Y shaped 3 branches tube (or wire in electricity, the top 2 are labeled as 1,2, the lower branch is 

3), the current flow from the upper two branches into the lower one. For incompressible fluid case, we have 

I1+I2=I3. I’s are currents in each branch. Sometimes this is used as an example to show that current is not a vector 

because it does not obey the parallelogram rules of addition. I say this is not good example. Because from the 

definition of current, I is not a vector at all, it does not contain information of direction. The current is defined as a 

quantity (the number of water molecules or mass; or number of electron) passing a unit area per unit time, the math 

form is: . It is defined as an area integral of scalar product between two vectors. is a vector 

representing the density of flow.  

You may further argue that does not appear like a vector, because it seems does not follow the vector addition. 

If the 3 branches of Y have equal areas of cross section, then , this seems cannot be true from addition 

of vectors: . Indeed the relation is not from the addition of vectors (the physics here is not a 

simple addition of vectors) but from the continuity requirement, i.e. what is flowing into a small volume enclosed 

by a surface would be same as that of flowing out, i.e.  

area

I j ds= ∫∫
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i j
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j
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� � �
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see from this definition, A+B=B+A, the addition is commutative. And if 

we add more than two vectors (A+B)+C=A+(B+C), the addition is also 

associative. 

Second the product of a scalar number with vector. cA is also a vector 

who has the same direction (for c>0) as A, but the magnitude is |c||A|; for 

c<0, the direction is reversed from A. With this rule the –B will be well 

defined, and A-B=A+(-B), as the figure below shows. 

 

So a vector should be defined as a quantity with direction and they obey 

the linear combination rules discussed above.  

 

3.3 Coordinate System and Algebra Expression of Vector 

The above geometric representation of vector and their linear 

combination is straightforward. In practical applications, the calculation 

many-times are better carried out with algebra form of the vector.  In 

order to put vectors in algebraic form, we first need to specify a 

coordinate system.  
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3.3-1 Coordinate System and Position Vector 

Coordinate system is man-made choice to specify quantities. In the 

2-dimension case, the simplest one is orthogonal x-y Cartesian, it is 

coordinate system with rectangular grids
17

: 

 

Every point in the plane thus will be specified by its ‘grid numbers’, it is 

the coordinates (x,y).  

We will also define a special vector called position vector, it is nothing 

but a vector starting from origin and points toward a point P.  

                                                        

17 For the 3-Dimensionm the conventional rule is to make x-y-z satisfies the right hand rule. Of course there are 

other choices of coordinate system, such as another orthogonal one: the polar coordinate we shall discuss later. You 

may in principle choose an oblique coordinate system (two axis which are not parallel will do), but that will make 

calculation much more complicated. So people prefer orthogonal system whenever such choices available. The 

advantage of orthogonal will be shown later. 
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What are shown in the figure above are a position vector OP, and another 

position vector OQ. The displace vector PQ is OQ-OP (O cancels and P 

changes order with this choice of symbols) from addition rule of vector. 

Thus any displacement vector can be expressed as linear combination of 

position vectors. Actually the position vector is just a special case of 

displacement vector between the origin of the coordinate system O and 

another point, the conventional symbol for a position vector is , i.e. 

  

3.3-2 Analytical Expression of Vector in a Coordinate System 

With the choice of a coordinate system (the origin and axis), any vector 

has an algebra (analytical) expression in such system. Let’s consider the 

position vector first, because other vectors can be expressed as linear 

combination of these position vectors.  

 

r
�

, .Pr OP etc≡
�
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The position vector OP is the addition of two component vectors 

, where x, y are coordinate numbers of point P,  is a unit 

vector (with length 1) along the X-direction;  is a unit vector along the 

Y-direction. The above relation (addition of vectors) can be written as: 

      (3-1) 

More succinctly, we use <x,y> to represent the position vector . With 

this analytical form of the position vector, any vectors can be expressed 

this way, for example the displacement vector PQ would be: 

   (3-2) 

Or it is represented as . You can check the figure on 

pg 36 to see that indeed the X component of the vector PQ is 

(this is also called projection of vector along X) and its Y component is 

 (projection along Y). 

In the 3-dimensional case, the above can be easily extended with an extra 

Z-axis and unit vector  along this direction as shown in the figure 

below (taken form Thomas Calculus). 
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The linear combination of vectors can all be expressed as in algebraic 

forms. For any vector A: 

    (3-3) 

More succinctly, (3-3) can also be expressed as <Ax,Ay,Az>. The 

coordinates Ai,j,k’s are also called the coefficients of the expansion, it is a 

number indicating how big the component is along the specific base 

direction. These numbers are called projection coefficients for the reasons 

discussed in the section of scalar product. 

One example is that if we write two vectors are equal, i.e. A=B, this is 

true only if their components are equal, so 2 equations in 2-D and 3 in 

3-D. 

   (3-4) 

The magnitude (norm, module) of a vector is: 

ˆˆ ˆ
x y zA A i A j A k= + +

�

; ;x x y y z zA B A B A B A B= → = = =
� �
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      (3-5) 

In 2-D,  (Pythagoras theorem) 

A unit vector along the direction of A can be written as: 

      (3-6) 

3.3-3 Base Vectors  

The unit vectors , ,  are called base vectors in the 3-D space 

represented by Cartesian.  They are the most fundamental vectors 

because they span the whole space in a sense that any vectors in this 

space can be written as linear combination of these base vectors, We say 

that they form a basis for the 3-D space. In the Cartesian, , 

 and .  

3.4 Product of Vectors 

There are two kinds of product of vectors when we ‘multiply’ vectors. 

Both have important applications in physics. We shall discuss both the 

geometric and analytical formula for these vector products. 

3.4-1 Scalar (Dot, inner) Product  

The scalar product between two vectors is defined as (Geometrically): 

      (3-7) 
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The meaning is clear from the figure.  is the projection of B on 

A, and similarly you can treat  is projection of A on B. So the 

dot product between two vectors will give a number, a scalar.  

An immediate result from this definition is that for the two perpendicular 

vectors (orthogonal, ), their dot product would be 0; and the dot 

product of vector with itself ( )would be its module squared. So in 

the orthogonal coordinate system, such as Cartesian, we have important 

relation among the base vectors, dot product between them is 0, between 

themselves is 1: 

   (3-8) 

In compact notation, the above can be written as: 

   (3-9) 

is Kroneck delta,  when m=n;  when m≠n. 

The seemingly simple relations in (3-8) would have profound 

applications in math and physics.  The expansion coefficients of any 

vector in a basis are indeed the dot product between a base vector and the 

vector, thus making a dot product of  with any vector A in (3-3): 

| | cosB θ
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   (3-10) 

Similar relations exist for the y and z components.  

So Ax the coefficient of x component is the projection of the vector onto 

the x-direction, this is also very intuitive from the figure in last page. 

With the dot product of base vectors defined, we can work out the 

algebraic form for dot product between any two vectors: 

   (3-11) 

(3.11) could also be proved from laws of cosine and definition of (3-7), 

this would be left as a practice. (hint: construct a triangle out of A, B and 

A-B) 

 

The above properties can be proved from (3-9) straightforward, and you 

do not need to memorize it, they are intuitive.  

The dot product would have many applications in physics, such as work 

will be defined as the dot product between force and displacement vectors, 

current of flow is defined as dot product of current density and area 

element. Here I only discuss some general application of dot product 

ˆˆ ˆ ˆ ˆ( )x y z xi A i A i A j A k A⋅ = ⋅ + + =
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A B A B A B A B

⋅ = + + ⋅ + +

= + + =∑
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(1) Finding the length of vector and angle between vectors 

The dot product of vector with itself will give the length squared. A 

rewriting of (3-7) definition and using (3-11) would enable us to calculate 

the angle between the vectors if we know their algebraic forms.  

(2) Detection of orthogonality 

If we want to know whether the two vectors are perpendicular or not, 

compute their dot product. If it is zero, then the two vectors are 

orthogonal.  

Example: The analytical equation x+2y+3z=0, the x,y,z satisfies this 

relation is what shape in the 3-D space? 

The answer is a plane. The relation is simply <1,2,3>• <x.y.z>=0. <1,2,3> 

is a vector, and <x,y,z> are vectors in a plane perpendicular with the 

<1,2,3> and the plane passes the origin. Question: how about x+2y+3z=5, 

what the x,y,z in this equation are? (It is also a plane, but not passing the 

origin anymore, can you give reasoning?) 

(3) Component of vector (projection) along a direction  

 is a unit vector specifies a direction, then the projection of any vector 

along this direction is simply:  

      (3-12) 

A specific example is , etc. These simple relations will play 

important roles when we talk about transformations of coordinate system.  

 

û

û

ˆ
u

A u A= ⋅
�

ˆ
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3.4-2 Vector (cross) Product 

The cross product of two vectors u, v will result in another vector n, as 

shown in the figure below. The new vector formed by cross product has 

the direction defined by the right hand rule: first point the right hand 

fingers along the u, then rotate the fingers towards the positive direction 

of v, the thumb will give you the direction of n. 

 

The magnitude of n is given by: 

      (3-13) 

This definition means the new vector will be perpendicular with respect 

to the original two. i.e. n will be perpendicular to the plane formed by u 

and v. The magnitude also has a clear geometric meaning, it is the area of 

the parallelogram formed by u and v (example 1.4 in K,K). 

From the definition of cross product, it has following basic properties: 

| | | || | sinn u v θ≡
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The cross product is distributive but not commutative (It is anti-commute 

from property 4 above). The distributive property (2,3 in the table) may 

not be easily proved by using geometry only
18

.  

From this definition, you should verify the following relations between 

the base vectors: 

      (3-14) 

The above relation is of course because we choose a right hand 

orthogonal Cartesian.
19

 It follows a simple pattern, i-j-k-i (a cycle), the 

cross product between the adjacent two will give you the next. Noticed 

the order of cross product is important, if you reversed order, the cross 

product will have a reversed sign (representing the reversed direction). 

And the cross product of vector with itself is zero. With (3-14) we can 

give the algebraic expression for cross product.  

                                                        

18 See the Appendix 6 in Thomas ‘Calculus’ for proof. 

19 The cross product is also only applicable in our 3-D space. In higher dimensional space, the cross product 

between two vectors defined above would meet difficulty. It even can not specify a unique direction. Because in 

dimension>3, there are many directions perpendicular with respect to a plane.  

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ; ;i j k j k i k i j× = × = × =
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Put it in component form, the above is: 

   (3-15) 

Another useful expression to remember the relation is using determinant: 

   (3-16) 

We shall see the application of cross product when we deal with rotation, 

the angular momentum, the torque etc. 

3.5 Transformation of Basis 

Let me first make clear of the meaning of some terms used in this section: 

Basis: A set of base vectors (usually orthogonal and unit length) that 

spans a space, in which any other vector can be written as linear 

combination of these base vectors. These base vectors also form the 

coordinate system, so coordinate system and basis means same thing here; 

people (at least I) also use word ‘frame’ meaning the same thing.  

Transformation of basis: Another choice of different set of base vectors, 

another coordinate system (frame) 
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Analytical form (expression) of vectors: the labeling of vectors in a 

particular basis, the coefficients of linear expansion of the vector in terms 

of base vectors. It is similar to the coordinate of points in a coordinate 

system. (see relation 3-3) 

We have discussed geometric and analytical representation of vector. This 

part is the axiomatic point of view on vectors. To put the vector in a 

specific analytical form, we have to choose a coordinate system. The 

choice of coordinate system is man-made, and sort of arbitrary, generally 

we choose a coordinate system in which the expression and calculation 

would be the simplest. If we change the coordinate system, such as 

shifting the origin, or with fixed origin but rotating the axis, or even 

choose a completely different coordinate (eg. Polar instead of Cartesian), 

the analytical expression of the vector would be changing as the 

coordinate changes. However, the vector itself (geometric representation) 

does not change
20

, it is invariant upon change of the coordinate system.  

This is better be illustrated by an example, taking the displacement vector 

between Beijing and Tianjin. It is with fixed length and starting from 

Beijing ending at Tianjin. If you choose the earth coordinate with 

east-north as x-y axis, the vector would be something like <100km, 

                                                        

20 To avoid confusion, I should point out that the vector here are displacement-vector-like. The position vector 

which is defined as displacement between points and origin will change if you shift the origin. However, the old 

position vector which is displacement between the point and old origin does not change. The statement here that 

the geometric representation of a vector does not change as coordinate system changes, does not imply that vectors 

are always constant. It certainly can changes over time. That is a different issue.  
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-100km>. If you choose a different axis for the coordinate, say south-east 

and north-east as x-y axis. In this coordinate, the Beijing-Tianjin would 

be < ,0>. The vector itself is fixed
21

, but its expression within the 

coordinate system depends on the choice of coordinate. Because of this 

invariance of vector, i.e. the vector itself is independent of choice of 

coordinate, the physical laws that can be expressed in term of vectors and 

scalars
22

 will be independent of coordinate system too, which should be 

since the choice of coordinate is man-made and somewhat arbitrary. Of 

course the detailed formula expressed with analytical form would depend 

on the coordinate (as we shall see that expression of acceleration would 

be quite different in Cartesian and Polar coordinate).  

The change of coordinate system is called transformation of basis. 

Because of the invariance of vector itself, the expression of the vector 

will change accordingly as the coordinate changes. Since any vector can 

be expressed as linear combination of base vectors, we shall see that the 

relation between the base vectors in different coordinate system is the 

most important. Once we find out the transformation (how the new base 

vectors related to the old ones) between the base vectors, the expression 

                                                        

21 Someone may argue that the length of vector is fixed alright, but isn’t the direction depending on the choice of 

coordinate axis. Well, here with only one vector, to specify its direction indeed we need coordinate axis. However, 

if more vectors involved, the direction can be defined as directions relative to other vectors, and will independent 

of coordinate axis. Taking Beijing-Tianjin vector, we add another Beijing-Shanghai vector, their length and relative 

angles do not depend on the choice of coordinate system. 

22 Scalar is a special case for the general vector and tensor analysis. It is just the same number independent of 

coordinate system. 

100 2
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of any vector in the changed coordinate system can be determined from 

the previous one. The change of the expression of vectors with the 

coordinate system is called covariance of the vector.
23

  

Here lies the reason why the vector is so important in physics, so it is 

worth to almost repeat myself once more. Because we want to have 

physical laws (a math relation between physical quantities or variables) to 

be independent of choice of coordinate (Now you know the jargon is: 

transformation between basis), and since the vectors themselves are 

independent of coordinate system, thus we want to express the physical 

laws in term of vectors (actually in terms of tensors to be strict, while 

scalar is 0
th
 order and vector is 1

st
 order tensors, we shall see higher order 

tensors in this course, but I shall only focus on vector for now). The 

physical laws thus expressed in terms of vectors are same for all 

coordinate of choice (Jargon: Invariance upon transformation); However 

because the expression of vectors (its projection coefficients along base 

vectors) depends on the choice of basis, and does change from one base 

to another. Such change of its expression is not arbitrary but follow 

certain rules (jargon: covariance of vector expression upon transformation) 

and we shall focus on two important transformation below: translation 

and rotation (another important transformation: constant velocity motion 

                                                        

23 Actually, if we use oblique coordinates (i.e. the base vectors are not orthogonal), there are two kinds of 

expressions for a vector. One is called covariant and the other is called contravariant. Such difference does not 

exist in the orthogonal coordinate system.  
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called boost transformation will be delayed till special relativity, and we 

shall see a ‘strange’ 4-vector arise there), and see how a vector’s 

expression will change (the relation between expressions in one 

coordinate system to the expressions in another) upon translation and 

rotation of the coordinate system. The vector expression has to change 

this way in order to keep the relations among them invariant upon 

transformation.  

3.5-1 Translation of the Coordinates 

Here we consider the simplest transformation, a shift of the origin. The 

coordinate is still Cartesian, but with the origin shifted to a new location, 

(a, b) in the old Cartesian, i.e O’ is at (a,b) in X-Y system: 

 

The new shifted coordinate system is X’-Y’ in the figure. Just from the 

geometric point of view: 

PQ=OQ-OP=(OO’+O’Q)-(OO’+O’P)=O’Q-O’P 

PQ is invariant with coordinate change. Let’s now take a look of its 

analytical form in different coordinate system. The relations between the 

P 

Q 

X’ 

X 

Y’ Y 

O 

O’ 
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coordinates in the initial and shifted systems are: 

 

The expression of PQ in the X-Y is: 

 

The expression of PQ in the X’-Y’ is: 

 

So the analytical forms are same in both coordinate. This is not surprising 

at all, because in the translation, the base vectors are unchanged, and the 

projections (dot product) of the vector along the base vectors are also 

unchanged. This is the reason that we can shift (translate) vectors in the 

calculation without worrying about the change, such as the addition of 

vectors using triangle rule. We see that the translation is a very simple 

transformation, the vector’s expression in the original and shifted frames 

are same. This is rather special than general as we shall see next in 

rotation, where the expressions in different frames are related but not the 

same.  

3.5-2 Rotation of the Coordinate 

As the figure shown, the X’-Y’ system is rotated counterclockwise with 

angle  relative to the X-Y system (the angle is defined positive for 

counterclockwise rotation, a right hand rule), the origins are overlapped. 
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The analytical form of vectors would be different in these two basis as 

illustrated for OP (same as O’P). The problem we are facing now is this: 

If we know the expression of a vector in one basis, say X-Y, what is its 

expression in the other?  

This is not a difficult question, and just by simple geometry, you probably 

worked out already the relation between (x,y) and (x’,y’), the coordinate 

of P in two systems: 

 

However, I shall workout the relation from point of view of vectors, 

starting from the most important relation between the base vectors (the 

unit vector along the axis). This may appear slow and complicated at the 

beginning for this simple problem, especially I will work out the example 

with different ‘flavors’, first by just calculating the components of the 

vector (the x, y and x’,y’s) directly from transformation of basis and 

specific to the rotation; then redo the same thing by expressing the 

vectors in terms of linear combinations of base vectors, and express its 

form in some general transformation, so it is more general and probably 
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more abstract; and finally put all these in forms of matrices.  It is like 

shooting a mosquito with cannon, but would prove fruitful in general 

treatment of transformations, which you will use in theoretical mechanics 

and quantum mechanics.  

(1) The treatment from base vectors 

The rotation will change the base vectors, this is in contrast to the 

translation. The relation between the base vectors are (from geometry and 

trigonometry): 

   (3-17) 

Or expressed the base vectors for X-Y as: 

   (3-18) 

For any vector (the vector will be represented by , it is invariant under 

transformation, but its analytical expression will change) if its expression 

in the X-Y system is given by: 

 

Then using 3-18, we can rewrite the expression of the vector in 

component of base vectors in X’-Y’: 

   (3-19) 

Now we have the expression of components of vector in the X’-Y’: 

   (3-20) 
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Reversely, if you know the x’,y’, you can work out the x,y (either by 

using 3-17, or directly from 3-20, I prefer from 3-17) 

      (3-21) 

Now we know the transformation relations due to the rotation of 

coordinates. If we know the vector expression in one, we can calculate its 

form in another. 

(2)  Express the Expansion Coefficients as Dot Product 

I still want to press the issue a little further
24

 by applying the 

orthogonality of the base vectors (relation 3-8 and 3-10) and dot product: 

Let’s relook the problem in this way: we have a vector, and it can be 

expressed in either coordinate system. In the X-Y or X’-Y’, it is a linear 

combination of the base vectors  or : 

 

The component of the projection can be expressed as dot product (a 

rewriting of 3-10): 

      (3-22) 

The component of vector in X’-Y’ would be similarly: 

     (3-23) 

The vector can be rewritten as: 

   (3-24) 

                                                        

24 The following would not be required for this course, but the treatment would be useful in your later study in 

quantum mechanics. 
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The 3-24 is just a rewriting the vector as linear combination of base 

vectors. The significance of 3-24( as well as 3-22 and 3-23) is that it is 

explicitly showing that the coefficient is the projection (dot product) 

along the direction of the base vector.  If you replace the general vector 

 with a specific one, such as the base vectors or , you should get 

back relation 3-17: 

   (3-25) 

You should check that the above relation is exactly same as 3-17, by 

using the definition of dot product (here the dot product between unit 

vectors are extremely simple, they give you the cosine of the angle, 

referring the figure on pg 51). Similarly if you replace  with or , 

you will get back 3-18(check it yourself). 

   (3-26) 

We can also work out the equivalent of 3-20 and 3-21, the relation 

between the expansion coefficients (projection coefficients) in different 

basis. Using 3-22 and 3-23: 

   (3-25) 

  (3-26) 

The conclusion is that if we know the relations between the base vectors 

(the dot product between them) of different basis, and the expression of 
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vector in one basis, the expression in the other basis can be determined. 

This works for all transformations (not limited to the rotation case) 

between basis with orthogonal unit vectors (there is another jargon for 

these vectors, orthonormal=orthogonal and unit length), because in the 

above derivation orthonormal base vectors is the only property I used. 

(3) Matrix Representation and Unitary Transformation
25

 

The previous relations between vectors under transformation are best 

represented in a matrix form, and the powerful linear algebra is best 

suited to analyze these transformations. Since many of you may not have 

a background in linear algebra yet, so I shall present the above in matrix 

form, and try to use just a little linear algebra.  

The vectors in a certain coordinate is represented by its components, and 

I use  to represent the vector in the 

space spanned by base vectors i,j,k, and ,  

. I could also use a matrix to do the same thing. The 

convention is to use a column matrix (n x1, n row, 1 column) to represent 

a vector. In such representation, the i,j,k will take the forms of: 

   (3-27) 

Then for any vector in this coordinate: 

                                                        

25 For those are not familiar with linear algebra, please skip this part first. This is not required for early stage of 

this course, do come back reading this after you take the linear algebra.  
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   (3-28) 

Up to now this is just a reformulate the expression in matrix form 

(another bookkeeping).  For the simple case of 2-D, the relation of 3-20 

can be expressed as: 

   (3-29) 

(3-29) means the expression of vector r in the X’-Y’ basis is related to the 

expression in X-Y by another matrix, . This matrix is 

called transform matrix (here just representing a rotation 

counterclockwise with certain angle), and I shall use symbol R(XY→→→→X’Y’) 

for this matrix and specify that it is a transformation from XY to X’Y’ 

system.  Similarly the relation 3-21 can be written in a matrix form: 

   (3-30) 

Where  R’(X’Y’→→→→XY)= , and it is interesting to put the 

(3-30) back into (3-29) and this will show the relation between R and R’: 

 

The above equation means, first transform from X’Y’ to XY and then 

from XY back to X’Y’ (the order of matrix is important), so the two 

transformations would cancel each other, the vector (which is invariant) 
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would get back its expression in X’-Y’ basis. In matrix language this 

requires: 

   (3-31) 

I is called identity matrix.  The matrix forms of rotational transformation 

do satisfy this requirement, since . 

Similarly the R’R=I too. So we see that R’=R
-1

 (R
-1

is called inverse 

matrix of R). This is not surprising because the transformation from 

XY-X’Y’ corresponds to the rotation of angle , and the transformation 

from X’Y’-XY is just another rotation but with angle . What is 

interesting is the matrix form of R and R’, they are transpose to each 

other, i.e. the 1
st
 row of matrix R is the 1

st
 column of matrix R’, etc. We 

use the symbol R’=R
T
 for this relation. Combined with the inverse 

property, we see that: 

R
T
=R

-1
      (3-32) 

The transformation satisfying 3-32 is called Unitary Transformation
26

, 

it is the most important transformation in physics. One important property 

of this unitary transformation is that the length (magnitude) of the vector 

                                                        

26 A math rigorous person will raise objection that I abuse the term Unitary here, which I admit. Strictly speaking, 

(3-32) represents orthogonal transformation where all matrix elements are real numbers. There are cases the matrix 

elements are complex numbers(such as in quantum), and the relation (3-32) should be modified by equating the 

adjoint of matrix with inverse of matrix, and that is unitary transformation in linear algebra (adjoint is a matrix 

transposed and complex conjugate to the original one). The essence of these are same, orthogonal transformation 

in real number world, and unitary in complex number world, so I abuse the term a little bit to call both unitary(In 

the real number world in this course, there is no difference between them). 
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will not change in the transformation.
27

 

It is also illustrating to express the transformation matrix in terms of dot 

product of base vectors, using 3-25, we see that: 

 

To make it easier to remember, I shall use 1,2 and 1’,2’ to replace the 

symbol i, j and i’,j’, this labeling is also in accordance with labeling of 

matrix element. With this notation change, the transform matrix R: 

   (3-33) 

The transformation matrix is determined by the dot products of the base 

vectors! Take a close look of each column of this matrix, you may 

recognize the first column is the column matrix representing the unit 

vector  in the basis, and the second column is the column matrix 

representing unit vector  in the basis,
28

 i.e. 

 

                                                        

27 To prove this would require the matrix definition of dot product. <r|r>, here the symbol |r> is a vector 

represented by a column matrix (as defined in the notes), where <r| is the row matrix representation of the vector, 

which is the transpose matrix of |r>. i.e. . <r|r>=|r|2=x2+y2.  In a transformation where 

|r’>=R|r>, then <r’|= <r| RT  (the proof of this is also in linear algebra). Then the magnitude of vector in the 

transformed basis is: <r’|r’>=<r|RTR|r>, if we require the <r’|r’>=<r|r>, for any vectors. Then RTR=I or RT=R-1. 

28 In linear algebra, there is a special term for this kind of matrix, i.e. the matrix with columns that are orthogonal 

to each other and with unit module, as the R here (the  and  are certainly orthonormal), such matrix is called 

orthogonal matrix. 
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So the relation: 

 is nothing but a matrix representation of the 

relation in the basis of 1’-2’ (here i,j… are 

replaced by 1,2…), because the above matrix form can be rewritten as: 

 

The last equation used fact that in the basis of 1’-2’, the matrix forms of 1’ 

and 2’ are just  and , and the second equation is derived from the 

first by using column picture of matrix multiplication.  

Similarly, using 3-26, we can work out the matrix expression for 

transformation R’: 

   (3-34) 

Comparing with 3-33 (or by seeing that the first row of R’ is the 

expansion coefficient of in the basis of ), R’ is indeed the 

transpose matrix form of R, i.e. R’=R
T
. From the physical reasoning, the 

R’ should also be the inverse transform of R (see the argument on pg56 
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leads to 3-31), i.e. R’=R
-1

.
29

 So we see that again R
T
=R

-1
, the 

transformation is unitary. However this time it is not limited to the 

rotation (I only used orthonormal conditions for base vectors in the above 

argument, nothing specific to the rotation), generally the transformation 

between basis with orthonormal base vectors are unitary.
30

  

Indeed, whenever possible, physicists choose orthonormal base vectors, 

so you are sure to see quite a few unitary transformations in the future. 

3.6 A Summary and Other Vectors besides Displacement Vector 

We have a relative long discussion of vectors, it may be better to give a 

brief summary before continue.  

A vector is physical quantity with both value and direction. Its geometric 

representation is a pointed ‘arrow’, the linear combination of vectors 

follows parallelogram rule (or triangular rule).  

They also have two kinds of product. The dot product is related to the 

projection; and the cross product defines a new vector which is 

perpendicular to the original ones.   

The vectors are independent of the coordinate systems we choose, and the 

physical laws expressed as relations between vectors would also be 

independent of coordinate system. However, a choice of coordinate 

                                                        

29 You should really check this by taking R’R given by 3-33 and 3-34, to see whether it is identity matrix. (You 

will need the fact that the base vectors are orthonormal. i.e. relation 3-8) 

30 In linear algebra, this result is stated that for an orthogonal matrix Q, QT=Q-1 
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system may be necessary and convenient in actual computation and 

application. 

The vectors can be expressed as linear combination of base vectors in a 

particular coordinate system (this is also called decompose the vector into 

its components, or projection of vectors onto base vectors), the projection 

coefficients forms the analytical form of the vector in the basis. Knowing 

the base vectors and the projection coefficients, we know everything 

about the vector, its length and direction can be determined (3-5and 3-6); 

the addition and product of vectors can also be computed conveniently 

using the analytical expression (3-2, 3-11,3-15,3-16). This analytical 

expression does vary as basis is changed; to find out how the vector’s 

expression changes as we change the basis is solving the problem of 

transformation of basis, and it is determined by the relations of base 

vectors in different basis.  

All the above discussion I use only the displacement vector as example, it 

is a quantity with value (the distance) and direction, it is also following 

the linear combination rules, in short, it is a vector. It is actually a ‘prefect’ 

of vector, a ‘Lei Feng’ of vector. Other vectors in mechanics can be 

generated from this displacement vector, so it is also the ‘mother’ of other 

vectors.  

Take the velocity for instance, it is generally taken for granted that 

velocity is a vector, and we seldom ask why. The reason that velocity is a 
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vector is from its definition.  

 

Where  is an infinitesimal displacement vector, small it is, still a 

vector, dt is a infinitesimal time interval which is a scalar, so this is just a 

vector times a scalar, then from linear combination rules the velocity 

defined above would also be a vector. Once the velocity is a vector, then 

similar argument would lead the acceleration is a vector too, so will be 

the momentum and angular momentum (a cross product of displacement 

and velocity vector). 

How about force? Well the argument is not straightforward as the one 

above, you may accept the force is a vector as a fact. But since we have a 

discussion in Chapter 1, that fundamental forces are functions of relative 

positions of interacting parties, it is a function of displacement vectors 

and its direction is along the displacement vector. The force also obeys 

the principle of superposition which is the addition of vectors (this is not 

a derivation but a postulate from experimental facts), so the fundamental 

force is a vector. Other force forms will be in fact the linear combination 

of the fundamental forces, so in general force is a vector.  

 

3.7 Kinematics of Motion in 2-Dimension 

The KK’s book gives a very good and clear discussion on this (1.6-1.8), 

dr
v

dt
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so I will only give a brief discussion here. The general strategy of the 

treatment here is: with higher dimension, we do need the vector forms to 

describe the motion. However, in real computation, we try to reduce the 

vector form into its component form, so reduce the problem into a couple 

1-dimension-alike problems and all we stated in Chap.2 can be applied 

then. After solving the components (such as its change over time), we can 

construct the vector from its components if necessary.  

The position of a particle in 2-D is described by a position vector 

(displacement relative to the origin of choice) , at certain time, this 

vector can be expressed in a Cartesian as: . As time 

changes, the position vector changes too. The vector will generally make 

a trace of curve in the 2-D X-Y plane (the trajectory), the curve is given 

by the <x(t),y(t>, a parametric description of the trajectory. It may be 

reduced to some function y=f(x), but not necessarily (see the example in 

next section). Knowing the x(t) and y(t), it is sufficient to determine the 

trajectory. This is like reducing the problem in 2-D into two 1-D problems, 

by decomposing the vector into x and y components.  

   

r
�

( ), ( )r x t y t=< >
�
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As the figure shows: 

   (3-35) 

And into its components: 

   (3-36) 

3.7-1 Velocity and Acceleration Vectors  

As the time interval approaches zero, the direction of  will approach 

the direction of the tangent line at point of (x(t),y(t)), and its value would 

approach the arc length of the curve  (s is the arc length of the curve 

between the two points). The velocity is defined as the time derivative of 

the position vector: 

   (3-37) 

This is the geometric definition of velocity, its magnitude is given by the 

arc length change rate, and its direction is along the tangent line, 

indicated by the direction vector (a unit vector) .  

More useful is the analytical expression of velocity in its x and y 

components: 

   (3-38) 

      (3-39) 

In the above derivation, it is vital that the base vectors do not change over 

time which greatly simplifies the time derivative. This is the most 
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important property of a Cartesian system and thus the favorite one in 

many cases.  

Reversely from velocity vector, we can find the position vector <x(t), 

y(t)>, it is a problem of integration. This is a sheer extension of the cases 

discussed in 1-D in Chapter 2, but you need two equations (thus two 

differentiation or integration) in 2-D. Similarly we can proceed from 

velocity vector to define the acceleration.  

Examples are given in K&K, example 1.7-1.11. They are straightforward, 

pay attention to example 1.8 to see how we get familiar result of constant 

velocity motion along a circle from vector treatment.  

Here is another example: the cycloid motion. It is the trajectory of a fixed 

point on a circle. As the circle rolls with constant velocity and rolls 

without slipping, the point will trace out a trajectory, and that is a cycloid. 

(a light attached to a bicycle wheel, as bicycle moves at constant velocity, 

the light will trace out a cycloid) 

    

As the figure shows, the point on the wheel with radius a is labeled as P, 

we may take P at origin at time 0. i.e. P starts at <0,0>, as time goes on 

and the wheels rolls without slipping, the position vector of P will change 

too. To find out its trajectory is just to find out <x(t),y(t)> of OP: 
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   simple vector addition 

 is the angular velocity of the wheel (the angle (in radian) wheel rotates 

per unit time), it is a constant here so that the rotated angle tθ ω= . It rolls 

without slipping, meaning |OA|(the distance traveled by the center)= 

(the arc length of rotation) or  (v is the value of 

velocity of the wheel as whole, or the velocity of M). For simplicity, let’s 

say  rad/sec, so the angle is just t.  This gives: 

,  

 

 

So , this is the parametric function of a 

cycloid curve. You may try to find the expression of the velocity and 

acceleration for point P. 

Below is a list of differentiation rules for vectors and functions of vectors: 
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 68

 

3.7-2 More about Derivative of a Vector  

(K&K 1.8) 

Because vector has magnitude and direction, so the change of vector can 

be seen from two parts: its magnitude change and direction change. We 

have discussed derivative of a vector by taking derivative of its 

components, reducing to the ordinary derivative of functions (3-38). Here 

we shall investigate the change of vector from its magnitude and 

direction.  
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As the figure shows, the change of the vector (which is also a vector) can 

be decomposed into parallel component and vertical component. In the 

limit of small  (which will be the case when we take derivative of A), 

we shall see that the parallel component is due to the magnitude change, 

and the vertical component is due to the directional change of vector. Let 

me rewrite the vector as: 

      (3-40) 

This is just a rewriting of (3-6), |A| is the amplitude and is the unit 

vector along direction of A, so |A| carries information of magnitude and 

carries information on direction of the vector. When we take derivative 

of A over some variable, say time: 

   (3-41) 

The first part is the rate of change of magnitude, and its direction along 

the ,it is (at least a part of) the parallel component of . Let’s now 

focus on the second part which is clearly the directional change over time. 

It is the change of a vector with fixed length (unit length here, but it could 

also be looked upon as |A| fixed but direction changes). We shall show 

that the infinitesimal change of a fixed length vector is perpendicular to 

the original vector. Please refer to the figure below: 
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â

â
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|A| is a constant here, and the change of vector over time interval is: 

 

And the direction of  is . In the infinitesimal 

change, where the is small, will be small too. We see right way 

that in such case:  

   (3-42)  

This proves that indeed the second part in (3-41) corresponds to the 

vertical component of vector change. For the unit length directional 

vector (|a|=1), put the relation into (3-41): 

   (3-43) 

is a unit vector perpendicular to the , and pointing toward the 

direction that  increases
31

. Later we shall define a vector of rotational 

speed  (the vector is along the z direction perpendicular to the 

paper in this case, generally of course it can along any direction). Then 

                                                        

31 For , though it is perpendicular to , it still can take two directions. This definition will remove the 

ambiguity. Now the positive direction of will depend on how we define the increase of angle, the convention is 

if the angle changes counterclockwise, it is increasing.  
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the directional change of vector can be written in a more compact form: 

    (3-44) 

This relation also express the change rate of a vector of constant length, 

i.e. |A| is constant and then (3-44) is the change rate of the vector A. For 

instance, if we put the position vector in place of A, and make the |r| 

not change with time, it is a circular motion in 2-D. From (3-44), we shall 

get familiar result, , , direction perpendicular 

with r. If the is a constant, the velocity will be a vector with constant 

magnitude too, and you figure out the expression of acceleration, of 

course you will get the same result as in example 1.8. (3-44) and the fact 

that it expresses the rate of change for a vector with constant magnitude 

will play important role when we deal with rotation later, so it may be 

worth remembering it.   

Generally if the instantaneous change of a vector only has vertical 

component, it will change direction only, the vector will rotate, but the 

magnitude will not change. The change of vector over time is given by 

(3-44). Another example will be the Lorentz force in magnetic field. It 

will not alter the speed, but change the direction of velocity of a charge.  
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3.8 Polar Coordinate  

(KK 1.9) 

Up to now, the only coordinate system we discussed is the rectangular 

Cartesian, it is simple and the most important property is that: the base 

vectors do not change over time. In practice, sometimes it is useful to 

introduce other coordinate system, such as the polar coordinate here (in 

3-D, you may use spherical and cylindrical system, that will be 

introduced when we need them
32

). When the motion involves rotation 

around center, it is very likely that polar coordinate becomes convenient 

to describe the motion, such as the motion of planets around star, etc, it is 

the coordinate we shall use when we discuss the motion in a central force 

field.  

                                                        

32 You may refer to Greiner’s ‘classical mechanics-particles and special relativity’, chap 10 for discussion on 

spherical and cylindrical coordinates in 3-D. 



 73

As the figure shows that the grid system in polar coordinate is spider-web 

like. Every point in the 2-D has coordinates ( ) instead of (x,y) in 

Cartesian. 

(1) Polar Coordinate vs. Cartesian Coordinate 

      (3-45) 

      (3-46) 

Relation 3-45 is used to get Cartesian from polar coordinates, and 

3-46 is used vice versa ( ’s value is determined within the range of 

, the value will be determined uniquely by the 

signs of x and y) 

(2) Base Vectors in Polar Coordinate System 

As we stressed before, when we change the coordinate system, the old 

expression are related to the new expression, and the most important is 

the relations between the base vectors of the two coordinate systems. 
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The base vectors in the polar coordinate is unit vectors , it is 

defined as the figure shows
33

. We see immediately this is just a rotated 

transformation as in 3.5.  From (3-17) and (3-18), we have: 

   (3-47) 

And: 

   (3-48) 

(3) Expression of Position Vector in Polar Coordinates 

Direct from the figure above, we can see that the expression for 

position vector  in polar is just: 

      (3-49) 

Where r is a shorthand for |r|, the module. It is NOT  if you 
                                                        

33 The definition is actually more subtle. It is the unit vector pointing to the direction of tangent line of the contour 

curve. In polar coordinate, the radial base vector is the tangent line of the curve with constant angle (the contour of 

angle, itself is a line, so the tangent line is just in the direction of the line). The angular base vector is the tangent 

line of the contour of the radius(the contour is a circle, so the angular base vector is along the tangent line of the 

circle). All these can be put in a math formula involving partial derivative: . For detail, refer to Afken’s 

‘Mathematical Methods for Physicists” chap.2. 
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blindly use the results in Cartesian. Actually the result of (3-49) can be 

derived from the Cartesian expression since we know the relation 

between the base vectors: 

 

(You surely can also prove the same with a fancy method using matrix 

of transformation 3-33) 

It may appear on the surface (3-49) is a simpler expression than 

Cartesian. Watch out, there is a snake lurking in the little !  (and 

) is not a constant unit vector like the one in Cartesian, (3-47) shows 

that they change as angle changes. In fact (3-49) is just a rewriting of 

general expression of vectors in (3-40). This fact is important when we 

derive the expression of velocity and acceleration expression in polar 

coordinates, because both and  may depend on time.  

(4) Velocity and Acceleration in Polar Coordinate 

 

The expression explicitly displays the change of both over 

time. The derivative of unit vector  is just what we discussed in 

section 3.7, relation 3-44 in which  (a constant length vector) is 

replaced by , and  is  here. We have: 
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Then:  

   (3-50) 

The proof here is basically the method 1 in KK’s book and it is the 

simplest one. The book also offers extra two nice methods for this 

proof. There can be more method, such as the following: If you are 

really a Cartesian guy, you may start from velocity expression in 

Cartesian , and throw in (3-48) to replace the base 

vectors, and and part, using the relation: 

…(try it yourself, a good 

practice for your derivative ability anyway) 

Similar argument as in section 3.7 could also apply to the unit vector 

, so we have (using cross product in 3-44 to get sign correct): 

   (3-51) 

This relation will be used in the derivation of acceleration from 

velocity: 

   (3-52) 
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The expression of acceleration is quite a beast in polar coordinate. 

This is because the chosen base vectors are not constant over time. 

You see why Cartesian is usually the preferred one. However, the 

polar coordinate is useful in some applications and example 1.14 in 

KK illustrates it. The  term along the  (it is actually along the 

direction of - , with magnitude ) is called centrifugal acceleration; 

and  along the  is called Coriolis acceleration. The KK’s book 

also give description of how you visualize these different terms, please 

read it yourself.  

Don’t get panicked by relations like (3-50) and (3-52), you can always 

derive them from the Cartesian results and relation between the base 

vectors. The most fundamental relations between the Cartesian and 

polar are relation (3-45) to (3-48). 

An example of use of acceleration expression is a problem in central 

field, i.e. the force only along the direction of . Then we have: 

=0. This form is still not much illustrating, so play a math 

trick: , this means in the central force field, 

there is a quantity that does not change over time, i.e. , 

we shall see that this is conservation of angular momentum.  
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Chapter 4.  Newton’s Laws 

We have spent quite some time on kinematics (the description of motion), 

now we come to dynamics, that is what changes the motion and how the 

motion evolves with time. The cause of the change of motion is the Force 

exerted on the party, and the motion will obey the Newton’s laws. Only a 

brief discussion is presented here, since all of you already know the laws 

and there are details in the KK’s book. However I’d stress on some points 

which are buried under these appealing simple forms.  

 

4.1 Newton’s Laws and Premises 

(1) First Law (the law of inertia): In an inertial frame, the party will 

remain at rest or rectilinear motion with constant velocity if subject to no 

force.  

This raised a question, what is an inertial frame? We will see this later. 

(2) Second Law( equation of dynamics): In an inertial frame, we have: 

   (4-1) 

 is the mechanical momentum, m is the mass.  So (4-1) also in 

form of: 

   (4-2) 

If the mass does not change over time, we have the familiar form: 
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   (4-3) 

Naturally this raised the question of what are forces and mass? This will 

also be discussed later. 

(3) Third Law (action-reaction): The forces exerted by the interacting 

parties to each other are equal in magnitude and reversed in direction: 

   (4-4) 

(4) The principle of superposition of force. This is a postulate that is 

almost important as the other 3 laws: 

      (4-5) 

   The relation states that the force experienced by the ith party equals to 

the sum of forces exerted by the other parties on it.  is the total 

force experienced by the ith party;  is the force exerted by the jth 

party alone, that means as if only i and jth parties exist. The sum also 

obeys the parallelogram of vectors, so the force is a vector.  

There are premises for these laws, some of which we had already 

discussed in Chapter 1. The premises are about the space, time and mass, 

all these parameters appears in the equations.  

Premise 1: The time is absolute. The time is a parameter that varies 

continuously at the same rate in all reference frames (coordinate system).  

Premise 2: Absolute and rectilinear space. This means there is a 

rectilinear Euclid space is absolutely at rest. This defines an inertial 
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reference frame. It is independent of the objects in this space, like a stage 

where stars (the celestial body not movie stars, the universe won’t change 

much when a movie star passed away) play; the stage is independent and 

unaffected by the players. This absolute space is also termed ‘ether’ in old 

physics.   

Premise 3: Mass is independent of velocity.  

As we have discussed at the end of chapter 1, these premises turn out 

faulty under certain circumstances, and thus put a limitation on the 

Newtonian mechanics.  

 

4.2 Inertial Frame, Force and Mass 

Newton’s laws are fundamental postulates that cannot be proved from 

math and logic derivation, it is subjected to the test of experiments. 

However, there are important concepts and subtle points in these 

postulates and we shall take a closer look on these in this section.  

(1) Inertial Frame 

The first and second law only applies to the inertial reference frame. 

Newton took the absolute rest space as the ‘mother’ of inertial frame, and 

any reference frame which travels at a constant velocity with respect to 

this absolute inertial frame is also an inertial frame. This is derived from 

Galileo’s relative principle: For the two frames only translate with 
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constant velocity to each other (which one is at rest and which one in 

motion is not important, the relative velocity is a constant), if one 

reference frame (say X) is an inertial frame, the other one (say X’)with 

constant velocity relative to X is also a inertial frame. This is because 

there is simple transform of coordinates in these two frames (Galileo 

transformation): 

   (4-6) 

x’ and x, t’ and t are space and time coordinate in the X’ and X frames, 

 is the constant relative velocity between them. In the expression, 

assumed that X’ is traveling with  to the positive x-direction relative 

to X. (X appears for the observer in X’ traveling with - . i.e. toward the 

negative direction with speed of ) 

If Newton’s law holds for X frame, it also holds in the X’: 

 

In the above derivation, besides Galileo transformation relation, we also 

applied the mass is independent of velocity. So the Newton’s second law 

would apply in both frames and so is the first law by let F=0.  

This implies that the absolute rest is redundant; if you have one inertial 

frame, you can have infinite numbers of other inertial frames. It may also 

appear the first law is just a special case for the second as F=0.  

The value of the first law is that it offers a method to test whether a 
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reference frame is inertial or not. Suppose we exclude all the forces 

(isolate the body), and observe the velocity of a particle, and if it stays the 

same, we conclude that we have an inertial frame.  

In a airplane during take off or landing, you feel the push force but not 

change speed relative to the airplane, or the luggage on the floor of the 

plane suddenly rolls back or forward without subjecting to any forces 

horizontally, you know that the airplane during take off or landing is not 

an inertial frame. It is accelerating with respect to the inertial frame, and 

such frames are called unimaginatively non-inertial frame. We shall treat 

the non-inertial frames later and see how the Newton’s laws modified in 

such frames (we have to introduce an inertial force, a fictitious force to 

make Newton’s second law work properly). But as stated in the KK’s 

book (pg 63), it may cause more confusion than their worth at this early 

stage, so we shall delay the discussion on the non-inertial frame. Our 

treatment of inertial frame is from experimental point of view (an 

empirical rather than paradigmatic), i.e. whether the 1
st
 law is tested 

correct or not will tell us whether the frame is inertial or not. 

In the theory of general relativity, an inertial frame is in which the space 

and time is homogeneous and isotropic. We had a discussion on this in 

chapter 1 and I told you there without proof that this homogeneous and 

isotropic (also called translational and rotational invariance) lead to 

conservation of energy, momentum and angular momentum. These 
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conservation laws have more broad application than Newton’s law. 

However I would not pursuit here in this anymore and rather leave the 

proof to the study of theoretical mechanics, you may read the references 

given in the footnote in chapter 1.  

Finally, what kind of reference system can be treated as inertial frame 

empirically (since completely isolate a body is not very practical)? It is 

really depend on the measurement or accuracy of the measurement. For 

our daily experience, the earth is a pretty good inertial frame, though we 

know it is spinning and revolving around the sun, which make it actually 

a non-inertial frame. But in many cases, the acceleration of our earth is 

small enough, and the effect of inertial force we have to include to make 

the calculation correct can be neglected, and the earth frame can be 

approximated as an inertial frame. However in some cases, the effect of 

earth acceleration has to be corrected, for example battleships shooting 

each other over distances of 20km (a typical shooting range for 

battleships in WW2). If you forget to account for that earth is actually a 

non-inertial frame, your projectile will land in some position tens to a 

hundred meters away from where you intended. We will see this when we 

discuss about non-inertial frame and inertial forces. Finally if you really 

insist on the best inertial frame, the cosmic background radiation offers a 

standard. If in a reference frame, you measure this radiation background, 

and find it is homogeneous and isotropic, you are in an inertial frame.  
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(2) Force 

This concept is also discussed in chapter 1. The force is one description 

of the interaction. It offers a way to calculate and measure how strong the 

interaction is. Besides this, I do not know what the force is. I only know 

the effect of the force. It changes the acceleration of the motion from the 

2
nd

 law. 

Someone may state that the 2
nd

 law defines the force, this is not true. The 

equation of (4-2) or (4-3) is a casual equation: It tells us cause and effect. 

The cause is the force, and its effect is to change acceleration. The force 

on the left side of equation has its own formula, such as the Hook’s law 

for elastic force, gravitational force, electrostatic force and Lorentz force 

etc. The study of the force, coming from the study of interaction, is one 

important part in physics and chemistry (this is also stated at the end of 

section 1.2). Such forces has its independent definition and most 

important of all, its measurement. For example, it can be measured from 

the extension of a spring (Hook’s law); and using Newton’s third law, you 

can hook the interaction parties to the spring and thus study the force of 

other interactions (Cavendish’s measurement of gravitational force, and 

Coulomb’s measurement of electrostatic force)
34

. In such way, the 

formula for the forces can be determined independently from (4-3). Then 

you apply this force to some party and observe its motion obeys the 2
nd

 
                                                        

34 A detailed account for these famous experiments is given in the book edited by H. Shamos: ‘Great Experiments 

in Physics’ 
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law. Of course, the change of a moving party’s acceleration reveals 

existence of force, it can also tell you how big the party ‘feels’ the force. 

But this is not a definition of force, it does not reveal the origin of the 

force, only show you the effect. The common misconception that F=ma 

defines a force, may arise from the fact that the unit of force is indeed 

coming from the formula. That is how Newton (here the unit of force) is 

defined by kg.m
2
/s

2
. 

In short, the force is a measure of interaction. It is defined independently 

from that of 2
nd

 law. 2
nd

 law does show us the effect of force.  

In the KK, there is a section 2.5 on the common forces of different types, 

such as gravitation, electrostatic, friction, tension etc. Please read it 

yourself. Among different types of forces discussed in the book, 

fundamental forces are the gravitation and electrostatic. Other types 

forces are in principle be able to derive from these fundamental ones, but 

due to the complication of calculation(astronomical numbers of particles 

involved), approximate empirical formula are needed, such as F=-kx for 

elastic tension; F=uN for friction and F=-cv for viscous resistance etc.   

(3) Mass, Inertial and Gravitational Mass 

We have discussed that the force form can be independently determined, 

such as reading the scale of your spring ‘forcemeter’. The force and the 

acceleration are related by a physical quantity: mass. We discussed above 

that the F=ma is not a definition for the force. Here we will see that F=ma 
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is a definition of mass.  

Well let’s see how you define the mass of some object from relation (4-3). 

You say, hey put it on the balance and read the result. How about we are 

in deep space where there is no gravitation and will the balance still work 

(I entrust you know the difference between mass and weight)? In such 

cases, F=ma indeed offers a way to measure and define mass. It is 

essential that the force is independently determined, such as using a 

elastic force of spring F=-kx. From the extension of the spring, we know 

the force (we do not know the unit yet, since the unit of force is defined 

from the mass), the most important is that as long as same x, the 

extension, the force will be same. We can also measure the acceleration 

with measurement of length and time. Now comes the definition of mass. 

We have to use a chunk of matter as our standard, say 1 liter of water, and 

define this liter of water as 1 kilogram (1kg). You may also choose a 

different matter and assign a different unit (this is the weird English unit 

ounce and pound came from). Once you set the standard mass, F=ma 

allows you to measure the mass of other objects. 

Suppose two matters, one is our standard unit mass, called 1kg, the other 

is a chunk whose mass is unknown. We apply the same force to these two 

objects (same spring and same extension, or you may hook the two with 

one spring with negligible mass, thus make sure the forces on the two 

parties are same in magnitude) and measure their acceleration, this will 
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result: , and the mass of the unknown can be determined relative 

to the standard. The mass determined this way is called inertial mass, 

with notation . 

There is another mass you have seen, and actually when you measure the 

mass on earth with a balance, you are not measuring inertial mass, but the 

gravitational mass: . This mass comes from a different source, which 

is the Law of Gravitation Attraction: 

   (4-7) 

In this famous formula, there are also masses in it. Actually this formula 

also defines a mass (i.e. the mass you measured from the balance on 

earth), the , gravitational mass. These two masses (inertial and 

gravitation) come from two different definitions and there is no obvious 

reason that these two are always equal. But they are. Actually strictly 

speaking, the ratio between  is not necessarily 1, but is a constant 

for all matters. This is actually a fundamental postulate in general 

relativity and had been subject to rigorous test in the experiments (the 

Eotvos experiment and its modern version). Can you give an example 

from daily experience or simple lab setup, to test that the two masses 

have proportional constant for all matters? As long as  is same for 

all matters, we can set that they are equal by choosing the corresponding 
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constant G in (4-7). The two masses are equal implies the relation 

between the gravitation and inertial force which was explored by Einstein, 

resulting in general relativity.  

As a summary of this section, we discussed concept and definition of 

inertial frame, force and mass. The relations of these to Newton’s laws 

are: The 1
st
 law offers an empirical way to determine an inertial reference 

frame; 2
nd

 law defines mass, and it relates the force with motion. 3
rd

 law 

as we shall see will give us the conservation of momentum.   

 

4.3 Application of Newton’s Laws and Examples 

Using the Newton’s law solving the dynamical problems, i.e. the 

evolution of the system over time, is basically starting from the initial 

condition and predict the motion (position, velocity) at later time. The 

basic equation is (4-2) and (4-3), however there are many tricks because 

there are so many variations. The problems in mechanics sometimes are 

quite tricky and hard. There are general steps guiding you tackle these 

problems. The KK’s book gives you a guideline (section 2.4) and I can 

add little, but just restate it with a little bit reorganization.  

The general steps in solving the mechanical problems are: 

(1) Choose your system.  

There are may be many-bodies involved in interaction. Isolate the 
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party of interest. If possible treat the party as mass point.  

(2) Analyze the force on the party of interest.  

Include all the forces but no more. All the forces you are going to 

encounter in this class will be force in contact except gravitation. This 

means if party A feels force by party B, A and B have to be in contact, 

except the force by the gravitation field. We are not going to include 

inertial force due to the non-inertial frame yet, because we will work 

in the inertial frame at present. 

(3) Choose the coordinate system 

A coordinate must be in an inertial frame here. Though choice of 

coordinate is man-made and arbitrary, a wise choice may simplify the 

calculation tremendously. There are two choices in 2-D, Cartesian and 

Polar. Polar will be convenient if the problem involves rotation or has 

circular symmetry.  

(4) List the equations of motion 

Because equation of motion (4-2) or (4-3) are vector equations, so it 

means more equations, one equation for each components (in 2-D, this 

will result in 2 equations for x and y components). Sometimes these 

equations may be enough to solve for answer. Beware that since F=ma 

is essentially a differential equation. It could be 2
nd

 order differential 

equation for position or first order equation for velocity, so you may 

need some technique in solving the ordinary differential equations.  
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(5) The condition of constraint 

There are cases where the number of unknowns exceeds the number of 

equation of motion. This is because these unknowns are not 

independent. There are constraint conditions imposed by the problem, 

these constraints add more equations on the relation between the 

unknowns.  

Example 1.(KK’s example 2.4 a) Wedge and block 

 

(1) Choose the system.  

The force between the block and wedge (normal force to the slope) 

will make the wedge accelerate toward the left when the block sliding 

down. You may choose the block only as your system and try to find 

the motion of it. However you may have to resort to non-inertial frame 

because the wedge is accelerating. So in this example, it is more 

appropriate to choose both wedge and block as our system 

(2) Analyze the force (I entrust you can do this) 

(3) Choose the coordinate   

This is also straight forward here. A Cartesian based on the ground.  

(4) List the equation of motion 

There are 3 equation of motion in this problem (x, y component for 
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the block and X component for wedge), however there are 4 

unknowns (x,y), X and normal force N.  

(5) Apply the constraint. 

This could become the trickiest part. In this problem, it is relative 

simple. The motion of the block has to stay on the slope, this puts a 

limit on how its x and y components changes. The relative 

to the wedge (note: not to the ground) has to satisfy the geometry 

condition of the slope. The detail is in the book. You may also use that 

the velocity of the block relative to the wedge has to satisfy: 

.  

Example 2. Force analysis on pulley 

 

 

 

As the figure shows a rope (weightless here for simplification) tight on 

pulley, and a force T is applied downwards to both ends of the rope (the 

force on both ends has to be equal if the pulley is frictionless because the 

rope is weightless). The question is what is the force on the pulley?  

Most of you can give the answer quickly; the force on the pulley by the 

rope is 2T downward. But how you get this? 

As we stated that the forces are contact force, we have to investigate a 

small segment of rope that in contact with the pulley and see how it exerts 
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force to the pulley. 

 

The figure shows the force on a small segment of rope that is in contact 

with the pulley.  is the support force from pulley to the rope, T is 

tangent with the arc at the two ends. From the balance of forces on the 

rope (since the rope is weightless, the forces on it has to be balanced all 

the time). Clearly the value of the  is: 

 

The force from the rope to the pulley would be same magnitude as , 

but reversed in direction, i.e.  would point along the radial 

direction inward: 

 

From the symmetry, the X component of these  will add up to 

zero.  For the Y component, they will add up to a force point downward, 

the value is: 

 

Add all the contributions from the arc A to B, as  this becomes 

F∆

F∆

2 sin
2

F T T
θ

θ
∆

∆ = ≈ ∆

F∆

r pF →∆

r pF →∆

( ) siny r pF T θ θ→∆ = ∆

0θ∆ →
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an integral: 

 

This is how you get simple 2T form the detailed force analysis (this 

derivation is a little different from the KK because I choose a different 

orientation) 

There is another interesting method called “phasor” method (a geometric 

method to get the summation of vectors).  

 

Each vector with length , is the contribution of the force from the 

small segment centered around .  As , the vectors will 

approach a circle with radius T and the results of summation will be 2T as 

the red arrow shows.  

 

Example 3 Solving the 1
st
 order ordinary differential equation with 

method of separation of variables. (KK, 2.16) 

The problem is solving the velocity change over time for a particle 

traveling in a viscous media, with viscous resistance force . 

We shall choose the direction of velocity as direction of our coordinate 

axis, so the problem is reduced to a 1-dimension problem, and vector 

0

0

sin cos | 2yF T d T T

π
πθ θ θ= = − =∫

T θ∆

θ 0θ∆ →

F cv= −
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equation would becomes scalar equation. 

 

And we want to solve for v(t) provided with initial condition . 

This is a 1
st
 order differential equation, and it is also a simple type 

because we can separate the variables, i.e. group the different variables to 

the different side of the equations, so we have a relation of the 

differentials of the variables, here is how: 

 

Then proceed with definite integration on both sides of the differential 

equation. The time is from , and velocity from  

35
 

 

Such basic technique of separation of variables is required in this course.  

 

                                                        

35 If you really stick to math, you may worry about whether the two sides are equal or not, because the two 

integral are integrated with different lower and upper bound. From physical point of view, the integral make 

perfect sense, at t=0, v=v0,etc. There always a one to one relation between t and v during the summation (integral is 

a summation). If this still not convincing, I shall rewrite the integral on the left hand side as: 

. This will equal to the right hand side. Now play the trick of substitution of integrand, make the 

variable v instead of t.  
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Example 4.  1-D free falling: an object is at a distance from the earth and 

falling towards the earth center.  The object has mass m and is at a 

distance of h (h could be very far, say infinity) from the center of earth, 

initial velocity is 0. 

This is seemingly a simple problem: 

The distance is x (earth center is origin), and the velocity is v(x), and the 

force is: 

 and Newton equation will be: 

 

The trouble is the x is a function of time that we do not know yet x(t), and 

we cannot solve this equation as it is presented in this form. If the right 

hand side is an explicit function of t, then it may be solved as a 1
st
 order 

differential equation (also it is possible that it may not have an analytical 

solution at all and has to be solved numerically) 

You may express the differential equation in forms of variable x instead 

of v, but that will become a second order differential equation: 

 and no simple solutions for this too.  

We will see that we can use energy conservation (later) to reduce the 

above equation to first order differential equation (only involves dx/dt) . 

2

e
M m

F G
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The detailed calculation won’t be presented here
36

. The point is to show 

you that even for this seemingly simple problem, directly using Newton’s 

equation of motion may not give us solution. Yes, the equation will be 

some form of 1
st
 order or 2

nd
 order O.D.E (ordinary differential equations). 

But it can be a beast to be solved. The advanced method to solve O.D.E is 

not required in this course. 

As to this example, though direct solving above 2
nd

 order ODE on x may 

not be easy, there is a useful “trick” to apply: 

 
dv dv dx dv

Use v
dt dx dt dx
= =    (4-8) 

2

e
dv dv M m

m mv G
dt dx x
= = −  

Then we can solve the relation between v and x using separation of 

variables to get v(x). The using v(x)=dx/dt to get x(t). The details 

calculation is straightforward but a bit messy due to integration, you may 

try it yourself.  

We will need other tools to evaluate the motion besides the equation of 

motion. This will be the conservation relations we shall discuss next. 

Though at the beginning, these conservation laws may seem to be a 

corollary from Newton’s laws, it turns out that they are more robust and 

have wide and profound applications in all branches of physics
37

. We 

                                                        

36 You may find solution in: American Journal of Physics Vol.74 pg1115-1119 (2006) 

37 We discussed but without prove that these conservation laws arise from homogeneous and isotropic of the space 

and time in Chapter 1. 
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shall first discuss the momentum and its conservation law; then energy 

and its conservation; followed by discussion of rotational motion and 

angular momentum and its conservation law. These compose the contents 

of the next few chapters of this note (as well as the KK’s book). 

 

Chapter 5 Momentum 

5.1 Mechanical Momentum 

As we stated in the equation of motion (4-1), the Newton’s equation is: 

. In the case that mass is independent of time the equation is 

reduced to the familiar from of F=ma. From the equation, we see that it’s 

the combination of mass and velocity plays the important role in 

determination of motion, so this combination deserves a name for itself, 

and this is the mechanical momentum: 

   (5-1) 

The mechanical momentum is a vector along the direction of velocity. 

The reason it is called mechanical momentum is because it is a special 

case in the more general definition of momentum
38

. 

                                                        

38 The more general definition of momentum (the canonical momentum) will be given in the theoretical 

mechanics: , where L is the Lagrangian of the system and the is the generalized coordinate change 

with time (the generalized velocity) 

( )
d

F mv
dt

=
� �

P mv≡
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L
p
i q
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∂
=
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qi
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In the first chapter, I said that the state of motion of a system can be 

described by position and velocity (x, v) of the particle (in 1-D). In the 

light of momentum, that statement should be modified that the state of 

motion is best described by position and momentum (x, p) in 1-D, or 

( ) in higher dimensions. 

 

5.2 Multi-particle System and Center of Mass 

Let’s consider a general system consisting of N particles (it could be N 

separate particles or the particles congregate to form one object), each 

particle is subjected to a total force ‘felt’ by the particle: , and this 

force can further be separated into two parts (only consider the inertial 

frame here): one is due to the mutual interactions within the system, i.e. 

the force exerted on the ith particle by other particles in the system; the 

other force is attributed to the external force. Then the total force felt by 

the particle i is: 

 and for the ith particle, we have: 

 

For each particle we have a similar equation of motion. Now take a 

summation of all the individual equation of motion: 

 

,r p
� �

iF

int ext

i i iF F F= +

i
i

dP
F

dt
=

intext i
i i i

i i i i

dP
F F F

dt
= + =∑ ∑ ∑ ∑
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From Newton’s 3
rd

 law, the internal forces will always be in pair, and 

every pair would be equal in magnitude but reverse in direction, so 

. The above equation reduces to: 

   (5-2) 

This is the most important equation in this chapter. It shows the relation 

between the force and the change of total momentum  over 

time. In a multi-particle system, though the individual particle may have 

its own motion, there is a relation between the total external force and the 

total momentum change. The relation (5-2) has the same form of equation 

of motion of one particle, this becomes obvious if we introduce a concept 

of center of mass, a fictitious particle which has the total mass of the 

system, its motion will obey the relation (5-2). 

5.2-1 Center of Mass 

The position of the center of mass of a system is a point which is defined 

as: 

      (5-3) 

From this definition, it is easy to see that: 

   (5-4) 
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The (5-2) will become: 

   (5-5) 

If the total mass do not change over time, the (5-5) would be like F=Ma, 

the equation of motion of a fictitious particle with the total mass under 

the total external force. 

In some cases, such as a cannon ball exploded during the flight, though 

each individual piece may fly in different direction, the center of mass 

will still follow the trajectory of the projectile. Please also see Example 

3.5 in KK. 

5.2-2 Determine the Center of Mass 

From the definition (5-3), the location of center of mass can be 

determined. The (5-3) is a general vector form and in real calculation, it is 

best expressed into formula of components. We shall take a look of the 

simple case where only two particles involved first, then investigate the 

more general case of continuous distribution. 

(1) Center of Mass in a Two-Particle Case 

ext total
total

dP dMR
F

dt dt
= =

�ɺ�
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As the figure shows, the center of mass is represented by a position vector 

R. It is from definition: 

      (5-6) 

It may not be obvious from (5-6) where the R locates. So let’s calculate 

the displacement vector from the C.M(center of mass) to particles 1 and 2, 

labeled as : 

 

   (5-7) 

are both in the direction of , so the R is located in the line 

joining the two particle ( ), distance to each end is given in (5-7). If 

the two particles are joined by a weightless lever and you put a support 

right beneath the C.M, it will stay at this balanced position, this is 

obvious from (5-2), as well as the lever equilibrium you learned in high 

school.  
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In real application, we usually choose a coordinate to put the two-particle 

along a coordinate axis and set a convenient origin (say m1 is at x=0…), 

you do the calculation for (5-6) and (5-7) for this choice of coordinate. 

(2) Center of Mass for Many Particles 

If the particles in the system are more than 2, (5-3) is the formula of C.M 

for discrete case. If the object has continuous mass distribution: 

  

   (5-8) 

is the density, and the triple integral is over the volume of the object. If 

in 2-D case, it will be a double integral over area.  

The vector form of C.M. in (5-3) and (5-8) though compact, is not very 

convenient in calculation, so their components formulas are: 

   (5-9) for discrete case 

   (5-10) for continuous case 

The formulas for the Y, Z components are similar. In the evaluation of 

C.M., always first try to deduce it from symmetry before plunge into (5-9) 

or (5-10). KK’s has examples 3.3, 3.4, here is another one. 
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Example: find the center of mass of an equilateral triangle with uniform 

density, say density=1, the length of each side=L 

 

From symmetry, the C.M must be on the x-axis (actually for equilateral 

triangle, it also has to be on the other central line, so really you can 

determine the C.M from geometry), no need to compute Y, Y=0. Let’s 

calculate X (this is also used as a simple example to show you how to 

setup the double integral, even I know where the C.M is from symmetry): 

 

M is just the area of the triangle. The double integral is over the area (the 

bound) of the triangle. Of all the double (or triple) integral, it is critical 

how you divide (also called slice) the region. Here I choose to slice the 

area into stripes as shown in the red stripe in figure. At certain x, the 

stripe is extended (the range of y) from to , and x is from 

0 to . So the double integral would be: 
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xdA xdxdy

X
M M

= =
∫∫ ∫∫

/ 3x / 3x−

3

2
L

3 3 3

3 3 32 2 2
2 3

0 0 0

3 3

2 2 3
( ) ( )

2 43 3 3

x x
L L L

x xArea

L
xdxdy xdydx dy xdx x dx L

− −

= = = = =∫∫ ∫ ∫ ∫ ∫ ∫



 104

 

 

The C.M would be at two-thirds of the height, you may check this result 

purely from geometry.  

The C.M could also be calculated if you divide your system into 

subsystems, and find out the C.M of each subsystem, and treat these 

C.M’s of subsystem as a mass point and compute the C.M from these 

mass points. The proof of the theory is straightforward and is left for you. 

Using this theory, you may find out the C.M. of the object below: 

 

5.2-3 Application of C.M and Characteristics of C.M Frame  

Example: 

 

A freight car (M) with length L is sitting on a frictionless surface. There is 

a ball (mass=m, radius negligible) at the beginning on the left side of the 

car, and rolls to the right side of the car and stop (there are friction 

21 3 3
( )

2 2 4
M L L L= =

2 3
( )

3 23

L
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between the ball and the car). The question is what the distance travelled 

by the car? 

This problem is not easy to solve using equation of motion, but with help 

of C.M, the solution is obvious: 

Initially the C.M. is at:  

The car will travel distance x to the left and when the ball stopped, the car 

will stop too, because under no external force, the C.M will not move. 

The ball will be at (L-x), and the car’s C.M will be at (L/2-x). The C.M at 

this final moment will be: 

 

And , the x can be easily solved then. 

 

If there is no external force, the C.M. will obey the Newton’s 1
st
 law. We 

can choose a coordinate system that travels along with the C.M., and set 

the C.M. as the origin of this coordinate system. This is what we called 

center of mass frame. There are a few advantages to choose the C.M as 

origin, there will be a couple simplifications: 

Let  be the vectors representing the C.M and particles in one 

reference frame, the vectors in the C.M frame, clearly since we 

choose C.M. as origin, , write it explicitly: 
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(a)    (5-11) 

This can also be directly tested using (5-7) 

(b)    (5-12) 

This shows that in the C.M. frame, the summation of momentum 

(Note: measured relative to the C.M. frame) is zero. So the C.M frame 

is also called zero total momentum frame (of course the total 

momentum of the system as we see from (5-5) is carried by the center 

of mass). Relation (5-11), (5-12) are important properties of C.M. 

frame and will play important roles later when we discuss scattering 

and other applications involving C.M.  

 

5.3 Conservation of Momentum 

From (5-2) , if the total external force is zero, then the total 

momentum will be a constant of motion, i.e. do not change over time. 

This is conservation of momentum. Noticed the (5-2) is a vector equation, 

it can be decomposed into components: 
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So if the total external force is not zero, but one of its component is 

zero(say fx=0), the total momentum component (px) will be conserved.  

(Example 3.6) 

Here are some more examples: 

1. Consider the free fall object towards the earth. The object and the 

earth form a closed system, i.e. neglect external forces outside. What 

is the momentum change of the object? 

It is a free fall and close to the earth surface, the velocity change over 

time is: , so . It is increasing over time and clearly not 

conserved. This because under the influence of the object, the earth 

will move towards the object too (strictly speaking, the earth is not an 

inertial frame here), with a velocity so small (because of the large 

mass of earth) that is negligible, but the momentum of the earth Mv is 

not small and the total momentum will be zero.  

2. Earth revolves around the sun. 

Let’s neglect other influences (such as moon, Jupiter etc), so the 

sun-earth forms a closed system and no external force. The earth 

revolves the sun in a circular orbit (an ellipse very close to circle). The 

velocity of the earth changes over time (the direction) so will the 

momentum of earth. From the conservation of momentum, this 

requires that the sun will also move in the counter direction of the 

earth, so that the total momentum of sun+earth will not change. Both 

v gt= p mgt=
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sun and earth revolves around a common point, you probably can 

guess where is that point. It is the C.M., which do not rotate with no 

external force. Because the sun is so massive that the C.M. of 

sun+earth almost overlaps with the center of sun, and the motion of 

sun is not easy to observe.  

In the derivation of (5-2) at the beginning of this chapter, it is essential 

that the Newton’s 3
rd

 law makes the contribution of the total internal 

forces disappear. Thus we have the conservation of momentum under no 

external forces. That is the reason I stated in Chapter 4 that the 3
rd

 law 

will result in the conservation of momentum (which is true from 

Newtonian point of view). However, it turns out that the conservation 

momentum which is the result of translational invariance of space, has 

wider applications than the 3
rd

 law. It is more appropriate to say that the 

3
rd

 law of mechanics is the result (or special case) of the conservation of 

momentum.  

 

5.4 Momentum Change and Impulse Theorem 

This is just the integral of the most important relation of this chapter (5-2). 

We integrate the left and right hand side from some initial time t0 (it could 

be set as 0) to some final time t: 

 0

0 0

( ) ( ) |

t t

tdP dP
F Fdt dt P t
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= → = =∫ ∫
� �
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   (5-13) 

The left hand side is called impulse. The change of the momentum 

of the particle or the system equals to the impulse (the force has to be the 

total force on the particle or the system). The (5-13) is called impulse 

theorem and is useful to evaluate the momentum change given the known 

force (read the equation from left to right); or from the momentum 

change to derive the force (from right to left). For the second application 

(from momentum change to know force), there are generally two 

strategies.  

(1) Evaluate the average force over time interval 

   (5-14) 

Examples are given in 3.9 and 3.10 in the K&K.  

(2) Evaluate the instantaneous force 

This is to take a very small time interval, and from the momentum 

change, the instantaneous F can be evaluated by taking the limit 

. The examples are 3.11 and 3.12.  

Here we are going to work out the problem of rocket propulsion from 

this strategy: At time t, the total mass is , M is the mass of 

rocket and  is the fuel that is going to be ejected. At later time 

, the fuel will be ejected with a constant velocity  relative to 

0
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the rocket (note not to the ground or inertial system of your choice), 

and the velocity relative to the inertial frame is shown in the figure: 

 

The initial momentum is: 

 

At later time, the velocity of the fuel in the inertial frame is: 

 and the momentum of the whole system becomes: 

 

The change of momentum (neglect higher order ): 

 

   (5-15) 

This uses that fact that the exhaust mass rate of change equals 

decrease rate of mass of the rocket, i.e. . (5-15) is the 

fundamental equation of rocket propulsion.   

In the case of zero external force , we have: 

 or: 
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This looks like F=ma, where is the propulsion force (recoil 

force) on the rocket by the fuel ejection. ( <0, the force is along 

the reverse direction of ). The final velocity can be solved by 

integrating both sides: 

 

This is the result of example 3.14 in KK. For the case of rocket under 

gravitation force, refer to example 3.15. 

Another important application of this strategy is momentum transfer 

(section 3.6 in KK). A flow of particles are hitting the surface and 

being scattered. Because of the change of momentum of the particles, 

they must ‘feel’ a force exerted on them by the surface, and the surface 

will experience a force too by the 3
rd

 law. This is why we have air or 

water pressure. How we evaluate such pressure?  

Let’s consider the following model, the particles are flowing with 

certain velocity . It could be a constant, then we will have a simple 

velocity distribution, also called constant velocity field. Field is 

nothing but a distribution of physical quantity, if the quantity is scalar 

(such as temperature), it is a scalar field; if the quantity is vector (such 

as velocity in this case), it a vector field. If it is not constant, it is 

generally a function of space and time . For simplicity, we 
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consider the constant velocity field here.  

The strategy of momentum change and impulse is to take a small time 

interval and work out the momentum change. The first question is 

within small time interval, how many particles hitting the surface? 

Equivalent question is how many particles will flow through a surface. 

This is a question of estimate the ‘flux’ of a vector field (here the 

velocity field): 

 

The flux
39

 of the vector field is just the volume of the rectangle in the 

right of the figure above, which is , the number of particles 

passing through the surface in the time interval would be just 

, is the density of the fluid.  would be the 

mass passing through the surface during the time interval . What I 

draw above is actually a special case where the surface is 

perpendicular to the velocity field, or equivalently the normal 

direction is parallel with the v. The general case would be: 

                                                        

39 Strictly speaking, flux is defined as flow across an area per unit time, i.e. . 
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The surface normal (unit vector) will have an angle  with the 

velocity. The volume representing the flux will be: 

  (5-16) 

   (5-17) 

 

The choice of is arbitrary (it may point to the right or left in the 

figure above, I chose it pointing sort of along the velocity), it won’t 

affect the results as long as you keep it consistent.  

Now we can evaluate the change of momentum over the time interval: 

 

And the force on the surface is the –F felt by the particles, from the 

impulse theorem: 

   (5-18) 

  (5-19) 

Two special cases are (completely inelastic), and  

(elastic), you should be able to work out the expression of the pressure 

felt by the surface from (5-19).  Also in the most general case where 

the surface may not be even a plane, then the total force felt by the 
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surface would be a surface integral (a double integral) of equation 

(5-18), where  may depend on the position on the surface. 

Fortunately we won’t consider such beast in this course, and you will 

learn how to calculate flux of vector field in calculus and divergence 

theorem etc
40

. Please also refer to examples 3.17 and 3.18 to see the 

application. 

(Important concept: mechanical momentum, center of mass and center of 

mass frame; conservation of total momentum; impulse and momentum 

change) 

 

Chapter 6 Work and Energy 

In this chapter we shall discuss two important concepts in physics: work 

and energy. We will first derive the work –kinetic energy from Newton’s 

law, and thus give a definition to work and kinetic energy. For some 

particular forces satisfying certain requirement, the work done by these 

forces will have an interesting property: It is independent of the path. 

This path independence will define a conservative force and a 

conservative potential associated with the force. We shall discuss in detail 

the property and criteria for conservative force. The potential also defines 

energy: the potential energy. The sum of kinetic and potential energy is 

                                                        

40 It is called Gauss theorem in electrostatics and you will learn it in electro-magnetism.  

ˆ, ,n vρ
�
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called mechanical energy of the system under study. It is conserved if 

only subject to conservative forces and this leads to the powerful concept 

of conservation of energy, once we acknowledge that the energy can take 

many different forms, and mechanical energy discussed in this chapter is 

only part of it. Finally we will discuss an important physical process, 

scattering between particles, as an example to apply the conservation 

laws we learned so far.  

6.1 Work-Energy Theorem in 1-D 

6.1-1 Work-Energy Theorem for a Single Particle  

We shall start from this simplest case and extend it later to systems of 

more particles and higher dimensions. Single particle here means I 

choose the system containing only one mass point, treat everything else 

as influence from outside world. In 1-D, 2
nd

 law is: 

 (6-1) 

Notice here in the above equation, I specify the force only explicitly 

depends on position. This is not a necessary condition here, the general 

force may depend on velocity and time explicitly. This is related to what 

we had discussed in chapter 1, though the fundamental forces are only 

position dependent, the forces ‘felt’ by an open system may depend on 

time or velocity explicitly. This dependence will have no effect on the 

2

2

( ) ( ) ( )
( )

dP t dv t d x t
F x m m

dt dt dt
= = =
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following discussion on work-energy theorem, but will affect the 

definition of conservative force. For simplicity, I shall first assume the 

force is only position dependent and will include the discussion if the 

force has other dependence later.  

Now I play a ‘trick’ on the right hand side of equation. We already see 

two usual forms on the right hand side to express the motion of particle, 

i.e.: , now I will show you another form: 

   (6-2) 

This is legal operation, if you worry about the math, replace the 

differential symbol with small change 
41

This from is 

also worth to remember and it may become handy in applying 2
nd

 law 

sometimes, such as what follows: 

 

Integrate both sides from initial position to some final position (see the 

K&K for detail or refer to footnote 36 on pg 92 of this note): 

                                                        

41 This is legal for total differential because we can view it as small change of numbers. It is not generally legal 

for partial derivatives, because of the constraints attached to the partial derivatives, see the supplement on partial 

derivatives. Here as an example: let’s say . . Noticed 

the constraint on the two partial derivatives, one requires hold y constant, the other requires hold q constant. To 

further illustrate this point, try the relation between Cartesian coordinate and polar coordinate:  
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   (6-3) 

What this relation tells us? It actually defines two things! It tells us two 

things are equal. We shall define kinetic energy as: 

   (6-4) 

So the left hand side is change of kinetic energy: . The right 

hand side defines work by the force: 

   (6-5) 

So relation (6-3) can be written with these definitions as: 

   (6-6) 

It says the kinetic energy change of the system equals to the work done to 

the system. This work-KE relation and its form in higher dimension is the 

most fundamental relation in this chapter. If the work done to the system 

is positive (the force pushes the system), kinetic energy will increase. If 

the work done to the system is negative (system pushes the outside world, 

the system will do positive work to the outside world, easy to see this 

from 3
rd

 law and definition of work), system will lose kinetic energy.  

Notice that in definition (6-5), I intentionally only write F, instead of F(x), 

because this applies to all kinds of forces. However, if F in this 1-D case 

only depends on x, we will get some interesting result. Let’s suppose F is 

only a function of x, i.e. it is defined uniquely for every x. Then the work 

is just a definite integral with integrand F(x): 
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   (6-7) 

From the fundamental theorem of calculus, we know that this integral 

equals to the difference of the antiderivative of F(x), evaluated at the end 

points, i.e. 

if    (6-8)  

then: 

   (6-9) 

G(x) is called mathematical potential associated with the force. Noticed 

that there is a striking fact lies under the simple relation (6-9): 

path-independence. It is determined by the starting and ending point 

only, do not care how the particle moves between . If it moves 

directly from to , or from to some other point , then back to , 

the force will do the same amount of work, ignoring the details of how 

particle travels between the locations.   

 

Such force is called conservative force and we have relation (6-9) in 1-D 

case. We will discuss the conservative force in general situation of higher 

dimension later. In 1-D, the only requirement for a force to be 

conservative is that it only depends on position, i.e. position alone 

uniquely defines the value of the force.  
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We shall define physical potential for conservative force as: 

   (6-10) 

(6-8) will become: 

   (6-10) 

And (6-9) becomes: 

   (6-11) 

The advantage of this definition is when combined with work-energy 

theorem (6-6), we have: 

   (6-12) 

(6-12) tells us there is a physical quantity that is not change over time in 

the system, we define this as mechanical energy: 

   (6-13) 

I specify it as mechanical energy because there are other energy forms. 

There is still one ambiguity in the definition (6-12), namely the U. From 

(6-11) we see that only the difference between the potential is defined, or 

from (6-10), the function U(x) can be subject to an arbitrary constant C. 

This ambiguity on the value of U is removed by our choice of zero 

potential. i.e. we shall choose a reference point, and specify its potential 

equals zero:  Because only the difference of potential has 

physical significance, so the choice of zero potential reference is made by 
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convenience. If you choose a different zero potential reference, every 

potential may shift by a constant, but this will not affect (6-11) or (6-12), 

because the constant cancels. The usual choice of potential zero are: for a 

spring, the equilibrium point of the spring with no force on it; for gravity, 

we usually choose infinity as zero potential point; sometime we also 

choose sea-level (or ground level) on earth, etc. With a chosen potential 

zero, U(x) can be defined from (6-11): 

   (6-14) 

Now you have a formula to evaluate the kinetic, potential and total 

energy for a single particle system. 

Let’s take a look again to the example given by the end of Chap.4: 

i.e.: 1-D free falling: an object is at a distance from the earth and falling 

towards the earth center.  The object has mass m and is at a distance of h 

(h could be very far, say infinity) from the center of earth, initial velocity 

is 0. 

This is seemingly a simple problem: 

The distance is x (earth center is origin), and the velocity is v(x), and the 

force is: 
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This is not easy to directly solve the differential equation as we stated 

there. Now from energy conservation (or work-kinetic energy theorem, or 

with the trick I told you here ), basically we can first 

find out the relation between velocity and position v(x), then  

will give relation between x and time. I shall briefly workout from 

conservation of T+U (because the force only depends on position in this 

case), please work out from work-energy theorem (which also applies to 

forces that depends on time or velocity) yourself.  

I shall choose infinity as my potential zero. 

   (6-15) 

 

The reason I put minus sign is because I define the positive x direction is 

from 0 to infinity.  

 

2

e
dv M m

m G
dt x
= −

dv dv dt dx dv
v

dt dt dx dt dx
= =

( )
dx

v x
dt
=

2
( ) |

( )

e e e
h

h

e

GM m GM m GM m
U h dx

x x h

GM m
U x

x

∞
∞= − = = −

= −

∫

21

2

1 1
2 ( )

e e

e

GM m GM m
mv

x h

v GM
x h

− = −

= − −

1 1
2 ( )e

dx
GM

dt x h
= − −



 122

 

It is not a pleasant integral to evaluate analytically, but impose no 

problem for numerical method for computer. This is generally true in real 

problems in mechanics, instead of having wanted x(t), you often end with 

t(x) (be a analytical or just in integral form) and the inverse x(t) may not 

be solvable. This example is in the same spirit as example 4.2 in KK, but 

that one is easier to solve.  

It may occur to you that the potential due to gravity is mgx close to the 

surface of earth, where x is the height here. It looks different than 

potential given in the (6-15). First the mgx is really the potential 

difference between the height Re+x and that of at Re, let’s calculate this 

difference using (6-15): 

 

If we invoke the definition of , the above is mgx, so the two are 

consistent.  
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It can also be viewed from the figure depicting the potential given (6-15). 

If you choose the ground level as zero potential, it just shift the whole 

curve vertically up (or the axis down) so that the U(Re)=0, as the blue 

horizontal dashed line indicates. Close to Re, the hyperbolic potential can 

be approximated by a straight line, whose slope is mg.  

For the forces that depend on time or velocity, the argument leads to (6-9) 

won’t apply, that requires the force is uniquely defined from position. 

This is apparently untrue if forces explicitly depend on time or velocity. 

For such force, F(x,v,t), the work defined by (6-7) has to be computed 

with the technique of line integral
42

, it generally depends how the particle 

travels along the line even for this 1-D case
43

. We will not get simple 

relation as (6-9) and we do not have conservation energy (mechanical) for 

systems under such forces, these forces are called non-conservative forces, 

such as friction (it depends on direction of velocity, not defined with only 

                                                        

42 The basic technique is called parameterization and is discussed in the supplement 2, section 7-1 under line 

integral, it is part of multi-variable calculus.  

43 We need more information to evaluate this integral. Not only the staring and ending point, but also other 

information, such as direction of the particle travel (for friction force) or velocity at certain point (resistance force) 

etc. This requires details for the path. We shall say that for these non-conservative forces, the work done is path 

dependent, in contrast to the path independence of work done by conservative forces. 
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x), air resistance etc.  

Someone may argue that even for a force that depends explicitly on time 

or velocity, for example: , because of motion obeys 

2
nd

 law, we could solve the relation between x and t, say t=t(x) like in the 

above example. Then throw everything back to F, , 

the t(x) is a function of x. It is seemingly that the work will be back in the 

form of (6-7) so (6-9) will follow. The problem of this approach is: 

1) The reason we introduce potential is to solving the problem without 

solving the equation of motion directly. If you already find out relation 

of x(t) or t(x), that loses the part of the point of introducing potential. 

2) The above method is essentially doing line integral with parametric 

method. You can always do this to compute the line integral. The 

parametric function, the t(x) above, is path dependent. i.e. it depends 

on how the particle’s path and how it is moving along it. With 

different path or different initial state, the parametric function would 

be different, so will the result of the work computed from (6-7). The 

“potential” defined this way will have different function forms for 

different paths and this loses the whole point to introduce potential.  

When there are not one but a number of forces acting on the particle, the 

total work done by the forces is the work done by the total force for this 

single particle system: 

( , ) ( )F x t k x at= − −

( , ) [ ( )]F x t k x at x= − −
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   (6-16) 

This is true because the path of the work done by different forces is same 

for the single particle case (it is not true for the many particle system, the 

forces may exert on different particles and have different paths. The total 

work will still be sum of individual work, but not equivalent to the work 

by total force). 

The work energy theorem still holds for this case: 

   (6-17) 

If the forces are all conservative forces: 

   (6-18) 

Then the total mechanical energy defined as is conserved: 

   (6-19) 

If the force contains non-conservative force: 

   (6-20) 

The mechanical energy change would equal to the work by the 

non-conservative force. 

6.1-2 Work-Energy Theorem for Multi-particle System 

Last section, we studied the simplest system, single particle system and 

use it to introduce some very important concepts and definitions: work, 
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energy, conservative force and potential. Now take a look for 

multi-particle system, I shall choose two-particle system, it is sufficient 

and can be generalized to any number of particles (or parties).  

(1) Internal Force and External Force 

When you choose the system, it is natural to group the force into internal 

ones (the interaction among the particles inside the system) and external 

ones (the interaction of particles with outside world). Such grouping not 

only for convenience, but has following important effect as well (in single 

particle case all forces are external).  

The internal force if any exists, is due to interaction between the particles 

and always appear in pair obeying 3
rd

 law. This gives an important 

character of work done by the internal force. Let the force be the 

force act on particle 2 by 1; be the force on 1 by 2. We have 

, both forces are depending on the relative positions of the two 

particles:  as we discussed in chapter 1 (the 

symbols used mean F is a function of x1-x2). The work-energy theorem 

can be applied to each particle separately: 

 

 

Add the two relations and apply the 3
rd

 law, we get: 
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If we introduce a new variable , then the left hand side is just the 

line integral as in the single particle case but with as variable: 

   (6-21) 

The work that done by the pair of internal force on the particles thus 

changes the total kinetic energy of the two particles involved. What is 

more important, is because the left hand integral only depends on relative 

positions to the particles, it is same even if the coordinate system is 

changed. Restate it as: The work done by a pair of internal force is 

independent of coordinate of choice. 

If the internal force is conservative as the one written in (6-21), then we 

could define a potential same as (6-14): 

  (6-22) 

Combined with (6-21): 

   (6-23) 

Again the total mechanical energy is conserved if only under conservative 

force. The T here is the total kinetic energy of all particles; U is the 

potential energy between the particles. If there are more than one 

interaction that are conservative then U could be a summation of all 

individual potentials associated with conservative forces (for example 

massive charged particles have both gravitation and electric interactions 
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and potential associated with them).  Also noticed that the (6-23) is not 

the simple summation of individual particles’ mechanical energy 

(U+T1)+(U+T2) as one may naively assumed, because the U here already 

related to the change of the total kinetic energy, you do not count it twice.  

For the non-conservative internal force (such as the friction, it also 

appears in pair but depends on the relative velocity between the parties, 

more strictly it actually depends on the direction of relative velocity), we 

cannot define potential but (6-21) work-kinetic energy relation still 

applies: 

   (6-24)  

Now let’s include the external force. If the system also interacts with the 

outside world, the force resulting from such interactions is external force 

for the system. The total work done by the external force here may not be 

computed from the total external forces like in single particle case, we do 

not have (6-16), and instead the work by the external force has to be 

computed individually: 

   (6-25) 

If the external forces also have conservative and non-conservative parts, 

we can define the potential due to the external forces too and include it in 

the mechanical energy of the system, then you do not need to consider the 

work by the conservative forces (already included in the potential), (6-24) 
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would become: 

   (6-26) 

is the potential on particle 1 and 2 due to the external 

conservative forces (if any).  

Very often, we also choose to compute the work by the external forces 

and do not care whether it is conservative or not, then: 

   (6-27) 

The reason that we have all these different variations of the fundamental 

work-energy theorem, is because in reality we have a choice to define our 

system and outside world (thus internal and external), also we have a 

choice to define the potential for conservative forces. If in doubt, go back 

to the fundamental work-energy theorem. 

 

(2) Reexamination of Potential Energy 

In the single particle case, we define potential for conservative forces, the 

premise is that the force is only depending explicitly on the particles 

position, i.e. the particle’s position uniquely determines the force. And I 

also worked example of gravitation potential of a particle in free fall. 

Let’s take a look of this gravitation potential now since we learned 

multi-particle case. You will find the discussion on the single particle case 

for gravity is not rigorous. Because the gravity depends on relative 

positions, so only knowing the position of the one party is not sufficient 
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to determine it. The argument in the single particle case relies on the fact 

that I choose earth as my origin, so that its position is fixed, then the 

position of particle can determine the force.  

Now we can take a look of this from two-particle point of view: a system 

of both earth and the object. From (6-21) and (6-22) we see that the 

change of potential should strictly speaking involves change of kinetic 

energy of both earth and the object: 

   (6-28) 

Only if we choose our inertial frame as earth is stationary or the earth 

moves with constant velocity (both are approximately to inertial), then 

, and the potential change can be treated as only affect the 

kinetic energy of the object as in the examples of single particle case. If 

the earth is not a good inertial frame or we choose another frame in which 

the earth is not moving at constant velocity, we have to include the 

change of kinetic energy of the earth. This is because even though the 

change of velocity may be very small (negligible), the change of kinetic 

energy may not be small in percentage in (6-28) and has to be taken into 

consideration. 

Let’s suppose the earth+object system, the original velocity of earth is , 

the object is ; in the final stage, the velocity changes to 

respectively for earth and object. So the kinetic energy changes are: 
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Let’s assume only internal force between object and earth (or the external 

forces are negligible during the process), then we have conservation of 

momentum: 
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The approximation of small change on earth velocity V is used above. We 

see that this ratio is not necessarily small (it is 0 if ). So care may 

be needed when we deal with potentials arising between the interaction 

parties, the choice of coordinate frame will decide what kind of equations 

to use (whether need to include the kinetic energy of both or just one of 

them). The example to illustrate this would be the calculation of third 

escape velocity (the velocity of the rocket launched from earth that goes 

beyond the gravitation field of our solar system, the sun). The detailed 

calculation can be found in many textbooks
44

 and won’t be given here. I 

only discuss the common mistake that one easily made (including me at 

first time): 

The potential energy of the rocket has two parts: one due to earth and the 

other due to sun: 

                                                        

44 For example: 李复 ‘力学教程’(上), p201; 郑永令 等 ‘力学’ p177. 
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On the surface of earth, the rocket’s potential would be: 

 

By the time the rocket escape out of solar system, its potential would be 

zero. This increase of potential would be achieved from decrease of 

kinetic energy of the rocket, so the rocket final velocity would be zero at 

infinity. Then: 

 

And you will get incorrect answer, but why? Following our discussion I 

hope you see what is wrong here (before you look my reasoning below).  

The problem is either the sun or the earth will move, and the its kinetic 

energy change cannot be neglected. The general choice is choosing an 

inertial frame where the sun is stationary (which is a better inertial frame 

than the earth), then the earth will move around the sun with velocity 

almost 30km/s. In the above calculation the potential change on the 

earth-object part would have to include the kinetic energy change of the 

earth during the process. Actually it is probably safest to start from a 

system including the sun+earth+rocket and list out potential energy and 

kinetic energy ( ) and 

using the conservation of total mechanical energy and momentum ( also 

be careful there, because the earth-object are subject to force from sun so 

to apply the conservation of momentum between earth and object may 
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require some thoughts) to solve the problem, instead of treating the rocket 

only as the mistake above. Please find out the solution yourself or read 

the reference given above.  

 

(3) Energy and Choice of System and Coordinate System 

From the above discussion we have seen that the fundamental theorem on 

mechanical energy is work-energy theorem. In the application of this 

theorem, it usually requires we define our system of interest and a choice 

coordinate system (inertial frame). We now take a detailed look on this.  

First let’s see that if the work-energy theorem is correct in one inertial 

frame, it applies to all inertial frames. This is expected because 

work-energy theorem is derived from 2
nd

 law, which applies to all inertial 

frames (of course neglecting relativity here). But I shall work it out 

anyway. 

Suppose we have two inertial frame, x and x’ (still in 1-D), the x is 

moving with constant velocity v0 with respect to the x’ system. So: 

 

In the x system, we have the work-energy theorem as in (6-3), in the x’: 

   (6-29) 

I will show that (6-29) is equivalent to (6-3): 

0
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= +

'
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x

Fdx mv mv= −∫
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2 2 2 2

0 0
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0

1 1 1
[( ) ( )

2 2 2

1 1
                          = ( )

2 2

b a b a

b a b a

mv mv m v v v v

mv mv mv v v

′ ′− = + − +

− + −
 

The kinetic energy change has an extra term if expressed in velocity in 

the x. This is because the displacement in x’ is different from that in x. 

The left hand side of (6-29) can be evaluated as: 

 

The first part on the right hand side will give the kinetic energy change in 

the x coordinates (the first part of kinetic energy change in the x’), the 

second part using impulse-momentum relation, will give the second half 

of kinetic energy change in the x’. So work-energy theorem works in both 

inertial frames, even though the form of kinetic energy and work will be 

different in the two coordinates.  

This brings a subtle point in computing work and kinetic energy. Their 

forms depend on coordinate system of choice though W-E theorem 

always holds. We have seen that for a pair of mutual internal force, the 

work done by it is same for all coordinate systems. But the work by the 

external forces may depend on coordinate systems, so will the kinetic 

energy. These may best be illustrated by working an example. This will 

bring out the importance of our choice of system of interest and 

coordinate system: 

'

0 0

'

' ' ( )
b b b b b

a a a a a

x t t t t

x t t t t

Fdx Fv dt F v v dt Fvdt v Fdt= = + = +∫ ∫ ∫ ∫ ∫
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A cart is moving at constant velocity V0; The mass of cart is M>>m the 

mass of the ball; The spring is massless and its spring constant is k, and 

its equilibrium point under no stress is at x0 initially. At t=0, the ball with 

initial velocity v0 (w.r.t cart) hits the relaxed spring, and final time is 

when the ball stops from the point of view for a local observer travelling 

along the cart. Neglect friction forces. Now please analysis the 

work-energy relation from two points of view: the observer on cart (the x 

coordinate system) and a ground observer (the x’ coordinate system).  

(a) Only include the ball as system of interest: 

For the cart observer, the kinetic energy change is: 

 

 

In the cart frame, the x0 is a constant, the force on the ball is 

determined by the ball’s position x and is conservative and the 

potential is given above. The mechanical energy of the ball is 

conserved, i.e.: 

 

2
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2
T mv∆ = −

2

0

1
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2
bU k x x∆ = −

2 2
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1 1
( )

2 2
bk x x mv− =

0V
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The xb can be computed from the relation.  

For the ground observer: 

The change of kinetic energy is: 

 

The work done by the force is: 

 

This work cannot be reduced to a potential energy for the explicit time 

dependence of force, and you do not have a well defined potential for 

the ground observer. The computation has to carry out through 

work-energy theorem and is much harder.  

(b) Include the ball and spring as system 

The difficulty for the ground observer above is because the work done 

on the ball by the external force is depending on the coordinate. By 

including the ball and spring in the system, the work by the elastic 

force of the spring becomes internal force and its work on both ball 

and spring would be same for the cart and ground observer.  The 

work done by the spring for both observers then would be: 

 

This work (or potential change) would be equal to the kinetic energy 

change of both spring and ball, but since the spring is massless, then 

the total kinetic energy only consists that of the ball. So for the cart 

2 2 2

0 0 0 0 0 0

1 1 1
' ( )

2 2 2
T mV m V v mv mV v∆ = − + = − −

' '
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' '

( ' ') ' ( ' ) '
b b
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x x

x x

k x x dx k x V t dx− − = − −∫ ∫

2

0

1
( )

2
elastic bW U k x x= −∆ = − −
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observer, same as before: 

 

The mechanical energy is conserved. 

For the ground observer: The kinetic energy change is still: 

 

The work done by the elastic force between the spring and ball is: 

 

 

 

The work-energy relation is not correct and the mechanical energy is 

not conserved from the ground observer’s point of view. Something is 

missing here. The thing missing here is there is actually an extra force, 

an external force to the spring-ball system, This force is from the cart 

wall to the spring. The force does not do any work for the cart 

observer because there is no displacement of this force here in the cart 

frame; but will do work from point of view of the ground observer. If 

you include the work done by this force, then the work-energy 

theorem would be correct. The work by this force is exactly: 

 

The problem is still harder for the ground observer to solve. 
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(c) Include the cart, spring and ball in the system 

For the cart observer, the situation is almost same as before. The 

internal force total work would still be  

(actually two pair of forces, the other pair between spring and cart 

does not do any work). This work would include all kinetic energy 

changes, but for him the cart is stationary and won’t contribute to the 

kinetic energy. So the relation is same as before. 

For the ground observer: 

Since the forces for this system are all internal forces and the work 

would same as: , and the kinetic energy 

change have to include that of cart: 

 

Then you see that the last two terms in the kinetic energy part just 

cancels, and: 

 

And  

The mechanical energy is conserved for the ground observer too in 

this system. Some of you may worry about the approximation signs 

above, in one coordinate the mechanical energy is conserved, while in 
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the other I have to made approximation to show that. Actually, in this 

example, the cart is not 100% inertial frame, it is a pretty good one 

since M>>m, but just not perfect. So the energy conservation derived 

for the cart observer is indeed an approximation; while the ground 

inertial observer has the exact formula from work-energy theorem, 

include all works and all kinetic energy and conservation of 

momentum. This exact computation may be slightly off from the 

results obtained by the cart observer, so approximation had to be made 

from exact to approximate value. 

In summary the above example showed that: The work-energy theorem 

always work for all system in all coordinate. But the computation of 

kinetic energy and work can be quite different for different choice of 

system of interest and in different coordinate, so choose wisely.  

 

(4)  Work-Energy in Center of Mass Frame 

For the system of many particles, we have seen that sometimes it is 

convenient to work under the center of mass frame, i.e. choose the 

coordinate travel with C.M, with the C.M as origin, a zero total 

momentum frame. We shall see what the work-energy theorem in such 

frame is.  

First the work by the external force changes the kinetic energy of C.M. 

The C.M. is defined as a fictitious point that with the total mass of the 
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system and with the total external force acting on it (5-5): 

  

Following the same argument leading to (6-3), we have:  

( ) ( )ext ext ext ext ext

total i i i CM ic i CM i ic

i i i i

ext ext ext ext

tot CM i ic CM c

i

W F dx F dX dx F dX F dx

F dX F dx W W

= = + = +

= + = +

∑ ∑ ∑ ∑∫ ∫ ∫ ∫

∑∫ ∫
ext ext

CM tot CM CMW F dX T== = ∆∫    (6-30) 

This is only the first half of story. There are relative motions among 

particles besides the translation of C.M. The total kinetic energy can be 

proved to have two components, one is the kinetic energy of the C.M.; the 

other is the kinetic energy of relative motions of the particles (This is also 

called Konig theorem): 

The relation between the velocity in an inertial frame and that observed in 

a C.M frame is related by (derivable form (5-7)): 

   (6-31) 

 is the velocity in one inertial frame, is the velocity observed in the 

C.M. frame. 

(6-32) 

From the work-energy theorem in the inertial frame, we have: 
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From (6-30), we have right away: 

 intext

c total totalW W T ′+ = ∆  (6-33) 

The kinetic energy change in the C.M. frame is due to the work by the 

internal forces and the external forces in the CM frame. 

But there is a catch in the above argument, is the C.M. frame inertial? It is 

under external force, it will have non-zero acceleration. Then how can we 

apply work-energy theorem at all in this non-inertial frame under external 

force (recall that work-energy is derived from 2
nd

 law which requires 

inertial frame)? You will “feel” an inertial force (also called fictitious 

force) due to the acceleration of the frame. It turns out (easy to prove 

once we learned non-inertial frame) that for this fictitious force, the total 

work is zero. That’s why we have (6-33). 

 

6.2 Work-Energy in Higher Dimension 

We have discussed thoroughly the work-energy theorem in the simple 

1-D case, and introduced definition of work, kinetic energy, conservative 

force and potential energy. All these would apply to the higher dimension, 

the math and the form of equations would be a little different due to the 

vector nature of force, displacement and velocity, etc. However, the 

physics remains the same.  

int

total total

ext

total total CM total

W T

W W T T

= ∆

′+ = ∆ + ∆
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6.2-1 Work-Energy for Single Particle 

The kinetic energy in higher dimension is defined as: 

   (6-34) 

The change of it over time is: 

   (6-35) 

 is also called power of the force, i.e.: 

   (6-36) 

It is the work done by the force in unit time (related to the kinetic energy 

change of the system in 6-35). 

 

is the infinitesimal displacement vector along the trajectory (the path) 

   (6-37) 

The symbol is a line integral, along a path C (curve) connecting the 

initial and final position a and b, as shown in the figure below. 
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For the line integral as in 6-36, we can view it as cut the curve into small 

line segment , take the dot product of force with small displacement 

vector and take the summation. is a vector along the direction of 

tangent line at certain point on the curve (also along the direction of 

velocity), with magnitude of the arc length ds, i.e: 

   (6-38) 

Then the work will be: 

   (6-39) 

We see that it’s the force component that parallel with the tangent 

direction of the trajectory (parallel with the velocity, also clear from 

power from 6-36) that contribute to the work and change of kinetic 

energy. This is expected from the fact that force perpendicular to the 

motion only changes the direction of velocity but will not affect its 

magnitude (centripetal force in circular motion and Lorentz force in 

E-M).  

To compute the line integral as in (6-37) is a little more complicated than 

the 1-D case. The strategy is to reduce it to some sort of definite integral, 

and the general method is the parameterization of the curve (curve is 

essentially 1-D in geometry, that can be specified by single variable, this 

variable is called parameter of the curve). A simple discussion is in KK 

section 4.6; a little more detailed discussion on how to compute the line 

ir∆

dr
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ˆ
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integral is also given in math supplementary 2, section 7.1 and 7.2
45

. KK 

example 4.4, 4.5, 4.6 also gives evaluation of work in some simple cases. 

6.2-2 Path Independence, Conservative Force and Potential Energy 

What we discussed here is just an extension of 1-D case. Below is a brief 

summary, the details is in section 7 of the supplementary 2. The line 

integral in (6-37) is generally depending in the specific path connecting 

the initial and final position.  But for a special group of forces, the work 

is path independent. 

(1) Path Independence of Work 

 

In the figure, for the arbitrary paths connecting A,B, the work along any 

path would be same, this is path independence. A corollary is that for any 

arbitrary close curve (also called a loop), the work done by the force 

along the loop in one cycle is zero. The two statements are equivalent, 

both can be used as definition on path independence of line integral. 

Path Independence expressed in formula: 

                                                        

45 Section 7 in supplementary 2 is where I discussed about line integral, path independence, conservative force 

and potential, and Green Theorem. These stuffs are closely related (the math background as well as physical 

modeling) to the work-energy in this chapter, so please read the whole section in the supplementary. In the notes 

here, if there are materials overlapping with the supplementary, I shall just say please refer to…  
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   (6-40) 

C1,C2 are two arbitrary curve connecting A,B. Or: 

   (6-41) 

C is an arbitrary loop, starting from and ending to A. 

(2) Conservative Force and Its Criteria 

Conservative force: If the work done by a force is path independent, the 

force is conservative. (We have already discussed this in 1-D, but path 

independence is more dramatic in higher dimension) 

KK Example 4.7.4.8, 4.9 give you examples of path independence of 

work done by force. Please also refer to supplementary 2, section 7.3.  

Our next question is what kind of force is conservative in higher 

dimension, we see that in 1-D, the requirement is that the force only 

explicitly depends on position. In 2 and 3-D, the requirement is a little 

more than mere dependence on position.  

Still 1) the force should be only depends on position explicitly. If the 

force explicitly depends on time or velocity, then the force cannot be 

conservative, i.e. the work will be path dependent (this is discussed in the 

comment by the end of section 7.6 in supplementary two). 2) The vector 

force is a gradient vector, i.e. the force can be written as the gradient of a 

scalar function: 

   (6-42) 

1 2, ,

B B
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is a differential operator defined as: 

   (6-43) 

Please see the section 5 in supplementary 2 for details on gradient.  

So if the force vector is expressed in its component form in Cartesian: 

 

Then the conservative force would have: 

   (6-44) 

(6-44) is still not convenient in seeing whether a force is conservative or 

not. Given a force, i.e. knowing its component M, N, P, we can use 

property of the 2
nd

 order partial derivative to test the conservative: 

 

   (6-45) 

This test can be put in another compact form by introducing curl of a 

vector. The curl of F is (also written as Curl(F)) defined as: 

   (6-46) 

We see right away (6-45) means: 

0    (6-47) 
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This says, if the force is conservative, its curl is zero everywhere. This is 

also consistent with (6-42), that the force is a gradient vector, because we 

have relation: 

   (6-48) 

(Throw in the definition of gradient and curl and do the proof yourself) 

In summary, I have told you that for a position dependent-only force, if it 

is a gradient vector (6-42) or equivalently its curl is zero everywhere 

(6-47), the force is conservative. 

This gives us a tool to use (6-45) or (6-47) to test the conservative. But 

still one question remains: If the force satisfies (6-42) or (6-47), I told you 

the force is conservative, that means the work done by this force need to 

be path independent by definition of conservative force. I have to show 

you that indeed this is the case, i.e. (6-42) and (6-47) indeed lead to path 

independence of work.  

The proof lies in the fundamental theorem of gradient and Green theorem 

(in 2-D; Stokes theorem in 3-D; see 7.4, 7.5 and 7.6 in supplementary 2) 

The fundamental theorem of gradient tells us the line integral of a 

gradient vector along a curve connecting two positions in forms of (6-37) 

is path independent, only determined by the function difference between 

the starting and ending point: 

   (6-49) 

Green (or Stokes in 3-D) theorem offers a method to evaluate the line 
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integral along a loop with surface integral (the surface is any bounded 

surface enclosed by the loop)
46

: 

   (6-50) 

The left hand side is the line integral (work) along a loop C, the right 

hand side is the ‘flux’ of the curl of vector field ( ) through the 

surface bounded by C, see the figure below. 

 

Then if we have (6-47), =0 everywhere, from (6-50) we have: 

0 for any close curve. This is equivalent to path independence.  

So both (6-42) or (6-47) ensures that the force is conservative.  

Now we can make a summary for conservative force, the following 

statements are equivalent for the conservative force (Don’t forget that the 

premise is that the force only explicitly depends on position): 

1) The work done is path independent 

2) The work done along an arbitrary loop is zero 

                                                        

46 There are some subtleties in Green and Stokes theorem, the vector field has to be defined and differentiable not 

only along the closed curve (as required by the line integral), but also defined and differentiable in the surface 

enclosed by the loop. The loop and the region enclosed need to be simply connected. The orientation of the surface 

element and the direction of line integral need to be defined consistently. Please refer to Calculus textbook for 

detail. 
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3) The force is a gradient of a scalar function 

4) The curl of the force is zero. 

1 And 2 are definitions and corollary of conservative force, they are 

equivalent. The previous discussion show that 3 will lead to 1 and 4 will 

lead to 2. 3 and 4 are related by (6-48). 

(3) Potential Functions Associated with Conservative Force 

For a conservative force we have  (6-42), the 

force is the gradient of a scalar function f. This scalar function is called 

potential function (associated with the force). The work done by the 

conservative force along any curve can be evaluated by the potential 

difference at the end points (6-49). The potential f defined here is called 

mathematical potential, because physical potential U has a minus sign: 

   (6-51) 

And corresponding (6-42) and (6-49) becomes: 

   (6-52) 

   (6-53) 

These two relations give us tools to compute the force knowing the 

potential (using 6-52); or vice versa. There are generally two ways from 

force to potential, either from (6-52) or (6-53), the example and methods 

are illustrated in supplementary, 7.5, as well as in KK’s example 4.11, 

4.12.  

Here I shall first discuss the potential for constant force (a variation of 
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example 4-10 in K&K) 

Example 1. Potential for a constant force  

 

If we define U=0 at origin (r=0), then 

 

M,N,P are just components of this force. This constant force is certainly 

conservative. , or from  

 

Example 2. I want to have a discussion on central force, i.e. the force only 

depend on the radius from the origin and not on direction. KK’s example 

4.8 gives one proof that for this kind of force, the work only depends on 

initial and final position vector. Here I want to use what we learned above 

to prove the same thing: The force is conservative. 

Method 1: Geometric.  

From the definition of work is the dot product and displacement vector, 

we can prove the work is path independent for central force. Please do 

this yourself (the trick is draw radius and circular arc, and the work done 

by the force along the arc would be 0 because radial force is always 

perpendicular to the arc. Try to divide and approximate any curve with 

this radial+arc segment) 

Method 2: Test using (6-45) 

To make thing simple, I would assume the force is 2-D here. The test for 
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the conservative force is just My=Nx from (6-45) in 2-D, M,N are the 

force component in Cartesian. I know the force in polar form, only 

depend on r, I have to transform it into Cartesian to use (6-45) 

 

 

 

 

The partial derivative can be evaluated with chain rule directly, but a 

substitution may be easier: 

 

 

A similar calculation will have: 

 

Indeed My=Nx. This appears complicated because we are using Cartesian, 

which is not the best choice here. 

Method 3: Calculate curl of F in polar coordinates 

   (6-54) 

The curl of F in Cartesian in 3-D is defined in 6-46, and in 2-D here we 

only have the k component. To transform the 6-46 in polar coordinate is 
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not easy (it can be done by finding relation between M,N and P,Q, and 

express My, Nx in forms of partial derivatives P.Q with respect to , it 

is quite messy, see the supplementary for the expression of gradient in 

polar for example, what follows can also be derived from relation (100) 

there), so I will just give you the results of curl in polar coordinate (I also 

cheated here too, instead of doing the transformation as outlined above, I 

just copy the formula for in cylindrical coordinate 
47

and only keep 

its z component in our 2-D case) 

The curl of vector is 2-D polar coordinate is: 

   (6-55) 

P, Q are defined in 6-54, the radial and angular component of the vector 

in polar. In our example of central force, the radial component is only a 

function of radius r, independent of ; the angular component is zero. i.e. 

. So the curl(F) is zero and the force is conservative.  

 

The discussion above involves quite a lot of math. The math consists of a 

heavy portion in the course of multi-variable calculus (the supplementary 

2 can be seen as multi-variable calculus in a nutshell). I hope the 

supplementary and the brief discussion here will give you a clear 
                                                        

47 The formula can be found in many math textbooks on vector analysis. Or in physics books such as Greiner’s  

Chap.11. It is always necessary for you to derive these formula once in your lifetime. You do not memorize them 

but at least you will understand how these beasts come from. So please read my example in supplementary by the 

end of section 7.6 and try to work out the formula of curl in cylindrical and spherical coordinate yourself. (This is 

not required for this course) 
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guideline, though not rigorous proof and extensive examples. So it may 

be heavy in math but far from a big mess.  

The physics on the work-energy theorem in higher dimension is actually 

quite similar to that in 1-D. For the conservative force, the work equals to 

potential energy differences (6-53), and applying the work-energy 

theorem (6-37), we have (for conservative force): 

   (6-56)  

We will have  like in 1-D. We will define that 

the total mechanical energy as: E=T+U too. In fact all the formula (such 

as including non-conservative force, relation (6-20); internal-external 

force in multi-particle system, etc.) in 1-D case equally applied well here, 

just replace with .   

 

6.3 Energy Diagram and Harmonic Approximation 

As we have discussed that all fundamental forces (gravity, electrostatic, 

nuclear) only depend on the relative position of particles and thus are 

conservative forces (like radial force only depends on distance but not 

direction). For the conservative forces, we can define a potential 

associated with them. The energy diagram is a plot of the potential with 

respect to the relative position between the particles.  
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The figure on the left above shows a typical potential energy diagram (a 

ideal parabolic for harmonic potential, i.e. ). For the particle 

only subject to this potential (under the conservative force 

 for this 1-D model), the mechanical energy E=T+U 

(or K+U as in the figure, K for kinetic energy) is conserved, and is a 

constant (indicated by a horizontal line in the figure). The kinetic energy 

can be estimated given the location (indicated by the vertical distance 

from the E line to the potential).  

The figure on the right shows a more realistic Leonard-Jones Potential for 

two atoms to form a diatomic molecule. The potential has zero reference 

point at infinity (two atoms are separated far away). If the total energy 

is<0, we have a bound state, the atoms forming the molecule are trapped 

inside the potential and doing oscillation. If the energy is >0, the 

molecule becomes unstable, it will dissociate into atoms. This diagram 

also shows how two atoms form a molecule. The two atoms approach 

2U Ax=

2
dU

F Ax
dx

= − = −
�
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each other (r becomes smaller) and make collision, then form molecule. 

However, if only two atoms exist, no molecule can be formed because of 

conservation of energy. When the two atoms approach each other from 

far away (U=0), they have positive kinetic energy, so the total E>0. They 

cannot form a stable molecule. It requires a third party (another atom, or 

catalyst surface etc.) to carry away the excess energy and make the total 

mechanical energy of two atoms <0 after collision.  

So knowing the potential diagram is important for many analyses. The 

potential diagram also shows us the force ‘felt’ by the particle. It is just to 

the reversed direction of the slope of the potential curve or to the reverse 

of the gradient of U in higher dimension.  

So for a concave upward potential, the forces are trapping force, pointing 

to the local minimum point of potential (which is called equilibrium point, 

because force =0 there). The minimum is a stable equilibrium due to the 

fact of trapping force. For a concave downward potential, the force are 

repulsive, pointing away from the maximum point of potential, the 

maximum point at which the force is zero, is called unstable equilibrium.  

 

For any trapping potential( the one with local minimum, concave up), 
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very close to the local minimum, it can be approximated by a harmonic 

potential U=Ax
2
.  

 

The geometry is clear from figure above, the proof lies in Taylor 

Expansion of the potential around the equilibrium point: 

   (6-57) 

If x is close to the x0, we can neglect the higher order terms. The first 

term U(x0) can be set as zero, it is the lowest potential. The second term is 

zero because the first order derivative is zero at minimum, the second 

order term will give us a parabolic potential---the harmonic potential, and 

the particle’s motion will be harmonic oscillation around the equilibrium 

point. This is called harmonic approximation, and is the fundamental for 

phenomena such as molecular vibration.  

 

6.4 General Law of Conservation of Energy 

We have only discussed one special type of energy, the mechanical energy. 

Actually even for mechanical energy, it consists of two forms of energy, 
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the kinetic and potential. The mechanical energy is conserved (unchanged 

with time) if our system only subjected to conservative force. Under the 

force of non-conservative type, the mechanical energy will change 

according to the work-energy theorem. 

The question is what the mechanical energy changes into? It turns out it 

changes into other forms of energy, such as heat, electricity or light etc. It 

is Joule who first measured and determined the energy transfer between 

mechanical and heat in 1840’s. He basically used wheel-paddle apparatus, 

doing mechanical work to a tank of water
48

. The work done by the wheel 

can be calculated and the temperature rise of water can be measured. 

What Joule proved is so called Work-Heat Equivalence, he showed that: 

1 calorie=4.18 Newton.meter (which is define as joule in his honor).  

Joule also did the experiment showing the electric can generate heat, the 

heating rate is proportional to the square of the current. This implies that 

all heat and electricity can be treated like mechanical energy as other 

forms of energy. This is formally postulated as general laws of 

conservation of energy, that total energy (general form) is conserved, it 

just changes from one type to another.  

This general energy conservation is among the most robust physical 

principles as the conservation of momentum (both linear and angular). It 

is applied everywhere in daily life, such as hydro power plant. The fall of 

                                                        

48 The details and original paper is in Shamos ed. “Great Experiment in Physics”, pg 169 
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water from high ground, the potential energy changes into kinetic, and 

this drives the turbine generator to make electricity (kinetic to electrical), 

and this electricity heats up the wire in a light bulb (electricity to heat) 

and light bulb emits light (heat to light). The conservation of energy also 

played important role in the discovery of neutrino, a mysterious 

fundamental neutral particle proposed from  decay. The protons in the 

nuclei may decay into a neutron and an electron which was discovered in 

1930’s. . The puzzling part is that since the proton and 

neutrons energy only can take certain discrete values(a quantization effect 

in quantum mechanics), so from conservation of energy, it was expected 

that the electron’s energy had to be also in discrete values. But the 

measurement of the electron’s energy is continuous. At the time Niles 

Bohr proposed that this may demonstrate that the energy is not conserved 

in quantum world. But Wolfgang Pauli put the money in the basket of 

energy conservation (whether he actually made the bet with Bohr, I am 

not sure) and made a bold proposal that there is some other particle 

involved in the process and that is termed as neutrino. It took almost 30 

years for experimentalist (Cowan and Reines) to prove the existence of 

neutrino because these mysterious particles do not involve in 

electro-magnetic or even strong interaction in atoms or nuclei. They are 

subjected to the so called weak interaction
49

. The beta decay should be 

                                                        

49 For a introductory of beta decay and neutrino, please refer to Thornton and Rex: “Modern Physics for Scientists 

β
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written as: , where stands for neutrino, and its energy is 

not discrete and takes continuous distribution. So the conservation of 

energy is saved and new particles discovered. 

 

6.5 Scattering Problem (Collision between Particles) 

Scattering problem is just particles under the mutual interaction, the 

initial state (defined as the positions and velocity of the particle at time=0) 

will change into other state at later time. This is the most general 

definition of scattering, and many problems in mechanics can be treated 

as scattering. The scattering in the narrower sense is that the two particles 

approach each other in a collision course, collide with each other and the 

states of particle changes due to the mutual interaction (you may switch 

scattering and collision in this narrow sense). Such process is common in 

physics and chemistry; for instance, the formation of molecules by atoms 

(the interaction is electro-magnetic); the creation or annihilation of 

particles in high energy physics where energetic (>GeV) particles are 

brought close together; and in daily life such pool game, the billiard balls 

collide and bounce away.  

Though the details of calculation involves details of interaction, i.e. we 

need to know how particles interact to determine the final states after 

                                                                                                                                                               

and Engineers” section 12.7. Or go WIKI. 

p n eυ + ↔ + υ



 160

scattering from the initial conditions
50

, conservation of momentum and 

energy will offer guidelines. That’s why we take a look on this process as 

an example to apply what we have learned in the previous two chapters.  

6.5-1 Scattering in 1-D 

Again we first look into this simple case. The two particles approach each 

other in 1-D and collide, the initial conditions of particles are usually 

provided, then what is the final states after collision (here, the collision 

happened at certain spot in space, so the final states of particles are just 

their velocity)? Well we have conservation laws on momentum and 

energy, the question is whether they apply here?  

For the particles collide in a short time, the force between them will be 

much larger than the external force (such as gravity, friction etc), so we 

can treat that only internal forces play important role in scattering. This 

means the total momentum of the system is conserved. As to the total 

energy, it is still conserved, but besides mechanical energy it may 

transform into other forms, such as heat. So generally the mechanical 

energy may or may not be conserved, that is really depending on the 

specific process. So giving the initial conditions (particles and their initial 

velocity), we only have one equation from conservation of momentum. 

                                                        

50 Actually the process in science is reverse in many cases. That is from the experimental results of scattering 

process, measuring the states of particles after scattering, people can learn what kind of interaction involved in the 

scattering.  
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That is insufficient to solve for the velocities (two velocities here for 

particle 1 and 2). There are two simple cases, however, that the final 

velocities can be determined. 

(1) Elastic Collision 

In this case, the mechanical energy is conserved, no loss to other energy 

forms during the scattering process. Then for particles 1 and 2 we have: 

 

 

That is just conservation of momentum and energy. The potential energy 

before and after the collision is taken to be the same. So it does not 

appear in the energy equation. are the initial and final 

velocities of particle 1 and 2, they can be positive or negative numbers; 

positive if along the positive direction defined, and negative if otherwise. 

The equations above can be used to solve the two unknowns (try it 

yourself, solving the final velocities without reading the following). I 

shall rearrange the equations to make relations more clear: 

 

Or  etc.  

 

Divide the two equations (provided that ; if , then 

, these of course satisfies the conservation relations but it is a 

trivial solution that there is no physical interaction between the two 
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particles): 

   (6-58) 

It shows that the relative velocity between the two particles would be 

same in value before and after the collision, but the direction is reversed. 

With this relation and conservation of momentum, the individual 

velocities can be solved: 

   (6-59) 

The formula is symmetric with respect to the switch the label 1 and 2 (can 

you think about a reason for this?). 

(a) If , two equal mass, one is stationary: 

, after collision the original moving party will come to stop, 

and the original stationary one will travel with same velocity. This is what 

you see in the classical tick-tock toy made of steel balls
51

.  

      

(b)  

Divide both numerator and denominator in (6-59) with , and neglect 

                                                        

51 Picture taken from Serway and Jewett “Physics for Scientists and Engineers” 6th ed. Chap 9, Figure 9.10. 
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the terms containing , we will get approximately: 

 

This is the formula explains that if ping-pong ball hits the wall, the 

ping-pong ball will have a reversed velocity with same magnitude; as 

well as the demo in problem 4.23 in KK.  

(2) Completely Inelastic Collision 

This is when the two particles stick together after the collision. Now there 

is only one final velocity , and it can be solved from 

conservation of momentum. The energy loss can also be computed 

(details won’t be given here).  

Examples: one example is the old craftsman’s method of measuring the 

speed of bullets: 

 

If you measured angle of swing of the pendulum, the speed of bullet can 

be calculated.  

 

2

1

m

m
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Another is shown in the figure above. A small sandbag is dropped 

vertically on a moving cart. The sandbag does not have initial horizontal 

velocity, the cart is moving horizontally with v0. At later time, the 

sandbag will travel with same horizontal velocity v’ as the cart due to 

interaction between them (friction). Neglect the friction between cart with 

ground, you can calculate the v’ easily, as well as the loss the kinetic 

energy (what is the cause of this loss? And can you express it in work 

formula?). 

Another example would be during the inelastic collision, very often we 

want to have most kinetic energy transforming into other energies, i.e. the 

loss of kinetic energy after the scattering needs to be the largest. If our 

facility can provide certain amount of energy initially (the power of the 

accelerator is fixed), how we arrange the two particles to collide to get 

maximum loss of kinetic energy? (this will be left as a homework, hint: 

center of mass)   

 

For other collision in 1-D, as we stated above we need to know relations 

between kinetic energies before and after the scattering. If the ratio of loss 

of kinetic energy is given, , or the relation between change of 

relative velocity: , then the final velocities can be computed 

similarly as elastic case.  
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6.5-2 Elastic Scattering in 2-D and Center of Mass Frame 

 

 

As the title suggests, I shall only discuss the elastic scattering in 2-D. The 

complete inelastic can be solved similarly as in 1-D with the conservation 

of momentum. The general inelastic would be a little too complicated. So 

I shall focus on elastics scattering here for 2-D case. You may wonder 

what the figure above means? I will give you the meaning of each line 

and show that this figure would be very useful in solving the 2-D elastic 

scattering. Here the figure is just an advertisement of what is coming up.  

 

(1) General Discussion 

In 2-D collision
52

, we have four unknowns (the velocities of the final 

states are vectors with 4 undetermined components for the two particles, 

                                                        

52 Generally if the two particles’ initial velocities and the line connecting their center of mass of each particle are 

in one plane, and the force between them also along the line of connecting the center, the collision will be remain 

in the plane (a 2-D case). This could be argued from the symmetry point of view, i.e. the initial conditions and 

interactions are invariant with reflection with respect to the plane; the results would be also reflection invariant 

with respect to the plane.  

A O B

C
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or magnitude and direction need to be determined). The conservation of 

momentum will give us two relations in 2-D (along each axis of 

coordinate system) and the conservation of mechanical energy (here only 

kinetic energy) will give another. So the problem cannot be fully solved 

(4 unknowns, 3 relations from conservation laws) by just considering the 

conservation laws. Extra information is required from experiments or 

through detail analysis of interaction. In this section we assume that such 

information is available, for example if we know the direction of particle 

1 after scattering (only direction, magnitude still need to be determined), 

then the final velocities can be calculated.   

(2) Treatment in the Lab Frame 

 

As the figure shows the collision viewed in a lab frame (with reference to 

some fixed coordinate system in the lab, or for the ground observer 

stationary with respect to lab), the  are known, and the direction of 

 is also known.  Then in this coordinate system, we have: 

1 2,v v
� �

1v′
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The last energy relation can also be expressed as: 

 

These relations can be used to solve for the v’s.  

Example: Considering the collision between two billiard balls with equal 

mass. Just like in pool game, with one ball (the color ball) is stationary 

and the other (the white cue ball) with initial velocity v10; After collision 

the white ball will fly to a direction with angle  relative to the original 

v10. Find the velocities of the color ball and white cue ball after collision. 

A very interesting result is that the direction of the color ball travels will 

be perpendicular to the travel direction of the white ball after collision. A 

fact used often by pool players (if you do not know this before, I hope 

this will improve your pool performance☺) 

To work this in the lab frame is: 
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You can solve for  for this problem; You can also prove that the 

two balls will travel perpendicularly after collision, also prove that the 

angle  cannot exceed 90 degree, i.e. the ball 1 cannot be scattered 

backward. Do it yourself. It is straightforward but a bit messy. 

If you only want to prove the  are perpendicular, it is easier and can 

be proved by momentum and energy conservation: 

 

Then by take the scalar product of the first relation, you get . 

(3) Treatment in the Center-of-Mass Frame 

For the scattering problem, it is almost always easier if we work in the 

Center-of-Mass frame (C.M. frame), especially for the elastic collisions, 

because the kinetic energy of each particle will be same before and after 

the collision in C.M. frame (Recall that the kinetic energy depends on the 

coordinate system). Here is the proof along with some important relations 

in C.M. frame.  

The notations I shall use are:  are position and velocity vectors for 

the center of mass, because there is no external force, so  will be a 

constant.  are position vectors for particles 1 and 2 in the lab 
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frame;  are for particles 1 and 2 in C.M. frame; are 

velocities for 1 and 2 before collision in Lab frame; are velocities 

for 1 and 2 after collision in lab frame;  are velocities for 1 

and 2 before and after the collision in C.M. frame. 

From definition of center of mass, we have: 

 

M=m1+m2. These relations are just (5-3), (5-4) previously. We also have 

the relation between position vectors in the C.M. with that in lab frame 

(5-7): 

 

From there we have the velocity relations: 

(6-60) 

The relations for the s are similar because these relations are from 

definition of center of mass and vector summation. (6-60) tells us in the 

C.M. frame the velocities of the two particles will be along same line and 

reversed in direction, this is expected because we know that in C.M. 
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frame the total momentum is zero (5-12). The  is the relative 

velocity between particle 1 and 2 in lab frame. Since this is relative 

velocity, it does not depend on choice of coordinates, i.e. : 

   (6-61) 

This is also clear from (6-60), the momentum is: 

   (6-62) 

(6-62)  is the reduced mass and is defined as: 

   (6-63) 

In an elastic collision, we have: 

   (6-64) 

This is conservation of momentum in C.M. frame. 

 

This is conservation of energy written with Konig theorem (if you forget 

it, just write the normal form and use substitution ). Since V 

is constant and we have: 

   (6-65) 

Combine with (6-64), we have: 

   (6-66) 
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So the magnitude of velocity and momentum is unchanged during the 

scattering, what changed is the directions. The  are still along one 

line, reversed in direction, and this line has an angle to that before the 

collision. We can get  from (6-66) and get the velocities in the lab 

frame using: 

   (6-67) 

This can be done relative easy with geometric method as the example 

shows. 

Consider the previous example of collision between billiard balls with 

equal mass, one is stationary and the other moves with v0. After collision 

one travels with angle  with respect to v0. Now let’s work this in C.M. 

frame: 

 

 

After collision, we know that the velocity will change direction but not 

magnitude in C.M. frame, i.e. , we can draw a figure 

below: 
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, , , .  

The  is the angle formed between PQ and PO from the problem, OQ 

and OR are along same line from (6-64) and in this example PO, OQ, OR 

have same length (magnitude) and lies on the circle with radius of  

From simple geometry, we see right away: ,  

and  which are the velocities of 1 and 2 after collision in 

the lab frame. Also we see that no matter how the direction OQ changes, 

the  has the largest value of , when Q overlaps with P (this is just 

1-D scattering where cue ball stops and color ball flies with v0 in lab 

frame). So there is no back scattering in lab frame. You see how easy to 

find the answer, provided we set up the problem correctly in C.M. frame, 

which takes some work but straightforward. Please also read the example 

4.19 in K&K on limitation of scattering angle in lab frame.  

The geometric method using velocity is nice but there is a small catch, the 

will always be along same line, but are not equal in magnitude in 

general (the billiard example is a simple case). Of course you may draw 

two circles with radius of  and  respective for the calculation of 

velocities for particle 1 and 2, but there is a better way: Using momentum. 

The main property of C.M. frame is that it is a zero total momentum 

frame as in (6-64), so  are always same in magnitude and reverse 
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in direction. i.e. they will lie on the same circle with radius of . 

To compute the momentum and velocity in lab frame: 

   (6-68)  

(6-68) is the basis of geometric method and that is the graph I am 

showing you at the beginning of this section. 

 

 

 

 

 

, , , , 

, .  is the scattering angle of particle 1in lab frame 

relative to the total momentum (the direction that center of mass travels); 

is the scattering angle of 1 in C.M. frame. Knowing the masses, the 

total momentum , magnitude of the momentum in C.M.(whose 

magnitude can be computed from initial conditions, since it does not 

change during elastic scattering) | | and one angle (equivalent of 

knowing AO,OB,OC and one of the angle  or ), the rest of 

calculation will be solving geometric problems using this graph. For 

example: 
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The angle of CB and the magnitude of |AC|, |CB| can be computed 

similarly (using Pythagoras theorem or cosine laws of triangle etc.), 

Please try them yourself. This is a general method solving scattering 

problems in 2-D.    

 

(Important concept: work (line integral of force dot displacement), 

mechanical energy, work-energy theorem. Path independent work and 

conservative force, conservative force and potential; Given a potential 

how to find force; and given a force how to know it is conservative or not 

(zero curl), and from a conservative force to find out its potential. 

Conservation of energy, solving scattering with conservation relations and 

in C.M. frame ) 

 

Chapter 7 Rotation, Angular Momentum and Motion of Rigid Body 

In the previous chapters, we focused on the motion of particles or even 

for extended body, treating it as a particle (the mass concentrated at the 

C.M. etc), and only studied the translational motion. In this Chapter, I 

will discuss the rotational motion, another important type of motion. For 

a rigid body, the motion can always be decomposed as the translational 

1
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motion of a certain point (almost always chose the C.M), and a rotational 

motion around that point. Here the rigid body is a special class of objects 

which is defined as: the distance between any two points on the body does 

not change over time. Of course rigid body is also a physical model (an 

idealization), but a useful one. The decomposition of motion into 

translation by a point and a rotation around that point sounds certainly 

possible and intuitive. 

  

For the object drawn in the figure (the two objects are identical, forgive 

my drawing if they appear otherwise), the rigid body does not change 

shape in the motion. For any point on the body, its position at later time 

could be found out by first doing a translation of one particular point (the 

one connected by line in the figure) and then doing a rotation around that 

point (also called pivot point for this reason for that particular point). The 

rigorous proof that the motion of rigid body is equivalent to translation + 

rotation is the Euler or Chasles theorem, which you can find in KK’s 

notes 6.1.  

However, the study of rotation is not an easy task (at least not as easy as 

translation). This is probably due to facts: 1) The math is a bit messy. It 

involves cross product of vectors a lot. Once you get used to it, you will 
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find that it is not that bad. 2) It is a little bit hard to imagine rotational 

motion in higher dimensions (no problem for 2-D). Our intuitive won’t be 

much help in complicated rotational motion. Quite often, you cannot rely 

on your intuition to picture the motion as in translation case.  Because of 

these, this chapter would probably the most difficult part so far, and you 

will work out some hard problems
53

. I will try to explain things nice and 

clear in this chapter, and KK’s book in my opinion may not be the best in 

this respect (It is still tops many other books). So I will reorganize the 

materials a little bit, covering both KK’s chapter 6 and 7 in one. I shall 1) 

start from the simplest case in rotation: a pure rotation in 2-D, using it to 

introduce important concepts angular velocity, angular momentum, 

torque and moment of inertia. This is the easy part.  2) We shall study 

the formal vector definition and treatment of angular momentum and 

torque. Derive the most important equation of rotation (equivalent to 

F=dP/dt): Torque=change of angular momentum. The importance (or the 

tricky part) is to understand that in what coordinate system you can apply 

such equation. Then we shall study the motion of rigid body still in 2-D 

but with translation+rotation involved. This is still relatively easy.  3) 

We shall discuss rotation in 3-D for rigid body, a very important relation 

                                                        

53
 In the preparation of this notes, I worked all the KK’s problems in Chap.6 and 7. The 50+ problems took me 

almost 10 days to finish, though it is not full time but it doubled the time I spent on the equivalent number 

problems in previous chapters.  
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(besides that Torque=change of angular momentum) is the relation 

between angular velocity and angular momentum, introducing the inertia 

tensor. See how we work out problems with these two important relations, 

such as understanding the gyroscope. I hope through discussion on the 

first two parts, this one would appear natural and acceptable. I will not 

intend to cover Euler equations in depth which is often used to solve the 

general rotational motion (KK section 7.7 and beyond). Actually I will 

derive the Euler equation in the discussion of some examples, but I would 

leave the formal treatment to analytical mechanics. You will certainly 

‘suffer’ this in that course, but I hope the stuffs you learned here will 

alleviate suffering much.   

Here let me introduce the concept of degree of freedom: that is how 

many independent unconstrained (free) variables needed to describe a 

system. 

This is best illustrated by examples: S=degree of freedom 

a) Single particle in 3-D: clearly 3 variables are needed (x,y,z; or other 

coordinate such as spherical…), so S=3. 

b) N particles in 3-D, no constraint between any of them: S=3N. If there 

are m constraints, say there are relations between the distance of particles, 

etc. Then S=3N-m 

c) Rigid body in 3-D: due to the constraint put on the rigid body, there are 

now only 6 degrees of freedom. This is easiest to see from Chasles 
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theorem: 3 degree of freedom due to position of the fixed point (say CM, 

its X,Y,Z); another 3 degree of freedom due to rotation: the direction of 

axis around which rotates (2 degree of freedom, a direction of an unit 

vector in 3-D) and the rotation angle around this axis. (any rotation can 

also equivalently be specified by 3 Euler angles, but won’t be covered 

here) 

d) Rigid body in 2-D: S=3:  2 due to the position of the fixed point; 1 

due to rotation angle (since here in 2-D, the direction of axis is fixed, i.e. 

the direction perpendicular to plane) 

 

7.1 Pure Rotation in 2-D54 

7.1-1 Angular Velocity, Moment of Inertia, Angular Momentum and 

Torque 

If we nail down a point of the rigid body, then the only motion possible 

for that body would be rotation to the fixed point (pivot). What is the 

variable that can change then? It is the angular displacement as shown in 

the figure left (degree of freedom=1), thus the treatment below carries 

great analogy to 1-D translational motion. 

                                                        

54 This part you can find detailed accounts in physical textbooks for the course of University Physics. The popular 

ones are: Halliday et al “Fundamental of Physics”; Serway and Jewett’s “Physics for Scientists and Engineers”. 

These are textbooks easier than KK’s, used in regular courses in university physics or honor courses in high school. 

The figures I used in this section mostly come from the Serway’s 6th edition. (Halliday’s and Serway’s are 

basically equivalent, so pick one to read if you need to)  
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Even for a 3-D object, we can project  to the plane perpendicular to 

the rotation axis (z-direction in above) and find the displacement angle 

similarly
55

. For simplicity we only consider 2-D object (like a thin piece 

of hard paper) in this section
56

.  

Let the  be the displacement angle defined above (analogous to the x 

displacement in translation), we can find its rate of change over time and 

define angular velocity as: 

   (7-1) 

The  is in unit of radians and is defined as increasing in counter 

clockwise (c.c.w) rotation, so the  is positive for c.c.w rotation and 

negative for c.w (clockwise) rotation. In 3-D,  would be represented as 

a vector with the positive direction defined as above
57

, which is also the 

                                                        

55 This is equivalent to use cylindrical coordinate in the 3-D case, where z is along the rotation axis, and 

are the distance and displacement angle with respect to the rotation axis.  

56 There is an even simpler case that the uniform circular motion of one particle revolves around an axis. I reckon 

that you are all familiar to that. What I discussed here would also apply to this simpler case.  

57 There is a subtlety here that the finite angular displacement is not a vector like translational displacement, but 

the infinitesimal angular displacement and the angular velocity are vectors. (KK, notes 7.1) 
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right hand rule (curl your four fingers towards the rotation direction and 

thumb will give you the direction of positive ). Another important fact 

is that  would be same for every points on the rigid body. 

From the figure above left, it is easy to see that the relation between the 

translational velocity (in the later parts, I shall just use velocity for the 

translation) and angular velocity is: 

   (7-2) 

Its direction is along the tangent line and since it is rigid body, there is no 

radial velocity. You should be able to prove (7-2) before you check my 

answer in the footnotes below.
58

 For the acceleration part, refer to the 

figure above right, it has tangential and radial components: 

   (7-3) 

The  is called angular acceleration. The radial acceleration (centripetal 

acceleration)is due to the direction change of the velocity, and its proof is 

actually given a while ago (section 3.7-2), here I will just use (3-44). i.e. 

for a directional change of vector due to rotation: 

                                                        

58 , is unit vector along tangent direction, s is the arc length. , this is the reason to measure 

angle in radians. . 

ω

ω

| | | |v rω=

2
2

ˆ ˆ

ˆ ˆ

t

r

a r r

v
a r rr

r

ωθ αθ

ω

= =

= − = −

�
ɺ

�

α

ˆ ds
v T

dt
=
�

T̂ ds rdθ=

ds rd
r

dt dt

θ
ω= =



 181

 

  (7-4)    copied from (3-44) 

Here the  will be velocity ,  would point to +z direction: 

 

The kinetic energy of the pure rotation is
59

: 

 

We use the fact that the  is same for the whole body in rotation in the 

above equation. We shall define the moment of inertia of rotation as: 

   (7-5) 

The reason for the subscript o in Io is to remind you that the moment of 

inertia depends on the pivot of choice. It is obvious from the definition 

that the position vector depends on the choice of origin. So for same 

object with different choice of pivots, the I can be quite different. I shall 

just use I in the following formula but its dependence on choice of pivot 

should be remembered.  

   (7-6) 

                                                        

59 I shall use K to represent the kinetic energy from now on instead of T (which stands for translation) as before. 

Also in the derivation I shall use as if the body consists of discrete particles. It is easily extended to 

for continuous distribution of mass, where  stands for density. 
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Continue the analogy, we see that I is analogous to mass m in translation. 

Just as we define mechanical linear momentum as p=mv, we shall 

define
60

: 

   (7-7) 

And if you push the analogy further, you cannot help wonder what is the 

analogous of F=ma? Is it ? This guess is in the 

correct track, we shall see that the left hand of force will be replace by 

something we call torque. 

 

In the figure above, the effective force for rotation will be perpendicular 

to r. This is familiar for everyone ever use wrench or just open a heavy 

door, you would not push or pull the door or wrench in the radial 

direction. Now back to work energy theorem: 

 

 

(  in the figure above is the angle between the force and position vectors) 

                                                        

60 We shall give a more general and formal definition of angular momentum and torque later when we talk about 

angular momentum in general sense, not limited to the pure rotation in 2-D. The definition here would reduce to a 

special case for the general definition.  
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We shall define torque as: 

   (7-8) 

The last two terms show the usual way to compute the torque, either take 

the vertical component of force and times r or take the product of force 

and vertical distance d. Then the work kinetic energy expressed in torque 

and angular properties are: 

   (7-9) 

Or in integral form:    (7-10) 

From (7-9), we have: 

   (7-11) 

This is the fundamental relation between torque and change of angular 

momentum in rotation analogous to F=ma=dP/dt. We can also derive the 

angular impulse-change of angular momentum from (7-11): 

   (7-12) 

So you see that the relations in translation motion all have counter parts 

in rotation. Which is no surprise since they all originate from Newton’s 

laws, and here are just expressed in terms suitable for the study of 

rotation.  

First point need to be stressed here is that the torque and angular 
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momentum are all dependent on the choice of pivot like the moment of 

inertia, this is clear from their definition of (7-7) and (7-8).  (7-9) (or 

7-10), (7-11) and (7-12) are used often in the study of rotational motion.  

Second point is regarding to the sign of the torque. The convention is that 

it obeys the right hand rule consistent with our definition of angle and 

angular velocity. If it creates c.c.w rotation, the torque is positive and if it 

creates c.w. rotation, it is negative. In the figure below, F1 would generate 

a positive torque  and F2 would generate a negative torque 

 

 

Third point is that under different forces, what is the form of the above 

relations? Well using the principle of superposition of forces, it would be 

straightforward to see that: 

   (7-13) 

And this total torque (with their sign convention) will be in the relations 

(7-9) to (7-12). In principle, the force should include both external and 

internal forces, but we shall see that the torque by the internal forces will 

not play roles in relations like (7-9) to (7-12). The argument is 
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straightforward and you should try it yourself.  

 

The combined torque due to a pair of internal forces will be zero provided 

that the pair of internal forces are 1) equal in magnitude and reversed in 

direction (3
rd

 law). 2) the directions of internal forces are parallel to the 

direction joining the two particles (fundamental forces in classical 

physics satisfy this). With these two conditions, you can prove the torques 

due to internal forces is zero. So we shall only consider the torques due to 

entirely by the external forces from now on.  

As a summary for this section, please fill in the corresponding formula 

for pure rotation in the table below: 

Table 7.1. The Comparison between Translation (1-D)and Rotation (2-D) 

1-D Translation Fixed Axis Rotation (2-D) 

Position:  x Angle:  

Velocity:  
 

Acceleration:  
 

Kinetic Energy:  
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Mass:  m  

Linear Momentum:   

Equation of motion:  
 

Work:   

Power:  P=Fv  

Impulse: Fdt=dp  

I give you a start and try to fill the others by yourself. 

 

7.1-2 Computation of Moment of Inertia and More on Angular Velocity 

In this section we are dealing with some technical issues. It is important 

to know the moment of inertia of some common shaped object. The 

formula can be extended for even 3-D object: 

   (7-14) 

Z stands for the rotation axis along z direction, refers to the distance 

to the axis. The computation of moment of inertia will become 

calculation of integrals.  

For example a thin rod rotates around its C.M.: 

The density is even  

 

p mv=

dp
F ma

dt
= =

dW Fdx=

2

i i

i

I m r=∑
2 2 2( )z i i i i i

i i

I m m x yρ= = +∑ ∑
2

iρ

/M Lρ =



 187

 

For rotation around pivot at the edge: 

 

 

If you compare the two, they are different for the reasons we stressed 

before, the moment of inertial (as well as torque and angular momentum), 

the values depend on pivot of choice. You further take the difference 

between the two I’s, and the difference is . This is no 

coincidence. It is the result of a general theorem on moment of inertia: 

Parallel Axial Theorem. It related the moment of inertia with respect to 

C.M. to moment of inertia with respect to a shifted pivot (the rotation axis 

is shifted to a distance d away from C.M., but the axis is still along the 

same direction). 

 

   (7-15) 

(d is distance from o to C.M., and o may not even on the body) 
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The proof is easy: 

 

XCM,YCM are the coordinates of C.M. with respect to O, xcm and ycm are 

the coordinates of points with respect to C.M. 

 

The last two terms are zero because of the definition of C.M., it is the 

property we invoke a few times before. The first two terms are just the 

two terms in (7-15).  

The parallel axial theorem can be applied to any object, but has to relate 

to the ICM. There is another theorem only deals with ‘pancake’ shaped 

object (thickness can be neglected), this is called perpendicular axial 

theorem which will work for any pivot point on the ‘pancake’: 

 

Pick any pivot point that the object will rotate, and if the rotation axis is 

along z direction (out of the paper): 

 

For the same pivot, if the rotation axis is x or y axis, we can similarly 

define moment of inertia around those axes’s: 
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For the pancake shaped, zi=0. We have: 

    (7-16) 

The definition and the two theorems would allow you to compute the 

moment of inertia of different shaped objects with respect to different 

pivot and axis. Table below list the I’s for some of typical objects. You 

should confirm them yourself, mostly do the integrals using Cartesian, 

Cylindrical and Spherical coordinates
61

. 

 

                                                        

61 For more examples, please refer to Morin’s section 7.3.  
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We have seen that the moment of inertia depends on the pivot and axis of 

rotation. How about angular velocity? Consider the following situation: 

 

A circular disk with a fixed pivot at the center O, rotate with angular 

velocity around z-axis. Imagine we fixed a poor bug at the edge of the 

disk at A (the bug A will move along with the disk). From the point of 

view of this bug, what is the motion of the disk? And if it is a kind of 

rotation what is the angular velocity? You may not give the answer right 

away, since the rotation is not as intuitive as the translation. The 

following pictures may help: 

 

The pictures show for 3 instants, the relative positions of the bug A and 

some points on the disk. Noticed the coordinates are having the bug as 

origins, i.e. in these coordinates the bug does not move. The direction of 

the axis is invariant with time (+x always points to the right, and +y 
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always points upward). This frame is called translational coordinate 

system, because the origin may move (from the point of view of 

somebody in the inertia system) but the direction of axis’s or the base 

vectors do not rotate.  In such coordinate system (the bug at origin and 

the axes do not rotate), the whole disk would appear to the bug as rotating 

around it as the picture shows.  

To further prove this, let’s pick , because of rigid body, its 

length never changes:  Then the change of this 

vector could only occur due to directional change, no radial change 

possible: . And from (7-4), the velocity could 

be expressed as: . So it appears AB does rotate around A 

with some angular velocity . How about other points relative to A, 

well from the rigid body, we know that the relative relations between the 

points should not change (the distance fixed means the shape is fixed, i.e. 

if the 3 sides of a triangle is fixed, so will the angles), this means the 

angles between AB, AO,AC will not change over time. This leads to that 

the AO,AC will rotate with same angular velocity as AB. Now what is the 

angular velocity with respect to A, ? It equals the , the original 

angular velocity with respect to the fixed pivot. This may not be intuitive 

to you (at least not to me), we should prove it: Let’s pick AO(since all 

rotate with same angular velocity),the linear velocity of O with respect to 
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A in the A coordinate is: . R is the radius of the disk. This 

relative velocity from the coordinate with o as origin is: , 

the two magnitude should be same and this gives . As to the 

direction of rotation, we see from the figure both case the rotations are 

clock wise, then .
62

 

From the above argument, we see that 

(1) For the observer on the body (move along with the body in a 

translational type coordinate), the motion would be a rotation with 

same angular velocity. Even if the A is not on the body, as long as it 

moves along with the body rotates (as if connected to the body with 

massless rod), the above argument will also apply. 

(2) The A rotates with the body experience acceleration, so the coordinate 

system (even translational type) built with it as origin is not inertial. 

Though the kinematic properties discussed above apply, you should 

worry about what happened to the dynamic rules based on Newton’s 

laws? Generally, it has to be modified to include the effect of 

non-inertial frame (by introducing the fictitious inertial force). 

However, we shall show later for a very special point of the body, the 

C.M., even when it is accelerating, the dynamic rules are just same as 

inertial frames.  
                                                        

62 This can be proved more elegantly later with the relation like . Then in the O origin, the velocity of any 

point (say B)with respect to A is: . In the A origin, the 

relative velocity is: .  Since rAB is arbitrary, this will give us the two angular velocities are same. 
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If we choose a fixed point in the inertial frame, say still the A, but this 

time the bug is not attached to the spinning disk, it just stay on the ground 

watching the disk spins. This would appear a bad choice of origin to 

describe the rotation motion of the disk. The origin and the disk do not 

form a rigid body in this case, the AB, AC distance change with time. 

There is no single angular velocity to describe the rotation from A; AO 

never moves but AB,AC will and their angular changes are not simple 

with respect to A. We are going to see that later there is a way to solve 

this difficulty (if we have to choose such A as origin in the first place) by 

decomposing the motion as translational motion of C.M. with respect to 

A, and the rotational motion with respect to C.M. (this will be covered in 

section 7.2). 

There is another issue about choice of coordinate system. We discussed 

what happened if we shift our origin, how about coordinate axes? The 

rotation not only depends on the origin but also depends on how we set 

up the axis. All above, I stressed that the axis of the coordinate will not 

rotate. i.e. their direction never changes, this is what I called translational 

type coordinate axis. If we set up axis that rotates, the angular velocity 

observed will be quite different from that of translational type. In the 

rotational type axis (I call this rotational type coordinates), the angular 

velocity will depend on the rotation of axis too. If the axis rotates with 

same angular velocity, then the apparent angular velocity in the rotating 
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frame would be zero. But we have to keep in mind that this rotation type 

coordinate system is non-inertial. The corrections (in order to apply the 

Newton’s laws for dynamical problems) for this non-inertial would be a 

bit more nasty than the translational type. It may appear simple for 

kinematic description of the rotation (i.e. angular velocity or angular 

momentum appears zero), special cares need to be taken in dynamical 

problems due to the inertial forces. So in this chapter, I shall avoid such 

rotational type coordinate as much as possible. If I do not specify the 

coordinate axis, it is assumed that it is translational type (i.e. the 

directions of axes do not change over time, though the origin may move). 

You are encouraged to draw the rotational type coordinate with the 3 

disks figure above (for origin O and for origin A) to see the difference 

between the rotational and translational coordinates. 

The reason that I blibber-blubber about the choice of origin and 

coordinates is because this is the source of most confusions and mistakes 

arise in solving rotational problems. Because the expressions of moment 

of inertia, angular momentum, angular velocity and torque all depend on 

such choices, and indeed the choices can have dramatic effect on solving 

the problems (The physics involving vectors do not depend on choice of 

coordinate systems, but the method to get the correct answer does, and 

naturally we want to use the easiest and safest).  

The obvious choice for the 2-D pure rotation considered here would of 
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course be the pivot point O and translation type axis. In general cases, the 

easiest and safest choice are usually 1) the fixed pivot point on rigid body 

in inertial frame around which the object rotates; Or 2) the C.M. of the 

object as origin for rotation part (this is especially true when the motion 

is not pure rotation, but involves translation and rotation in the most 

general cases). 

As to the coordinate axes, I shall use translational type as much as 

possible. We shall see the reason from discussions in later sections and 

you may need to come back to reread this section later.  

7.1-3 Examples for 2-D Pure Rotation and Conservation of Angular 

Momentum 

The most straightforward type that providing torque and object shape and 

pivot (last two combined will give you moment of inertia; or the last two 

combined with force distribution would allow you to calculate the torque), 

finding its angular acceleration and velocity, will not be discussed; it is 

just like solving the translational motion in 1-D given the force and mass.  

Example 1: Equilibrium condition for static object.  

Before when we only consider the translation, the object may remain 

stationary if all the forces add up to zero. Now including the possible 

rotation, we require besides the total forces are zero, an additional 

condition that the total external torque need to be zero too for stationary 
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object. This would be used to solve problems like see-saw type: 

 

With no external force, where should we put support?  

The answer is under the C.M. of course. If you take pivot as origin, this 

will make the zero torque. Note this argument applies an important fact 

that needs to be proved: A uniform force proportional to mass (gravity 

here) applied to an object; the torque with respect to the pivot is 

equivalent to all the forces applied to the C.M. The proof is in KK 

example 6.7, it used definition of torque as cross product which I have 

not formally introduced. An argument following this result is that if the 

C.M. has acceleration, the inertial force will be in forms of –ma, which is 

also gravity like for translational type coordinates. So the torque by such 

inertial force will be acting as if on the point of C.M., and if you take 

C.M. as origin, then this inertial torque will be zero. The coordinate with 

C.M. as origin behaves as an inertial frame for the consideration on 

rotation.  

Under the situation of stationary object (object at balance or equilibrium), 

actually you can choose any point as origin for the analysis, the total 

external force=0 will guarantee that the total external torque will be zero 

with respect to any origin (exercise for you to prove, KK problem6.1).  

There are more variations for this type of problem, such as putting forces 



 197

on the ends of see-saw, and find out the forces under balance etc. The 

strategy is just picking an origin and analyzing both the force and torque.   

Another similar example would be: 

 

A uniform ladder with mass m leans against wall and ground. The friction 

force along the vertical is assumed negligible, the friction force on the 

ground cannot exceed , then find the minimum angle that the rod 

can keep balance.  

It is probably easiest to choose the end attached to the vertical wall as 

origin. But you can also choose C.M. as origin. Do it yourself either ways. 

(the answer would be threshold angle is ) 

Another typical one is: 

 

Find the maximum tilt angle that the object won’t fall over. It is easy for 

the above case by considering the position of C.M. Picking the support as 

origin, if C.M. is to the right of the support, the torque of gravity will 

create c.w. rotation and the object falls over. If the C.M. lies to the left of 

static Nµ

cot 2 staticθ µ=

θ
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support, the object will fall back. A little bit nastier version is in problem 

6.35.    

Example 2: Atwood machine with massive pulley (KK example 6.10) 

 

The details are in the textbook and it basically combine force analysis for 

M1 and M2, and torque analysis for the pulley. Two points need to be 

discussed: 1) Noticed that the tensions at two ends of the rope are not 

equal. This is because the friction force between the rope and pulley. 

Without this friction, the pulley will not rotate, and you will just have a 

Atwood machine for a massless pulley. The friction is the source of 

torque to the pulley, and the torque value can be calculated as (T1-T2)R 

(T1, T2 is not the direct source of torque on pulley, the difference T1-T2 

is the friction force on the pulley). 2) The condition of rolling without 

slippery. This is saying that the translational distance of the rope would be 

same as the arc length of the rotation. , then you will have 

relations such as: , and . Which is the 

constraint relation imposed by rolling without slippery condition. With 

these two explanations, you will have no trouble to solve this problem.  

l s R θ∆ = ∆ = ∆

dl d
v R R

dt dt

θ
ω= = = a Rα=
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I will ask the similar question with slight different known variables. 

Suppose that initially all are stationary, and then the masses will fall, rise, 

the pulley will rotate with no slippery. If the mass M1 falls by distance h 

from the original position, what is the velocity of it?  

This is essentially the same problem as before, there you calculate the 

acceleration and if the mass M1 travels h with the calculated acceleration, 

the velocity is easy to be determined ( ). This is indeed the 

method I want you to use initially. Now I want to use energy conservation 

to do it: , , this will 

give me the answer quickly. And the striking thing is that this will give 

the exactly the same answer as you get initially (try both methods to 

convince you if you have not worked this problem before). I say it is 

striking because the mechanical energy conservation works with the 

presence of friction. The friction force between the rope and pulley which 

as analyzed above is necessary for the pulley to rotate, but this friction 

force does not create heat loss. This is because we are in a very special 

condition, namely rolling without slippery. The friction does not generate 

energy loss in such condition; its work is to transform the translational 

kinetic energy into rotational kinetic energy. I’d better prove this once for 

all. For simplicity I only consider the work by the friction force (the 

gravity is turned off or cancelled by support, or in this case its work is 

included in the potential change). For the M1 and M2 here, the work by 

2 2

0 2v v ah− =

U K−∆ = ∆ 2 2

1 2 1 2

1 1
( ) ( )

2 2
M M gh M M v Iω− = + +
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friction force is: 

 (actually T1, T2 do the work on M1, M2;but combined 

is equivalent to friction force) 

The torque on the pulley is , and its work is: 

 

The rolling with no slippery is crucial in the above equation. From the 3
rd

 

law, , you add up the two will get the mechanical energy 

conservation of the pulley+mass system.  

Example 3: Physical Pendulum 

 

I assume you all know for a pendulum by a massive particle connected by 

the massless string with length L, the angular frequency and period T of 

oscillation is (for small angle):  

Now we hang a uniform rod and we can neglect any friction at the pivot 

(so the rod can oscillate forever), what is the angular frequency for this 

pendulum (the pendulum with certain shape is called physical pendulum 

in contrast to the idealization of mass point model)?  

At first look. It may appeal to you that treating the rod as a mass point 

with C.M, at L/2, and it is like a mass point m with string of L/2, and the 

1 2,fri M MF l E∆ = ∆

friF Rτ ′=

fri fri pulleyF R F l Kτ θ θ′ ′∆ = ∆ = ∆ = ∆

fri friF F′ = −

ϖ

2 g

T L

π
ϖ = =

θ
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. Well this is on the right track but the answer is off the 

target. The fact that it cannot simply treated as a mass point is because in 

the C.M. frame, there is rotation around C.M. So there will be rotational 

kinetic energy along with the translational kinetic energy of the C.M. 

(Konig theorem). The potential energy drop will be distributed into 

translational energy of C.M. and rotational energy around C.M. The result 

is less translational energy, less speed and so longer period. So the simple 

model above won’t work and we have to consider it from torque-angular 

momentum change. 

Choose the pivot as origin, since I do not want to investigate the forces 

there. External torque would only have contribution from gravity with 

this choice of origin: 

 

(the reason of minus sign is this torque creates c.w. rotation as drawn) 

The angular momentum is (shoot, I just realized I choose L for length and 

I have to use non-convention A for angular momentum): 

 

Apply the fundamental equation of motion for rotation: 

2

/ 2

g

T L

π
ϖ = =

sin
2

L
mgτ θ= −

21

3
A I mLω ω= =
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This will give us , so the equivalent mass point 

pendulum would be with string length of 2L/3.  

This example is a special case of physical pendulum discussed in KK, 

6.6.  

Example 4. Conservation of Angular Momentum 

From the fundamental equation of rotation, , we see that under 

the situation of no external torque, the angular momentum will be 

conserved.  

 

Considering a disk rotating around axis as shown with initial angular 

velocity , now if I drop on top of it another identical disk and finally 

the two disks will rotate together again with another angular velocity , 

find the . Or I spit a gum to the original disk and the gum will rotate 

with the disk as that little black dot, what is the final angular velocity? 

2

2
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You can solve these easily with conservation of angular momentum.  

Another favorite example to illustrate the conservation of A.M. is figure 

skating athlete produces fast rotation by changing moment of inertia: 

  

(I am sorry I did not find a nice picture with pretty girl figure skating, so 

please instead bear with me with this masculine guy) 

It is easy to understand the guy increases the angular velocity by pulling 

the dumbbell inward, make smaller moment of inertia. Suppose , 

then from conservation of A.M.: . This is nice 

and clear. Now let’s further ask the question about energy: . It is 

clear that the final energy will be twice as big as initial one: . 

Where does the increase of energy come from? An analogous scenario is 

playing with the swing, in order to get higher and higher on a swing, the 

person need to stand tall at lowest point and stay low at the highest point. 

Please give the reasoning yourself.  

Another interesting example is the legend cat landing always on 4 feet 

1

2
f iI I=

2i i f f f iI Iω ω ω ω= → =

21

2
Iω

2f iK K=
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when falling, as the figure below, I will let you to figure out how the kitty 

achieve this incredible gymnastic performance.  

 

 

7.2 Formal Definition of Angular Momentum, Torque and 

General Motion of Rigid Body in 2-D 

In the last sections, I started from the simplest case in rotation, treating 

pure rotation of rigid body in 2-D. We define the angular velocity and 

from there introduced moment of inertia and angular momentum, then 

derive the fundamental dynamic equation for rotation, torque=change rate 
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of angular momentum,  

In this section, I shall start from the formal definition of angular 

momentum, since like linear momentum, angular momentum is a 

fundamental physical quantity. We shall see that the angular momentum 

for 2-D rigid body rotation is just a special case of the general definition. 

We will also re-derive the fundamental equation for rotation with the 

formal definition of angular momentum and torque, and stress on what 

kind of choice of origin this equation will apply. We shall also derive a 

formula in treating motions involving both translation and rotation, a 

formula similar in spirit to the Konig Theorem in energy ( the kinetic 

energy of a ensemble of particles is a summation of the kinetic energy of 

C.M., and the kinetic energy of individual particles relative to the C.M, 

review the discussion leading to equation 6-32)
63

: The total angular 

momentum of the system is a summation of the angular momentum of the 

C.M.(as a mass point with total mass), and the angular momentum of 

individual parties relative to the C.M. (i.e. the angular momentum in C.M. 

frame). From these we can solve the motion of a rigid body in 2-D with 

translation and rotation. In next section (7.3), we will treat the general 

motion involving rotation in 3-D for rigid body.   

 

                                                        

63 Actually there is also in the same spirit, a theorem for linear momentum. The total momentum can be treated as 

summation of momentum of C.M. as whole and momentum of individual parties relative to the C.M. In this case, 

the property of C.M. frame makes the second contribution zero.  
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7.2-1 Angular Momentum 

In this part I shall treat the general definition of angular momentum, not 

limited only to the rigid body. Actually the property of rigid body 

guarantees one , the angular velocity for all parties on the body, so if a 

relation below does not invoke angular velocity, it is a general case. If it 

invokes angular velocity , it refers to rigid body.  

The angular momentum of single particle is defined as: 

   (7-17) 

is the position vector relative to certain origin,  is the linear 

momentum, and in mechanics,   , so: 

   (7-18) 

Angular momentum is the cross product (it is a good time for you to 

review your cross product if you need to) of two vectors, itself is a vector 

perpendicular to both and (to the plane formed by and ). From its 

definition, it is clear that L depends on origin of choice (same as we 

talked last section), consider the following simple example: 

 

The particle is traveling with constant velocity v along the dashed line in 

the figure. If we choose the origin as shown, the angular momentum is: 
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But if you choose the origin on the line of v, the L would be zero. That is 

why in the discussion of translations, we do not invoke the concept of 

angular momentum. KK example 6.2 shows another example that angular 

momentum depends on choice of origin. 

In the simple case of a particle moving around center with uniform 

velocity (c.c.w), choose the center as origin: 

 

This is just like a rigid body 2-D rotation ( ). Actually you can 

construct a rigid body, connecting the pivot with mass point with a 

massless rod. But now consider the general case that the mass point’s 

orbit may not be circular, and the definition of angular momentum still 

allows us to calculate the angular momentum of the particle with respect 

the center. It is still in the form as above, i.e. . 

(prove this yourself or check KK example 6.3)  

Another example would be Kepler’s 2
nd

 law on motion of planets around 

the sun: it states that the area velocity is a constant (see KK example 6.3 

for detail). This is equivalent to conservation of angular momentum: 

 

The area swept by the planet within a short time interval can be 

ˆL mr v mvdz= × = −
� � �

2 ˆ L mr v mr zω= × =
� �

2I mr=

2 ˆ L mr v mr zω= × =
� �
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approximated by a slim triangle, with is one side and as another 

(the short one close to the arc length). The area of this triangle is: 

 (use the geometry meaning of cross product)  

, so the magnitude of L will be same for all time. Or 

from the conservation of angular momentum under central force, Kepler’s 

2
nd

 law is a natural result.  

For multi-particles or a collection of them, the definition of total angular 

momentum is: 

   (7-19) 

For the 2-D rigid body rotating around a pivot: 

 

The above definition will give exactly . (prove it yourself, noticed 

the rigid body requires the |r| is fixed) 

Also let’s further study the (7-19), to see what happened to angular 

momentum if we shift the origin for a collection of particles. Let’s 

assume that the angular momentum of some object (not necessarily rigid) 

is measured with respect to some fixed origin O, LO. Now we shift the 
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origin to some other point O’, what in particular interest is this new origin 

overlaps the C.M. of the object. Please refer to the figure below. The 

question is what the relation between the angular momentum with respect 

to these different origins? 

 

are referring to O;  are referring to O’; R,V are displacement 

and velocity between O,O’. (Here O’ can be any shifted origin, I have not 

invoked C.M. yet) 

 

The above is correct for any shifted O’, however, if the O’ is the C.M., the 

relation is much simplified because the last two terms are zero (R,V are 

independent of the indices and can be taken out of the summation or 

integration). For O’ is the C.M., we have: 

   (7-20) 

Or  

(7-20) is the relation similar to the Konig Theorem for the kinetic energy 

for multi-particle case. It speeds up the evaluation of angular momentum 

for any choice of origin. For example, when we study the earth rotating 
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around sun and spinning itself, the angular momentum can be 

decomposed as orbit angular momentum (the C.M. of earth revolves 

around sun), and spin angular momentum. More important as we shall see 

below, the changes in both these angular momentums obey the 

fundamental equation of rotation. For that, we need torque. 

 

7.2-2 Torque and Fundamental Equation for Rotation 

The torque of single force acting on some place is defined as: 

   (7-21) 

The force may be decomposed as parallel component and vertical 

component with respect to the position vector, only the vertical 

component contribute to the torque as we discussed in previous section. 

From definition of cross product: , where is the angle 

between r,F, same as our 2-D case before. Also notice that the torque 

depends on choice of origin. F should be replaced with total force if many 

forces exist to get total torque. 

For multi-particle system subject to different forces: 

   (7-22) 

The forces need to be considered in computation of torque only including 

the external forces, since the summation of torques by internal forces 

between the particles will add up to zero as discussed previously (3
rd

 law 

r Fτ = ×
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and is parallel with ). 

The reason to define torque as (7-21) and (7-22) is that this will give us 

the fundamental equation of rotation, equivalent to F=dp/dt. 

(1) Single particle 

   (7-23) 

Noticed this applies to the inertial frame because we apply the 2
nd

 law. 

The coordinate system has to be inertial, and torque and angular 

momentum have to be measured from a fixed point (the origin of the 

coordinate system)
64

. 

(2) Multi-particle system 

From (7-19): 

(7-24) 

This also applies to a fixed point (the origin of the coordinate) in an 

inertial frame.  

We have seen that the angular momentum can also be decomposed: 

 

is the angular momentum of the C.M. behaving as massive 

point with respect to fixed origin O; is the angular momentum of 

particles with respect to C.M. 

We can do the similar thing to torque: 

                                                        

64 You may find an example in 李复’力学教程’(上), example 6.1.4. 
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 is the torque by total external force acting on the point mass 

at C.M., according to (7-23), it should be equal to . And from 

(7-24), , then we have: 

   (7-25) 

This says the change of angular momentum in the C.M. frame equals 

to the torque measured in the C.M. frame. Basically the fundamental 

equation applies to the C.M. frame (with C.M. at origin), in spite of 

the fact that the C.M. may be moving and possibly accelerating, i.e. 

non-inertial. This is another remarkable property and advantage of the 

C.M. frame. 

It is worth looking at the same result from another point of view.  

 

The angular momentum is originally defined in the x-y inertial frame 

with respect to origin. Now consider the angular momentum L’ with 

respect to a point r0, where r0 may change over time: 
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With  all are defined in the inertial frame. 

 is just the definition of C.M., it equals to MRcm, so: 

 

We see that if the possible moving point  is just C.M., then the 

second term is always zero and the first term is just the torque with 

respect to the C.M., which gives us exactly (7-25)
65

. 

There is one more subtlety in applying the (7-25), the torque-A.M. 

relation in C.M. frame. We see that we have to choose C.M. as origin 

in order to use(7-25), but that still leaves the question on the choice of 

coordinate axis (or the base vectors) for the computation. It requires 

translational type coordinate axes! The reason is (7-24) applies only 

for inertial frame. As stated before, I will choose translation type 

coordinated system with C.M. at origin (i.e. base vectors are unit 

vectors not changing with time) in application of (7-25). It is also 

possible to evaluate the change of vectors in the translational type 

                                                        

65 There will be other situations that the second term will be zero for some other special r0 on the object, such as 

the contact point in a rotation without slippery, sometimes called instantaneous center, where the 
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coordinate with choice of rotational type coordinate (you may wonder 

why taking trouble doing this, see the footnote 66 below). However, if 

you choose rotational type coordinate system (base vectors rotate with 

time), the computation of vector change over time will be a bit tricky, 

so I will leave that part when we deal with rotational frame when we 

talk about non-inertial frames next chapter
66

.   

7.2-3 General Motion in 2-D 

Now we can treat the general motion, including both translation and 

rotation for rigid body. The reason for rigid body and 2-D is mainly 

because the rotation is easiest in this situation. I will leave the general 

rotational motion to section 7.3. The basic model is Chasles Theorem we 

mentioned at the beginning of this chapter, that the motion can be divided 

into translational motion of a mass point at C.M., and a rotation around 

C.M. From the discussion above we see that the rotation in C.M. frame 

                                                        

66 If you read ahead or are just curious now what happened for the expression of time derivative of vectors in a 

rotational coordinates: There is a difference in the vector change viewed from translational type and rotational type 

coordinate: .  A
�

is a vector that can change over time: is the change of  the 

vector viewed from a translational type coordinate (called lab frame here), is the change of the same 

vector but viewed from rotational coordinates.  is the angular velocity vector of the rotation of coordinate 

(viewed from lab). I shall leave the detailed proof later. Just by looking at it, it makes sense. Consider a constant 

vector  in the lab frame, it won’t change. However in the rotating frame, it is changing, rotating with - . On 

the contrary, if the  appears constant in a rotating frame, it will appear rotating with  in lab frame. To avoid 

such complexity, I will stick to translational type coordinates as much as possible. To say as much as possible 

instead of absolutely always, is because in the general treatment of rotational motion, such as Euler equation, we 

have to adopt rotational type coordinates(the reason will be given in section 7.3). Since we are not going too deep 

on this, it won’t be a big issue here.  

( ) ( )
dA dA

A
Lab rotdt dt

= +Ω×

� �
��

( )
dA

Labdt

�

( )
dA

rotdt

�

Ω
�

A
�
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obeys fundamental equation, thus all formula we derived in section 7.1 

(treating the pure rotation of rigid body in 2-D) would apply here in the 

C.M. frame! (Please review the relations in section 7.1, or the table 7.1 if 

you finished it yourself). The motion of C.M as a massive point is just the 

motion of mass point we are already familiar with (with Newton’s 2
nd

 law, 

or apply momentum, energy and angular momentum you learned in this 

chapter); the rotational motion in C.M. frame is reduced to what we 

discussed in 7.1 for 2-D (It obeys (7-25) and formula in table 7.1). This is 

best illustrated by some examples. 

In KK example 6.14, 6.15, 6.16, they solved problems with two methods. 

Method 1 is what I preferred and follows the strategy outline above. 

Method 2 is choosing a fixed point in lab frame, and solves it from 

fundamental equations of rotation. Both are equivalent, you pick your 

preference.  

Here are some more examples: 

Example 1: Similar to KK 6.17 

 

The disk rolls without slippery down an inclined slope, it drops in height 

h, what is the velocity of the disk? 
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You can solve this by C.M. point translation and rotation in C.M. frame, 

the analysis of forces and torque will give you equations of motion, and 

with the constraints of rolling without slippery, you can solve for the 

acceleration of translation of C.M. point, and rotational acceleration, then 

the velocity after traveling a distance can be computed.  

The easier way is to use energy conservation, we have already discussed 

that the energy conservation holds under rolling without slippery. The 

kinetic energy are consisting of two parts (Konig Theorem): Translational 

energy of C.M. point and rotational kinetic energy of the disk. If 

everything starts at stationary, then the increase of kinetic energy equals 

to the decrease of potential: 

 

(note: here from definition of positive of  and , it does not 

matter in the square) 

The translation velocity will be smaller to that of a mass point with no 

rotation.  

Consider another example (similar to KK problem 6.30): If I throw a disk 

with radius b, mass m with initial velocity v0 on a horizontal friction 

surface, due to the friction the disk will reach the stage of rolling with no 

slippery, find its velocity at that moment (please think about yourself 

/ sinl h β=

2 2 2 2 2 21 1 1 1 1 3
( )( )

2 2 2 2 2 4

v
mgh mv I mv mb mv

b
ω= + = + =

v bω= − v ω
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before peek the hint in the footnote)
67

. 

Example 2: Elastic collision involving rotation: 

 

As the figure shows, a mass point m with initial velocity v0, hit a uniform 

rod with mass also m, the hitting happened at h above C.M. of the rod. 

The collision is elastic and the mass point will not change direction after 

collision. The whole system is on a surface with no friction. Then what is 

the motion of the system after collision? i.e. what are the velocity of mass 

point, the motion of the rod (the translation velocity of C.M., and angular 

velocity, sorry in the drawing the two velocities are same)? 

There will be 3 unknowns the vm of the mass point, the vcm and . We 

will need to invoke all conservation laws. There is no external force, so 

the total momentum and angular momentum for the rod+mass point 

system will be conserved, so is the mechanical energy for the elastic 

collision.  

                                                        

67 You will need impulse theorem for both linear and angular momentum. The energy is not conserved here, 

because during the skidding process before reach rolling without slippery, the friction will do negative work to the 

disk. , , when rolling with no slippery, and you will get answer by cancelling 

. Of course you can also solve it from conservation of angular momentum by choosing a fixed point in lab 

frame where the torque due to friction is zero, the weight and support force will cancel in torque so the angular 

momentum with respect to this origin will be conserved. Both methods are equivalent.   

ω

f t m v∆ = ∆ t fb t I
cm
τ ω∆ = ∆ = ∆ v bω=−

t∆
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Conservation of liner momentum (in a lab fixed frame): 

 

Conservation of energy (in lab fixed frame): 

 

(Konig theorem is applied in the rod’s kinetic energy part) 

Conservation of angular momentum (you may use impulse theorem for 

the change of angular momentum and relate to change of linear 

momentum, the results would be same): This is to find the relation 

between , there are quite a few ways to achieve this using A.M. 

conservation, since you have choices of origin (they will of course all 

give same answers provided you do it correctly): 

(a) Choose the origin overlap and travels with C.M.(along x only) i.e. 

moving with vcm in the lab frame. 

In this choice of origin, the initial angular momentum is (from mass 

point and the rod. Don’t forget the rod, it would appear translating 

with -vcm before the collision with respect to this choice of origin, but 

it turns out zero, because of r, v are parallel. I still write 0 below to 

stress this point): 

+0  (the signs follows right hand rule) 

After collision, the mass point appears vm-vcm to C.M. of rod, and rod 

angular momentum would be a pure rotation: 

0 m cmmv mv mv= +

2 2 2 2

0

1 1 1 1

2 2 2 2
m cm cmmv mv mv I ω= + +

, ,m cmv vω

0( )i cmL m v v h= − −
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Combined with conservation of linear momentum and energy, all 

unknowns can be solved. 

(b) Choose the origin a fixed point in lab frame, overlap initially with the 

C.M. of rod: 

 

 

(the contribution of the C.M. of the rod after collision with respect to 

this origin is zero, because R is parallel with vcm) 

Conservation of A.M. will give you exactly same results as in (a). 

(c) Choose a fixed point in lab frame initially overlaps the lower end of 

the rod as origin. (this will be left as an exercise for you to finish, you 

should get same relation, also noticed that you cannot choose the 

origin as a point moving with the lower end of the rod or if you insist 

doing so, then the inertial forces has to be taken into consideration) 

I hope this will illustrate the subtleties and possible pitfalls in 

computation of angular momentum, so please specify your choice clearly 

in solving problems. The fixed points in inertial frames and C.M. of the 

2

( ) ( )
12

f cm m cm m cm

ml
L m v v h I m v v hω ω= − − − = − − −

2

0( ) ( )
12

cm m cm

ml
m v v h m v v h ω− − = − − −

2

0
12

m

ml
mv h mv hω+ =

0iL mv h= −

2 2

12 12
f m cm m

ml ml
L mv h R mv mv hω ω= − + × − = − −
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rigid body are all valid choices (because fundamental equation apply to 

these choices), but the computation details may vary.  

These (section 7.1 and 7.2) conclude our easier parts in the discussion of 

angular momentum and rotation. We are going to wade into some deeper 

water in the next section. I hope you are better prepared by what you have 

learned so far.  If not…eh, ^^! drowned? 

 

7.3 General Rotation of Rigid Body 

In this section, I shall talk about the rotation of rigid body in most general 

case, not 2-D object, fixed axis rotation necessary. I shall first give a 

detailed discussion on angular velocity vector, a new definition of angular 

velocity and also one of the most important relations in rigid body; Next I 

shall relate the angular momentum vector to the angular velocity vector, a 

new ‘beast’ called moment of inertia tensor will emerge and you will see 

how we handle it. We are also going to derive the Euler equation that 

handles the general rotational motion.  

7.3-1 Angular Velocity Vector 

The note 7.1 in KK proves that though the finite angular displacement is 

not a vector, the angular velocity is a vector. The angular velocity of 

rotation with respect to the rotational axis is defined as: 
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   (7-26) 

 is the unit vector specifies the direction of rotational axis, 

 is defined increasing according to right hand rule. i..e. facing the 

positive direction of the  (looking down in the above figure), if the 

rotation is counter-clockwise, then  increase. This is same as we 

defined angular velocity in 2-D case (there the  is always the +z 

direction, here  could be any direction in a frame). 

If we choose the origin on the rigid body that rotates with it: then the 

position vectors will be a vector with fixed length, and the velocity is: 

   (7-27) 

Here I just use (3-44) where replace the general fixed length vector A 

with in rigid body. A proof with simple geometry and definition of 

cross product is also provided in the KK pg 290. Actually in the proof, 

there is nothing particular about , you can replace it with any fixed 

length vector A and get (3-44).  

n̂
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(7-27) is simple and important, most of formula in this section will 

originate from it, and I call it the most important relation for rigid body. 

In principle, we can choose any origin that rotates along with the rigid 

body (remember the bug moves with the disk?), but to apply the 

fundamental equation, we generally only choose a point on the body 

which is also fixed in inertial frame (then the point has to be on the axis 

of rotation) or the C.M. 

(7-27) can also be used as definition of angular velocity, since we know 

the definition of v and r very well. This is useful when sometimes the 

rotational axis is not obvious. This definition is also useful when we 

combine the angular velocities together. The  is a vector and we 

expect it can be decomposed into components as vector does, which is 

true. When we have motions involve a few ’s, we expect they add up 

as vectors, which is also true. But this last point is far from intuitive, so 

I’d better explain it more clearly.  

Let’s take a look of an example to illustrate this not-so-intuitive addition 

of angular velocities: Consider a very general case like earth rotates 

around the Sun. Let’s take the Sun is motionless and can be the origin of 

an inertial frame. The earth rotates around the Sun and also spins around 

North-South pole. How we describe the motion of earth in solar system? 

We know the answer from the last section: decompose the motion into 

C.M. point of earth around the Sun and rotation with respect to C.M. of 

ω
�

ω
�
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earth ( we cannot treat the motion of earth in solar system as pure rotation, 

since viewing from the sun, the r’s are not fixed in length). That is correct. 

The C.M. point revolves around the Sun with angular velocity  (|

|=2 /year). What about rotation with respect to C.M. of earth? I should 

state this more clearly: If we choose a translational type coordinate whose 

origin is C.M. of earth, what is the angular velocity of earth in this 

coordinate system? It is tempting to answer it , pointing along the N-S 

pole, with | |=2 /day. But this is not the correct answer!  is not the 

angular velocity of rotation of earth in the translational type coordinate at 

C.M., it is the angular velocity in a rotational coordinate centered at C.M. 

of earth, the axes rotate as the earth moves around the Sun. Even when 

earth does not spin around N-S pole, the revolution around the Sun will 

appear as a rotation for the translational C.M. coordinates. In the figure 

below, I setup a C.M. coordinate (I am tired of put “translational” ahead 

every time, so assume it if I do not mention otherwise). Assume no spin of 

earth itself, then the point A on earth (say Beijing) will be always facing 

away from the Sun. As earth revolves, the motion of earth in the C.M 

coordinate will be a rotation with : 

Ω
�

Ω
�

π

ω
�

ω
�

π ω
�

Ω
�
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1,2 are directions of axis’s (or base vectors). With the inspection of angle 

change, the rotation of spinless earth in the C.M. frame has angular 

velocity . Now if we turn on the spin of the earth, the total angular 

velocity in the C.M, coordinate will be + .  

Actually there is a theorem on this kind of addition of angular velocity 

just like addition of translational velocity between translational frames. It 

says: If an object rotates around some axis with angular velocity  

in frame 2 (just a coordinate system I call it 2); and the frame 2 is 

rotating around some axis with angular velocity with respect to frame 

1. Then the angular velocity of the object in frame 1 is:  

   (7-28) 

Using this theorem, we can get the earth rotation in C.M. frame quickly. 

Frame 2 is the rotational C.M. frame, and , .  

I’d better prove 7-28, with the angular velocity is defined as in (7-27), it 

is quite like the translational velocity case, please refer to the figure 

below: 

Ω
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Ω
�
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21ω
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1 2 21obj objω ω ω− −= +
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For the translational case, the black frame is 1, the blue frame is 2, and it 

is moving with some velocity v21 with respect to 1. We have  

, ,
68

 so:  (the familiar case) 

For rotational case, frame 2 rotates with respect to frame 1 with angular 

velocity . Let’s consider the case, initially the two frames overlap at 

t=0, and the position vector of some point is shown as r(0) (it overlaps 

with the x and x’ axis at t=0, this is just for easy drawing). After a small 

. The vector will rotate to a position indicated by . The change 

of vector viewed within frame 1 is ; viewed within frame 2 is , 

they are related by: , so as : 

 same as translational case. Now we use 

(7-27), the angular velocity for the vector rotates in frame 1 is , in 

frame 2 is , and frame 2 rotate with  respect to 1, then: 

, r(0) is arbitrary and this will lead us 

to (7-28)
69

. 

                                                        

68 Of course I am using Galileo transformation, neglecting special relativity here. 

69 Noticed due to my poor drawing, I cannot draw the most general case in 3-D, with ’s point to arbitrary 

directions. So I made the drawing in 2-D, all the rotations are along the z-axis (perpendicular to paper). In this 

special drawing, you can just use relation between the angles to prove (7-28).However, in the general case in 3-D 
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The reason I elaborate on this is because I think it is not very intuitive (at 

least not to me). If you think the above argument helps you understanding 

the addition of angular velocity, then that is great. If you think the 

addition is pretty obvious, then neglect my blibber-blubber.  

Now let’s take a look on one example to see how well you understand the 

above (example taken from Morin’s book, problem 8.3) 

 

A cone as shown is rolling without slipping on a table. The geometry of 

cone is shown in the figure. Let the speed of the center of base P is v. 

What is the angular velocity of the cone with respect to the lab frame at 

the instant shown? 

I will choose the coordinate and view the rotation as rotating around h of 

cone and the rotation around z-axis in lab frame as the figure below: 

   

 is the angular velocity of the cone rotating around z axis, the rotation 

                                                                                                                                                               

and arbitrary rotational axis, the above argument using vectors relations may be easier.  

23ω
�
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of frame 2 (a rotating frame with origin overlapping of frame 3 the lab 

frame)with respect to lab frame: 

, so , and  

 is the spin of cone within frame 2, the direction is known, the 

amplitude can be computed from rolling with no slipping: 

 

 

 

The angular velocity with respect to lab frame is : 

,  along the horizontal. 

Another quick method is by observing the tip of the cone which is 

stationary in lab frame always, and there is another point that is stationary 

at that particular instant in the lab frame, it is the point on the circular 

base of the cone that touches the table, it is velocity in lab frame is zero 

from the rolling without slipping (if you do not see it right away, try the 

rolling disk first). Both of these points are on the axis of rotation so that 

their speeds are zero, then the instantaneous rotation axis in lab frame is 

the line joining the tip and the base point as shown: 
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Using: , , , same result.  

7.3-2 Angular Momentum in 3-D and Inertia Tensor 

With the relation (7-27) between velocity and angular velocity for rigid 

body, we can write the general formula for angular momentum in terms 

of angular velocity (for rigid body), relate the two important physical 

quantities in rotation. 

   (7-29) 

For rotation within 2-D, we are used to the fact that the angular 

momentum is parallel with the angular velocity, , where I is just a 

number in 2-D. We will see that such simplification generally no longer 

exist for 3-D, unless the rigid body possesses certain symmetry and 

rotational axis overlaps with the symmetry axis. One easy proof is using 

the relation between cross product: 

   (7-30)
70

  

Then we see that: 

                                                        

70 I just pull this rabbit out of hat as magic. Certainly you should prove it (directly from definition of cross 

product). Also noticed the order of vectors A,B,C, does (AxB)xC=Ax(BxC)? 
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We see that the first term is similar to the  in for rotation around 

z-axis in 2-D, but the second term is not always zero in 3-D. In the 2-D 

case, because , the last term is zero and we have the simple 

relation.  

In the 2-D rotation, you certainly can also directly put the vector in 

components into (7-29): ,  and get the simple 

relation in 2-D. 

For the more general case: ,  

 

 

Now you can throw in the in front of each terms.  

The formula for the relation between the angular momentum and angular 

velocity is quite a beast. However, if we use matrix representation of 

vector (a column matrix represents a vector), we have a nice bookkeeping, 

and the above equation can be expressed in matrix form as: 
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   (7-31) 

If it helps you to remember this matrix equation, you may replace the 

x,y,z with 1,2,3 as indices.  

, ,  (7-32) 

These diagonal elements are called moments of inertia with respect to 

x,y,z axis.  

, ,  (7-33) 

These off-diagonal elements are called products of inertia.  

The whole matrix is called inertia tensor
71

, it just like the transform 

matrix we encountered before linking the two vectors. In short hand (7-31) 

can also be written as: 

   (7-34) 

is the symbol for inertia tensor, a shorthand for the matrix and to 

remind you it is not a number (scalar) or a vector. For easy typing, I will 

use I for it in notes. 

(1) The meaning of the elements in I 

Write out the formula (7-31): 

                                                        

71 This is called 2nd rank tensor, which can be represented as a squared matrix (scalar is also called 0th rank tensor 

and vector is 1st rank). There are higher ranks of tensors too, they will be tensors relating tensors. Those higher 

rank tensors cannot be expressed in terms of regular matrix. Also not all squared matrix are tensors (just like not all 

ordered numbers are vectors), the tensors have to satisfy transformation rules in the coordinate transformation (like 

vectors). However, from what is called quotient rule of tensor: A=BC, if A and C are tensors, B will be a tensor too. 

The I here is indeed a tensor bcause are vectors (1st rank tensor) 

    

    

    

xx xy xzx x

y yx yy yz y

z zx zy zz z

I I IL

L I I I

L I I I

ω

ω

ω

    
    

=     
    

    

2 2( )xx i i i

i

I m y z= +∑ 2 2( )yy i i i

i

I m x z= +∑ 2 2( )zz i i i

i

I m x y= +∑

xy yx i i i

i

I I m x y= = −∑ xz zx i i i

i

I I m x z= = −∑ yz zy i i i

i

I I m y z= = −∑

L Iω=
� ⌢ �

I
⌢

,L ω



 231

 

This tells us the  relates to the contribution of x component of 

angular velocity  to the x component of angular momentum . 

This is sort of intuitive, a rotation around x axis ( ) will contribute 

the angular momentum along this direction. However, the has 

other contributions too, from rotation around y and z axis’s. relates 

the rotation around y axis to . can be interpreted as contribution 

coefficient of to , that is why use xy in the subscript of indices; 

It is also easy to remember its formula in Cartesian this way as in 

(7-33). is the contribution coefficient of to .  

(2) I is a special matrix: Symmetric Matrix 

This is clear that the matrix is symmetric with respect to diagonal, i.e. 

(7-33),   etc. In language of linear algebra, we have: 

I=I
T
, I

T
 is the transpose of the matrix. This property is important when 

we talk about eigenvalues and eigenvectors for this matrix.  

(3) I depends on the shape (geometry) of object and choice of coordinate 

system 

This is clear from the definition of its elements in (7-32) and (7-33). If 

we choose the coordinate axis overlapping with symmetric axis of the 

object (if it has any), the form of inertia tensor will be simple. 

x xx x xy y xz zL I I Iω ω ω= + +

xxI

xω xL

xω

xL

xyI

xL xyI

yω xL

xzI zω xL

xy yxI I=
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Consider the cylinder I listed in section 7.1 dealing with rotation in 

2-D. I treat it as 2-D object though it is indeed 3-D. The reason is if 

the rotation is overlapping with the symmetric axis, and this is the 

only rotation we have in simple cases, then I can call this rotation axis 

z,  then , or , , 

. , but using symmetry, this integral is zero, 

because for every xz, you can always find on the object another point 

whose x’z=-xz, a perfect cancellation. Similarly =0 too. The only 

contribution to angular momentum is , that is the formula we 

used to treat the rolling of cylinder and treat it as if only in 2-D.  

(4) Generalized Parallel Axis Theorem 

We have a relation between the elements of inertia tensor measured at 

the C.M. and the elements measured at some other origin (a translation 

of coordinate system with a shift of origin).  

 

 …   (7-35) 
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 is the elements with C.M. as origin, M is total mass, X,Y,Z are 

coordinate of C.M. in the shifted coordinate system. The proof will be 

trivial, similar to what I did in 2-D case, applying the property of C.M. 

frame. I won’t repeat them here.  

We’d better to work a couple examples to get used to I. 

Example 1. Rework KK example 6.2 with inertia tensor and compute the 

angular momentum and its change over time in a lab frame: 

 

Of course for this simple problem in this example, it can be directly 

solved without even using the 3 methods discussed below, just directly 

from definition of angular momentum: r x p. The point is to using this 

simple example to introduce you the methods involving inertia tensor. 

Method 1:Choosing B (the fixed point) as origin. It is always good to 

specify clearly the coordinate system we are using (the axes are 

translational type).  

At time t=0, let’s say the particle m is at <r,0,-z>, , 

angular velocity will be <0,0, >, so only need to evaluate those elements 

whose last indices is z: , , . So at 

cm

xyI

cos / tanz l rα α= =

ω

2

zzI mr= ( )xzI mr z mrz= − − = 0yzI =



 234

time t=0: , , .  for 

t=0. As time goes on, this L rotates around z.  

To compute the change of angular momentum over time: 

We have computed the angular momentum at t=0 in a lab frame. The 

change of L with time will be rotating around z axis, its magnitude won’t 

change. Then for fixed length vector, the change over time can be 

calculated as: 

  

(This change will be equal to the torque ) 

Method 2: The inertia tensor computed in method 1 is in a lab fixed frame. 

It is at the instant t=0. At later time, as the particle rotates, I and L will 

change over time. In the lab frame, we have to calculate  

for the angular momentum at any time.  

If we choose a rotating frame, i.e. a coordinate system whose x,y axes 

rotate with  around z-axis in this problem, the I will be a constant in 

this rotating frame, its elements will have same value as calculated at t=0 

above and won’t change over time. The angular momentum vector in the 

lab frame
72

 will have a simpler expression when viewed from this 

                                                        

72 The reason I stress this is that what we computed will not be angular momentum measured in the rotating frame, 

which will be zero, because the  will be zero in such frame. We want to calculate the L in lab frame (or other 

inertial frame, translational type at C.M. etc.) the reason for this is to apply the equation of motion which works for 

translational type frame without introducing inertial forces . If for some reason (mostly because of simpler form of 

inertia tensor as we shall see), the L in lab frame may be easier to be computed by expressing it in a rotating frame: 

. , are the expressions of , in the rotating frame, has simpler expression in the rotating frame.  

2
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rotating frame: . The vector L when viewed from 

the rotating frame will be a constant vector that won’t change over time, 

i.e. =0. 

Of course the L when viewed from lab frame will be rotating, and its 

change over time can be computed from the expression in the rotating 

frame and the rotation of frame: 

 

The reasoning for the above relation is briefly discussed in footnote 66 

and I will provide detailed proof in next chapter.
 

Since =0, . Same as method 1.  

Method 3: For this simple problem, the coordinate of the particle in lab 

frame is: , and the relevant elements of 

inertia tensor at any time can be computed: 

, ,  

 

Comments: The method 3 seems to be the most complete answer, gives 

the explicit expression of L in lab frame at any time. But this is least used 

method unless the problem only involves a couple particles in simple 

motion. Generally for rigid body doing some arbitrary rotation, the inertia 

tensor may be too complicated to evaluate at any time. 

Method 1 is the preferred one before, it is has advantage to be in lab 
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dt
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� �
��

( )rot

dL

dt
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ω ω= + × = ×
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frame where the equation of motion can be applied, and physical 

interpretation is clearer. It has disadvantage in treating the general 

rotational motion, because of the same difficulty as method 3, evaluation 

of inertia tensor. We can compute the inertia tensor at one moment 

(instantaneous). At other time, due to the motion of the body, the inertia 

tensor has to be evaluated again and again which is not a pleasant job. 

However, this method is still useful when we deal with some simple 

problems (most problems in this chapter fit in this category), such as due 

to symmetry, the inertia tensor do not change over time (KK example 

7.13); or some kinematic problems which can be solved from 

instantaneous equation of motion (as the later example shows). So this 

method will still be preferred one when dealing with these problems in 

this chapter, but you should aware its limitation. Basically the strategy of 

this method is: At a particular time (one instant), we set up a coordinates 

and compute the inertia tensor and angular momentum at this instant. At 

later time, if the problem is simple enough (or special enough) for us to 

predict what the change of angular momentum to be (like in the example 

above, the A.M. has fixed magnitude only rotating with certain angular 

velocity), we can then equate the change of angular momentum to the 

torque.  

Method 2 will be useful when dealing with general rotation. By choosing 

a rotating frame that rotates with the body, it has advantage of simpler 
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form of inertia tensor and it does not change over time in this frame, and 

thus the computation of angular momentum expressed in this frame. This 

is the basis for the Euler equation to deal with general rotation. The 

disadvantage is of course the non-inertial rotating frame, and the relation 

between the rotating frame with the lab frame can be complicated as well 

as the physical interpretations are not as straightforward as in method 1. 

The detailed handling will be the job in analytical mechanics, but I feel 

obligated to mention it here because it is the general method for general 

rotation motion.  

 

Example 2: Simplified KK’s 7.4 and 7.14. 

 

At time zero, with the lab fixed coordinate chosen as shown (again this 

statement of choice of frame should be what you ought to do first), please 

compute the L and torque.  

The two masses coordinate are: <0,l,0> and <0,-l,0>. 

.  . (the I in this 

coordinate has the simplest form, and that is why I choose such frame) 

cos , sin ,0ω ω α ω α=< >
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The L will rotate around the vertical axis as time changes, and its change 

over time (fixed vector length): 

 

This torque is pointing inward to the paper (-k direction), and cannot be 

supplied by the gravity of the two masses (they cancel each other). The 

torque has to be supplied by the force on the ‘sleeve’ on the pivot axis: 

  

Example 3. 

  

The problem is a uniform rod is spinning as shown in the right figure. 

Find the angular velocity , assuming the angle with vertical  is 

known.  

The coordinate is chosen as shown in the left figure, a lab fixed one with 

origin at pivot so that we do not need to worry about the torque by the 

22 cos ,0,0L I mlω ω α= =< >
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2 2

2

ˆˆ ˆ                               

ˆcos         sin    0 2 sin cos

2 cos   0          0

i j k
dL

L ml k
dt
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ω ω α ω α ω α α

ω α

= × = = −

�
��
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force at pivot. The x,y direction is chosen to ease the computation of 

inertia tensor. At the instant shown, the inertia tensor and are: 

(x and z are zero for any points on the rod), all products of inertia are 

zeroes. , ,  

,  

Then, the angular momentum at this moment is: 

 

To find the value of , we shall apply the equation of motion: 

 

 

The angular momentum will rotate without change in length, so: 

 

 

 

(It is like a mass point hanging at 2/3 of l) 

This example is also good to test different choices of coordinates. Instead 
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of choosing the fixed point on the rod as I did above, you may choose 

CM translational type frame since we know the equation of motion works 

well in such frame. Please try this yourself, the inertia tensor will be 

somewhat different, the angular velocity would be same as above, and the 

torque is due to the force at the fixed point now, and the force there can 

be evaluated using the motion of C.M. The procedure would be similar to 

the detailed calculation above just a little more complicated. You may 

even try the lower end as origin, but then the inertial force (a force 

pointing away from the rotation axis here) and its torque has to be 

considered. Of course the last choice is most inconvenient in this example, 

I only state it to show you the variety. You may choose a lab fixed frame 

with the center of circle as origin too, but then you need to decompose the 

motion into CM motion and motion around CM, and the motion around 

the CM is just same as choosing the CM as origin.   

 

Example 4: This is addressed to a technical issue: evaluate inertia tensor 

at one instant, since we have seen we need this to get angular momentum. 

It is here because I will use it again in next section when we talk about 

principle axis.  
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For a squared cube as shown in the figure, at t=0, the coordinates are 

setup as shown in the figure, the pivot is at one corner of the cube. What 

is the inertia tensor at this time? The cube is uniform with total mass M, 

side length=a. What happened if we choose the pivot at the center of the 

cube? 

The computation of elements of the matrix is just integration based on 

definition in (7-32) and (7-33): 

 

, and y
2
 term will give same value, so: 

 

From symmetry, it is easy to see that Ixx, Iyy will have same value. 

 

The rest of products of inertia will have same value.  

So the matrix is: 

2 2 2 2
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( ) ...(  term)

a a a
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3 3
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xy

V

a Ma
I xydV dz dy xydx

ρ
ρ ρ= − = − = − = −∫∫∫ ∫ ∫ ∫
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Now provided with the angular velocity (say rotation around z axis or an 

arbitrary direction), the angular momentum can be computed at this 

instant.  

The form of inertia tensor will be much simpler if we choose the pivot at 

center. In this case: 

 

The products of inertia will all be zero due to the cancellation from 

symmetry. The matrix will have a simple diagonal form: 

.  If the . The angular momentum is this case 

will also take a simpler form: . 

 

7.3-3 Principal Axes 

In the last example, we have seen that the matrix representing the inertia 

tensor can be complicated as the pivot-at-corner case; it can also be 

simple in diagonal form as the pivot-at-center case. We like the simple 
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diagonal form, because in that situation, the relation for angular 

momentum and velocity is simple: 

 for diagonal I  (7-36) 

It turns out for any pivot on the rigid body, we can always choose the 

proper directions of coordinate axes to make the I diagonal
73

. Let’s 

suppose we have chosen the axes properly so that (7-36) satisfies, let the 

3 directions of axes be . If we have the angular velocity only 

along direction 1, i.e. , expressed in components along

: 

   (7-37)  

I used I11 for the old Ixx here. Similar relations (replacing the Ijj and ) 

for angular velocity only along direction 2 or 3. In short, for special 

angular velocities along certain direction, we have: 

   (7-38) 

On the left hand side, it is a matrix acting on a vector, it generally will 

change the input vector, give us an output vector. The output vector can 

be in any direction for the general case. However, for some special input 

vectors, the right hand side tells us the output would be a vector parallel 

with the input, the matrix will not change the direction of the vector, only 
                                                        

73 This is because the matrix of I is symmetric, and linear algebra tell us for symmetric matrix, the eigenvalues are 

real numbers and the eigenvectors are orthogonal. The orthogonality of the eigenvectors are good, meaning they 

are independent, can form a new complete base on which the matrix form of I will be diagonal. The details won’t 

be covered here or in supplementary (we already have a long math supplementary). Please pay attention in linear 

algebra course on this. Or read the linear algebra textbook on symmetry matrix and eigenvalue. (for example: 

“Introduction to Linear Algebra” by Gilbert Strang) 
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its magnitude by some number . These particular vectors satisfying 

(7-38) are called eigenvectors of the matrix, and the  is called 

eigenvalue.  

The principal axes for a pivot on rigid body, is defined as the directions of 

the eigenvectors of the inertia tensor. So finding the principal axes given 

a pivot is solving the eigenvalue and eigenvector problem in Linear 

Algebra. The general procedure is to choose a coordinate system with the 

pivot as origin. This coordinate (base vectors) is sort of arbitrary, may not 

be the eigenvectors, and the matrix of inertia tensor in this basis may not 

be diagonal. After we have the matrix form in the chosen basis, we can 

find the eigenvalue and corresponding eigenvectors (also expressed in 

components of the chosen basis). The point is if we chose the 

eigenvectors (normalized, i.e. with unit length, since we only need the 

directions) as new base vectors, the matrix expressed in the basis formed 

by eigenvectors will be diagonal. It is easy to prove that in the basis by 

the eigenvectors, the matrix will take the form of: 

   (7-39) 

the diagonal elements are just the eigenvalues which equals to the 

moment of inertia here. So by solving the eigenvalue and eigenvector 

problem, we get two birds with one stone: get both the principal axes and 

the moment of inertia.  
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The above general statement is a bit abstract and I’d better illustrate the 

points with a concrete example. Let’s take the cube with the 

pivot-at-corner as in last example. I have shown that if we choose the 

axes at certain instant as x-y-z in the figure above, the matrix for inertia 

tensor is: . The 

x-y-z basis chosen is not an eigenvector basis, otherwise the matrix will 

be diagonal. In order to find the principle axes (i.e. eigenvectors), we 

need to solve (7-38), rewrite it as: 

, ,  is the identity matrix
74

. 

   (7-40) 

In order to have non-trivial solution for the above equation (the trivial 

solution is all components of  are 0, that obvious satisfies the equation. 

It is trivial because it basically states that if the input is zero, the output 

will be zero too), the matrix has to be non-invertible, equivalently the 

determinant of the matrix has to be zero. i.e.: 

                                                        

74 Here is another awkward moment where the conventional symbols for inertia tensor and identity matrix clash, 

so I use symbol for identity. 
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   (7-41) 

This will give us a characteristic equation (a cubic equation in 3-D here) 

with  as variables, and it can be solved for the roots of . These roots 

are the eigenvalues we are looking for. For the cubic polynomials, we 

have 3 roots for  and will give us 3 eigenvalues, . There will 

be cases that two of the roots are equal (also called double degenerate 

eigenvalue), i.e. , this is called symmetric top for rigid body 

rotation. If all three eigenvalues are equal (triple degenerate), it is called 

spherical top. After we solved the eigenvalues , for each , we can 

solve for the eigenvectors (usually we just need to find the normalized 

eigenvector). 

Now back to the specific problem: 

The characteristic equation is: 

 

Here I neglect , just treat it as unit for the eigenvalues, and attach 

it afterwards.  

The expansion of the 3X3 determinant and factorize is a bit boring and 

lengthy, so I just present the results here: 
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This will give us the eigenvalues: 

, , put in the unit , the eigenvalues will be: 

,  

For , put this back into (7-40) to solve for , the eigenvector 

associated with this eigenvalue: 

, or  

I will solve the above linear equations with Gauss elimination method, 

after elimination: 

 

This tells me that there is no unique solution for this equation (we expect 

this, because anyway the eigenvector would only be a direction), there is 

one free variable we can choose, here the free variable is . I will set 

the nontrivial one , then  and . So the eigenvector 

for  is:  and we can normalize it to unit vector: 

. This will be the direction of one principle axis (along 

the main diagonal of the cube). 

For , put it back to (7-40): 
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After Gauss elimination: 

 

This is also expected, for this double degeneracy case, there are two free 

variables. I will chose  for one nontrivial solution, and this 

gives me . So . 

Similarly if I choose , I will get . So the other 

solution (also the choices of free variables make sure that this one will be 

independent of the ):  

The eigenvalue and eigenvectors problem have been solved. However, I 

should make it better for the double degenerate case. The two 

eigenvectors there are associated both with eigenvalue=11u, these two 

vectors are independent (they are not collinear), but they are not 

orthogonal! I’d better choose two orthogonal vectors as eigenvectors. 

This can be achieved by Gram-Schmidt orthogonalization: 

I will not change , just make it normalized: 

 

, so they are not orthogonal. I could manufacture an orthogonal 

vector (with respect to ) out of  by eliminating the projection of 
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 along , as the figure below suggests: 

 

 

You can check this is indeed orthogonal to  (both of them are 

orthogonal to , this is guaranteed by the property of symmetric matrix, 

that the eigenvectors associated with different eigenvalues are orthogonal. 

Try the dot products if you are in doubt) 

Final step is just normalization: 

 

So the principle axes for the cube inertia tensor are directions specified by 

. If we choose these unit vectors as our base vectors (the 

direction of new x-y-z coordinate), the inertia tensor is diagonal: 

, P stands for the principle axes basis.  
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eigenvalues (i.e. ), then any linear combination of , i.e. 

 is also an eigenvector with the same eigenvalue. Please prove 

it yourself from the definition of eigenvalue and eigenvectors. So the 

principle axes for the cube with pivot-at-corner are main diagonal of the 

cube ( ), and any two orthogonal vectors in the plane (passing the origin) 

perpendicular to the main diagonal.  

This is a pretty long example, because I tried to solve the 

eigenvalue-eigenvector problem in detail. You can imagine this is not a 

pleasant job for some odd shaped object. Fortunately for the objects 

considered in this course, it will have some apparent symmetry, so that 

the symmetry axis will be one of the principle axes, and the other two 

principle axes will be lying in the plane perpendicular to the symmetry 

axis. You will have no trouble to locate the principle axes for such object 

with certain symmetry. 

The reason I showed you the procedure here in detail is not specifically 

for this course. It rather points out one important application of 

eigenvalue-eigenvector problem in physics. You will see more such 

applications in the following courses in physics, especially in quantum 

mechanics. You cannot survive long in quantum without linear algebra.  

Suppose we find out the principal axes at certain pivot on the rigid body 

(stressing again, most often the pivots will be either a fixed point in 

inertia frame, or at the C.M. of the body), either by symmetry or detailed 

2 3λ λ= 2 3
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calculation as above or even lucky guess, we want to setup coordinate 

axes with principal axes. This will lead to simplest relation between 

angular velocity and momentum: relation like (7-36). 

(1) Euler Equation
75

 

We have seen that the advantage to setup a coordinate with principal axes 

of the rigid body. The trouble is these axes are attached to the body (you 

can imagine the principal axes are three orthogonal directions painted on 

the body). As the body rotates with some angular velocity  (viewed in 

lab frame), the principle axes rotate with the body at same . I will use 

x-y-z for the coordinates that fixed in lab (also called translational type), 

and 1-2-3 (represented by unit base vectors: ) for the principal 

axes attached to the body (also called body frame), as shown in the figure 

below. The origin O of the body frame will be chosen always at C.M., 

because we know we can apply the equation of motion with this choice in 

the translational type coordinates. 

 

At one instant, suppose the instantaneous 1-2-3 axes are as shown in the 
                                                        

75 This part (1) is not required for this course 

ω
�

ω
�

1 2 3
ˆ ˆ ˆ, ,e e e



 252

figure,  are the expression of the angular velocity in 

body frame; (stressing again: ω
�

 is the angular velocity measured in lab 

frame, but we express it in components in the body frame, the reason to 

go through this treacherous detour is to get simpler expression of angular 

momentum in the body frame) so the angular momentum at this instant 

expressed in body frame is: 

   (7-36) 

The fundamental problem is from the torque, solving the motion of the 

body, i.e. change of  over time. To apply the equation of motion: 

   (lab subscript is to stress that it is the change of L in a lab 

frame or translational type at C.M.). We will need the relation for the 

vector change viewed in lab frame and body frame, this is topic in the 

next chapter and also briefly discussed in footnote 66:  

   (7-42) 

This is a vector equation, and in real applications we need to specify the 

coordinate. In order to exploit the (7-36), we need to express the equation 

with components along , in body frame: 
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Equate each component will give us so called Euler equation: 

 

 

   (7-43) 

The three coupled differential equations are Euler equation. The  

are the projections of torque in the body frame. This makes the Euler 

equation awkward to work with. Because at one instant, like shown in the 

figure, we can project the torque along the 1-2-3 axes and solve the 

equation (not easy) to get the ’s at that instant. But as the body rotates, 

the projections  will change too. Euler solved this by introducing 

3 angles, the Euler angle to relate the body frame axes to translational 

type axes (lab frame axes), the angular velocity and torque components in 

body frame will be expressed in terms of these Euler angles, solving the 

motion of the body becomes solving coupled differential equations to get 

the change of Euler angles with time. The detail on Euler angle and 

solving coupled equations won’t be discussed in this course, it is quite 

messy in general case.  

For some simple cases, especially the case with no external torque, Euler 

equation can be used to solve the rotation of rigid body with relative 

simplicity. Some examples are given in KK section 7.7and beyond.  

(2) Rotational Kinetic Energy 

We have seen that rotational kinetic energy in 2-D rotation for rigid body 
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is: , actually from what we have discussed, it is 

.  

For the rotation in 3-D, what is the expression for rotational kinetic 

energy? With the C.M. as origin, the motion of rigid body will be pure 

rotational (the total kinetic energy according to Konig theorem is 

 of course), the rotational kinetic energy in C.M. frame: 

 

It is quite nasty if you expand above in some coordinates, you may try it 

yourself and you can get the same answer as below. So I will adopt the 

trick used in KK (p314). The trick is using the relation of triple product of 

vectors: 

   (7-44)
76

 

Let , we have: 

 (7-45) 

Actually in the derivation of 7-45, I do not use any specific property of 

C.M., so it could be applied to any point on the rigid body, and L of 

course has to be evaluated with respect to the chosen point. The reason to 

stress the C.M., is of course to use the Konig Theorem.  

If we have principle axes as coordinate axes, the (7-45) will give us 
                                                        

76 This can be proved by hack way, expanding everything on both sides. There is a nicer geometric way by seeing 

that both sides express the volume of a parallelogram formed by these 3 vectors.  
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something like the 2-D case: 

   (7-46) 

 

7.4 Gyroscope 

(1) Free-of-Torque Gyro 

 

A gyroscope is a rotor, usually spins with high angular velocity only 

along one principle axis (usually along the axis with largest moment of 

inertia). The rotor is usually mounted on sets of frames called gimbal 

mount that each gimbal mount allows free rotation about single axis. The 

gimbal mount can be arranged liked the ones shown above, to make the 

rotor ‘feels’ no external torque, thus the angular momentum of the rotor 

will be fixed, , is the moment of inertia along the spin 

axis(one of the principle axes),  is the angular velocity along spin axis, 

and if it is the total angular velocity, then from conservation of A.M. 

under no torque, we have constant angular velocity  too (if the 
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angular velocity is not along one principle axis, the angular momentum is 

still conserved under no torque, but the angular velocity will change, it 

can rotate around the fixed L, the angular momentum). Such 

free-of-torque gyroscope is very useful to specify an inertial direction in 

space. The application of it includes measuring angles in a rotating frame, 

such as the rolling and pitching of the airplane. Put the free-of-torque 

gyro in the airplane, if airplane rolls (wing-wing rotation) or pitches 

(head-tail rotation), the gyro’s spin axis will form a measurable angle 

with the frame of airplane, and this angle can be measured and used as 

feedback on controls of small fins on the wings of airplane, to adjust the 

fins making the airplane fly smoothly. Similar mechanism is applied to 

ships and yachts to make the boats more stable under waves. Now the 

iPhone and iPad contains a ‘gyroscope’ inside to detect the rotational 

motion of chassis. It is not a real mechanical gyroscope, but a piece of 

electronic design called MEMS (mirco-electromechanical system) that 

mimics the gyro, detecting the angular displacement of the chassis.  

(2) Gyro under Torque 

When the rotor of the gyro is subjected to an external torque, the motion 

of the gyroscope is a little bit unexpected. It won’t rotate along the 

direction of the force as a stationary object would do, but rather rotates in 

a direction perpendicular to the force, a motion called precession (This is 

in analogy to the motion under gravity: a static object will fall to the 
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ground, but a fast moving object will travel in parabola or even circular 

orbit provided with enough initial velocity). The reason of precession 

lying in the high angular speed of the rotor, the angular momentum of the 

gyro is almost all from its spin, Ls; under the external torque, the Ls will 

rotate in the direction of the torque, so that . It is along the 

torque not the force, and the torque by definition is always perpendicular 

to the force. Let’s analyze it more quantitatively: 

 

The gyro configuration for gravity pulled precession and simplified figure 

with coordinate setup (an instantaneous translational type coordinate, 

either with origin at C.M. of the rotor, or at pivot. I will choose C.M. 

below). 

Under the torque by gravity (choose pivot as origin) or by the supporting 

force N at the pivot (C.M. as origin), there is actually another force at 

pivot pointing along the shaft to supply the centripetal force but has no 

torque to the C.M. As the figure below shows the gyro which spins with 

about the spin axis would rotate around z axis with angular velocity 

, the precession angular velocity. We’d like to find this . 
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Due to the symmetry of the rotor, the x-y-z axis are principle 

axes(instantaneous ones). Let the moment of inertia are: 

. 

The total angular velocity vector is: 

 

 

As the gyro rotate about z axis, this angular momentum will not change 

magnitude but changes direction
77

, i.e.: 

 

The torque by the supporting force N=mg is: 

 

Then: , so: 

   (7-47) 

It is a little surprising that the rotor does not rotate about y direction. 

Actually, it did. That is called nutation. It has to be there from energy 
                                                        

77 I did not prove this. The is constant because there is no torque along x direction. From Euler equation: 

, ,with zero torque, the will not change over time.   
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conservation. The rotor spins with Krot, and now it also precesses around 

z with , this increase of kinetic energy has to come from somewhere. It 

comes from dropping of potential energy of the rotor. The rotor will drop 

to some lower level and this drops can be periodic up and downs as 

rotation around y axis, and this motion is called nutation. The detail 

treatment has to use Euler equation or the method in KK note 7.2. Under 

the usual condition that  is the dominant factor, the nutation would 

be a small effect.  

For a tilted gyro as shown in the figure: 

 

The method would be exactly similar. The origin is better chosen at the 

pivot (for simple torque analysis) and the x-y-z can be chosen 

overlapping principle axes (Not as shown in the figure, I will tilt the z 

axis overlap with the Ls) at this instant. Then the procedure will be 

similar to above, and you will need to use the gyroscopic approximation:  

 for simple result, which will give exactly same answer of  

as (7-47). 

By using gyroscopic approximation, we essentially treat the total angular 

momentum as Ls, and since  will not change (see argument in 
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footnote 77). The change of angular momentum with time is just  

as in KK’s example 7.7. 

(3) Some Applications of Gyroscope Motion (KK 7.4) 

The applications of Gyro motion are listed in the textbook as some 

examples (7.9-7.12). I will discuss the Gyro-compass in detail with the 

formal treatment, as a supplementary to the book’s intuitive argument 

(example 7.10, 7.11). As to the precession of earth’s spin and stability of 

rotating object (why the bullet out of rifle can hit target more accurate), 

please read the examples (7.9, 7.12). Noticed that for the earth precession 

case, this effect is the result of two facts: A) the earth is not a perfect 

sphere, it is actually a football shape with a bulge at equator. B) The spin 

axis of earth is not along the same direction as orbital axis. i.e. the spin 

axis has the famous 23 degree inclination to the orbit (the orbit around the 

sun is called ecliptic) axis. These two facts combined result a none zero 

torque to the C.M. of earth from the gravity of Sun (actually Moon has 

bigger effect, the reason is similar for the Moon case). If the earth is a 

perfect sphere, or no inclination of the spin axis with respect to ecliptic, 

then no net torque from gravity of Sun, and no precession of the earth 

(please figure this out yourself from symmetry). 

Now I will focus on the gyrocompass motion: 

sLΩ×
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Put the gyro on rotating table as shown in the figure. The force on the AB 

shaft would create a torque as shown in the figure up right, and the Ls will 

flip toward that direction. So the motion of the rotor will flip towards the 

direction of , and will oscillate around the  back and forth. A 

detailed analysis is needed to quantitative understand this oscillation 

besides this intuitive argument. The KK book offers a simpler method, I 

intend to solve this by the formal method and introduce approximation 

later to get the same results. It is more systematic and rigorous than the 

simpler method, but also more slow.  

The crucial fact is that along the AB shaft direction, there will be no 

torque. The external force acting at A,B, the torque with respect to the 

C.M. will always be perpendicular to the AB shaft. This will give us a 

relation in the equation of motion, and that is what we are going to 

exploit.  

a) Choose coordinate system: 

Ω
�

Ω
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The axes are chosen overlapping with the instantaneous principle axes 

of the rotor, CM as origin, so that , ,  

b) Angular velocity and angular momentum 

Notice besides , there is an extra degree of freedom for rotation, 

rotation around z axis (the shaft BA):  

 

 

 

c) Angular momentum change and equation of motion 

The angular momentum change (here only need to consider the z 

component) along the z comes from two parts: one is the  change 

over time, the other is the angular momentum as whole rotates with 

 in lab frame. (Combined is essentially the Euler equation along the 

z direction): 
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Here I used gyroscopic approximation  

 

Use small angle approximation, : 

 or  

This 2
nd

 order ODE (ordinary differential equation) is in standard form 

with standard solution, the will do a periodic oscillation, with 

angular frequency: , 

 where the amplitude  and initial phase  can 

be determined with initial conditions. (say initially the angle is at 

radian and zero , you work out the detail) 

This gives you same result as the simpler method in the book, but I 

explicitly showed you what the approximations are in order to get that.  

For the real setup for the gyrocompass at certain latitude on earth, use the 

same method above you can find the solution as that in the book, and you 

can see why the  term of the earth spin has no effect on the 

motion of the gyrocompass, try it yourself.  

This concludes our lengthy and detailed discussion on rotation and 

angular momentum. I hope you enjoyed it, if not at least you find it 

systematic and clear.  
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Chapter 8 Non-inertial Frame 

All the discussions in previous chapters I stick to inertial frames on 

purpose. However as we had seen in last chapter we have to deal with 

non-inertial frames sooner or later. We actually live on earth, and we 

know earth orbits and spins (though the effect is small in many 

applications, it cannot be neglected in some cases), so strictly speaking 

our earth frame is non-inertial by nature. To understand some phenomena, 

such as tide of ocean and weather system on earth, we have to resort to 

non-inertial frame. So in this chapter we focus on the effect of 

non-inertial frame, both in translation or rotation. We shall see that 

Newton’s laws are still applicable in such coordinate systems, provided 

we add some ‘extra’ forces arising from the fact that the frame is 

non-inertial. These forces are called inertial force or more appropriately 

the fictitious force (the two terms are interchangeable). It is fictitious 

because it originates not from real physical interaction between parties, 

but from our choice of coordinate system. However its effect on the party 

in an inertial frame is real enough to be felt by the party, you all have 

experience of push and pull in a accelerating / decelerating or centrifugal 

force in a turning automobile. Its effect on the motion observed in a 

non-inertial frame is just as real as a real force. We shall first look at the 
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translational accelerating frame, and the fictitious force is simple in such 

frame, just like an extra gravitation field. This part is easy and 

straightforward. It is important for the understanding of tidal force and 

equivalence principle between gravitation and acceleration. Then we shall 

treat the rotational frame, and see how the centrifugal and Coriolis forces 

come into picture. This is a bit more complicated, but we had some 

experience from last chapter, so this one would not be as hard as the 

stuffs we discussed in the last chapter.  

8.1 Translational Accelerating Frame 

 

As the figure shows, there are two frames (coordinate systems), the one 

labeled  is an inertial frame in which the Newton’s laws apply; the one 

labeled  is accelerating with respect to  at some acceleration A, but 

their axes are parallel and will not change over time, so this  is called 

a translational accelerating frame (with respect to the inertial one). 

We know the Newton’s laws apply in  and we would like to know 

what the equation of motion looks like in : 
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 and are the position vectors of the same point in the two frames, 

is the position vector of the origin of  in . Take time derivatives 

on both sides: 

 

 times mass on both sides and applies 2
nd

 law for the inertial 

frame: 

   (8-1) 

This is the equation of motion in the translational acceleration frame 

(what an observer sees in such non-inertial frame). It is still in the form of 

Force=ma, but now the acceleration is what observed in the non-inertial 

frame; and force has an extra component: besides the real force applied 

on the particle m, the particle also ‘feels’ an extra force . This  

arises solely from our choice of a non-inertial frame, and is called 

fictitious force or inertial force (it may be a little confusing, the inertial 

force is ‘felt’ because we choose a non-inertial frame).  

With the inclusion of this fictitious force, , the dynamics in the 

translational non-inertial frame could be solved exactly same as in inertial 

frame, as the example below illustrates: 

Example: The pendulum in an accelerating car.  

As the figure below shows, the pendulum is hang in a car accelerating 

with A, what is the equilibrium position of the pendulum and what is the 

period of its oscillation? 
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The equilibrium angle (vs. the vertical) is: 

 

The total force of Ffict+mg will be along this direction and it can be 

treated as an effective weight, with an effective gravity: 

 

So in an accelerating car, the effective vertical has angle , i.e. this is 

the direction of a plumb bob at equilibrium will tell you, and the effective 

gravity constant is , i.e. this is the pull ‘felt’ by the bob at equilibrium 

and also the weight shown by a weight-meter (the value |T |=mgeff). 

As to the period of the bob, the analysis will be exactly same as the 

pendulum under gravity with g replaced by geff: 

 for small angle oscillation around . 

Besides simplifying analysis in some situations as shown above, the 

fictitious force in the translational acceleration frame finds its application 

in explaining the tidal force and equivalence between acceleration and 

gravity (also called equivalence principle in general relativity). 

(1) Tidal Force 
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This term originates from the observation of tides in ocean on earth. We 

know that the ocean has high and low tides (climax and ebb) every day, 

and it happens twice daily. The question is how to explain this 

phenomenon. The effect comes from two facts: 

a) The gravitational field of Moon or Sun is not uniform, the gravitation 

force is proportional to 1/distance
2
 (the potential energy is 

proportional to 1/distance), and the earth is big enough to sense this 

non-uniformity.  

b) The earth is in free fall
78

 towards Sun or Moon, so the earth is a 

non-inertial frame.  

If we only consider the fact a), we will get wrong conclusion that there is 

only one high tide per day as shown in the figure below: 

 

To get the correct answer, we have to consider both a) and b) and include 

the fictitious force due to the free fall of earth for an observer on the 

earth. 

                                                        

78 The earth is orbiting around Sun, not flying straight toward it. But the effect is the same as free fall, i.e. the 

acceleration toward the sun is same for an orbiting earth and that of free fall.  
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The figure shows the gravitation force on different points on the earth due 

to Sun or Moon, since the effect of Moon is larger, so in the calculation 

below I will only use Moon: 

 

G is the gravitation constant, d is the distance of point on earth to the 

center of moon,  is an unit vector from center of Moon towards points 

on earth, as the figure below shows. The earth is big enough so that 

different points (a, b, c, d, o in the figure) feel different forces. This is fact 

a) above. 

Now take the fact b) into consideration, the earth is accelerating toward 

the Moon with acceleration: 
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So the total apparent force on the points on earth for the earth-bound 

observer is: 

   (8-2) 

   (8-3) 

For the point a in the figure at last page:  
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The apparent force felt by the points on earth is called the tidal force, it is 

smaller than the gravitation force (because it results from difference 

between the two gravitational force, as (8-3) indicates), and is roughly 

proportional to the 1/distance
3
. 

The calculation for  is similar but will point toward .  

The calculation for tidal force on points b, d are give in the KK’s book 

which will give (for b): 
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The tidal force distribution over the earth surface would be something 

like:  

2 2
ˆ ˆmoon moon

apparent o

o

M m M m
F F mA G d G d

d d
′ = − = − +

�� �

2 2

0

ˆ ˆ
( )

apparent o
moon

F d d
G GM

m d d
′ = = − −

�
�

ˆ ˆ ˆ
a o

d d x= =

2 2

1 1
ˆ( )

( )
a moon

o e o

G GM x
d R d

′ = − −
−

�

c
G′
�

x̂+



 271

 

The points a, c are locations for high tides and b. d for low tides, that is 

why every day you have twice the high / low tides (corresponding to a, c, 

b, d duo to spin of earth). We could also estimate the height of the tides 

(KK gives one account for this calculation, here is another from the 

argument of potential energy). Let’s suppose initially the water around the 

earth is spherical, uniformly distributed with same height above sea-level, 

so that the gravity potentials due to earth are same. Due to the tidal force, 

the water from b, d will flow towards a, c. The sea-level at a, c will 

increase and at b, d will drop. This change of earth-gravitation potential 

energy (change of height) is compensated by the change of potential 

energy due to tidal force, i.e. The increase of earth-potential (increase of 

height) is compensated by the decrease of tidal-potential for points at a, c. 

At final equilibrium under earth gravity and tidal force, the total potential 

 will be a constant for the surface of water around the 

earth: 

 

total e tU U U= +
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At equilibrium, the PQR water surface will be an equal-potential surface 

for . And the total force  

will be perpendicular to this equal potential surface (a property of the 

gradient vector), so the water will not be driven by the external force on 

such surface (of course the water still moves due to inactions with 

internal factors, such as wind etc). From this equal potential, we can 

estimate the height of the tides: 

 

 

The potential of tidal force can be computed from the force formula (8-2): 

The first half of the tidal force is just , gravity due to moon, 

and the potential associated with this is (which is just the potential due to 

the gravitation field of the Moon): 

 

The second part of the tidal force is a constant force which arise from the 

fictitious force: , or in the coordinate shown in the figure: 

, and the potential associated with this force is: 

 

Thus, the potential associated with tidal force is: 

total e tU U U= + total earth tidal totalF F F U= + = −∇
� � �
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For point Q, x=0,  

 

For point P,  

In the above derivation, I used Taylor series for (1-x)
-1

=1+x+x
2
+… and 

keeps 2
nd

 order terms so that the approximation would be similar at point 

P with respect to the approximation at Q, if you stop at 1+x, the 

approximation is a bit too crude for P. 

 

 

This is exactly same as in KK’s book derived from another model. You 

plug in the number for Moon or Sun with their mass and distance to earth, 

you will find that: 

 

So the effect of Moon is twice as large as that of Sun, because of its close 

range and thus bigger non-uniformity of the its gravitation field over 

earth.  

From the argument above, we see that when the Moon and Sun along the 
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line of (PR, or ac) with respect to earth, their tidal effects enhance each 

other, and we will get largest high tide in the month: It happens also twice 

per month, when the sun and moon on the same side (new moon) or on 

opposite side (full moon). The height of wave will be ~78 cm. But at 

some geological locations, such as narrow straight or channel, due to the 

constraint, the tide can be much more dramatic (this is indeed the reason 

of the famous tide where the Qian-Tang River meets the sea). When the 

Sun and Moon location at P and Q direction respectively, their effect 

cancels and we will have smaller high tides, also twice a month.  

 

 

(2) Equivalence Principle and Eotvos Experiment 

We have seen that in a translational accelerating frame, the effect is 

equivalent to introduce a fictitious force F=-mA. This adds an additional 

force to every point in the system, just like a gravitation field. The 

effective or apparent gravity constant would be: 

   (8-4) effg g A= −
�� �
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Considering the physics in the figures above, the right figure is an 

non-accelerating frame with gravity g (a stationary elevator on surface of 

earth), and the left is an accelerating frame without gravity (an 

accelerating elevator in outer space). The physics observed by the 

observers in each individual frame would be exactly same: F=-mg for the 

“apple” in each elevator. The observer cannot tell the difference by doing 

experiment within each frame: i.e.  

The physics in a non-accelerating frame with gravity g is equivalent to 

the physics in a frame without gravity but accelerating with A=-g. 

Equivalently, suppose we are in a free fall frame, that is the fictitious 

force cancels the gravity, A=g. The “apple” in such free fall frame will 

not feel any effective gravity. If you drop the apple, it just hangs in the air; 

if you push it to give it some initial velocity, it just travels in straight line 

(suppose no other external forces of course). So the free fall system is just 

like a perfect inertial frame neglecting the gravity force. i.e.: 

Physics in a free fall frame in a gravity field is equivalent to the physics 

in an inertial frame without gravity. 
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The above two expressions are usually called Equivalence Principle in 

general relativity, which is the “happiest idea” by Einstein. It shows the 

equivalence between acceleration and gravity, and offers a way to deal 

with physics under gravity.  One simple application of this equivalence 

principle is discussed in Note 8.1 of KK, to explain the gravitational red 

shift of light frequency, please read that yourself though it is out of the 

scope of this course, we only need that fact when we explain the 

twins-paradox in special relativity. 

There are two subtleties need to be addressed to this equivalence 

principle. 

a) It is a local effect. 

Local means our ‘elevator’ has to be small enough so that the 

gravitational field can be treated as uniform, though the force varies 

with 1/distance
2
. If the gravity source is far away (be it the center of 

earth or other stars) compared to the size of the elevator, the local 

approximation is good, and the gravity can be cancelled completely 

with the uniform acceleration. If the size of ‘elevator’ is big, then the 

non-uniform of the gravity need to be considered, result in the tidal 

force we discussed in (1).  

b) The equivalence between gravitation mass and inertial mass 

The equivalence principle resides on this fact. The total force felt by 

the object in the accelerating frame is (from (8-4)): 
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For the equivalence principle to be always true requires that the 

gravitational mass (defined by the Universal Gravitational Force) and 

inertial mass (defined by 2
nd

 law) has to be same (or same ratio) for all 

materials. We have discussed this in chap.4 of this notes, and I asked 

you to think about experiments to demonstrate this. The simplest ones 

will be free fall objects of different compositions, such as dropping 

different balls from Pisa tower and confirm that they all reach the 

ground simultaneously (as Galileo did). Or use pendulum of same 

length but with bobs made of different materials and confirms that 

they all have same periods (As Newton did). Please do the math 

yourself to confirm that these experiments indeed can show the 

equivalence of the two masses defined.  

A more accurate version to confirm such equivalence is by Hungarian 

nobleman and physicist von Eotvos and its modern version (by R. 

Dicke) shown in the figure below: 

 

A, B are bobs that are made of different materials with same 

gra inerF m g m A= −
�� �
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gravitational mass (say measured using a balance on earth
79

).  

The total force felt by A for observer on earth: 

 

, the free fall acceleration of the earth. 

 

Since we have A,B with same gravitational mass, the first part of the 

force are same for A and B. The force will be same (so that the torques 

by A,B w.r.t. pivot will be same in magnitude but cancel each other) 

only if the inertial masses are same for A,B too, then there will be no 

torsion detected by the balance in the apparatus shown above, this is 

indeed the case for bobs made of different materials.  

 

8.2 Rotational Frame 

For the rotational motion, the velocity will change over time, so that you 

always have nonzero acceleration associated with rotation, this implies all 

rotational frames are non-inertial, there will be fictitious force by 

                                                        

79 As we shall discuss in the next section, due to the spin of earth, the measured balanced mass is actually a 

combination of gravitational mass (most part) and inertial mass (a very small part). Because of the centrifugal 

force of the earth spin, the effective gravity on earth is a little bit off the true gravity. Of course you can measure 

the mass with balance at North/South pole to null the spin effect. Actually using the effective mass measured by 

balance has the advantage so that we do not need to consider the effect of earth spin and concentrate on the 

analysis on the force due to Sun (or Moon). 
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choosing rotational frame. Sometimes, we have to use rotational frame. 

For instance, we are living on the spinning earth, so the earth-coordinates 

are rotational type; we had also seen in last chapter dealing with rotation 

of rigid body, it is has advantage to choose the coordinate axes 

overlapping with the principle axes of the body. Since the body rotates 

and such coordinate system will be a rotational frame. 

The biggest difference between translational and rotational frame lies in 

the fact that how the base vectors change over time. In the translational 

type coordinate, base vectors are constant vectors over time; but in 

rotational type, the base vectors change over time. In order to see the 

formula for the fictitious force in rotational frame, we first need to study 

the relations in the change of vectors viewed from an inertial frame (has 

to be translational type) and viewed from a rotational frame, and prove 

the most important relation in this section, i.e.: for any vectors A, its time 

derivative (dA/dt)iner viewed in an inertial frame is related to the 

derivative viewed in a rotating frame (dA/dt)rot by: 

   (8-5) 

The  is the angular velocity vector of the rotating frame with respect 

to the inertial frame. (8-5) is the relation I mentioned in the footnote 66 

with some explanation but no proof, I will remedy that here. 

Comment: a common confusion arises from the vector A, so I need to 

address it to make it clear. The vector A in the formula (8-5) is the one 

( ) ( )iner rot

dA dA
A

dt dt
= + Ω×

� �
��

Ω
�



 280

same vector but viewed in different frames. Example: Beijing-Shanghai 

position vector A, viewed by ground observer is stationary and not 

changing with time; but for an observer in a rotating frame (say 

astronauts in spaceship) the same vector will appear rotating. This is easy 

to grasp for such vectors whose definition is independent of rotation. But 

there are vectors whose definition depends on the rotation, the most 

obvious example is that of angular velocity. The angular velocity vector 

viewed in one frame is ω
�

; but in a rotating frame, the angular velocity 

may appear as ω′
�

, an different vector. This is nothing new, the point I’d 

like to stress is the vector used in (8-5) is the same one. i.e. ω
�

 (or ω′
�

) 

on both sides of equation. You cannot put ω
�

 on the right hand side and 

ω′
�

 on the left side arguing that is the angular velocity in the rotating 

frame. That is not what (8-5) tells us! For the angular velocity case here, 

though the rotating frame observers see the angular velocity asω′
�

, but 

just imaging what happened he sees the change rate ofω
�

. That is what the 

(8-5) tries to tell us, relating the change rate of same vector viewed by 

different observers. You may wonder why we adopt such treacherous 

method, this is because we need to such as in case of treating the general 

rotation in 3-D. On the one-hand the equation of motion applies to inertial 

frame, we need to express the change rate of the vector in inertial frame 

(lab frame); on the other hand the expression directly calculated from lab 

frame would be difficult (such as due to non-diagonal, time varying 
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inertia tensor) but can be evaluated relatively easy in a rotating frame 

applying (8-5), that is exactly what Euler equation is about.    

 

8.2-1 Prove  

The proof can be carried out in two ways: Geometrical and Analytical. 

Both have its own merit so that I will show both below (KK provides the 

geometrical one in 8.5 and analytical one in note 8.2).  

(1) Geometrical Proof 

 

Suppose we have inertial frame x-y-z and a rotating frame x’-y’-z’. 

The two frames share same origin (if the rotating origin accelerating 

translationally, we had already discussed this situation, a fictitious 

force F=-mA shall be added. We neglect translational motion of the 

frame here to concentrate on rotational effect), x’-y’-z’ rotating with 

angular velocity  with respect to x-y-z. I shall choose  to be the 

z and z’ axes for simplicity of drawing but generally it can be any 

direction or magnitude.  

( ) ( )iner rot

dA dA
A

dt dt
= +Ω×

� �
��

Ω
�

Ω
�
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Consider the change of vector r over time. In the inertial frame: 

 

In the rotating frame, the initial vector will rotate with the coordinates, 

so for the observer in x’-y’-z’, he/she will think the as the initial 

vector: 

 

In the above relation  is the same vector as , but 

the  is not same as . So there is a difference between the 

change of vectors viewed from the two systems: 

 

Now we can derive the relation between the time derivative of vectors 

viewed from two systems: 

The /  is the time derivative of vector in an inertial frame, 

/ is the time derivative of the same vector in rotating frame. 

The question is what is ? This term is nothing but a 

change of vector with a fixed magnitude and rotate over time, we have 

known such change rate: 

( ) ( )r r t t r t∆ = + ∆ −
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Of course this can also be worked out from the figure above where 

,  is the angle between r and .  

Put all above together: 

 

I dropped and use , because the subscript already implies 

that the vector needs to be expressed in the rotating frame.  

In the above derivation, nothing special about the position vector, so 

we can replace it with any vector A, and thus we get relation (8-5) 

(2) Analytical Proof 

 

The x’y’z’ and xyz are shown in the figure,  is chosen to point in 

arbitrary direction (for we do not need drawing in this method). For a 

vector A, it can be expressed in both coordinates: 

   in the inertial frame 

  in the rotating frame 

Let’s take time derivative of the vector A: 

( )d r r
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dt
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= Ω×
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 using the expression in inertial frame. 

Using the expression in rotating frame, take time derivative, this time 

the base vectors also changes over time: 

 

 the change of vector viewed by the 

observer in the rotating frame who does not notice the change of base 

vectors.  

is the change of base vectors with rotation . It is the change of 

unit vector (length fixed) over time, and we know its formula: 

, similar formula for y’,z’, thus: 

 

Q.E.D. 

8.2-2 Relations between Accelerations in Inertial and Rotating Frames 

and Fictitious Forces 

Acceleration is just the second derivative of position vectors over time, 

also the first derivative of velocity. For the velocity vectors, we have: 

   (8-6) 

Now take the time derivative again for velocity, i.e. take in (8-5): 
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   (8-7)
80

 

Multiply the mass on both sides and apply the 2
nd

 law for the inertial 

acceleration:    

( ) 2rot rot

d
ma F m r m v m r

dt

Ω
= − Ω× Ω× − Ω× − ×

�
� � � �� � � �

   (8-8) 

There are three extra terms on the right hand side of (8-8), each defines a 

fictitious force (I shall omit the fictitious below): 

Centrifugal Force: 

   (8-9) 

Coriolis Force: 

   (8-10) 

Azimuthal Force: 

( )az

d
F m r

dt

Ω
= − ×

�
� �

   (8-11) 

For the most simplified cases considered in this class, the rotating frame 

rotates with a constant angular velocity with respect to the inertial frame, 

                                                        

80 Comparing the (8-7) to (3-52) which is the acceleration in an inertial frame expressed in terms of polar 

components, you will find striking similarity. The four terms on the RHS of (8-7) are just the terms on the RHS 0f 

(3-52). This is no coincidence of course, because in the polar coordinate, we can choose a rotating frame so that 

 (i.e. in such rotating frame, position vectors only have radial motion), and (8-7) will give us (3-52). So (3-52) 

is just a special case of (8-7). We derived (3-52) based on the fact that the base vectors are changing with time, 

same as we derived (8-7) here.  

( )cenF m r= − Ω× Ω×
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2cor rotF m v= − Ω×
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θΩ= ɺ

ˆˆ,r θ
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i.e.  is constant, then the Azimuthal force would be zero
81

. We shall 

focus on the Centrifugal and Coriolis force henceforth.  

With the inclusion of these fictitious force (adding them to the real 

forces), we can apply the 2
nd

 law to the rotating frame: (in the absence of 

Azimuthal force) 

   (8-12) 

In the following I shall give a detailed discussion on these fictitious 

forces. 

(1) Centrifugal Force 

This force is the easiest to understand since we all have experience with it 

sitting on a turning car, you will feel the force pushing you away from the 

center of turning.  

Imagine you are sitting on a carousel which is rotating with . In the 

rotating frame of the carousel, you are motionless: 

 

The force on you when observed in this rotating frame will be: 

Centripetal force by friction (or tension of strings etc.) which is the real 

                                                        

81 Sometimes you may see the azimuthal force is expressed in terms of in some textbooks, with respect to the 

inertial frame. This expression is same as given in the note, because for the angular velocity, 

, the last term is zero. 
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force: 

 pointing towards center. 

The centrifugal (fictitious) force in this case is: 

 pointing away from center (try it with 

right-hand rule, or use cross-product relations between ) 

The centrifugal cancels the centripetal in the rotating frame, as required 

by (8-12).  

Example: Effective gravity on earth. 

  

The real gravity on a particle at surface of earth is  pointing 

towards center of earth
82

. For anyone lived on earth (an earthling), we 

choose a local coordinate (North-South as y, East-West as x, and up-down 

as z) which rotates with earth spin velocity , which has a small value 

. For a stationary particle (be you or me or 

skyscraper standing on the ground), there will be a centrifugal force with 

value: 

 and its direction is shown in the figure.  

                                                        

82 Here I assume the earth is a sphere, which is a good approximation. The actual shape of earth is a ellipsoid with 

slight bigger diameter in equator due to the centrifugal force.  
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 is the polar angle (which is related to the latitude angle by 

). 

Because of this centrifugal force, the effective gravity force felt by the 

particle is: , and the effective gravity constant is: 

. 

The exact value can be computed using the figure above and cosine laws 

of triangle (KK problem 8.10). Here I would use some approximation: 

Decompose the centrifugal gravity along radial and tangential direction: 

 

 

The angle  between the true vertical (pointing towards earth center) 

and apparent vertical (the direction shown by a plumb bob hanging from 

ceiling, or the vertical perceived by us) is: 

 

At latitude of Beijing (approximate it at 45 degree latitude), this angle is 

about 0.0017rad.=0.1 degree.  

(2) Coriolis Force 

This fictitious force is more subtle than the centrifugal, so let me first 

discuss it from some intuitive point of view. Let’s suppose a particle on 

the equator of earth, which moves along east and west direction with 

same speed of earth spin, which is 1000miles/hour (1 mile 1.6km). So 

θ λ

2

π
θ λ= −

0eff cenF mg F= +
� ��

0 /eff ceng g F m= +
�� �

2

0 0sin sinradg g R gθ θ= −Ω ≈

2

tan sin cosg R θ θ= Ω

α

2

tan

0

sin cos
tan

rad

g R

g g

θ θ
α α

Ω
≈ = ≈

≈



 289

the particle does not move along east-west direction for the earthlings at 

equator. Now suppose that the particle also has a North velocity so that it 

moves towards higher latitude in North-Hemisphere. From an inertial 

frame if there is no external force (the gravity is balanced off by 

supporting force), the particle’s velocity will not change. But viewed by 

an earthling at higher latitude where the spin speed is smaller, say 700 

miles at 30 degree latitude, the particle will appear to have an east-ward 

velocity of 300 mi/hour relative to the earthling, so he concludes that 

there must be a force pushing the particle towards east (or right if viewed 

along the direction that the particle travels), this force is the Coriolis force 

arising from the rotating frame chosen by the earthling.  

Another intuitive example is as figure shows below: 

 

A frictionless disk is rotating with angular velocity. A particle initially 

starts at point A and travels upward in the inertial frame. For the lab fixed 

observer (in non-rotating frame), the particle will simply travel in a 

straight line. But for an observer in the rotating frame whose up direction 

is defined by ABC, the particle’s trajectory would be that shown in (a), 

bending towards right, the Coriolis force is the reason for this ‘bending’ 
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for the observer in rotating frame:  with upward for c.c.w. 

rotation.  If the disk (rotating frame) is rotating clockwise, the Coriolis 

force will bend the trajectory towards left. 

This same effect plays important role in the metrology system of the earth 

on the atmosphere motion (KK example 8.9,8.10) 

  

The local coordinate x-y-z on the surface of earth is shown, with +x 

corresponds to east, +y to north and +z to up. This x-y-z rotates as the 

earth spins. Let’s consider the surface motion of some particles along the 

earth surface, i.e.  in the x-y plane.  At latitude , the  can be 

expressed as: 

,  for surface motion 

The y component (or the Horizontal H component in the figure) of , 

will produce a Coriolis pointing along the z direction, its order of 

magnitude is about . Since  is a small number, 

so as long as v is not too big, 2 <<g (the gravity constant), and this 

Coriolis force due to can be neglected for this kind of problems.  

The z component (Vertical V) of the , will produce a Coriolis force in 
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the x-y plane (called  in KK). It always pushes the motion to the right 

side (viewed along the v and in the North Hemisphere): 

 

This effect is important in the weather system on the north hemisphere, it 

explains why the hurricanes, cyclones or typhoons(with low pressure 

center) rotates counterclockwise as shown in the figure (a) above and the 

real photos below: 

 

(This part is just for fun) There was once a ‘myth’ about the rotation of 

the toilet water, i.e. if you flush the toilet, which direction the toilet water 

rotates? (or you fill the sink with water and unplug the stopper, water will 

form vortex and what is the direction of the vortex?) The ‘myth’ attributes 

this to the Coriolis effect, especially publicized with one episode in the 

famous cartoon series “The Simpsons” (“Bart vs. Australia”, season 6 

HF
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episode 16). In the cartoon, Lisa (the younger sister) claims that the 

vortex will rotate counterclockwise in the North Hemisphere, and 

clockwise in South Hemisphere due to Coriolis force. This intrigued Bart 

and he made long hour phone calls to Australia to confirm it and the fun 

began. The ‘myth’ is busted. If the Coriolis force is responsible to the 

formation of vortex, it will indeed make the vortex rotating 

counterclockwise as Lisa claimed. However if you observe yourself, you 

will find the vortex can rotate either clockwise or counterclockwise in 

North and South Hemisphere (The toilet in my bathroom forms clockwise 

vortex, but the other one (in another bathroom of course) forms 

counterclockwise vortex). This is because the Coriolis is a small effect 

compared to other forces influencing the formation of vortex in a drain 

(such as the design of the sink and water jets etc). I hope Myth Busters in 

Discovery Chanel will make one episode on this ‘myth’☺. 

Now back to the serious stuff. The first example is free fall of object on 

the surface of earth: 

Example 1: Free fall of object on the surface of earth at latitude  

(KK’s 8.8 is a special case on the equator). 

The graph and the coordinate is same as the figure above. Initially and 

object is at position: 

, and initial velocity is zero. The centrifugal force will 

be included in the effective gravity constant as discussed in the last 

λ

( 0) 0,0,r t h= =< >
�
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example, so we do not need to worry it here (i.e. our vertical +z is the 

direction of effective gravity and g is also the effective gravity constant). 

As the object fall, it will pick up the velocity downwards (-z direction) vz, 

Coriolis force will push it eastwards: i.e. 

. ( has no effect in this step) 

Then the particle will gain velocity along , vx. This vx component will 

also generate further Coriolis effect: , this will 

modify the gravity constant;  , this will 

create a velocity along y direction. The detailed motion will be 

complicated as you have seen from the above analysis.  

Approximations are introduced to make the life easier: The velocity will 

only has significant part in –z direction, we shall neglect the Coriolis 

effect due to vx,vy (these are called higher order Coriolis effect, because 

vx,vy come from Coriolis effect in the first place). Also the modification 

on gravity constant due to the Coriolis effect is also neglected as argued 

above (2 <<g). With these approximations, the problem is easy to 

solve: 

The motion along z is just a free fall under gravity: 

 

Along the x direction, due to the Coriolis force: 

 

, C is 0 from initial condition. 

ˆ ˆˆ(  y) (  )  H zalong v along z along x−Ω × − → VΩ

x̂

ˆ ( )H xv along z up−Ω × →
�

ˆ ( )V xv along y south−Ω × → −

vΩ

21
, ,

2
zz g z h gt v gt= − = − = −ɺɺ

2 2 cosH zx v gtλ= − Ω = Ωɺɺ

2cosx gt Cλ= Ω +ɺ
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, C is 0 too from initial condition. 

Put in : 

 

As in KK’s example, if you are at equator ( ), and h=50m, the 

deflection along x (east) is only 0.77cm. Along the y direction (a higher 

order effect due to vx) is much smaller and is neglected.  

If you really want to have rigorous treatment, I shall show you the 

procedure below: 

,  

 

 

 

 

These are coupled 2
nd

 ODEs, hard to get exact solutions. Approximation 

we used above is clear by comparing these exact equations to the 

approximation equations used above. If you want further improvement, 

you can substitute the approximation results into these exact equations 

and solve for better approximation. This is called reiteration process.  

For the problems of effect of Coriolis force on the shooting projectile 

(such as battleship firing cannons toward North or East over a distance of 

30km at certain latitude), the Coriolis force will deflect the projectile by 

3cos

3

gt
x C

λΩ
= +

2h
t

g
=

3

2
1 2

cos ( )
3

h
x g

g
λ= Ω

0λ =

0, cos , sinλ λΩ =< Ω Ω >
�

, ,x y zv v v v=< >
�

sin cos ,  sin ,  cosy z x xv v v v vλ λ λ λ−Ω× =< Ω − Ω − Ω Ω >
� �

2( sin cos )y zx v vλ λ= Ω − Ωɺɺ

2 sinxy v λ= − Ωɺɺ

2 cosxz g v λ= − + Ωɺɺ



 295

100 meters (order of magnitude). The computation will be left as 

homework. 

Example 2: Foucault pendulum 

This is a device first demonstrating (by French Physicist Foucault in 1851) 

the Coriolis Effect and thus proved that our earth is spinning.  The x-y-z 

coordinate for the pendulum I chose would be same as in the problem 

above. The detailed calculation on the motion of a pendulum on earth 

including the Coriolis Effect is quite complicated (similar to the above 

example, coupled differential equations need to be solved)
83

. 

Let’s first see whether we can get some useful information without 

solving complicated equations.  

a) The centrifugal force will be included in the effective gravity so no 

need to consider it separately here. 

b) The motion of the pendulum with long length, the vertical motion 

(up-down) is small, and the bob is almost traveling (oscillating 

backward-forward) within the x-y plane. Thus the  part of the 

C-force will only modify the gravity constant and can be safely 

neglected. The period of oscillation would still be about . 

The  component will generate horizontal ‘bending’ force towards 

the right side of travelling. So the pendulum oscillation plane will 

                                                        

83 A detailed account on the solution can be found at Greiner “Classical Mechanics: system of particles and 

Hamiltonian dynamics” (his 2nd book on mechanics), chap.3 
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rotate clockwise (viewing from top). The trajectory of the bob over 

time will be something like: (the left one is the trajectory over one 

period of oscillation) 

 

(c) The precession velocity  can be estimated without complicated 

calculation. Suppose we put the pendulum at North Pole. The 

pendulum will oscillate in a fixed plane for an inertial observer. The 

earth will rotate c.c.w. with angular velocity  in this inertial frame. 

So for the earthling observer, the oscillation plane will rotate 

clockwise with angular speed . i.e.  (- means clockwise). 

Now suppose we put the pendulum at latitude , the angular velocity 

responsible for the precession, the FCH only comes from 

as argued in (b). So this is just like put the pendulum on the north pole 

of some planet spins with , and the same argument would lead 

to:  . This is exactly the same as that given in KK’s.  

Now I will show you some simplified formal treatment on this (not 

required for this course): 

θɺ

Ω

Ω θ = −Ω
� �
ɺ

λ

sinv λΩ = Ω

sinλΩ

ˆsin zθ λ= −Ω
�
ɺ
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The position vector of bob m is: , I used the 

small angle approximation and going to neglect motion along z direction 

(this is the approximation stated in (b)) 

T the tension force is parallel with r,  

, this will give relations of the components: 

,  

The . This is in accordance to the approximation neglecting 

up-down motion. Then: 

 and  

The Coriolis Force (contribute to the FCH) is same as computed before: 

,  here. 

Now the equation of motion of the bob in the earth frame is: 

 

 

, , , ,r x y z x y L=< >≈< − >
�
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�
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Let’s assign , then: 

 

 

Above is a coupled 2
nd

 ODE, and can be solved using standard method 

(which I shall omit here), the solution is: 

 

The x(t),y(t) can be solved by equating the real and complex part on both 

sides, the amplitude A can be determined from initial conditions. It is 

more illustrative by leaving the solution as above.  This shows the time 

change of a complex number (also called ‘phasor’, a vector-like 

representation for complex numbers), the magnitude changes as 

, the direction (the phase angle) rotates with . 

 

Chapter 9 Two-Body Motion in Central Field 

This chapter is more like an exercise to apply what we learned in the 

Newtonian mechanics so far. There won’t be many new physical concepts 

in this chapter. However a useful model will be developed: We can reduce 

the motion of two particles in a central field by a one particle problem. 

The particle is somewhat fictitious with a reduce mass subject to the 

central field. This only works for the two-body in central field, so in this 

2

0
sin ,  z

g

L
λ ωΩ ≡Ω ≡

2

02 0zx y xω− Ω + =ɺɺ ɺ

2

02 0zy x yω+ Ω + =ɺɺ ɺ

0( ) ( ) coszi t
x t iy t Ae tω− Ω+ =

0cosA tω sinz λ−Ω = −Ω
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sense, it is quite special. On the other hand it is also a model finding wide 

applications in various physical problems such as planetary motion, 

hydrogen atoms and two-particle scattering process etc. This is because 

as I mentioned before, that fundamental forces (be gravitation, 

electrostatic or nuclear) are central field forces, i.e. it only depends on the 

relative distance between the particles, i.e.: 

  (9-1) 

is the relative distance between the particles and is the unit vector 

along the line of centers,  is the potential of the central field.  

The successful explanation of planetary motion and discovery of 

universal gravitation is among the earliest and most important 

achievements of Newtonian mechanics. We shall study this in detail in 

this chapter
84

. It gives the Kepler’s empirical laws on planetary motion a 

deeper and solid physical ground. 

9.1 Reduction of Two-Body Problem to One-Particle, C.M. and 

Reduced Mass 

This is not completely new stuff. We had seen that when we deal with 

                                                        

84 The development of human knowledge from Ptolemy’s Geocentric (‘geo’ is Latin for thing related to earth) 

model to Copernicus’s Heliocentric (“helio” is Latin for Sun. The element Helium, second lightest, was first 

identified existing at Sun (He is more abundant in Sun due to nuclear fusion) before its discovery on earth) is a 

fabulous story. This led to Tycho’s observation and Kepler’s summary of his three laws regarding to the planet 

motion in solar system. The story is usually covered in astronomy books and won’t be discussed here. Interesting 

students can refer to “An Introduction to Modern Astrophysics” 2nd edition by B. Carroll and D. Ostlie, Chapter 1 

and 2. Or Chapter 4 in “Astronomy” 6th edition by M. Seeds and D. Backman for a lighter treatment. 

( )
ˆ ˆ( )

dU r
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= = −
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multi-particles system, the common ‘trick’ is to decompose the motion 

into motion of the C.M. (a fictitious mass point containing the total mass 

of the system), and the motion relative to the C.M. In the rigid body case, 

this will be pure rotation with respect to C.M. In the general two-body 

which is not rigid, the decomposition of motion will become motion of 

C.M. plus a motion of a particle with reduced mass (another fictitious 

mass point). Here is the proof in math: 

  

The two mass points are specified by vectors  in an inertial frame. 

The same system however equivalent well represented by another pair of 

independent vectors: , with: 

   (9-2) 

Reversely the  can be expressed as  (directly read from the 

figure above right): 

1 2,r r
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1 1 2 2
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1 2,r r
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   (9-3) 

In information of the system (its various physical properties, such as 

velocity, energy, angular momentum…and their time evolution) can be 

derived from the , as well as from . It turns out it is simpler to 

work out problems using . 

Let’s take a look of equation of motion for the (noticed we have 

already worked out for the R before). For the central force case, we have 

equation of motion: 

   (9-4) 3
rd

 law is applied here. 

Adding and subtracting the above two equations will give us what we 

want: 

   (9-5)  

This is just the special case of (5-5) when we introduced C.M. in the 

discussion of momentum, here the total external force is zero. The C.M. 

will be stationary or travel with constant velocity representing the shift of 

the complete system. The more interesting result comes from the relative 

motion between particles, : 
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m1 or m2 first). µ  is the reduced mass (we have seen it before in (6-63)) 

defined as (6-63) again: 

   (9-7) 

This complete our argument that the motion of two particles in central 

field are decoupled into independent motions of two fictitious particles 

with M and . The interesting part is the motion of  governed by (9-6) 

which is nothing but a single particle motion under a central force.  

 

9.2 General Properties of Central Field 

Here I shall concentrate on the reduced mass part, i.e. motion governed 

by (9-6). This is one-particle moving in a central field, and the coordinate 

is set up by choosing the center of the field as origin, as figure below 

shows: 

 

(1)  The angular momentum (associated with ) is a constant 

This is obvious from the figure, the torque by the central force is zero 

with respect to origin
85

. Actually we can prove this angular momentum 

                                                        

85 This could also be argued from our general theory on angular momentum chapter 7. There is no external force, 

1 2

1 2

m m
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µ µ
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(the momentum of the fictitious particle in the central field shown in the 

figure) is equivalent to the angular momentum with respect to the C.M. in 

two-particle system: 

 

Here I used results from (6-62) on , , and . The constant 

angular momentum implies that the motion of  will be constrained to a 

plane. This is great, not only one particle but also a 2-dimensional 

problem.  

(2) The mechanical energy (associated with ) is a constant 

The central force is a conservative force, as proved in example 2 in 

section 6.2-2 of this notes. This means the total mechanical energy is 

conserved, a constant of motion (This could also be equivalently argued 

from the two-particle system, similar to the angular momentum case). 

This energy is just the mechanical energy of the two-particle system with 

respect to the C.M.: 

 

                                                                                                                                                               

so the total angular momentum has to be constant. The C.M. is at stationary or under uniform velocity, so its 

angular momentum will be constant for any origin of choice. That leads to the angular momentum associated  

with  has to be constant too, this angular momentum is nothing but the angular momentum with respect to the 

C.M. for the two-particle system. 
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(3) Equation of motion of  

The (9-6) is the vector equation and in real applications need to be 

expressed in a coordinate system. In the 2-D central field, the natural 

choice is the polar coordinate we discussed in section 3.8. Expressed (9-6) 

in polar coordinate is: 

   (9-8a) 

   (9-8b) 

Above is just direct using 2
nd

 law in polar coordinates. It is worth to take 

a detailed look at these two equations. As I discussed at the end of section 

3.8, the (9-8b) will give us (after a small ‘trick’): 

, what is ? It is the angular momentum 

of particle , i.e.: 

   (9-9) 

So (9-8b) is a restatement of the conservation of momentum.   

Let me rewrite (9-8a) to shine more light on it: 

   (9-10) 

This appears like a one-dimensional motion, subjected to forces 

. You can easily recognize  is the centrifugal force. 

Suppose we are in a rotational frame that rotates with the particle . 

In such frame, the particle would appear only have radial motion with 

a fictitious centrifugal force , and its equation of motion along r is 

that given by (9-10), and is equivalent to (9-8a). How about Coriolis and 
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Azimuthal force associated with rotating frame? They are perpendicular 

to r (in this 2-D case) and they are exactly the two terms in (9-8b). Since 

no motion perpendicular to the r in rotating frame, the acceleration 

perpendicular to r is zero in rotating frame. Then the fictitious force 

would add up to zero (real force is also zero along this direction in central 

field), that leads to (9-8b).  

Sometimes it is also useful to express in terms of angular 

momentum , because is a constant of motion: 

   (9-11) 

It is also instructive to look at (9-8a) or (9-11) from the energy point of 

view. We shall see that it is equivalent to motion of a particle in a 

conservative potential Ueff(r).  

The total mechanical energy of the particle is: 

   (9-12) 

The mechanical energy can further be written in radial motion and 

angular motion of the particle: 

   (9-13) 

The second term of the RHS is just the angular (rotational) kinetic energy 

(recall ). Because l is a constant of motion, this term only 

depends on r. It can also be treated as a central field in addition of U(r). It 
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is also easy to see that the force associated with this potential  is 

just the centrifugal force in (9-11): . This justifies 

define an effective potential for the radial motion: 

   (9-14) 

The  part is called centrifugal potential.  

(4) Effective potential and energy diagram for radial motion 

We can learn quite a few qualitative results from the energy diagram of 

the particle in a potential. The effective potential is provided by (9-14), it 

certainly depends on the detailed form of U(r). For the centrifugal 

potential it increase as r decrease, i.e. it is repulsive and prevents (a high 

potential means barrier for the particle to penetrate) particles getting too 

close because the need of conservation of angular momentum. Let’s take 

the U(r) to be one important form of attractive potential for gravitation: 

   (9-15) 

1 2C Gm m≡  

The plot of potential curve is given in the figure below. The qualitative 

radial motion of the particle (note this is only part of the total picture of 

the particle motion which should also contains angular motion) can be 

understood by its total energy E, and energy E alone determines the type 

of orbit (this fact may worth remembering; of the course the detail shape 
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of the orbit requires angular momentum, we shall see these two energy 

and angular momentum determine the orbit in central field problem): 

 

1. E>0. The particle motion is ‘unbound’. It will reach a certain 

minimum radial distance  (the intersection of the E line and the 

effective potential curve) and then fly away. (we shall see later the 

trajectory of the particle is a hyperbolic curve here) 

2. E=0. Similar to case one except later we see that the trajectory is 

parabolic. 

3. E<0. The motion is bounded between to radial limits, . 

Corresponding to the intersections of E line and potential curve. 

4. E=Emin. The particle will have a circular motion around the center with 

fixed radial distance . 

It is interesting to look the case 4 in gravitation field. The minimum point 

minr

min max,r r

er
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of the potential is: 

2
2

2 2
[ ( )] | 0 ( ) ( ) 0
2 er centrifugal e e e

e

d l C
U r f r f r r

dr r r
µ θ

µ
+ = → + = → =ɺ  

This is the familiar form of circular motion under gravity in high school 

(you can also express the left hand side of the last relation as ). 

It is also interesting to know that if the  (A positive, n is any 

real number), you can prove that in order to have a stable equilibrium 

(means a minimum in the effective potential
86

), 0<n<2, which the 

gravitation field satisfies (n=1).  

KK example 9.2 and 9.3 further illustrate the qualitative description of 

motion from energy diagram, do read them yourself. (ex.9.2 can also be 

worked out by using what you learned in the scattering of two particles; 

9.3 needs the harmonic approximation close to equilibrium point. i.e. 

Taylor expansion around equilibrium) 

 

9.3 Solving the Equation of Motion 

We discussed general properties of motion in the central field above, and 

showed a qualitative picture on its radial motion. For a complete picture 

of the motion, of course we need to solve the equation of motion of 

                                                        

86 In such case, if the particle is away from the equilibrium (the point subject to no force, a local extreme, could be 

maximum or minimum in most cases), the force will pull the particle back towards the minimum. In case of 

unstable equilibrium happens at local maximum, if the particle is a little away from the equilibrium, the force will 

push the particle further away.  

2 / ev rµ
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particle .  

This is usually carried out by two approaches. The most direct way is 

solving the coupled differential equation (9-8a), (9-8b) to get the 

. This is unnecessarily complicated. It is much easier to start 

from (9-11), applying the fact the l is a constant in central field. Solve 

that 2
nd

 order ODE and get r(t), then angular momentum (9-9) to get . 

This approach involves solving ODE, but mathematically quite 

straightforward thus is preferred by many authors
87

.  

Another method is explicitly using energy and momentum conservation, 

and solve r(t) from energy relation (9-13), then solve  from (9-9). 

This approach has the advantage of expression the integration constant in 

energy and momentum explicitly. KK’s book adopts this approach and it 

will be introduced below. 

Starting from the (9-13) energy relation, taking the  as constants. 

They are indeed computed from the usual initial conditions, such as initial 

position and initial velocity (you should know the calculation from these 

to get by now). 

 

   (9-16) 

                                                        

87 For example, in Goldstein’s Chap.3; Taylor’s Chap.8, they all adopt this approach. 
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   (9-17) 

This is generally a nasty integral to handle unless for some specific forms 

of U(r) (still you may need integral table), and fortunately most important 

potentials do belong to these specific forms.  

The angular part can be solved then(in principle): 

   (9-18) 

   (9-19) 

Both (9-17) and (9-19) are not easy to solve, and a lot of times we are 

interested in the orbit function, i.e. , and this can be computed by 

dividing (9-16) with (9-18): 

   (9-20) 

At least in principle we can do the integrals to find out the time evolution 

of the particle ; or its orbit function . Let’s work out a 

specific example where the U(r) is gravitational field as in (9-15)
88

. 

 

9.4 Orbit Function for Planetary Motion 

The effective potential is: 

                                                        

88 Which is also applied to all forces obeys inverse squared of distance, such as Coulomb force.   
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   (9-21) 

Put this into (9-20): 

  

To solve above, I checked integral table: 

2

2 2

1 2
arcsin( ) for 0, 4 0

| | 4

dx bx c
c b ac

cx ax bx c x b ac

+
= < − >

−+ + −
∫  

The solution then is: 
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+
 

The integration constant can be moved to the left and combined with  

as some constant angle: 
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Solve for r:

 

   (9-22) 

By taking the convention (this is achieved by choosing the direction of 

the coordinate axes), set 0
2

π
θ ± = − and group the combination into 

parameters: 

   (9-23) 

   (9-24) 

The orbit will be in the form of: 
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   (9-25) 

(9-23) and (9-24) are important in a sense that they tell us the relation 

between the constants of motion (E,l) and parameters for orbit function 

(this is what I mean by saying that the energy and AM determine the orbit) 

This orbit function is the polar coordinate expression (shall be proved 

explicitly for ellipse below) of a group functions called conic sections 

because its geometry can be obtained by cutting a cone
89

. It represents a 

group of curves that are either elliptical (including circular), hyperbolic or 

parabolic, depending on the value of .  is called eccentricity
90

.  

(9-25) is the expression of these curves with the center at one of the foci 

of the curves (circle and parabola only has one focus point).  in front 

of the depends on which foci we choose as origin and how the axes 

related to the curve. We shall see this in detail below. 

                                                        

89 Refer to Thomas “Calculus”, chapter 10 for details on conic sections. 

90 This eccentricity is closely related to the one kind of geometrical definition of the conic curves, i.e. It is the ratio 

between the distances. The distances are that from a point on the curve to focal point and that from the point on the 

curve to s straight line (called directrix): 1 1 2 2/ /PF PD PF PDε = =  
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r
r
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=

±

ε ε

±
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(1)  , then r=r0. This is obviously a circle with radius r0 

 here just gives us 2 1 2
0 02 2

0 0

( )
C Gm m

ur f r
r r

θ = = = −ɺ which is the 

familiar equation of motion under circular orbit; and the energy is at 

the minimum of the effective potential curve. 

= , this indeed gives . 

 

(2) . The orbit function is elliptical.  

Because closed orbit is among the most important in the application of 

central field, such as satellites orbiting around the earth and planets 

around star. I shall devote more time on this than the other cases. 

 means E<0 (of course it needs to be larger than the 

minimum of the potential which is ). Before I show you that 

the (9-25) here indeed representing an ellipse, it is maybe a good idea 

to summarize some of the facts about the ellipse. 
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The above figure summarizes the important relations of an ellipse, 

with the coordinate chosen above, this ellipse in Cartesian is the 

familiar form: .  

The focal distance is:  

Eccentricity is:  (It could be also defined as in footnote above) 

 is the most common geometric definition of ellipse. 

 is second geometric definition of ellipse.  

 looks quite a different because it is written with polar 

coordinate and the origin is not at the geometric center but at one of 

the foci (F1 or F2). Now let’s show it explicitly that it is indeed a 

ellipse when .  

, take  for example 

2 2
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(replace ,r θ by x,y): 

 rearrange it: 

 

This is a quadratic function of x,y, and it is an ellipse
91

: 

 

can be computed by brutal expansion and equate the 

coefficients: 

   (9-26) 

This is an ellipse shifted towards right by , or equivalently the 

origin is shifted towards left by : 

 

, so  and the origin is just at the left foci of the 

ellipse.  

 so the , and this justifies that we call it eccentricity. 

This concludes the proof that  is the polar 

representation of eclipse with origin at left foci. Similarly 

                                                        

91 This can be tested using the general theory that for: Ax2+Bxy+Cy2+Dx+Ey+F=0, if B2-4AC<0, it is an eclipse.  
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 is also the polar representation but with origin at the 

right foci: 

 

They both represent the ellipse with different choices of origins, KK 

chose the left one, and others may prefer the right one. In real 

application, this choice seldom matters. For example the earth orbits 

around the sun, the sun will be chosen as origin. The earth will orbit 

around it with sun at one of the foci. Which foci then, the left or right? 

That really depends on observer’s choice of coordinate. If observer A 

chooses the sun to be the left foci; observer B could just rotate the 

paper 180 degree and see the sun at right foci. What I want to state is 

which expression (+ or -) to use depend on how you setup your 

problem. So for the rest of the discussion, I will follow the convention 

in KK, using  with the choice of the coordinates stated 

above.  

We have seen that if we know initial conditions, we can compute the E, 

l. This will allow us to determine the orbit parameters . Quite 

often, we also specify the orbits by the minimum and maximum 
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distance  (these are called perigee and apogee for satellite 

around the earth; or perihelion and aphelion for earth around the sun): 

   (9-27) 

There is another property at these points: the radial velocities are 0 at 

. This is obvious from the energy diagram on pg 305; as well 

as from the orbit, that at these points the instantaneous velocities are 

perpendicular to r, only has angular components. 

So knowing any pair of these (E, l; ; ;or a, b) parameters, 

the orbit can be determined. The relations of a, b with  is given in 

(9-26); their relation with E, l: 

   (9-28) 

Example: Harley Comet 

The famous comet approaches the sun. You could only see it when it is 

close to the perihelion. Suppose you did observation and measured the 

perihelion distance 
92

. This is not sufficient to get orbit 

of the comet around the Sun. Then you recall that the comet has a 

period of about 76 years. From these, the orbit of the comet can be 

determined. 

One important relation need to be used is Kepler’s third law: The 

                                                        

92 AU: Astronomical Unit. It is distance from the earth to sun, 1AU= about 500 light second or 8
1.5 10 km× . 

Measuring celestial distance is not an easy task;the simplest one would use trigonometric method.  
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period of the planetary motion around star is related to the major axis 

of the orbit, i.e.: 

   (9-29) 

K is a constant,  

Let me first prove this famous relation (It is used often by 

astronomers): 

 

 

Another nasty integral to evaluate on the RHS. I just checked table: 

 

Throw in (9-23) and (9-24),express in E, l: 

 

   (9-30) 

Hence, we prove the Kepler’s 3
rd

 law (KK’s offered another 2 methods 

of this proof in their section 9.7) Equipped with this relation, we can 

calculate  from T=76 years, and get . From the 

, the can be computed from (9-27) and the orbit will be 

known.  

Now imagining that a small meteoroid making an inelastic collision 

with the comet at perihelion, how the orbit will change? 
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The change of course depends on the collision. We know the velocity 

of the comet at perihelion (it only has angular part): 

 

The initial can be computed either from energy E or angular 

momentum l, which are known from above data. First consider the 

simpler case, where the meteoroid also travels along with mass m 

and velocity v0. After the inelastic collision, the whole thing has a new 

velocity that is also along , i.e. perpendicular to the radial direction, 

but with a new velocity v0’. This v0’ can be calculated from 

conservation of momentum during the collision. Thus the new angular 

momentum and energy l’ and E’ can be calculated. Then of the 

new orbit can be calculated too. The perihelion of the old orbit will 

still be a perihelion
93

, this means the new orbit will still be in the form 

of , this solves the problem. 

What happened if the collision has an angle with . The final velocity 

can still be computed straightforwardly, but this time  is not along

                                                        

93 If the meteoroid has enough momentum that is against the comet, the comet after collision can be slowed down 

so much that the perihelion of the old orbit may becomes the aphelion of the new orbit. 
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anymore. It has both radial and angular components. This means 

the old perihelion point is NOT the perihelion (or aphelion) point of 

the new orbit. The new orbit will be tilted compared to the old 

one(there will be an angle between the major axes of the two orbits): 

 (9-31) 

This will be the new orbit function. can still be determined 

similarly from the new angular momentum and energy. How to 

compute the tilt angle ?  

There is actually another condition, the collision point is on both the 

old and new orbit:  and in this 

question ,since the collision is at perihelion of one orbit, , and 

can be determined.  

This example, though the detailed values are not computed, outlines 

the method you may use to compute the orbit and orbit change in the 

central field problems.  

(3) , the orbit is hyperbola 

This is when E>0, the particle has non-zero kinetic energy at very 

large distance.  
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A standard hyperbola with the origin at geometric center is shown 

above with the form of: . 

Focal distance:  

Eccentricity:  

Asymptotes (dashed lines in the small figure):   

 is the common geometric definition (for right branch) 

 is the second geometric definition.  

For , if we use the convention , this will limit the 

range on the angle:  

, corresponds to and is the angle of the 

asymptotes. We will see this corresponds to the right branch of the 
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hyperbola. 

Similar procedure from polar to Cartesian will lead us: 

 

 

   (9-32) 

This is the right branch of a hyperbola shifted to the left, or the origin 

is shifted to the right by . is the focal length and the origin 

overlaps with the right foci.  

for  

for  

The case will be similar but the origin is shifted to the left 

foci and the hyperbola is the left branch.  Still the choice of + or – sign 
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depends on how you set the problem and we shall adopt the KK’s 

convention, this corresponds to the particle flies from infinity on the right 

side towards center or from center flies towards right.  

The parameter b is called impact parameter, it is related to the angular 

momentum and energy as: 

Suppose the speed of the particle at infinity is , then: 

   (9-33) 

So the motion can be described by a pair of parameters such as ; ; 

, or other combinations (such as a, b or asymptote angle etc). 

Example: Suppose a particle with mass m with speed v0 and impact 

parameter b flies towards Sun, what will be the closest distance to the 

sun? 

We could work out this two ways. 

First without using orbit function, the closet distance will be a perihelion 

point where the particle will have only angular speed, no radial speed, 

then:  

 

Take the positive root for r: 

 

The reason I am writing this is to compare with the second method. 
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The second method is using the orbit function: 

,  

 

The two methods gives the same results as expected. The famous 

Rutherford scattering experiment also apply the hyperbolic orbit in data 

analysis, there the interaction is Coulomb interaction (similar to 

gravitation).  

(4) , the orbit is a parabola 

This is when E is exactly 0, not a usual situation in real life.  

 corresponds to the parabola opens towards right, with 

the origin at the focal point of the parabola.  corresponds 

to the parabola opens towards right.  

(5) There is actually another possibility, that is , no angular 

momentum with respect to the origin. This corresponds to a particle 

dropped with initial zero velocity (or velocity along the center line). 

The particle clearly will travel in a straight line and in the collision 

course.  also represents this situation. Here, , 

r will take none zero value only at .  

 

In all above discussion, strictly speaking, I solved for the fictitious 
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particle with reduced mass. To get the real picture of the two-particle 

motion, I will need to combine this with the motion of center of mass and 

use relation (9-3) to get the motion of each particle. In many applications, 

such as planets orbiting around star, satellite around earth, or electron in 

the field of nuclei. One of the particles (the sun, earth, nuclei) will have 

the dominant mass, and the C.M. can be treated overlaps with this heavy 

particle, and the motion of the reduced particle we focused above will be 

that of the light particle.  

 

9.5 Kepler’s Laws of Planetary Motion 

Actually we have already proved three Kepler’s laws.  

The first law which states the motion of planet around the sun has 

elliptical orbit with sun at one focus. This is just the case of motion with 

total energy <0 in central field. 

The second law states the planet moves with constant area velocity, this is 

the consequence of constant angular momentum, and we proved this 

constant area velocity in Chapter 7. 

The third law states that the square of the period of the motion is 

proportional to the cube of the major axis of the orbit. This is proved in 

the previous example leads to (9-30) 
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Chapter 10 Vibration (Oscillation) and Waves 

 

As the figure shows, if you drop a ball in a bowl (frictionless), the ball 

just rolls up and down periodically. This kind of periodic motion is 

vibration. It happens in many natural systems (both in macroscopic such 

as the rocking motion of floating object in water, wind etc; and in 

microscopic, such as molecular vibration) and such vibrations are the 

source of the wave (the sound wave coming from vibration of musical 

instrument; light coming from vibration of electric dipole). It is this kind 

of motion we shall study in this chapter.  

The simplest model will be that of harmonic oscillator
94

. A mass is under 

a linear restoring force, i.e.: 

   (10-1) 

The mass-spring system, the simple pendulum or the physical pendulum 

we discussed in chapter 7 all fit in this category, and many more (such as 

a block floating in water due to balance between buoyancy and weight, 

                                                        

94 There is little difference between vibration and oscillation, so I shall interchange them freely. Harmonic comes 

from the original study of Greek on the sound coming from musical instrument, such as Harp. They found that 

when the string satisfies certain lengths for a harp, it produce sound pleasant to ear.  

mx kx= −ɺɺ
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push it down and release, the block will display oscillation). The wide 

application of this simple model comes from the fact as the above figure 

shows and as we already discussed in section 6-3: For any potential 

energy curve (such as that of a bowl, it is more hyperbolic than parabolic 

in the figure above) close to the minimum point, it can be approximated 

by: 

 

The first term is taken (set) as zero for the minimum (or any number, 

since it’s the potential difference that matters, the absolute value has little 

importance here); the second term is zero due to the fact of local 

minimum; and the third term will be the dominant factor of potential 

change due to displacement from equilibrium (higher orders are neglected 

at small ). Usually we shall use x to symbolize this 

displacement from equilibrium (effectively as taken equilibrium point 

), then the potential will be in forms of  and force will be 

, and the equation of motion will be that of (10-1) close 

to the equilibrium point for all kinds of potentials. The simple periodic 

motion with single frequency is the result of this equation of motion as 

we shall see below. 

The math we need in the derivation below involves solving ordinary 

differential equation (ODE) and is discussed in some detail at 
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supplementary III, please make sure referring to it for the math details 

there if you are new to this math.  

 

10.1 Free Oscillator without Damping 

 

We shall use the mass-spring model for the rest of discussion.
95

 A free 

oscillator is the mass is under no other external driving force besides the 

restoring force –kx of the spring; no damping means no dissipation force 

such as friction. This is of course the simplest the one can get. (10-1) will 

be rewritten in a standard form: 

   (10-2) 

 

(1) Displacement Motion 

Solving it with the standard method of 2
nd

 ODE: 

The guess of the solution will take forms of , and throw the guess into 

equation: 

   ( ) 

                                                        

95 Other models will be reduced to (10-1) too, with a different meaning of m, k and x. For example, in pendulum 

case, the m will be related to moment of inertia, and –k will be related to torque coefficient and x will be angular 

displacement. Discussions on these other systems besides mass-spring can be found in French’s ‘Vibration and 

Waves’ chap.3.  
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teλ
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From the discussions in supplementary III (under the 2
nd

 order linear 

ODE), the general solution of (10-2) is: 

 

The displacement function is obviously a real function, so: 

   (10-3) 

The constant  depends on the initial conditions: . 

So the motion is really periodic with period T of: 

   (10-4) 

The reciprocal of period is called frequency and (previously in 

rotation we call it angular velocity) is called angular frequency: 

   (10-5) 

A is called amplitude of the oscillation and  is called initial phase. If 

>0, the cosine curve will be shifted towards left (origin is shifted 

towards right); <0. The curve is shifted towards right (origin is shifted 

towards left). The convention is to choose the interval for  to be either 

 or . The meaning of period and amplitude and initial 

phase is shown in figure right below, it is a cosine shifted towards left, 

corresponds to some positive  (the figure on the left shows a simple 

device to plot the cosine motion of oscillation, electronic device such as 

an oscilloscope uses similar principle): 
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One useful geometric representation of (10-3) is rotating ‘vector’ (also 

termed ‘phasor’) method as the figure below shows. The arrow has length 

A (the amplitude) and forms a initial angle with the axis of choice, it 

rotates with angular velocity  (c.c.w. for positive ). The projection 

of such arrow along the horizontal direction is exactly that in (10-3): 

 

We won’t use this method much in this course. However, this ‘phasor’ 

representation will be very useful in the discussion of superposition of 

oscillations and waves, which will be among the most important 

principles when we talk about wave theory and light in later courses. 

You may notice that this rotating ‘vector’ representation is very much 

similar to the ‘vector’ representation of complex numbers (as shown in 

supplementary III), both are called ‘phasor’. This is no coincidence, since 

complex numbers are used mathematically to describe oscillation and 

waves; the origin is the Euler formula.  
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0ω 0ω
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(2) Velocity and Energy 

Take time derivative of (10-3), we get velocity: 

   (10-6) 

The velocity has a phase difference of  (it is called lead
96

 in phase by 

) comparing to the displacement. This difference in phase makes 

perfect sense from energy conservation. As the mass reaches largest 

displacement (highest potential) when , the velocity 

and kinetic energy are zero, and vice versa. The potential and kinetic 

energy are: 

 

 

   (10-7) 

The total energy is conserved (no change over time) and it is proportional 

to the square of the frequency and amplitude.  

The angular frequency is determined by the parameters of the system in 

(10-2); it is called natural frequency of the system and won’t vary once 

                                                        

96 This can be understood by picking a reference point, say the maximum, and the velocity will reach maximum at 

earlier time ( 0
2
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the system is fixed. The amplitude depends on the initial conditions and 

does vary in many cases. So we sometimes claim that the energy of the 

oscillator depends on the amplitude. This is a general property of 

oscillators and waves generated by such oscillators. We shall see in optics 

that intensity of light is also proportional to the square of the amplitude.  

Though the total energy is conserved, the kinetic and potential energy do 

vary with time. It is interesting to calculate their time average, which is 

defined as: 

   (10-8) 

T is the time period of average process.  

 

The  term drops out because if we average over a long 

time T (need to be larger than the period of oscillation), this term is 

negligible because up and downs cancels with each other for the cosine 

function in the integration (or if the time of average is just the period of 

oscillation, then the integral of sinusoidal functions over its period will 

always be zero; isn’t this obvious?). Similar result is for the kinetic 

energy (a time average of : 

   (10-9) 
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10.2 Damped Free Oscillator 

 

We shall study in this section a more realistic case where the oscillator is 

subjected to a friction force (called damping force), such as the 

suspension system shown in the figure above. The damping force would 

be always against the motion of the oscillator, and is assumed to be 

proportional to the velocity (which is equivalent of Taylor expand the 

friction force vs. v and keeps the lowest non-zero order) i.e.: 

 

The equation of motion will be: 

 

And this is usually expressed in another form: 

   (10-10) 

 

Characteristic equation for (10-10) is: 

   (10-11) 
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Case A：  weak damping (most important for us): 

Introduce: 

   (10-12) 

 

General solution is: 

   (10-13) 

When the damp is very weak, , the solution is like a oscillator 

with a slow decaying amplitude and a shifted frequency (comparing 

to its natural one), as the figure below (on the left) shows. The right 

figure shows a comparison between the 3 cases. 

Case B: , critical damping,  

The general solution would be: 

 

It approaches to zero at longer t. It actually approaches zero faster than 

case C. This is called critical damping, is the critical 

damping condition. This has wide applications in situations where 

oscillation is not wanted, such as suspension system in automobile. 

Case C: , strong damping 
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Note  are negative numbers, so the x(t) will decay to almost 0 at 

long run.  

  

Energy and Quality Factor Q for weak-damping case: 

Let’s consider the situation 
97

, then the calculated total energy 

can be approximated very good by (details in KK) the formula similar to 

(10-7), except the constant amplitude in no-damping oscillator needs to 

be replace by the decaying amplitude in (10-13): 

   (10-14) 

The lifetime can be defined as the time for the energy drop to  from 

the initial value: 

  (10-15) 

The quality factor Q is defined as: 

   (10-16) 

                                                        

97 Such case is quite common in microscopic system. For example, the electrons inside atoms oscillates on the 

order if 1410 Hz, its decay time 1 /τ γ=  is on the order of
9
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This tells you how good the oscillation is, the higher Q, the oscillator 

would be more like a harmonic oscillator. From (10-14) the energy loss 

per radian (or cycle) can be computed: 

 

   (10-17) 

Another interpretation of Q is also from energy point of view: 

The time required for the energy decay is characterized by , this 

lifetime corresponds to how many cycles of oscillation? 

   (10-18) 

So Q could also be interpreted relating to the number of cycles in a 

lifetime, i.e. time for energy drops by factor .  

 

10.3 Oscillator under Driving Force and Resonance 

Up to now we only considered free oscillator, here we shall investigate 

the oscillators under a driving force. We only consider a very special type 

of the driving force
98

: that is the driving force itself is also a harmonic 

function, with angular frequency . An interesting phenomenon called 

resonance will arise when the driving frequency is close to the natural 

                                                        

98 For the treatment of a general force other than harmonic or exponential type, we will need Fourier Transform 

(or Laplace transforms; but for frequency analysis of the system response, Fourier Transform is more common). 

We shall study Fourier Transform in detail in optics, so I shall not dig into it here.  
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frequency of the system. The system will response violently 

(energetically) in resonance.  

 

(1) Equation of motion and solution 

The standard form of equation of motion will be: 

   (10-19) 

The solution for this 2
nd

 order ODE is quite different from that (10-10). 

The details are in supplementary III under 2
nd

 order ODE. (10-19) is an 

inhomogeneous 2
nd

 order ODE, and its solution contains two parts: 

 

The  is one solution that satisfies (10-19), it is called particular 

solution of the equation; is called complementary solution which is the 

general solution to the homogeneous equation (10-10). I have already 

shown you the solution for in (10-13), so only is needed here. 

The derivation of  using method of complex number and Euler 

formula is presented in the supplementary, so only the result is shown 

here: 

   (10-20) 
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Take a time and look at the result. The particular solution is also an 

oscillation that has same frequency as the driving force, and it also has a 

phase delay or lead depends on the sign of . You may wonder where is 

the property of the oscillator itself, how about its natural frequency , 

damping ?  Well it is also reflected in the amplitude A, we shall see this 

will give rise to resonance. What is more, (10-20) is not full story for the 

solution yet, but it will be the dominant one at longer time. The complete 

solution of equation (10-19) is: 

2
1 1( ) cos( ) cos( )

t

p cx t x x A t A e t
γ

ω φ ω φ
−

′= + = + + +   (10-21) 

 is the amplitude for the complementary solution. At longer time, due 

to the damping, the complementary will decay into obliteration. The 

dominant part will be the  given by (10-20), and we shall only focus on 

this part in the later discussion. This does make sense that the oscillator 

will finally yield to the driving force if the force persists, so it will 

oscillate at the same frequency. However, the characteristics of the 

oscillator itself are not lost. They are reflected in the response through the 

amplitude and phase delay. 

(2) Resonance 

Here we discuss how the characteristics of the oscillator affect its 

response to the external driving force. The A and  of the response is 

given by (10-20) and are plotted in the figure below: 

φ
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γ
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px
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We can see that when the driving frequency is close to the natural 

frequency, the amplitude has its maximum. Actually we can calculate the 

driving frequency that gives maximum amplitude by usual differentiation 

method: , this will gives: 

 

At this driving frequency, the amplitude of the response of the oscillator 

is the largest, and this is called resonance. Under the weak damping 

condition, where , then: 

   (10-22) 

The oscillator will have largest amplitude and its phase will be  

behind the driving force (i.e. )
99

. For other frequency, the 

                                                        

99 Actually when 0ω ω= , from (10-20), we see that tan φ = ∞ . This implies that the phase difference could either 
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amplitude and phase are also shown in the figure. 

The energy curve of the response could also be computed from (10-20): 

 

 

 

 

Under the weak damping, we have seen that the amplitude is very small 

when the  is far away from , this implies the energy of the oscillator 

will also be small in such cases; so we shall focus on the case when  is 

close to the . The above equation on the average energy will be 

simplified to: 

The energy above is in a function form called Lorentian: 
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For , its maximum at (as expected from the maximum of A), 

and has a width of  at the waist, where the energy dropped to half of 

its maximum value at the waist. This width  defined this way is 

called Full Width at Half Maxima (FWHM). can be computed as: 

   (10-24) 

If you recall the definition of Q and expression of it, we see that Q can be 

expressed as (under weak damping): 

   (10-25) 

From the (10-24) and (10-25), we can see that the smaller or larger Q, 

the sharper the peak of resonance. The reason of close relation between 

the line width  and damping constant  (10-24) carries an important 

physical model: The uncertainty relation between frequency distribution 

and temporal distribution. Let me rewrite the (10-24), and express the 

damping constant with the lifetime of the oscillator using (10-15): 

   (10-26) 
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Fourier Transform in the study of Optics and is a general property for 

oscillation and waves; it will also give uncertainty relations in quantum 

mechanics.  

The phenomena of resonance have good and bad effects. The good ones 

involves receiving electro-magnetic signal by antenna (fundamental in 

communication, and the hearing mechanism of human ear is also based 

on the resonance) and probe the atom/molecule with light (the frequency 

of light (the driving force) has to be tuned close to the natural frequency 

of the atom/molecule (or electrons inside it) to be effectively absorbed). 

The dramatic example of destructive resonance is the collapse of Tacoma 

Bridge in 1940: whether the famous story that a marching Napoleon’s 

army caused a collapse of a bridge be true or not is a mystery, the 

collapse of a suspension bridge, Tacoma Narrow Bridge in state of 

Washington, is kept in film. The wind (not too wild) drove the bridge into 

rocking motion and that frequency matched that of the bridge, and the 

bridge shook violently under resonance and finally collapsed as the figure 

below shows. 
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10.4 Waves (Mechanical Wave) 

Let’s first consider the picture where the term wave comes from, a water 

wave. You perturb the water locally with some device (drop a stone at 

some point, set off a bomb under water surface, or just keep tapping one 

point on the surface of water etc.), you will observe water wave propagate 

from the source (the center of perturbation): a peak-trough water front 

(the ripples) moves from the center and across the surface of water.  

However, locally the water molecules do not travel far away from its 

original position as the wave propagates. This is best demonstrated by 

putting a rubber duck Dave on the surface of water. You tapped water and 

created a wave. When the water wave passes through the position where 

Dave is, the duck will start moving upward-downward, or left-right, a 

kind of oscillation up-down or left-right. It does not drift away as fast as 

the water wave.  
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Similarly if you attach a rope with a vibrating end, you will observe a 

wave motion across the rope: 

  

As shown in the left, you can create a lump of displacement and it will 

travel along the rope (this lump is called wave packet), you probably see 

this in the show of artistic gymnastics with ropes. The one on the right is 

with a vibrating end that keeps oscillating, and this will create a 

sinusoidal wave along the rope. These are not strange phenomena, the 

point I want to show is like that in water wave: The local perturbation 

creates wave (a jerk at the end on the left; an oscillation on the right here); 
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the wave propagates along the media (the rope here); the local point (P 

point above) only does some oscillation around its equilibrium position 

(up-down oscillation above), while the wave propagates far away. We see 

it clear that it is not the particle P moving forward along the rope; it acts 

as a media so that its oscillation will relay the perturbation originated 

from the source to the point next to it, and such perturbation (carries 

energy) travels along the media. What we observe of the wave is the 

propagation of this energy, generated at the source of perturbation and 

relayed through the media. This wave is a collective motion of many 

particles in the media (many water molecules, particles in the rope, and 

for sound wave many air molecules in the relay of passing the sound), 

individual particles only do some local oscillation while through 

interaction with others, the energy is passed on further away.  

The examples above are called mechanical waves. From the discussion 

above, we see that it has following properties (as I already stressed above, 

below is a summary or reiteration): A) The wave is created by a source of 

perturbation. B) It propagates through a media, and its energy is 

transferred forward through the physical interaction between particles of 

the media like in a relay race, i.e. the energy propagates forward
100

 

though the media particles only do some local oscillations. So the wave 

motion is the result of collective motion of many particles in the media. 
                                                        

100 From the study of relativity, we shall see the equivalence of energy and mass. So physicists assign 

‘particle-like’ stuffs to the wave propagation: phonons for sound wave and photons for electro-magnetic wave.  
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An analogy of this is motion of a parade or demonstration where 

tens-of-thousands people crowded in the street. Though each individual 

person only moves as particle-alike, observed from far away (say on a 

helicopter above), the motion of the mob as whole (a collective motion) 

will be like a wave.  

Besides mechanical wave, we are going to study another important wave 

later, the electro-magnetic wave (E-M wave). It has similarity and 

difference from the mechanical waves we discussed here. It still requires 

source of perturbation (an accelerated charge for instance), but this wave 

can propagate through vacuum (no need for media molecules) due to the 

elector-magnetic interactions are self-induced. The electrons that created 

the field may only drift at a very small speed (order of cm/sec. in a 

conducting wire), and the field (and the energy of E-M interaction) will 

propagate at the speed close to that of light in the wire. 

The study of wave can be quite different from our study of motions of 

single particle where this course has treated in detail already. It will be a 

major part when we study Optics and Quantum Mechanics. Here I shall 

only briefly discuss the mechanical wave and leaves the detailed 

treatment on wave to later courses. 

(1) Wave Equation 

We are going to work out the equation that gives the motion of the 

mechanical wave here. But first question is how we represent this 
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wave? i.e. what is the function form describing the wave? I shall use 

the rope in the figure above as an example. Under the disturbance, 

each point on the rope is doing some kind of oscillation, i.e. taking 

point P as example: its displacement from equilibrium is changing 

over time: 

. y is the vertical displacement in the rope case,  is 

to specify its position on the rope (say we cut the rope in small 

segments and consider the p
th

 segment) and this displacement is 

changing over time. For the collective motion of all points on the rope, 

the description would be a function with variables of both x and t, i.e. 

, and it is called wave function. 

Let’s take a very small segment of rope centered around some point x 

with small length : 

 

The tension along the rope is same everywhere (we shall prove this 

below with assumption that the rope does not accelerate along the x 

direction, and the piece is small enough to neglect weight). Now let’s 

bend this small piece a little from its equilibrium position (y=0). The 

tension of the rope will be always along the tangential direction (this 

( ) ( , )P Py t y x t= Px

( , )y x t

x∆
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is true for the soft rope that there will be no shear force in it, i.e. if you 

make a cut of the rope with a cross section, the tensional force will be 

normal to the cross section and the shear force will be parallel with the 

cross section. Here we assume only tensional force exist). The force at 

the two end forms angles  respectively w.r.t. x axis. The rope 

has density .  

With the conditions given above, we can analyze the dynamics of the 

rope. First the force: 

 

For a small displacement of y, the angles will be small ones; and the 

difference between the angles would be also very small, i.e.: 

; : 

 

There will be no motion along the x direction for this little piece as 

expected.  

Along the vertical displacement: 

 

Also from geometrical constraint, at certain time t: 
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So:  and 

 

Rewrite the above into a standard form: 

    (10-27) 

   (10-28)  

The (10-27) is called wave equation and (10-28) is an expression of v 

in terms of tension and density for the rope model. We shall see that 

the physical meaning of this v is the velocity of wave propagation
101

. 

Though (10-27) was derived with our specific simplified model of 

rope under tension, it turns out that other waves will satisfy same 

equations including the E-M wave. This justifies that it is being called 

wave equation
102

.  

(2) General Solutions and Harmonic Wave 

                                                        

101 Strictly speaking, this velocity is the phase velocity of the wave. There are other velocities on the propagation 

of wave and we shall not discuss this in depth here (We will in Optics course). 

102 Of course the expression for v will be different in different cases. Also the waves here are limited to the 

classical waves, which obeys Newton’s equation or Maxwell equation in the classical theory. In quantum, the wave 

equation (the Schrödinger Equation) will be different from (10-27.) 
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The wave function (or  more generally) need to be 

solved from wave equation (10-27), this requires solving partial 

differential equations (PDE) with boundary conditions or initial 

conditions. It is out of the scope of this course to solve PDE
103

, so I 

shall just give out the general solution directly: 

   (10-29) 

The general solution to the wave equation (10-27) is in this form,  

is some function (need to be defined by initial conditions) with spatial 

and temporal variables grouped as ! You can test that (10-29) 

does satisfies the wave equation by plugging it into (10-27). The

represents a wave with some initial form  (at t=0) 

traveling towards right (positive x direction) as tine progresses and it 

is shown in the figure below, displayed as ‘snap shots’, i.e. displays 

the wave function at some fixed times: 

   

                                                        

103 The PDE in forms of (10-27) is not too hard to solve. It can be solved with separation of variables or with the 

Fourier Transform method. We will come back to it in the Optics course.   

( , )y x t ( , )x tψ

( , ) ( )y x t f x vt= ±

f

x vt±

( )f x vt− ( )f x



 351

will represent a wave with initial form travels towards left.  

The detailed form of  depends on initial conditions and can vary 

from simple functions to complicated one depends on situation. The 

simplest form and also the most useful
104

 of the wave function will be 

that of harmonic functions, i.e.  is in form of sinusoidal forms, and 

the waves represented by such functions are called harmonic waves. 

The convention is to choose cosine function (of course you may 

choose the sine function, but that only means a phase difference of
2

π
): 

   (10-30) 

This is the general function form for a harmonic wave. A is the 

amplitude and  is the initial phase. It represents a traveling wave 

propagating towards +x direction. The meaning of k is going to be 

discussed next. First the figure below shows a traveling harmonic 

wave at two ‘snap shots’: 

   

The wave propagates towards +x with velocity v: 

                                                        

104 It is useful not only because these harmonic function are generated easily by a harmonic oscillation, but also 

because of the method of Fourier Analysis in which other complicated function forms can be expressed as 

superposition of these harmonic functions. So the harmonic wave functions discussed here are going to be building 

blocks for complicated wave forms. 
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As the figure shows, the wave function in (10-30), at t=t0, for a point 

, its displacement is: , as shown by 

the vertical dashed line. Suppose you monitor how this point on the 

wave travels (of course you can pick other points such as the maxima 

or minima or zero). At later time , this displacement moves 

to the position at , this means the phase inside the cosine 

function has to be same, i.e.: 

 

Which is exactly the meaning of velocity (since this velocity is how 

the equal phase point travels, it is called phase velocity for the wave). 

Also in these snap shots of the wave, at a fixed time t and for 

simplicity I just take t=0, the wavelength of the wave is defined as 

spatial interval at fixed time so that the phase difference is : 

   (10-31) 

   (10-32) 

k is called wave number (angular wave number to be more precise, 

since wave number sometimes is defined as ) 

Now pick a fixed point , and see how its displacement 

changes over time, it is a harmonic oscillation as the sketch below 
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T is the period of oscillation which is defined as time interval so that 

the phase difference is by : 

 

 

We shall define frequency  and angular frequency  as; 

   (10-33) 

The phase velocity would be: 

   (10-34) 

(10-32) to (10-34) are basic definition and relation between the 

parameters used to describe the harmonic wave, so given a pair of 

parameters such as  or , you should be able to compute the 

others. The harmonic waves are usually expressed in terms of : 

   (10-35) 
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block for complicated cases. 

(3) Rate of Energy Transfer 

As we stated earlier, though the individual particles does not move far 

away from its equilibrium position, such as those on the rope, there is 

energy carried by the wave that propagates along the rope. In the rope 

case, the vibrational energy from the oscillating source transfers along 

the rope in form of wave. This energy carried by wave in the rope case 

is stored as the kinetic and potential energy of the rope and thus can be 

computed.    

 

Consider a small segment of the rope with length of  along the x 

direction (this is the length when the rope is totally relaxed). The mass 

of it is: . Its kinetic energy is: 

   (10-36) 

For the general solution this is , q x vt≡ − : 

   (10-37) 

It is more proper to define an energy density, i.e. the energy per unit 

length in this case: 

   (10-38) 
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For the special case of harmonic wave, : 

, its time average 

would be: 

   (10-39) 

The above is taking the time average of the (10-38) while use the 

sinusoidal relation: 
2 1 cos2

sin
2

x
x

−
= , the sinusoidal (cosine here) 

time average is zero.  (10-39) is quite similar to the (10-9), the 

average kinetic energy by an oscillator. There is no surprising, as we 

have seen that at certain fixed special point, the harmonic wave 

function reduced to a particle doing harmonic oscillation. Then 

following the result of (10-9), you probably could guess that the 

averaged potential energy density stored in the rope  would be 

also in form of (10-39) and the total energy density would be 

. This is an excellent guess, with the sound physical 

argument that it is harmonic oscillation for any fixed spatial point. 

However, let me be a little more rigorous and derive the potential 

energy density and not limited to harmonic waves. 

The potential energy of the rope must due to the stretch (or compress) 

of the rope from its natural length dx. As the wave propagates through 

the rope, this dx segment would be stretched to length ds, and the 
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potential energy due to the tension is: 

 

 

The small change of dy due to the dx in this case is : 

 

 

If the  is a small number for a small transverse displacement: 

 

The potential energy density would be: 

   (10-40) 

For the general wave function : 

   (10-41) 

This does equal to that of  in (10-38) if you recall that .  

For the special case of harmonic wave function, the relation  

still holds and the averaged total energy density is (for harmonic 

waves): 

   (10-39) 
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proportional to the square of the amplitude, which is expected from 

the results of harmonic oscillation. 

The rate of energy transfer of the wave is defined as the energy flow 

through a certain point per unit time, which would be just the energy 

density times the velocity of the wave: 

   (10-40)   

This is the formula of rate of energy transfer for a traveling harmonic 

wave, since we did not consider dissipation (loss of energy due to 

friction etc) in the derivation, it is an idealization. (10-40) certainly 

makes sense that if you want to create a wave with high frequency, 

large amplitude and travels fast, you need high power input at the 

source to sustain the wave.   

Example: Suppose I drive a string of  with a tension of 

. The amplitude of the harmonic wave I created will be 6cm, 

and my hand is shaking with a frequency of 20Hz. How much power 

must be supplied by me to sustain the wave? 

The power of the energy transferred by the wave is given in (10-40), 

and this power has to be supplied by the driver. 

Given the conditions, this is just plug the number into formulas: 
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The wave discussed above is what is called transverse wave, where the 

vibration motion of each element is perpendicular to the direction of 

propagation of the wave (the direction of energy propagates). Examples 

of transverse wave include the wave on the rope, electro-magnetic wave 

(light), etc. There is another type of wave called longitudal wave, where 

the vibration motion is parallel with the direction of wave propagation. A 

typical example for this kind of wave is the sound wave, which caused by 

the molecular density (the pressure) variation of the air. The treatment on 

longitudal wave is same as the transverse case, so I will not derive the 

wave equation for the sound wave
105

. 

  

                                                        

105 If you are curious on the details, please refer to Serway and Jewett’s “Physics for Scientists and Engineers” 

chap 17. Or H.J. Pain’s “The Physics of Vibration and Waves” chap.6 for more serious reading.  
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Part II 

Introduction to Special Relativity 
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Outlines of the Topics in Special Relativity: 

Chapter 11 Birth of Special Relativity 

Topics: 1) Historical background: The difficulty in E-M with Galileo 

Transformation, a special inertial frame ‘ether’ and efforts to detect such 

‘absolute ether’ frame: Michelson-Morley experiment and efforts to save 

the old mechanics (ether drag model and bullet-gun model, Lorentz 

transform based on ether frame etc) 2) Fundamental postulates by 

Einstein  3) Direct results from these postulations: (definition of events 

first) time dilation, length contraction and most important that these are 

caused by the simultaneity problem, simultaneity is a relative thing, 

depending on the reference frame. These will pave the way for the 

Lorentz transformation.  

 

Chapter 12. Lorentz Transformation 

Topics: 1) Derivation of Lorentz Transformation from homogeneity of 

space-time (results in linear transform) and isotropy of space (only time 

and coordinate along the direction of motion will be coupled) + length 

contraction and time dilation already discussed can be used to get Lorentz 

transform. 2) From L-Transform to look at time dilation, length 

contraction and simultaneity.  More examples to apply this transform as 

the following topic will demonstrate 3) Doppler effect. 4) Paradox: 

yard-barn; star war and twin paradox. 5) Minkowski diagram. 6) 
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cause-effect requires signal speed is less than c to avoid contradictory, 

absolute future and past ( time-like) and absolute alibi (space-like). 

Topics paved way for the next chapter: 7) velocity relations (transform) 

 

Chapter 13 Relativistic Dynamics: Momentum and Energy; 4 vectors 

Basically the relativistic momentum and energy will be introduced and 

defined by two methods. First directly from extending the conservation 

laws of classical mechanics and work out the relativistic momentum and 

energy by requiring such conservation still holds in all inertial frames. 

Second define the space-time 4 vectors and the most important: the 

invariant spatial interval under L-transform, using another form of the 

invariant, proper time, to define energy-momentum 4-vector.  

Topics include: 1) Relativistic momentum and mass from conservation. 2) 

Energy from work-energy theorem and its equivalence to mass. 3) 

massless (rest massless) particles and speed limit on particles. 4) 

Space-time 4-vector and invariance spatial interval; re-derive L-transform 

from this invariance (in analogy to rotation but with hyperbolic sinusoidal 

function, this is optional). 5) Proper time and extend 4-vectors from 

space-time to 4-velocity, and energy-momentum and shows that this 

approach will give same results as in topic 1) and 2). 

  

Chapter 14. Relativistic Dynamic  
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Topics: 1) Transform of Acceleration. 2) Force and its transform; 4-vector 

form of the force and equation of motion in relativity (in special relativity 

only, no geodesic approach) 3) Examples: work out some simple 

examples of trajectory of motion in SR.  
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Chapter 11 Birth of Special Relativity 

Here we shall discuss the historical background leading to the birth of 

special relativity. The materials I chose to present may not be strictly 

chronological but to serve a logical argument
106

. We shall see the 

difficulties facing the physicists more than 100 years ago, i.e. the less 

harmony between classical mechanics and classical electro-magnetic 

theory (E-M) and the efforts tried to correct this. The two fundamental 

postulates proposed by Einstein solved difficulty and unveil the truth in 

space-time which has long and profound (even shocking and confusing to 

his contemporary and beginners) influence. We shall study the 

experimental facts (though Einstein was not aware that of Michelson and 

Morley’s result) that led to the postulates and see what are the direct 

results from them, i.e. time dilation, length contraction and relativity on 

simultaneity.  

11.1 Event and What are Changed and Unchanged in Special 

Relativity 

The classical mechanics is incomplete (I mentioned this in chapter 1 and 

                                                        

106 For a chronological account of the development, you may read W. Pauli’s “theory of relativity” (1921), part 1 

or C. Moller’s “theory of relativity” (1952). Both are sort of advanced treatment using tensor analysis which is not 

necessary for special relativity. They do include extensive references to the original papers. Especially the Pauli’s 

book which in my point of view, is read like a long review article. 
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here is a restatement) in a sense that it applies to low speed situations 

( , c the speed of light in vacuum)
107

. Under high speed, the old 

theory needs to be modified and even reformulated and quite a few 

changes will be introduced. Rather starting to talk about this, I feel it may 

be helpful if I first summarize what are changed and more interesting 

what are not changed even in the light of new theory. This is what I am 

doing in the following paragraphs and I shall delay the birth of special 

relativity to the next section. This is done without rigorous proof or 

argument yet. An important concept “event” needs to draw our attention. 

We had used it in old theory and daily life almost taking it for granted, 

but it will prove useful if we explicitly state it in relativity.  

Thing are not changed: 1) Measurement of space and time in one 

inertial frame. We still measure the time (with a clock) and space 

(distance etc. with ruler stick) in an inertial frame of our choice. So 

Beijing-Shanghai is 1000km apart has the same meaning as in old 

mechanics, except I will stress that this is measured with respect to a 

frame (say rest on earth). A big soccer game (the Euro-Cup game when I 

am writing this) is broadcasted to begin at 8pm is still meaningful, and 

still I shall say this is time according to the clock that is rest on earth. So 

basically we still describe anything with space and time as usual, 

                                                        

107 Actually, the classical mechanics is also incomplete in a sense that it does not apply to the microscopic 

situations where /x h P∼  (P momentum, h Planck constant), that requires quantum theory which will not be 

discussed here.  

/ 1v c≪
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provided we refer to the same inertial frame. These things (all physical 

phenomena) are called events, an event is just something happened at 

some particular location (space) and at some particular time (a baby is 

born on 6/18/2006 in Beijing; a particle hits detector at (x,y,z) in lab and 

on time t; some poor guy was killed at some location and time…you 

name it. Even the common phrase that someone is “at wrong place and 

wrong time” carries this flavor). Of course the clocks need to be 

synchronized to report the correct time and measuring sticks need to be 

calibrated. If the broadcaster’s clock and your clock are not synchronized, 

yours is hours behind, you will miss the soccer game that is 8pm by the 

broadcaster’s clock.  

To define an event, we attach these space-time coordinate to it, say 

(t,x,y,z). This will specify the location and time of the event. Say a plane 

will arrive Beijing airport at 5pm, this is (5pm, 120 longitude, 42 latitude, 

h=200m); a particle hits a target at (1s, 2m,3m,4m) etc. These labels are 

meaningful and useful as long as we agree on the measuring of time and 

space: we use same ruler stick and same synchronized clocks. Otherwise 

confusion may arise and agreement cannot be reached between observers 

even within the same inertial frame.  

There is some ambiguity to the time of an event really happened, we have 

to define how we record them.  For example, a fire work is launched at 

downtown and you are watching it from Tsinghua. You know the 
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downtown spatial coordinate with respect to you (you measured with 

ruler beforehand), but the time you recorded the fire work is t1 with your 

stopwatch (this is the time you see the firework with your own eyes; or 

the event that the firework signal reaches your eyes). You know that this 

time t1 is not the exact time the firework launched (this is a different 

event); it happened at t0 which is tiny-winy before t1. So in physics (in 

real life most people would disregard such small difference), we assume 

we have observers all over the world, record events at exactly where and 

when it happens , and write down its time and space coordinate, so that 

we have a true space-time coordinate in this sense(a network of observers 

attached to the inertial frame, the poor buggers are fixed in the 

coordinate and you equip them each a synchronized Rolex to record time, 

their sole purpose is to record the space-time coordinate as an event 

happens). As in the example above, you could ask a friend at the firework 

launching site to record the exact time of the launch, and show you the 

data later so that you may have an accurate recording of the event. 

Clearly synchronization is essential here. In order to trust your friend’s 

data, you have to make sure that your watch and his are synchronized. It 

is interesting on how you achieve this. You two may compare the watch 

locally, say at Starbucks outside and make them synchronized. But the 

motion from Starbucks to downtown will change the synchronization as 

we shall see, so this method is not very reliable in high precision 
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measurement (unless you move the clock very slow).  

The correct way (at least in principle) is to synchronize the clocks with 

signal. Still in the last example, you send the recording of t of your clock 

through electromagnetic wave (light, radio-signal and the signal may not 

even need to carry the t, you two may agree upon that at exactly 8pm 

according to your clock, you will send a light to the friend). The distance 

of the light travel can be determined precisely (say 100km through optical 

fiber), so the travelling time of light  can be computed (of course I 

used the assumption that the speed of light is a constant here), and your 

friend at launch site will set his clock to t+ . This way both of you will 

be sure that two clocks are synchronized. All the clocks in the world can 

be synchronized this way, so in principle we can measure the space-time 

of any events with confidence.  

Still I shall stress that all these are referring to the same inertial frame, 

say rest on earth (on a large scale, the non-inertial effect of earth need to 

be corrected too, but we simplify this by treating earth as a true inertial 

frame here). In summary, the space-time coordinate of an event, has the 

same meaning here as those in old mechanics. It can be measured 

precisely provided: A) Same distance and time unit length; B) 

Synchronized clock. In the later sections I shall frequently use terms like 

“for an observer in a frame S, or to the observe in coordinate system S, or 

just in S etc or as the observer sees…”, all these mean the same thing just 

t∆

t∆
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as I stated above: a network of observers in a particular coordinate system 

equipped with synchronized clock to record the space-time coordinates of 

any events. 

2) Then the velocity and acceleration can be defined and determined 

within the inertial frame of choice as usual (small change of space 

divided by small change of time. etc.).  

3) The conservation laws in momentum and energy are not changed. They 

are more robust than Newton’s laws and survived in all branches of 

physics. As I stated at the very beginning (Chapter 1), these conservation 

are related to symmetry of our space and time (Homogeneity and isotropy 

of space and time) and inertial frame is such a frame that the space-time 

are homogeneous and isotropic.  

Things are changed
108

: Though for an observer Adam in one inertial 

frame (say S, rest on earth) can define an event with the space-time 

coordinate as I talked above. For another observer Bob in another inertial 

frame that is moving with respect to S (S’, Bob is on board a moving 

train), he could also measure the space-time coordinate, according to his 

ruler stick and clock and by his hordes of observers in S’). The Bob’s 

recording for a specific event will disagree with that of Adam’s. This is 

not too surprising, because old mechanics also predict a difference. 1) 

                                                        

108 Only an account is provided here, with detailed arguments in later sections. 
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The striking thing is that the difference is not the classical Galileo’s 

transform, but will be the Lorentz transform in special relativity. The 

simultaneity of events (events happened at the same time recorded by the 

clocks in S or S’), time rate and ruler stick length will all depend on the 

inertial frames. So the conditions A), B) above do not satisfy between 

observers in different frames though within one frame they can be 

satisfied.  

For the events happened simultaneously in S (say rest on earth, Adam’s 

wife Eve gives birth to a baby in Beijing at exactly 8pm according to 

Adam’s watch; his friend Tom’s wife Lisa gives birth to a baby in 

Shanghai also exactly at 8pm according to Tom’s watch which is 

synchronized with Adam’s; the two events are simultaneous in earth 

frame), and its clock rate say 1 second and its ruler stick length say 1m, 

would all appear differently from Bob’s point of view (in S’, say a very 

speedy flight from Beijing to Shanghai). Bob would say those events are 

not simultaneous, Tom’s kid was borne first; and that Adam’s 1 second in 

time is 1.2 second according to Bob’s clock and Adam’s meter is 0.83 

meter according to Bob’s length. For Adam he would draw the same 

conclusion on Bob’s, i.e. what simultaneous in S’ are not simultaneous in 

S, Bob’s 1 second is 1.2 second and Bob’s 1 meter is 0.83 meter 

according to Adam’s measurement.  These are in stark contrast to our 

‘common sense’ based on daily life (Einstein cynically criticized 
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‘common sense is a prejudice developed before 16’)
109

.  

We do not experience ‘time dilation’ and ‘length contraction’ in daily life. 

You meet your friend at 5pm at airport who is flying from Shanghai. You 

will meet him at 5pm on both of your watches despite the fact your friend 

took a flight which is certainly a moving frame with respect to you. The 

reason is of course such effects are only important and become noticeable 

at high speed (or with high precision measurement of time as in 

Hafele-Keating around the world flight experiment
110

), the speed is 

compared to that of light. Our daily speed are just too small (compare to 

the speed of light) for us to notice these differences. In short, the 

simultaneity, time interval and space interval will depend on observer’s 

inertial frame, and the relations between them obey Lorentz transform. 

This brings a chain of changes, because the measurement of space and 

time is so fundamental, it is the foundation of Newtonian mechanics.  

As an added comment on this, I should mention that though different 

observers may disagree on simultaneity events happened at different 

places (such as the babies born in Beijing and Shanghai in the last 

example), they will agree on the simultaneity of events happened at the 

same place. Both observers agree that any event happens actually already 

                                                        

109What he against is the ‘common sense’ based purely on experience. There are common sense based on logic and 

beliefs on fundamental principles, which are good. So do not use this against the good common sense, especially 

those in social science, such as the famous booklet “common sense” by Thomas Paine on human right and 

government  

110 Hafele and Keating, Science 177, pg 166-168;pg 168-170. (1972) 
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implies this, but let me illustrate this point more to make it explicit and 

clear: The statement of some event happens actually can be rephrased as 

different events happen at same place and time. A baby is born in Beijing 

means the mother and the baby both are at the same place and time; a dog 

was run over by a car means the poor dog was at the same place and same 

time (you can say at the wrong place and wrong time) with the car. Say as 

the incident happened, observer in S recorded (x1,t1) for both the car and 

the dog, and he said the dog was killed at (x1,t1). For the observer on the 

car S’, he would record the incident as both the car and the dog at (x1’, 

t1’), though these numbers may be different from the recording of S, but 

the fact that the car and the dog were at the same place (x1’ for S’, x1 for S) 

and same time (t1’for S’ and t1 for S) are truth for both observers and they 

both record the death of poor animal, or the birth of the baby( the baby 

and mother at same place and same time, though the exact value of the 

space-time coordinate may be different).  

If different observers cannot agree on the simultaneity of events at the 

same place, real contradiction will appear: the dog was not run over by a 

car or the baby was not coming out of mother’s womb according to one 

observer; while it is otherwise according to another. Then the meaning to 

say an event happens will be lost, there will be no truth in the world. So 

(a repeat of myself) different observers will agree on the simultaneity of 

events happening at same place, what they cannot agree are the 
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simultaneities of events at different places. 

For the students who already learned some SR, the above statement may 

make their head nodding; for those new to the SR, the same statement 

may drive them scratching the heads. Don’t worry, I shall explain all 

above in detail in later section, so carry on!  

2) The velocity and acceleration will have different transform property 

(i.e. relations between velocities measured by different observers in 

different inertial frames).  

3) We shall see the correct formulas for mass, momentum and energy will 

appear differently from those in old mechanics (but very important that it 

will reduce to the old formula at low speed limit). 

4) Force, the important quantity in Newtonian, will lose its dominant 

position. Actually Adam or Bob could still calculate the force with the old 

formula in their individual inertial frames and measure it through 

experiments (such as from change of momentum). But since the force 

depends on space, mass or even time (the general force, not the 

fundamental ones). The force will appear differently in different frames 

(in old days, the force depends on relative positions, relative velocities, 

mass and time which are invariant in Galileo transformation, so the force 

appear same for different observers) and to our old friend, equation of 

motion F=ma which is so essential in Newtonian is not true anymore 
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under high speed. The correct formula in relativity that is corresponding 

to (means reduced to F=ma at low speed) equation of motion is quite 

complicated and less useful. (This reduced the importance of force, which 

is introduced in old mechanics as a measurement of interaction, because 

we have a simple relation between the force and acceleration F=ma) So 

energy, momentum approach will be the easier and preferred ones.  

Finally after this brief summarizing the changed and unchanged aspect of 

mechanics under relativity, I shall stress that there is something invariant 

to wet your appetite. The two observers from different frames may not 

agree upon a lot of things, however, there will be something unchanged 

and all observers will agree upon. We will see what is it in the due course 

and this unchanged thing (called invariance of transform) is very 

important in the theory of special relativity (in the 4-vector section later), 

and a whole theory can grow out of this.   

11.2 Historical Background 

11.2-1 Galileo Transform and Relativity Principle for Mechanics 

We had talked about Galileo Transform in section 4.2 and Relativity 

Principle in chapter 1, here I shall restate it limiting to the mechanics 

only.  
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As the figure shows the two inertial frames are travelling relative to each 

other. In the stand point of view of S, S’ is moving with +v towards right 

along x direction; while for S’, S is moving with –v towards –x’ direction, 

where v is a constant as required by the inertial frames. Galileo 

Transform is the relationships between space-time coordinates of any 

event viewed by the inertial observers in S or S’, say for a fire cracker 

exploded, and both observers recorded this event in their respective 

frames as (x,y,z,t) in S and (x’,y’,z’, t’)in S’, Galileo Transform tells us: 

   (11-1) 

From this we will have simple relations between velocity and 

accelerations viewed by S and S’: 

   (11-2) 

From Newtonian Mechanics, the mass will be independent of motion (see 
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positions which will be same in S and S’ (at a specific time, the distance 

between two particles are same in both frames). So this tells us  

applies equally well for observers in all frames moving with constant 

velocity to each other. The jargon (a fancy way to state the above) is that 

the equation of motion (Newton’s law) is invariant upon transformation 

(change from one frame to another). To keep the law invariant, its 

components (here force, mass and acceleration) has to transform 

accordingly, which is called covariant as space-time coordinates changes 

upon transformation. Of course here the components (F, m and a)are 

invariant too upon transformation (Galileo), but more generally if the 

observation only requires the law (here ) invariant, its components 

can change as long as keeping the law same, to put it more strictly in 

math: say upon transformation between S and S’: 

 where  represents the transformation (it is a matrix if the 

transformation is linear, generally it is equations relating the forces 

observed in different frames), and if the other part of the equation ma also 

transform the same way: , then formula for equation of 

motion would be same in both frames: for S and  in 

S’. 

This may appear a bit abstract, so let me illustrate it with the example by 

Galileo: Suppose the S is a stationary observer on the bank of a river, S’ is 

an observer aboard a ship sailing with v relative to the bank. A stone is 
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dropped from the mast of the ship (an event). If both observers follow the 

motion of the stone (a sequence of events), what do they observe? For S’, 

the observer on board, the stone will be just free fall dropped from above 

(no trace of motion of the ship); if he throw the stone upward, he will 

catch it back later without moving. For the observer on the bank, he 

would see the stone following not a straight line free fall but a parabolic 

path. However both observers conclude that the motion of the stone obeys 

Newton’s law, i.e. if the observers apply the Newton’s law within his own 

frame, his prediction based on it will be exactly what he observed within 

his frame (the difference in observed trajectory is due to difference in 

initial conditions but not the physical laws). 

This is the essential meaning of Relativity Principle for Mechanics: The 

mechanical laws are same (invariant) for all inertial observers. Another 

way to say the same thing (a corollary) with a different flavor (or stress) 

is that the absolute motion of the inertial frame cannot be detected by 

mechanical experiment within the frame only. The man on a constant 

moving ship doing all kinds of mechanical experiments and he will get 

same answer as if on ground, so without referring to outside reference 

point (suppose the ship is traveling in dark in a starless night), he cannot 

tell that he is on a moving ship or on ground. 

Newton’s idea of an absolute space-time as the ‘mother’ of other inertial 

frames is actually redundant since all inertial frames are 
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equivalent---principle of relativity for mechanics. However, in Galileo 

Transformation, the length and time is absolute in a sense that the 

measuring stick and clock are all same in different inertial frames. This 

seemingly apparent reasonable assumption turns out faulty at high speed. 

But instead of just giving out correct form of transformation, let’s see first 

what led to people finding the flaws. 

11.2-2 Trouble of Relativity Principle with E-M under Galileo 

Transformation 

All the above, the Galileo Transformation and Relativity Principle work 

fine and dandy for mechanics, the trouble is with the E-M theory.  The 

fundamental equations in the E-M theory are Maxwell equations, which 

are differential relations between electric and magnetic field given the 

charge and current distribution. They are 2
nd

 order partial differential 

equations. I will not explicitly workout the Maxwell equation under 

Galileo Transform here, however if you are intrigued, please pick one and 

start partial differentiation yourself. Or you may try the direct result on 

the wave equation derived from the Maxwell equations: 

   (11-3) 

This is the wave equation (recalled wave equation formula we derived in 

chapter 10) for the electro-magnetic wave (light) and c is the speed of 

light. Please try the Galileo Transform on this and you will see that its 
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equation form depends on the frame
111

. Instead of taking this 

mathematical approach, let’s consider the following physical example: 

   

As the figure above shows, a neutral conducting wire (with equal number 

of positive and negative charges, only one positive charge is shown in the 

figure) with current flows in it. The electrons inside the wire is moving 

with velocity v (current then is flowing backward towards left). This 

current will generate a magnetic field B according to Ampere’s law. 

Another point charge q also moves with same velocity outside the wire. 

This charge q will experience a force, the Lorentz force . (if q 

positive, it is repelled from the wire; if q negative, it is attracted towards 

the wire) This is the observation from a lab-fixed frame. Now consider a 

frame that is moving with same velocity v as the charges. In this frame, 

the electrons and the point charge q are stationary, while the positive 

charge in the wire moves with –v, so there is still same current in the wire, 

and magnetic field from this current would also be same. However, the 

                                                        

111 I shall only give a start here: 
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charge q is motionless in this frame so there will be no Lorentz force. 

Then is there a force on the point charge q viewed from the moving frame? 

If we stick to Galileo Transformation and apply the Maxwell equation in 

its original form in the lab frame, we will have no force in the moving 

frame (which was wrong). The observation would really depend on the 

inertial frames then. If we stick to Galileo Transformation and in order to 

get the same effect (the charge q is attracted or repelled from the wire), 

the Maxwell equations will need to be changed (into some nasty forms) in 

order to get non-zero force on charge q in the moving frame.
112

 Either 

way, the Relativity Principle seems do not apply for the E-M theory: 

Maxwell equation is not transform invariant with Galileo 

Transformation between frames. There appears lacking of unity here in 

the physical laws where the Mechanics follows the Relativity Principle 

(under Galileo Transform) while the E-M does not.  

This difficulty suggests either of the 3 below or a combination maybe the 

remedy: 1) The relativity principle is not a universal rule and not 

applicable to E-M theory, the Maxwell equation is only true under one 

special frame. 2) The E-M theory needs to be modified or corrected. 3) 

The E-M theory is correct. The Galileo transform of space-time is 
                                                        

112 Of course on retro respect, this difficulty arises from the Galileo Transform of space-time is wrong. Under 

Lorentz Transform, the observation would be same in both frames and the origin of the forces can be satisfyingly 

explained. One is due to the Lorentz force; the other (in moving frame), the force arises from length contraction, so 

that the local total charge density is not zero anymore, the positive charge will have higher density than the 

negative in the wire locally due to length contraction we shall talk about later, and the force on charge q in this 

moving frame is caused by the Coulomb force.   
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incorrect, but this really means we have to abandon our intuitive view of 

space and time and modify Newtonian mechanics that built on it. 

Naturally (put yourself in shoes of those physicists 100 years ago) most 

people will choose 1) in which the representative was Maxwell or 2) in 

which the representative was Lorentz. Only Einstein chose the path 3 and 

gave birth to special relativity and revolutionized our view of space-time. 

What Einstein believed is that the E-M theory is correct and the Relativity 

Principle would hold for all physical laws in all inertial frames. This 

suggests it applies to Electro-magnetic theory too. But the Galileo 

Transform between constant velocity moving inertial frames is not 

suitable for E-M theory. This means the correct transform would be 

otherwise; and since Newtonian Mechanics obeys Galileo Transform, so 

under the correct transform relation between space-time, Newtonian 

formula would be probably be frame-dependent, violating the relativity 

principle and need to be reformulated. Of course there is another 

possibility that both the classical E-M and Newtonian (which are the 

complete physical theories known at that time) are not transform invariant 

which means neither satisfies the relativity principle, and both need to be 

reformulated. It turned out that the E-M theory satisfies the correct 

transform (this does not say that E-M is the final correct form, it needs to 

be modified in quantum domain, that is Quantum Electrodynamics or 

QED) while the Newtonian does not. So we shall focus on the 
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reformulation of Newtonian Mechanics by special relativity here. Though 

we know the path 3 is the right one now, it is helpful to understand other 

paths too.  

If you, like Maxwell, treat the E-M equations only work for a special 

frame, there is then certain absoluteness in this frame, i.e. The E-M 

theory has a preferred frame. Such frame is called ether frame (old 

spelling is aether). Ether was believed by Maxwell and his 

contemporaries as some substance all over the space (the wording of 

ether actually has much longer history, coming from Aristotle of Greek 

time) , permeating the whole universe. It is also acting as media that 

transmits electro-magnetic wave, the light (in analogy to water 

transmitting ocean waves). Of course this is a very natural choice if you 

believe path 1), but it is only a belief or hypothesis. What is important in 

science as we stated in chapter 1, is such hypothesis should be subject to 

rigorous tests (experiments). Same would be true for other hypothesis. 

And indeed many experiments were conducted to test the existence of 

this mysterious ether, the most famous (and most accurate and convincing 

at that time) one is Michelson-Morley experiment. 

11.2-3 Michelson-Morley Experiment---Null Result of Detection of 

Motion Relative to Ether 

As Maxwell believed that his equations only applies in one special frame 
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which was called ether frame. The wave equation (11-3) for E-M wave 

(light) which can be derived directly from the Maxwell equation tells us 

that the speed of light is c in this ether frame. The ether was thought like 

water to water wave and air to sound wave that carries the light. And the 

speed of light propagates in this mysterious ether is c. This suggests a 

method to detect the motion relative to the ether, assuming the Galileo 

Transformation was correct (pretending we know nothing about 

Einstein’s theory at present, only our old friend Newtonian Mechanics).  

   

As the figure shows the model of light propagating in ether (watery lines), 

if the light source (fixed relative to mirror A or B, e.g. you can imagine a 

light bulb attached to the mirror A) is moving with respect to ether, then 

the speed of light along the direction of motion of the source (upstream 

against ether flow) will be c-v and the speed of light against the motion 

(downstream) will be c+v (velocity is –c-v) with respect to the lab (the 

AB) frame. So we could measure the speed v of motion of our lab frame 
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in which the mirrors and light source are fixed by measuring the speed of 

light in the lab frame directly which implies we can detect the absolute 

motion of one frame relative to ether.  But the accurate determination of 

speed of light at that time is not available. It requires precise 

measurement of distance and time intervals and precise synchronization 

of clocks at A and B. Fizeau used round trip method ( a total time travel 

from A to B and back) to avoid synchronization, but the time interval of 

this round trip is: 

 

The term that depends on v is a second order v/c, taken the possible v the 

motion relative to ether to be the speed of earth traveling in space known 

at that period: the orbiting speed of earth around the sun which is about 

30km/s, this suggests (v/c)
2
 is only about 10

-8
, very difficult to detect for 

a long time. Please note the significance of such experiment that if we can 

accurate determines T then it seems that we could carry out one 

experiment in one inertial frame (the mirror one) and determine the 

traveling speed of our inertial frame without referring to any outside 

world. This would contradict the relativity principle. We now know the 

trouble is caused by our assumption that light travels at constant speed in 

the frame of ether, so this assumption picks out a preferred reference 

frame for light. It also caused by the Galileo transformation where the 

time is absolute in all moving frames, this leads to simple addition or 
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subtraction of speed. 

Michelson overcame this difficulty by measuring the interference pattern 

of light (1881) with the interferometer invented by him, and he was a 

pioneer of high precision measurement in modern physics. The sketch of 

the original setup is shown in the figure below: 

 

The light source and mirrors are fixed in lab frame. The incoming light 

was split by the beam splitter A into two beams traveling a round trip 

along two arms. The reflected light from the two mirrors are recombined 

by the A and interference
113

 between the two light beams will happen. 

Basically due to the different optical path length (or different time) the 

light travels along the two arms, there will be a phase difference between 

the waves when they meet again on the observing screen. If the phase 

difference is  (this happens when the optical path length difference is 

, the wavelength of light; or equivalently the time difference is T the 

                                                        

113 This will be thoroughly discussed in the Optics course 
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period of light), the two waves from the two arms will add up together 

enhancing each other---constructive interference, and a bright pattern will 

be seen; if the phase difference is , the two waves will cancel each 

other---destructive interference, and a dark pattern will be seen. We can 

arrange the mirrors to form different interference patterns (equal 

thickness or equal inclination patterns), the typical equal thickness pattern 

is shown below (a pattern when length 1 and 2 are fixed): 

 

If the optical path length difference is changed, say arm one is shortened 

etc. (the one we shall see corresponds to the arm one will be shortened 

while the arm 2 will be lengthened), for every total optical path length 

difference change by , the interference pattern will shift by one fringe, 

i.e. if the round trip along arm one is shortened by , the bright stripe 

below (or above, depending on the arrangement) the cross wire XX’ will 

move up to the position of the XX’ (in the figure above, this means the 

lowest bright stripe will move up to the XX’). Such shift can be observed 

and since the shift is caused by a length difference on the order of 

wavelength of light (590 nm for sodium light; or a time difference on the 

order of period of light 10
-14

s), it is essentially a high precision 

measurement in length or time difference.  

π

λ

λ
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Suppose the lab frame is traveling with respect to ether with velocity v 

along the direction of arm 1, then the time interval for the round trip 

along arm 1 (between AM1) is just what I already calculated above: 

 

For the light traveling along arm 2 (between AM2) which is perpendicular 

to motion v, say the time for round trip is , the figure below shows a 

view from ether point of view (the lab frame is moving with v) 

 

During the flight of light towards M2, the total distance from Pythagoras 

theorem is
114

: 

  

Since here we take the ether point of view, the light travels with speed of 

c, then: 

                                                        

114 In the original work, Michelson just used l2 by mistake. This causes some numerical error but won’t change the 

results. .  
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Of course you can calculate the above from lab point of view, in this case 

the distance will be 2l2, and the speed of light will be  (just like 

a swimmer in a flowing river, and the speed relative to river is c), this will 

give the same transit time.  

So in this arrangement, the total time difference between path 1 and 2 are: 

 

Such time difference will create an interference pattern, what Michelson 

did is observing the interference pattern with this arrangement, then he 

rotated the whole apparatus by 90 degree, so that now it is path 2 that is 

along the v. Similar calculation will show that in this case: 

 

The difference between the rotated and the original setup is then: 

 

The total phase change between these two setups will be then: 

 

Since every  change in phase causes one fringe shift, then the total 

shift of fringe is: 

2 22 2
2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

2 2
2 22 2

2
2 ( ) /

2

4 4 / ( )

2 1 2 1
(1 )

21 /

l vt
t l c

c

c t l v t t l c v

l l v
t

c c cv c

′
= = +

= + → = −

= ≈ +
−

2 2c v−

2 2 2

1 2 1 2 1 2
1 2 2 2 2

2 1 2( ) 2
2 (1 ) (1 ) ( )

2

l v l v l l v l l
t t t

c c c c c c c c

−
∆ = − = + − + = + −

2 2 2

1 2 1 2 1 2
1 2 2 2 2

2 1 2( ) 2
(1 ) 2 (1 ) ( )

2

l v l v l l v l l
t t t

c c c c c c c c

−′ ′ ′∆ = − = + − + = + −

2

1 2

2

( )l l v
T t t

c c

+′∆ = ∆ − ∆ =

2 2

period

c
T T T

T

π π
φ ω

λ
∆ = ∆ = ∆ = ∆

2π



 388

 

In the original setup, the length is about 1.2 meters, and the motion in the 

ether is expected to be that of earth orbiting the Sun, i.e. v=30km/s, or 

.  (it is actually 589nm), put all these 

into the formula, will give us . This is indeed very small shift, 

and the Michelson’s resolution limit is about 0.01. So as the first 

experiment result came out, it was questionable to many contemporaries. 

In 1887, in collaboration with Morley, Michelson made an improvement 

by essentially extending the length of each arm by a one order of 

magnitude
115

: 

    

 
                                                        

115 Taken from the A.A. Michelson and E.W. Morley,  Am. J. Sci. 134 (volume) , 333 (page), (1887) 
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With length increases to 10m, the . However the result is a 

disappointment to Michelson and Morley. There is no observed fringe 

shift as expected. If you stick to the ether hypothesis, then this means that 

the v=0. Our lab (or earth) is stationary relative to ether. This is of course 

possible for the experiment in a particular day that earth happens to be 

stationary w.r.t. ether. However as the earth is orbiting around the Sun, it 

cannot always be stationary all year, but the experiment carried out at 

different times of the year still showed null result, no fringe shift was 

detected. This experiment really put the ether hypothesis (along with it 

the path 1 we talked about in 11.2-2) in a big question mark. Naturally 

there were further efforts to save the ether hypothesis and we shall take a 

brief look below to see why these efforts failed.  

11.2-4 Efforts to Save the Ether Hypothesis
116

  

These are the efforts to explain why there is a null result in 

Michelson-Morley（MM）experiment, while still holding the ether 

hypothesis.  

(1) Ether Drag Model 

In order to explain the null result of MM experiment from the ether 

hypothesis, one of the most straightforward models is the ether drag. 

That is to say the earth will drag the ether along its motion in space, 

                                                        

116 Optional material, I include it here for a complete background. You may skip the reading for the first time.  

0.4N ∼
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just as the air inside the train is dragged when the train is moving, 

even when the train is traveling with supersonic speed (as if such train 

exists), people can still hear each other since the air inside train is 

dragged along and is stationary relative to the train. In this model, the 

ether surrounding the earth will be always stationary relative to the 

earth; it is dragged by the earth and move along with it. The speed of 

light in MM experiment would be c for paths along both arms and the 

v (the motion of earth relative to ether) is always 0. Puzzle solved by 

the ether drag model in MM experiment. 

The problem of this model is that it contradicted other experimental 

facts that were observed long before the MM experiment: the most 

important one is the stellar aberration in the observation for stars: 

 

As the figure shows, imagining a star hanging over the earth-sun orbit, 

and the star is really far away, so that its position is almost always 

directly above the earth even though earth’s position changes along 

the orbit. So if the earth is not moving, then you just steer your 

telescope straight up like the figure right shows and you will observe 
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the star. Things will be different considering the motion of earth, and 

the figure below illustrate the situations (figure taken from Resnick’s): 

 

Due to the motion of the earth, the light emitting out from the star will 

appear titled by an angle , and this can be computed simply from 

addition of velocity vectors (viewed by earthling, the star appears 

moving with v in the reversed direction) : 

 

This is very like the rain drop model: suppose the rain is falling down 

straight towards ground, if you are running, you will feel (observe) 

that the rain is not only falling down but rushing against your face as 

well. Situation here in observing the light is similar (though the 

computation from wave theory, such as that of Huygens principle will 

be a little more complicated, but will give same result). 

So to observe the star, the telescope needs to be tilted by this angle . 

If the earth is traveling in a straight line, then it will appear that the 

star’s apparent position as indicated in the figure and you will not 
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notice any abnormality. However since the earth is orbiting around the 

sun, so after half year, the star will appear as traveling in the reverse 

direction and the telescope need to be tilted by angle  comparing 

with half year ago. In fact the telescope will trace a cone whole year 

around as shown in the figure above right. This angle change for a far 

away star is not by the different position of the earth (the change of 

angle due to this is small enough to be neglected) along the orbit but 

by the different velocity. This angle change of apparent star position is 

called stellar aberration and was discovered in 1727 by Bradley and he 

used this to measure the speed of light, since the  can be measured 

and the speed of earth orbiting the sun can be estimated at that time. 

The relevant question is that the ether drag model will contradict this 

stellar aberration observed. If the earth really drag the ether along with 

it, just imaging a heavy runner is running while drag the air around it 

also moving with same speed as he run, then the rain will appear to the 

runner as if just falling straight down. Similar argument would predict 

that if the earth is really dragging the ether, the light from the far away 

star will appear just straight downward and no tilt of the telescope is 

needed and so no aberration. This contradicts the observation.  

There is another experiment to a less extent contradicts the ether drag 

model, the Fizeau experiment (1851) measuring the speed of light in a 

flowing water tubes: 

2α

2α
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It is essentially another interferometer, one path (the ccw one) will 

travel along the flowing water, while another one ( the cw one) will 

travel against the flow of water. The light travels inside a stationary 

water is: , where n is the index of refraction of the water (~1.33). 

Now with the water is flowing with speed of v as shown in the figure, 

and suppose that this flow of water will drag the either along with it 

with same speed v. In the water frame, the speed of light is still ; 

but in the lab frame this speed will be: +v for the ccw path and 

-v for the cw path. This will cause a phase difference between the 

two paths (comparing to the stationary water case) and a fringe shift 

will be seen when the water is flowing from zero speed to v. A little 

computation (left as an exercise for you) shows that the fringe shift 

would be: 

 

This was NOT observed in the real experiment. The actual result of 

Fizeau experiment is: 
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We shall see the satisfactory explanation for this result from velocity 

addition in relativity. Zeeman repeated this kind of experiments in 

1914-1922 as confirmation for the special relativity.  

Historically the  is called Fresnel drag coefficient in the 

ether theory developed by Fresnel in 1818, in which he assumed that 

the moving medium (such as water here) only drags ether inside the 

medium by a fraction which is the relation given above
117

.  

(2) Bullet-Gun Model 

This is officially called emission model, but I think the bullet-gun is 

more vivid. This was a model adopted by Ritz trying to modify the 

Maxwell’s theory and ether hypothesis by requiring that the light is not 

traveling with speed c w.r.t. ether, but to the source instead. Just like 

firing a gun in a moving car, the relative speed of the bullet to the gun 

is always c, but to the observers on the ground this speed will change. 

This model would explain the MM’s null result easily, since the light 

source is fixed in the lab frame as the mirrors did, the speed would be c 

to both paths and no fringe shift could be detected. This also saved the 

E-M theory to the relativity principle, i.e. you cannot detect the motion 

of frame by carrying out experiment inside the frame, such as by 

measuring the speed of light inside the frame.  

                                                        

117 For a brief discussion of the Fresnel drag model, please refer to C. Moller’s ‘theory of relativity’ section 7, or 

刘佑昌 ‘狭义相对论及其佯谬’ 附录 1. 
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But this assumption leads to other contradictories with observations. 

One of the observations would be the recording light coming from a 

double star system. The double star system is two stars rotating around 

a common center, as shown in figure below: 

 

A is one of the double star rotating clockwise, a is radius of its orbit 

and d is the distance to the observer P on earth, d>>a, so the  is very 

small. Suppose linear velocity of the star A is v, at the location 1 as 

shown (A is perpendicular to d), the light from A would travel at 

velocity ~c+v towards earth according to bullet-gun model, and the 

distance is approximately d (small angle makes the approximation 

good). The time for light to reach the observer P would be: 

 Now suppose some time later, the A will reach position 2, 

which is on the line of d. Here the velocity of light towards P would be 

c only, and distance is d-a, so the time interval for light to reach earth 

would be: 

 Take their difference: 
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Here I used approximation of 1/(1+x)~1-x for small x.
118

 Though v is 

usually much smaller than c, but d can be very large in astronomical 

case. So it is not unusual that  can be larger than , and the light 

from position 1 of A will reach P with shorter time, this will cause the 

light intensity recorded by P oscillating with time. As the figure below 

show: 

 

The vertical axis is recorded light intensity, the horizontal is time. 

T1=T1A, and T2=T2A+Γ/4, where Γis the orbital period of star A. 

Between T1 and T2, also shows the light from positions of A moving 

from 1 to 2. The characteristic is the time interval would increase due 

to the longer travel time of light. Of course the star emits light 

continuously with almost even intensity (that is why each line will be 

about same height), and if you record the light continuously, you will 

add light intensities within certain time interval determined by 

instrument, the graph will be total light intensity within certain time 

interval, and that intensity will have high and lows periodically similar 

to a sine curve. But that is not what was observed. The recorded light is 

                                                        

118  Taylor expansion. 
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almost a flat line. So this contradicts the model of the bullet-gun for 

light propagation. The puzzle of all these will be solved in special 

relativity, which you probably know the answer, that the light always 

travel at speed c, in all inertial reference frames.  

There are more experimental facts contradict this model (though at 

much later years when the special relativity had long been established): 

A supernova explosion was observed in 1980’s, which is 10
4
 light 

years away from us. The light from the major explosion was collected 

from this supernova explosion on earth which only lasted for 10’s of 

seconds (the afterglow lasted much longer). If you follow the 

bullet-gun model, the light from the explosion may come from all 

pieces that are flying at high speed in all directions. For the sake of 

estimation, let me assume that the flying speed of the pieces is the 

same order as earth orbiting the sun, then v/c~10
-4

. This implies that 

the light from the explosion would last for 1 year, quite different from 

what was really observed! 

Another experimental fact directly demonstrates that for the light 

emitted by a particle moving with high velocity, the speed of light 

viewed from the lab frame is still c, has nothing to do with the speed 

of the particle
119

. The experiment demonstrated that for a pion (a 

neutral meson, an unstable particle which quickly decays and emitting 

                                                        

119 Alväger et al.  Phys. Letters. 12, 260 (1964) 
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light), which was created by bombarding nucleons with high energy 

(20GeV) protons. The pion created will travel almost to the speed of 

light (0.99975c), but rays (light with high energy or short 

wavelength) produced by the pions were detected in the lab frame 

traveling with same speed of light c.  

(3) Lorentz Theory
120

 

Since we are going to derive the famous transformation from 

fundamental postulate of special relativity, so that I will not talk too 

much on Lorentz theory here, interesting student may refer to Bohm’s 

book (chap.6-10) for some detailed account. 

Basically in order to reconcile the classical E-M theory with the 

MM-experiment result. Lorentz propose an ad hoc method (ad hoc 

here means making some hypothesis in order to explain a particular 

phenomena)
121

. What Lorentz did was proposing that for things 

moving w.r.t. ether, its length will be contracted. For example, the 

length of path 1 in the MM experiment is , if it is rest in ether. 

                                                        

120 It is also called Lorentz-Fitzgerald theory, because Fitzgerald was first to propose length contraction in an ad 

hoc way and Lorentz put it in a theory. In the 1904 review paper, Lorentz showed the transform that will make the 

Maxwell equations hold its form in all inertial frames. He did not call the transform after his name. It is Poincare 

gave the name in 1905 before Einstein’s publish. It is interesting to learn that Einstein in developing the special 

relativity was ignorant of Lorentz theory.  

121 This ad hoc method is very common in the development of science. Of course the hypothesis may explain 

certain experimental fact but may fail in general cases. Examples here that Lorentz theory explain the MM 

experiment by using length contraction; but it will not explain the Kennedy-Thorndike experiment (1932) with 

Michelson interferometer with different arms length and fixed in lab only rotating with earth over the year. Another 

example of ad hoc approach is the Bohr-Somerfield theory on atomic structure in the development quantum 

mechanics. It explains the structure of hydrogen-like atoms or ions nicely but failed in more general cases.  
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However if it is moving with speed v w.r.t. ether, the length will be 

contracted to , smaller by a factor of . If 

you replace this contracted length in the computation of MM result in 

the previous section, you will find that there will be no fringe shift.  

Of course Lorentz gave a model on the physical reason why you have 

this contraction based on the atomic-electron structure available then.  

In fact he developed a theory that also has time dilation and transform 

between inertial frames for the E-M equations. One result of this 

theory is that it pointed out the futility in detecting the motion relative 

to ether, because the theory implies that for all observers in inertial 

frames (moving with constant velocity), the detection of light speed 

due to length contraction and time dilation will always give out the 

value c. Poincare claimed that this mysterious ether always escaped 

our detection.  

Lorentz theory though a big step forward, is still rooted in the ether 

hypothesis and in fact a modification of E-M theory with ad hoc 

hypothesis. Since this ether and motion relative to it was never 

detected, then should physicists still hold its existence? Shouldn’t the 

science only consider what had been and can be observed or tested 

instead of mysterious god or absoluteness (which may be the topics 

for philosophers, especially those ancient ones in our history)? We will 

see in the next section that it was Einstein took this attitude and with 

2 2

1 / 1 /l v c− 2 21 / 1 /v c−
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two simple postulates unifying the mechanics and E-M theory in a 

sense that they both follow the relativity principle.   

 

11.3 Einstein’s Postulates 

Let me quote his own words on the issue. “The relativity theory arose 

from necessity, from serious and deep contradictions in the old theory 

from which there seemed no escape. The strength of the new theory lies 

in the consistency and simplicity with which it solves all these difficulties 

using a few very convincing assumptions.”
122

 It is these assumptions that 

we shall learn in this section. We have seen that “the theory of relativity 

has grown out of the electrodynamics and optics. In these fields it has not 

appreciably altered the predictions of theory, but it has considerably 

simplified the theoretical structure…” “Classical mechanics required to 

be modified before it could come into line with demands of the special 

theory of relativity. For the main part, however, this modification affects 

the laws for rapid motions, in which the velocities of matter v are not 

very small as compared with the velocity of light.”
123

 We shall focus on 

this in the rest of the course.  

Here is a reminder on the postulates once more: the postulates cannot be 

derived from other fundamental laws, they are the fundamentals. They 

                                                        

122 Einstein and Infeld The Evolution of Physics (1938) 

123 Both the quotes from Einstein  Relativity , section 15. 
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should be tested on the basis of the conclusions drawn from them.   

Postulate 1 (Relativity Principle): All physical laws are same for all 

inertial observers.  

Comments: This is an extension of the Relativity Principle we discussed 

above (11.2-1), there it only applies to mechanics. Now Einstein believes 

that it applies to all physical laws including the E-M theory. It turns out 

this is true for other physics. It is a test for the correctness of physical 

laws. For example during the early development of quantum mechanics, 

one of the fundamental equations is the Schrödinger’s equation 

describing the time changes of wave functions. The equation does not 

have the same form in different inertial frames, suggesting it only applies 

to low speed limit. The one satisfying the relativity principle was given 

by Dirac, which is called Dirac equation. The relativity principle holds in 

quantum too and it is believed serving as a heuristic test for the 

correctness of any theory, i.e. the physical laws has to be invariant (its 

components have to be covariant) under transformation from one inertial 

frame to another.  

In special relativity (SR), we shall only deal with inertial frames 

(coordinate system), this implies this cannot be the whole story. To 

include the accelerated frames (and equivalently the gravitation), the 

general relativity was developed but won’t be covered here (an 

introductory textbook on GR is given in the reference list).  
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A corollary similar to the one we discussed above of this principle is that 

the absolute motions of one inertial frame cannot be detected by the 

physical experiments carried out within the frame. Before I only say the 

mechanical experiment, like juggling balls etc. Now it includes all 

physical experiments and also chemical and biological experiments as 

well, since these natural sciences are all governed by the physical laws. 

This Relativity Principle sounds highly plausible. It is the belief of 

Einstein’s that there should be unity in physics and a natural extension of 

the relativity principle of mechanics. It would be indeed strange 

otherwise if all inertial observers are experiencing same mechanical laws 

while can tell difference by measuring light. 

Postulate 2 (Universality of c): There is a speed that is same in all 

inertial frames; it is the speed of light.  

Comments: It is also stated more succinctly as: the speed of light is same 

in all inertial frames. Unlike the relativity principle, this speed of light 

postulate is quite bold, it contradicted in every old classical sense. The 

root is the measurement of time. As I talked in 11.1, you need this 

universal speed to determine the time (such as synchronization of clocks) 

since the detection and determining the speed of absolute motion of 

inertial frames is impossible.   

The reason I split this postulate into two sentences is because from the 

logic of relativity principle, it requires one universal velocity. We shall 
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see later that this universal velocity also sets up a limit to the speed of 

motion of all inertial frames (Lorentz Transform) and speed of all 

particles or signals (Cause-Effect argument). The theory only allows ONE 

universal velocity (KK’s 13.4, easy to prove once we learned velocity 

transformation). Whether this universal velocity is the speed of light or 

other particles would be a test of experiments. In this sense Einstein acted 

like god and proclaims as in Genesis “Let there be light”. It is possible at 

least in principle that this universal velocity could be different than the 

speed of light (has to be larger since it sets the limit of speed). However 

the speed of light had been subjected to many rigorous tests and found be 

independent of the frames (such as the one in footnote 119) though 

always with certain experimental errors. So if any claim that a new speed 

limit is discovered, it is possible in principle for SR, but it has to be able 

to explain other experimental facts on the speed of light. For example 

with improved technique, it may be that the true speed limit may be c + a 

very small number for some massless particle, the number maybe so 

small that escaped us by current technique. Of course any such claim has 

to be sure free of errors itself
124

. In conclusion, it seems that the universal 

speed of light still holds (agrees with experiments) at present from all the 

experimental facts. 

                                                        

124 The reported superluminal speed of neutrino in 2011 turned out to be faulty., it probably caused by the 

experimental error that a lose connection in the optical fiber generating a 60ns time difference, corresponding to 

wrong synchronization of clocks in measuring the speed.  
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Simple these two postulates may appear on the surface, the conclusions 

we draw from them would be profound and on the first sight startling. 

The universality of speed of light is contradicting the Galileo 

transformation in classical mechanics where the addition of velocity is a 

conclusion. This implies according to SR, something is wrong in the 

measuring of velocity, which basically a measurement of distance (space) 

and time. This is what I shall devote in the next section before deriving 

the holy grail of SR---Lorentz Transformation. 

 

11.4 Relativity in Measurement of Time and Space Intervals and 

Simultaneity: Time Dilation, Length Contraction and 

Simultaneity is Relative.  

This is a long title and indeed tells you what I am going to discuss in this 

section. We shall see how we measure the time interval and distance just 

using the postulates and we have to prove those effects claimed in the 

title. 

11.4-1 Time Dilation 

In all the following discussions, I shall only consider inertial frames 

moving with each other. Say two observers, one on ground, another on a 

moving train. The one on ground is called S frame and the train S’. I shall 
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choose both the x and x’ axes in both frames collinear with the velocity v, 

the speed of the train, generally the relative velocity between the inertial 

frames.  

  

At the event that the origin of S and S’ overlaps, the time in both S and S’ 

are set to zero, as indicated in the figure, since we stated before that both 

inertial observers can agree on the simultaneity of events at same place. 

Imagine that both observers click on the individual stopwatch when the 

origin crosses and set time to zero. The time will go on but the flow rate 

of time of the individual watch would depend on the observer. How we 

define unit of time? Well in relativity we use light clock as below (left): 

 

Let’s suppose a light clock in S’ (on the train) consists of a pair of mirrors, 

a light is sending upward and being reflected back. The time interval of 

this two events (light emitted and light detected ) will be used as time unit 

in S’ (Of course the exact copy of this light clock stationed at ground 

S
x' 0, ' 0t t x x= = = =

'S

v→

l

v t∆

l
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frame will be used as time unit on the ground). The two event when 

viewed from S’ would be  for the emission of light, and  

for the detection of light. Noticed these two events happen in S’ at same 

location but with a time interval: 

   (11-4) 

To the ground observer recording same events, the time interval will be 

different. Because as the figure on the right shows, the light has to travel 

a longer distance viewed by S (Noticed I assume here that the vertical 

length l, which is perpendicular to the motion is same for both S and S’, 

the assumption shall be justified later) 

The total distance travelled is: 

 

  

I only keep the positive root because the order of event has to be same 

here: the emitting of signal always before the receiving no matter which 

frame you view them.  appears a lot in SR, so it deserves a 

label by itself. We henceforth define: 
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   (11-5)
125

 

   (11-6) 

Then the time interval measured by observer on the ground S would be: 

   (11-7) 

(11-7) is what is called time dilation, and it usually expressed as ‘moving 

clock runs slowly’. We shall explain this further:  

A) Noticed that as v<<c, then  and , we get back the result 

in Galileo transform. The result from SR postulates is consistent with 

classical mechanics at low speed limit. (the requirement that the 

results will be reduce to that of classical mechanics at low speed is 

correspondence principle) 

B) What is (11-7) really tells us? From the argument leading to (11-7), it 

clearly tells us that for the same events, the time interval observed by 

S’ and S are different but related. What appeared to the S’ observer to 

which the time interval is 1 second, the time interval between the same 

events is lengthened (dilated) by a factor of for observer in S. Since 

the measurement of time by the light clock is quite general, all the 

time intervals can be measured by how many loops the light travels in 

such clock, this means all processes in the moving frame (on the train) 

                                                        

125 In the advanced treatment, the c will be set as 1. This equals to choose light-second as unit length and β will 

be the velocity in unit of speed of light.  

/v cβ ≡

2 2 2
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would appear
126

 running slower to the ground observer. Let’s be more 

specific by taking examples, say the train is moving at , then 

. If you are taking the final exams on board such train and the 

time requirement is 1 hour. You certainly want me to be on board too. 

Since we are in the same frame, the 1 hour interval on my watch will 

be same as yours. If I were on the ground, the 1 hour time you spent 

on the exam would appear to me as 5/3 hours, I thus conclude you 

guys work the problems too slow. Of course I do not really see you in 

the mundane sense that you are working slowly. It is just at 5/3 hour 

according to my time, where you are already 4/3 light-hour away from 

me, but my observer at that location will really sees (in the mundane 

sense) that your clock only passed 1 hour while his watch is already 

5/3 hour..   

C) Though I only used light clock in the example, it applies to all clocks. 

The Relativity Principle guarantees this. For instance, S and S’ both 

use grandfather pendulum clock. Then the time dilation still applies to 
                                                        

126 Here I use words’ appear, observed or see’, these words need to be understood as measurement by a network of 

observers recording events in one frame, as I mentioned earlier in this chapter. It is not same as the common 

meaning of these words, which means really sees with own eyes by one single observer. I shall explicitly point out 

if the ‘see, observe…’ in the notes means the mundane meaning, such as “ I see (in the mundane sense)” then you 

know I am talking about seeing with own eyes. Otherwise, they mean measuring the space-time of events by 

network of observers (just too long and boring if I type these every time). A mixing of these sometimes cause 

confusion. For example If I really sees(in mundane sense) what you are doing, it would appear your motion runs 

faster like in a fast winding video tape if the train is approaching me; and you motion will be slower (seen by me in 

mundane sense on the ground) if the train is leaving from me. This is the Doppler effect we shall talk about later 

(there is probably the only occasion that I shall use ‘see’ in its mundane sense in this course). Time dilation is 

always there no matter whether the train is approaching or leaving.  

0.8v c=

5

3
γ =
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the time interval of the pendulum clock (say one cycle of swing of the 

pendulum). Because the swing cycle of pendulum can be calibrated 

with the light clock. Say one swing cycle equals 1000 light clock 

round trips. Then this 1000 would apply both to the pendulum clocks 

in S and S’; otherwise you will notice the difference in the ticking rate 

between the pendulum and light clocks on ground or on train, that 

would give you a method to determine which frame is really moving 

by experiments within the frame, which is impossible by the relativity 

principle. The time dilation thus affects all processes including the 

biological ones. For example you guys are boarding on the train with 

v=0.8c. You grow 1 years old according to your clock (which is 1 year 

in your biological clock too); but the ground observer (me) will see 

this taking 5/3 years during which I aged 5/3 years. So it certainly 

possible that 1 day in fast spaceship, thousands years past on earth. 

(However, noticed that these 1 day and thousands years are measured 

in different clocks, 1 day by the clock on the ship and thousands of 

years by clock on earth).  

D) The above discussion though different from old classical, still quite 

straightforward. Things get interesting (or puzzling) if we take point 

of view in S’, i.e. suppose we have a light clock stationary on the 

ground, so that the round trip events are: (x0,t1), (x0,t2) measured by S, 

happened at same place but with time interval .Now what 
2 1t t t∆ = −
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do these events appear for the observer in S’? Well all inertial frames 

are equivalent from relativity principle, the S’ would see the S frame 

also moves with speed v relative to the S’, but in the reversed 

direction (so the velocity S moves relative to S’ is –v).  From S’ point 

of view, it is basically the same figure above, while the left stationary 

one corresponds to the events observed in S, while the right one 

corresponds to the same events viewed by S’, except the direction of 

velocity is reversed (or just change the direction of arrow point). This 

means the time interval in the S’ frame would be: 

   (11-8) 

So for the observer in S’, he will conclude that the clocks in S runs 

slower by the same factor . In the exam example above, if you are 

on board a train and watch me solving problems on ground, you will 

draw exactly same conclusion as above, that I am working slower (I 

spent one hour according to my watch, but you would see it is 5/3 

hours according to your watch).  This is the essence of relativity 

principle that all inertial frames are equivalent, the observation of 

symmetrical events in all frames have to be same. If I (on the ground S) 

accuse that your clock (on the train S’) runs slow; you have equal right 

to claim that according to your observation, my clock runs slow.  

How could this be? Well this is the results of viewing the symmetrical 

events from different point of view. An analogy is two people are 

2 1't t t tγ′ ′∆ = − = ∆

γ
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separating apart in distance, each will see (in mundane sense) the other 

guy becoming smaller.  

Wait a minute, you claim, if you put (11-8)  into (11-7), you will 

get: , but the train is moving with nonzero 

velocity (0.8c in the example). It is absurd and how I am going to 

explain this? The problem of doing above is these two equations are 

for two different sets of events! The (11-7) is for events that are 

stationary in the S’:  and , while the (11-8) is for 

another set of events that are stationary in the S frame: (t1,x0), (t2,x0). 

They are symmetrical (I am observing a clock stationary to you and 

you are observing a clock stationary to me, you and me are in different 

inertial frames) but not same events! You cannot just plug the results 

for unrelated events into each other, otherwise it is similar to that my 

son Bart is 6 years old, and my pet dog is also 6 years old, but you 

cannot draw any conclusion between the boy and the dog, can you ☺? 

Only if we are describing the same or related events, we can make 

such substitution etc. This is a common mistake that causes confusion 

in the first place, so I think it is worth pointing it out explicitly even 

with risk of the sacrifice of my son’s reputation. Maybe I should be 

less sloppy and write the (11-7) and (11-8) more clearly as: 

 for (11-7) 

 for (11-8) 

t′∆

2 1 0t t vγ γ∆ = ∆ → = → =

1 0( , )t x′ ′
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And the difference may become clearer in the above expression. The 

time interval for the events that happened at the same place has a 

special name: proper time. In the time dilation measurement, in the 

situation leading to (11-7),  is the proper time, it is the 

reading of one clock at same location in S’; while  is not the 

proper time because it is essentially the difference between readings of 

two different clocks in S frame (one at x1, another at , the 

watches are synchronized but different Rolex we give to observers at 

these two locations). For the situation leading to (11-8), you figure out 

the proper time.  

All the relations I am writing are for time intervals between events, if 

the interval is between one event and the event we used to define the 

overlapping origins of the coordinate systems, then  

and  for event 1, then we could drop in the equations. 

(I preferred , it reminds me the relations are about intervals of 

events). We usually use  symbolizing the proper time defined above, 

then the (11-7), (11-8) can be written in one simple form: 

   (11-9) 

There will be further important roles played by proper time when we 

come to the 4-vector part in SR.  

However, there still seems one puzzling question remaining. From above 

derivation and discussion, we have seen that in the relative moving 
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frames, A observes B’s clock running slow (1 second time interval on B 

appears as 1.xxx sec. to A); and B observes A’s clock running slow; then 

how to reconcile this one puzzling question: If B observes A’s clock 

running slow, then how come when A using his slow clock measuring B’s 

time and concludes that B’s clock running slow? This tricky question will 

be answered later when we study the simultaneity is relative, and the key 

point is simultaneity of events happened at different places cannot be 

agreed by observers in different frame, and simultaneity is the key for 

synchronization between clocks (synchronization means setting different 

clocks at different locations to a fixed value simultaneously), and 

synchronization of clocks is crucial in measurement of time. I point this 

out first here and will talk details in 11.4-3. But first let me show you 

some examples on time dilation and then another effect called length 

contraction.  

Example 1. Twins ‘paradox’ 

Suppose a pair of twins, let’s call them Adam and Bob and A, B for short. 

A is a clerk that stays on earth, while B is an astronaut boarding a 

spaceship travels with v=0.8c relative to earth. The spaceship is launched 

from the earth towards a star F that is 8-light years away from earth (this 

is distance measured in the earth frame). B took the round trip from earth 

to F and back. How many years will pass according to B’s clock (the 

watch on B’s wrist)? 
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This is easy, the time the clock ticks on B’s wrist is the proper time in B’s 

frame (for B he is not moving and always stays at the same location in his 

frame, so the time measured by him in his frame is the proper time). In 

the A’s frame the trip takes 10 years for the single trip, with , the 

trip that last 10 years in A’s frame will be: 

,  

So for the single trip that took 10 years according to A only takes 6 years 

according to B. The round trip would only double the number, so 20 years 

passed according to A when B returns; while only 12 years passed 

according to B. This means there will be an age difference between the 

twins. The one stays on earth (A) is older by 8 years than the astronaut. 

Not surprising if you recalled in the comment C), that B’s biological 

clock appears running slow to A. This is clear and dandy in A’s point of 

view. 

The ‘paradox’ lies what happens in B’s point of view. From the comment 

D) above according to the relativity principle that should not B also 

entitle to claim that A’s clock running slower than his, so that it is A is 

younger? It cannot be true that both of them are younger, what is the 

catch? The simplest explanation (only qualitatively here, and we shall 

talk about B’s point of view in detail in later sections)is that B is not an 

inertial observer, during the take-off and turn-around (we will see it is 

mostly due to turn-around), B is in an accelerated frame, he is no longer 

5 / 3γ =

A Bt tγ∆ = ∆ 10 6A Bt y t y∆ = → ∆ =
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inertial there. Yes during the constant flight interval when both A and B 

are inertial, A’s clock indeed appears running slower for B. But during the 

acceleration-deceleration process at the turn-around point at star F, B is 

not inertial. Cannot it be that from B’s point of view, it is not he is 

accelerating/decelerating but is A who is accelerating/decelerating, since 

A appears moving faster/slower away from him? No, B cannot make this 

claim because acceleration is not symmetrical as constant motion. During 

the process of acceleration, B feels the forces exerted on him, he is 

pushed and pulled by the inertial force, the blood pressure rise or fall, 

temporary blindness and even the life can be endangered by the inertial 

force. If it is A that stays on the ground drinking coffee snugly is 

accelerating, how on earth that B’s life is endangered by the inertial force? 

You see that indeed during the acceleration B cannot invoke relativity 

principle to claim that it is A accelerating. There is no real paradox here, 

it appears so because you use the SR that works for inertial observers to a 

non-inertial B
127

. So the answer is that B, the astronaut will return to earth 

with 8 years younger than his twin brother.  
                                                        

127 A curious one may ask that during the B’s acceleration/deceleration, is A allowed to use time dilation formula? 

Indeed A can, because for A though B is accelerating./decelerating, A can divide it in many tiny time intervals 

where within each interval B is moving with certain velocity, this is called instantaneous inertial frames from A’s 

point of view. Of course this will complicate the computation since the v is changing .In the above estimation, let’s 

assume that the acceleration/deceleration is completed in a very short time interval (it may kill B but that’s ok in 

our example), so this will not affect time estimation in A’s frame and 10 years is a good approximation. We cannot 

apply the same to the non-inertial observer B and to explain B’s point of view, some knowledge of general 

relativity will be needed, because that is the correct theory works for B during the acceleration/deceleration. 

Actually the B’s point of view can be worked out from special relativity only and we can see when the strange 

things happened in B’s frame, the general relativity on the other hand tells us why this strange thing happened.  
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Example 2. Decay of muon measured in the lab.  

This is a demonstration of time dilation effect. The muons (another kind 

of elementary particle which is charged as electron but about 200 times 

massive) can be produced by cosmic ray (high energy particles from 

universe) hitting the atmosphere surrounding the earth. The muon has 

very short life time which is about 2 micro-second ( ). This 

is the proper time measured (or inferred) in the muon frame (i.e. the 

frame in which muon is not moving, you have a watch, running as fast as 

muon so to stay right beside it to measure its lifetime in this frame). So I 

should put . The lifetime is defined as for every time interval of 

, the number of muons will drop by a factor of . Or: . 

(in case you are interested that what this muon decays into, it decays into 

electron and neutrinos) The muons produced by cosmic rays will travel at 

high speed close to c. Even at this high speed, if there is no time dilation 

(pretending that you only know classical mechanics) hardly any muon 

will reach the ground. The earth outer atmosphere is about 20km above, it 

takes muon about , and the fraction of numbers reached to the 

ground would be negligible according to the classical mechanics: . 

However muons produced by the cosmic rays had been detected on earth 

by Rossi and Hall in 1941, and a repeat demonstration of this experiment 
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by Fritch and Smith is what I am showing here
128

.  

The experiment is detecting a group of muons with selected speed whose 

, meaning v~0.994c. This was achieved by letting the muons passes 

through certain thickness stopper (to set the low limit of velocity), and 

stops in a thin layer of scintillator (the electrons released in the decay will 

make this layer of material luminous) thus sets the high limit of velocity . 

So a group of muons with certain speed can be detected. The experiment 

was first carried out in the mountain top which is about 2000 meters 

above sea-level. The record of selected group of muons is 563/hour (on 

average). Then the experiment was repeated at sea level, and the record 

was about 400 counts/hour.  

From the classical point of view: 

 

This will give us only 20-counts/hour which is far from the experimental 

measurement. The reason is time dilation. In the muon frame, its proper 

lifetime is , but viewed from the lab clock, the decaying 

process would last longer, by a factor of . This means 

s, and this number should replace  in the decay 

formula, since both times are measured by the lab clocks : 

  

This agrees well with the experimental results. So this time dilation 

                                                        

128 Fritch and Smith Am. J. Phys. 31. 342 (1963). Also in French’s Special Relativity, chap.4 
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indeed happens for the high velocity moving particles as this kind of 

experiments demonstrated.  

 

Example3. Hafele-Keating Experiment
129

.  

In 1971, Hafele and Keating took an experiment that each of them aboard 

a flight around the world, one from west-to-east (along the earth spin), the 

other from east-to-west (against the earth spin). Each of the passengers 

took an atomic clock that can record the time with ns (10
-9

s) precision. 

After the round trip each of them compare the time elapsed according to 

his own clock with the one stays on the ground, the result agrees with the 

computation using relativity.  

 

As the figure shows, we have to choose an inertial observer, let this be A, 

an imaginary observer fixed to sun. This one is introduced because the 

earth frame, the east-bound and west-bound frame are not inertial. With 

this setup, there are 3 frames moving relative to the inertial observer A. 

These 3 frames are accelerating but we can treat them as instantaneous 
                                                        

129 Hafele and Keating, Science 177, 166-168; 168-170. (1972) 
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inertial frames:  

1) The B frame that spins along the earth, with velocity  relative to A 

2) The East-bound frame E, it is an airplane flying with speed v relative 

to earth. Its speed relative to A is  (strictly speaking, I should 

use relativity velocity addition which I have not talked yet, but in this 

case the speed is low enough to use the classical result) 

3) The West-bound frame whose speed is  relative to A 

To simplify the computation, let’s consider a special case that E, W took 

off and landed at B at same time after a trip around the earth. The time the 

trip takes in A’s frame is time t (setting all t=0 at the take off , so I shall 

skip writing ), in B’s frame is , and respectively for E and W. 

Noticed that I am using , , because these are proper time (time 

interval between events at same place) measured in their frames. Notes 

that the t in A’s frame is not a proper time, though it may appears to you 

that the planes came back to the same place, why cannot t measured by 

the A’s watch be proper? Well the simplest way to calculate t (to use the 

simple formula of time dilation)is to imagine a network of observers 

fixed in space of A’s frame, say one on top Indonesia, one on top of 

Maldives, one on top of Kenya….at t=0. As the flight passes through 

these observers, they record the time interval. At each interval, it is like 

the situation shown in the figure above, and flights and earth’s spin are 

linear motion with constant speed for these observers, and A’s observer 

sv

sv v+

sv v−

∆
Bτ ,E Wτ τ

Bτ ,E Wτ τ
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can use time dilation formula. You add all the time intervals recorded by 

these observers to get t, so t is not a proper time
130

. but this t is related to 

the proper time in the other frames by: 

   

Our job is to compare the time in B,E, W (these are measured data in the 

experiments by the atomic clocks in the plane and on the ground): 

 is the easiest to calculate. It is the time according to ground controller 

in the airport for the flight around the world. The speed of airplane is: 

, the flight is around world close to equator, so 

the total distance is 40000km. 

 

Using this we can compute , with , you 

can directly plug in the numbers to get  and thus gives the 

difference between the readings  and  (try it yourself 

and you will see the disadvantage of this direct plug in). I shall instead 

proceed with further simplifications in order to ease the computation:

 

                                                        

130 Actually the B,E,W may not end to the same position in solar space as takeoff, so t is really not proper time 

from this simple argument. However the above shows you why I can use time dilation, though the velocity is 

changing directions, this is the same trick of instantaneous inertial frames I talked about in the footnote in twin 

paradox 
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Calculate t (it is practically just = ) and put in the numbers 

for speed: 

 

This result makes sense, since the eastbound travels faster so its time is 

dilated more (the clock runs slowest) compare to that on earth; while the 

west bound travels at the lowest speed and its time is dilated less. 

There is another important factor that I skipped here, the gravitational 

effect on time. The plane is flying high above the ground (say 10000m), 

the effect of gravitation on time cannot be neglected in this experiment 

and it can be estimated from general theory of relativity (time dilation due 

to gravity) which I won’t cover here. With all these effect taken into 

consideration, and computed with the real flight data (height, speed, etc), 

the computed results from relativity theory agree with measurement. 
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11.4-2 Length Contraction 

Constant speed of light and time measurement will enable us to measure 

distance (length). Suppose you want to measure the distance between 

Beijing and Tianjin, it is straightforward to send a light signal and 

received by a receiver at Tianjin, record the time interval between events 

of sending and receiving with synchronized clocks located at Beijing and 

Tianjin, the distance then can be calculated. Or another way is to as the 

figure below shows to use a round trip of light signal between start and 

destination, such as put a mirror at Tianjin and reflect the light back along 

its incoming path to Beijing. The round trip time can be recorded with a 

single clock at Beijing and the distance can also be computed from this 

time interval, this way we do not need synchronized clocks. This is all 

true for the measurement within one inertial frame.   

We have seen that time measurement between events by observers in 

different frames will be different in the last section, and since time 

interval measurement is important in distance measurement, this will 

have an impact to the distance measurement, resulting in what is called 

length contraction.  
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The figure above shows the arrangement. A train has length in its own 

frame S’, i.e. the frame that is moving along with the train so that the 

train is stationary in this frame. What the length of the train measured by 

the observer on the ground, i.e. what is ? Suppose a light burst at one 

end of the train (event 1), and the light will be reflected by the opposite 

end of the train and take a round trip and back to its starting point (event 

2). Within frame S’, this gives us: 

 

Because the two events in S’ frame happened at same location, so the 

time interval is recorded by the single clock at the left end of the train, it 

is proper time.  Now how these events appear to observers in S? The 

figures on the right show what S observes: The total time interval 

between the events are: 
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From the time dilation in the previous section, we know the relation: 

 

 

   (11-10) 

This is the length contraction. It says when an observer (here S) measures 

the length of a moving object (the train), the length would be smaller 

(contracted) comparing to the measurement if the moving object is 

stationary (in S’). I could give discussion like those A),B),C), D) 

following the time dilation, but I shall skip most of it since they are 

similar.  

Let’s look at a symmetrical event: in this case, it is the ground observer (S) 

has a length stick , what this length stick measured by the observer on 

the train?  Following the similar arguments, the length measured by S’ 

would be: 

   (11-11)  

Just like you cannot plug (11-7) into (11-8) in the time dilation case, you 

should not try plug (11-11) into (11-10), because they are referring to 

different sets of events. Similar to the proper time definition, we can 

define proper length . It is the length measured in a frame in which 

the object is not moving, another same saying is that it is the length 

measured in the frame that is co-moving with the object (the proper time 
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is also the time measured in the frame that is co-moving with the particle 

like in the muon case). With this definition, the length contraction can be 

summarized as: 

   (11-12) 

Repeat myself once more: is the proper length measured in a frame 

that the object is stationary;  is the length measured in a frame that the 

object is moving.  

 

Example 1. Another way deriving the length contraction 

The setup is similar but no light signal. A moving train (S’) with v is 

passing a ground observer S. The two events are the head of train passes 

the ground observer, and the tail of the train passes the ground observer.  

The ground observer will record the time interval between the events as 

, and since the velocity is v, the ground observer will conclude that the 

length of the train is: . According to the S’, the time interval will 

be , and the distance travelled by the ground observer is: . 

There is relation between  and , question is which is the proper 

time here?  

The proper time here is , the time measured by the single ground 

observer at same place (the is measured by the head and tail observers 

in S’ which is not at the same place). So we have , and plug this 

back into  (we can do this because we are talking about same 
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events): , so , same as (11-10).   

Example 2: Muon decay experiment from muon’s point of view 

Last section, I solved muon decay in the lab frame with time dilation. 

Now we shall see that how the same result in muon’s frame (a frame 

travels at same speed as muon). In this frame, the lifetime of muon is just 

the proper time . What is the distance between the mountain 

top and sea-level viewed by muon? This distance 2000m (proper length 

in lab frame) will be contracted in muon’s frame by , i.e.  

 

This is exactly same as before.  

There is one important point to be discussed, that is the length 

perpendicular to the direction of motion. We see that different observers 

will get different length along the direction of motion, and the following 

argument based on the relativity principle makes sure that different 

observers have to agree on the length perpendicular to the motion.  

Suppose we have two meter sticks with equal length measured on the 

ground, both are 1 m. One of the meter stick was carried on a train and 

both sticks were hold vertically.  Suppose also we attach laser guns on 

the head of these meter sticks, let them shoot (always parallel with the 

horizontal plane) each other when they across. If the meter stick aboard 

the train (y’) is contracted according to the ground observer, then the laser 
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gun on y’ will hit the meter stick on the ground (y) below 1 m line, while 

the ground stick will hit the one on train above its 1 m line. However for 

the observer on the train, it is the ground stick that is moving and 

according to the relativity principle, the ground stick will be contracted. 

That means the laser gun on the train (y’) will hit the stick on the ground 

(y) above 1 m line; while the y will hit y’ below its 1 m line. These are the 

same events observed by different observers, the results are contradictory 

to the different observers if the contraction (or elongation) along 

perpendicular direction happens. So there will be no change in distance 

along the perpendicular direction, i.e. y=y’ and z=z’. This result is used in 

the derivation of time dilation where I used same vertical , and above 

argument is the justification of doing so.  

A final remark on the length contraction: The contraction I am talking 

about is the result of measurement, you use the stopwatch to let the end 

and tail of a moving rod passes you and computed length from time 

interval as in example 1; or with the help of the network of observers in 

your frame, measure the value of x of the head and tail of the moving rod 

simultaneously. Simultaneous measurement of both head and tail will 

give you the length in your frame. This length is smaller compared to the 

value of proper length, the length measured by the observer riding with 

the moving rod (I realized I repeat myself again, forgive this 

blibber-blobber). This is not the length you really see with your own eyes 

l
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(in the mundane sense), that is a perception. Seeing with your own eyes is 

a different ‘measurement’, i.e. the light scattered from the rod reach your 

eyes simultaneously. In this case you have to take the travelling of light 

from the object to your eyes into account. The result is not a contraction 

of the moving rod, instead the rod appears to your perception as rotated 

around an axis perpendicular to the rod and your line of view. What I am 

saying is if you take a photo-picture of the moving rod with a camera, the 

rod in the picture is not shortened but rather rotated or tilted. The detail 

analysis will not be discussed here
131

, the lesson is again that seeing (in 

mundane sense) is not same as measurement in relativity. We have 

stressed this before, but our old habit somehow always makes these two 

as equivalents. It would be true if the light travels at infinite speed and 

takes no time to reach our eyes, but that is not the case here in relativity, 

though it is a pretty good approximation in our daily life to treat such 

speed as infinite. You probably would not believe that it took 50 years 

after the birth of special relativity, physicists noticed this difference and 

Terrell was first to point this out in 1959. Another similarly related topic 

is for time dilation, it is also the results of measurement, a network of 

observers read watches and make record of time. It is not one observer 

really looking at the clock hang on the wall of a moving train with his 

                                                        

131 If you want to learn more on this issue, please refer to Greiner’s ‘classical mechanics, point particles and 

relativity’, chap.31. or to the original papers by Terrell, Phys. Rev. 116, 1041 (1959) and Weisskopf, Phys. Today 

13, 24 (1960) 
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own eyes, that is a different observation and we shall discuss this later in 

Doppler shift.  

11.4-3 Simultaneity is Relative 

Here is another fundamental effect from the postulates of SR, we shall 

see that it is the root of time dilation and length contraction. First we need 

to define simultaneity, simultaneity of events means just the events 

happened at the same time. We discussed that no problem for the 

simultaneity of events happened at same place. But for events happened 

at different places, it has to be recorded by the clocks at those different 

places and this requires synchronization of the clocks. How to 

synchronizing the clocks? Using light signals, for example: 

 

In the frame of a train S’, with length L’ and the head-tail ends are A’,B’ 

with the middle point M’, a light signal goes off and sends light towards 

head and tail, the light will take exactly same time in S’ to reach A’ and B’, 

so these two events (A’, B’ receiving the light signal) are simultaneous in 

S’. It can be used to synchronize the clocks at A’ and B’, say at the time 

they receive the signal, both clocks are set to zero (or some other fixed 

number). However what are the two events (A’ and B’ receiving the light) 

when viewed from another frame? Suppose the train S’ is moving with 

L′
A′B′

M ′
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certain velocity v w.r.t. ground S. In the train’s frame S’, A’, B’ are 

simultaneous, but for the ground observer in S frame, they are not! The 

reasoning is straightforward as the figure below describing the events 

observed by observer on the ground: 

 

Three snap shots are sketched in the figure viewed by S. The event that 

the tail of the train receiving the signal is before the head, the two events 

are not simultaneous from point of view in S! Similarly if two events are 

simultaneous in S, then viewing from S’, the events are not simultaneous, 

the event at the tail end will happen before the head events (head, tail are 

defined along the direction of motion). The reasoning is exactly same just 

with the direction of motion reversed. This is the meaning of the claim in 

the title that simultaneity is relative. People in different frame cannot 

agree upon the simultaneity of events happened at different places.  

We see that simultaneity is crucial in synchronizing the clocks, so 

synchronized clocks in one frame for instance, say the clocks are 

synchronized in S by the simultaneity of light signal receiving method 

x
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described above, it will appear for the observer in S’ that they are not 

synchronized according to S’ clock and this will give rise to time dilation 

and length contraction in the measurement of time and length between 

different frames. I shall describe this quantitatively in the following 

paragraphs, thus explain the puzzle I raised previously: namely how come 

when A concludes that the B’s clock running slower, however B uses his 

slower clock concludes that it is A’s clock running slower (same puzzle 

for the length too).  

First let’s calculate for the events that the tail and head of the train 

receiving signals simultaneously in the train’s frame, what are the 

measurement results for the ground observer? 

The tB can be calculated from the sketch in the middle: 

  here I used the fact that the event 0 (light goes off ) is still 

at the middle point of the train. This true, though there will be length 

contraction so that , but the contraction is uniform so that the 

middle point in one frame would still be in another. 

 

Using the lowest sketch, easy to get: 
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The time difference between event 1(tail receiving light) and 2 (head 

receiving light) are: 
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So the events viewed in S are not simultaneous but different by this much. 

I shall further express the above in terms of spatial coordinated difference 

between events in S: 

 straight from the two sketches in the figure, 

now put the expression for the time interval into it: 

132
 

So rewrite the time interval as: 

   (11-13) 

This says that for simultaneous events A’, B’ in S’, the time difference of 

these events measured in S frame is given by (11-13).  

This derivation is closely related to the length contraction as indicated in 

footnote 132. Here is a detailed account.  How we measure the length of 

an object? We take a record of the position of head and tail and subtract, 

say . If the object is stationary, then you can 

measure the head and tail at any time you like. However, if the object is 

moving with respect to you, you have to measure the position of head and 

                                                        

132 This seeming simple result is not surprising if you brood on it a little while. The L is the measurement of length 

L’ in S’ by the S observer, so that /L L γ′= . The ABx∆  is the distance in S but if measured in S’ would be just L’ 

(think of the reason for this yourself, I will come to this immediately in the notes). That means: ABx
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tail simultaneously! It does not make any sense if you measure the head 

of a moving train at one moment, take a nap, and measure the position of 

the tail, you will certainly get shorter distance. So simultaneity is 

important in the measurement of length of a moving object.  

But we have seen that simultaneity is a relative thing, different observers 

in different frames cannot agree upon it, and this cause the difference in 

the measurement of length by different observers. Back to the above 

example, for the observer Bob on the train S’, he wants to measure some 

distance. The train itself can act as a ruler with length L’. Bob equipped 

the train with two laser guns at the head and tail and he will shoot these 

guns simultaneously in his frame (such as triggered by light signals from 

the middle), the shooting will strike AnDingMen (A) and BaiTaSi (B) on 

the ground and thus Bob will conclude that the distance between A, B is 

L’. Because though AB is moving in Bob’s frame he measured it 

simultaneously (according to him). However from the above derivation 

we see that the ground observer does not agree on this. What he observed 

is that Bob’s train shoots BaiTaSi first and after a time interval (according 

to ground clock) given by (11-13), the head of the train shoots at 

AnDingMen. The distance covered on the ground is just the  

calculated above which is larger than L’. The ground observer thus accuse 

Bob measured the proper distance (AB is not moving on ground so its 

distance is proper for the ground observer) with an improper method 

ABx∆
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(same as Bob measured length of moving object head first and after 

awhile, measure the tail) and thus the result L’ disagrees with . 

Similarly if the ground observer Adam tries to measure a proper distance 

in the moving train, Bob would also see the measurement conducted by 

Adam that is simultaneous according to Adam is not simultaneous to Bob. 

Thus the lack of agreement upon simultaneity helps us to understand why 

the results of measurement on length are different in different frames.  

Now comes the time dilation from the lack of simultaneity. This can be 

understood as problems in synchronization of clocks. Because we use 

simultaneity events to synchronize clocks, a disagree upon simultaneity 

means disagree on the synchronization of clocks. Still use the Adam (on 

ground) and Bob (on train) example, Bob synchronized his clocks but 

Adam would not agree on this. Here is how: 

Equation  (11-13) tells us exactly this. For a simultaneous 

events viewed by Bob, say at exactly time in Bob’s clock, this means 

all the clock’s in Bob’s frame points at (synchronized). The clocks in 

Adam’s are not, they are different as distance changes. Suppose Bob hires 

a network of observers and let them watch out (really see in mundane 

sense, but since the distance between the observers on the train and 

clocks on the ground can be taken as small as possible in this network 

observers case, we can neglect the travel time of light from clock to the 

observer) the window of the train, see the clocks on the ground (Adam 
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ordered his network of observes raised their Rolex for Bob’s to see). At 

that time in Bob’s frame, the figures below are what the Bob’s 

observers see: 

  

In Bob’s view, the clocks in Adams are not synchronized as Bob’s. The 

tail ones (the one on the right, since to Bob, Adam is moving from right 

to left with v) are ahead of time than the head ones. Suppose a proper 

time interval  in Bob’s frame such as defined as time intervals between 

a tick-tock of one of the Bob’s clock B’, let’s see the time interval 

measurement by Adam’s clock in Bob’s point of view (we had done this 

in Adam’s point of view in time dilation): 

At the event of tick, Adam record with clock at B; at the event of tock, 

Adam record with clock A (assume now A moves to overlap with B’ at 

the tock). Bob figured that Adam takes the record of time on clock A and 

B and subtract them to get the time interval of the tick-tock, but this is not 

proper according to Bob, because the clocks B,A are not synchronized in 

his view. A is ahead of time, so the subtraction will be more than , and 
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Adam’s measurement of tick-tock will be longer, that is why Adam has 

time dilation. This explains to Bob, how can Adam uses a slower clock, 

measures Bob’s clock rate and concludes that it is Bob’s clock running 

slower. 

Now let’s work out the same formula for time dilation from Bob’s point 

of view, it is more involved than derivation from Adam’s. 

Within time interval , Adam moves a distance according to Bob by: 

 

In Adams frame, the actual distance is: 

 

So the difference due to poor synchronization according to Bob is: 

 

There is another time need to be considered for the total time , that is 

during the tick-tock, how much time elapsed on clock A, the ? This 

happens at clock A, so is proper in this case, i.e.: 

  

Then the total time measured by Adam during the tick-tock is: 

 

This gives back the (11-7) time dilation. The calculation is from Bob’s 
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point of view and is more complicated than before.  

In solving problems in SR, I strongly recommend you to specify the 

events and work out the problem using one frame. In the above 

derivations, I have to switch back between frames which are bad for 

beginners unless you know what you are doing, because this could cause 

confusion, such as what is proper length or time etc. So the good strategy 

for beginner is choosing one frame and stick to it as long as possible, list 

out the events what you observed from the point of view of the frame you 

choose and work from there. The reason I am showing you the example 

above is of course to let you see how time dilation arises from Bob’s 

point of view, still rooted in the disagreement of simultaneity and thus 

resulting in the problems of synchronization of clocks viewed by 

observers in different frames.  

In SR, there are generally many different ways to solve the problem, at 

least two, one from each frame of your choice. A wise choice may give 

you easier solution, the other point of view though may (not always) be 

complicated but it can offer more physical insight or at least served as 

double check.  

The example I am doing so far only used or at least started from the 

postulates only, these postulates will give us a powerful tool besides the 

important effects talked in this long section (11.4). We shall see the 

relations in this section can be much easier derived by the powerful tool. 
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That is Lorentz Transformation we are going to discover.    

Also in order to have real physical meanings, the  has to be a real 

number, this means no frame is moving faster than speed of light, i.e. 

, and  from its definition. 

 

Chapter 12 Lorentz Transformation and Kinematics in Special 

Relativity 

In this chapter, I shall first derive the most important relations in SR, the 

Lorentz Transform (LT). Then we shall see how to apply the Transform 

and see all those fundamental effects we discussed in the last chapter can 

be worked out directly from the LT. We shall also discover there is a 

golden combination of space-time that does not change (invariant) in the 

transform (though we will exploit this feature in much later time).  The 

LT can be expressed nicely in a geometric form---Minkowski diagram 

and this give us a direct ‘picture’ sometimes helpful, such as in discussion 

of cause-effect. Applications and examples of LT will be discussed, such 

as the important Doppler effect and some interesting ‘paradox’ problems. 

The chapter will end with velocity rules in SR which will be important in 

the development of dynamics in chapter 13.  

 

γ
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12.1 Lorentz Transform133 

 

The setup of coordinate systems (frames) is shown in the figure above. 

The x and x’ axes are overlapping with the relative velocity between the 

two frames. This seems like a special case, where most generally, the 

velocity could be any direction. However, in many cases, we can setup 

our coordinate system so that x,x’ overlaps with v. Suppose an event 

happened somewhere at sometime. This same event E when viewed by S 

happened at (x,y,z,t); and at (x’,y’,z’,t’) by observers in S’. What we are 

looking for are the relations among the space-time coordinates between 

the two inertial frames for the same event. When you change from one 

frame to another, the coordinate changes accordingly and this is called 

transformation (just like when you rotate x-y-z in old days, the 

coordinates changes accordingly, that is rotational transformation).  

(The following argument shows you the physical argument leading to 

equations (12-1) below, you may skip it and dive to (12-1) directly) The 

                                                        

133 Strictly speaking, the transform we are considering here which only involves translational motion between 

frames is called pure Lorentz-Transform (also called Boost LT), it is a subclass of more general LT which includes 

rotation of the coordinates and is called restricted LT; the restricted LT in turn is a subclass of even more general 

transform that includes other symmetry operation such as inversion or reflection etc.  

S
x' 0, ' 0t t x x= = = =

'S

v→

E
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transformation will be linear, i.e. it will be in a general form: 

  

The reason of these linear relations is because of the homogeneity of the 

space, i.e. you can pick up an arbitrary point as origin and the results 

should be same. Imagine that if we have non-linear relation such as: 

, now suppose we have a rod with ends at x1, x2. The length in the 

S’ would be: . Let’s change the origin (translate the 

coordinate by a some fix value), so in this new origin, the two ends are 

x1+b,x2+b: . This is different from the 

value before the translation of origin. This means the observation will 

depend on the origin of choice so that violates the homogeneous space. 

That is why the transform has to be linear.  

Linear as they are, there are still 16 unknown coefficients need to be 

evaluated. However the isotropic (i.e. rotational symmetry about axes) 

space would help us get rid most of them. 

a) Consider , now if I rotate around the x (or 

x’) axes by 180 degree (by any degree if you want). This will not 

change x and x’ value as well as t, but the y and z are changed to –y 

and –z. To keep this equation, the  and  have to be 0 (or 

 combination is 0 which is same thing since y and z are 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

x a x a y a z a t

y a x a y a z a t

z a x a y a z a t

t a x a y a z a t

′ = + + +

′ = + + +

′ = + + +

′ = + + +

2x ax′ =

2 2

1 2 1 2( )x x a x x′ ′− = −

2 2

1 2 1 2[( ) ( ) ]x x a x b x b′ ′− = + − +

11 12 13 14x a x a y a z a t′ = + + +

12a 13a

12 13a y a z+
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independent, only possible combination make above 0 is coefficients 

are 0). This leave us: .  Note that it is fine for me to 

rotate the x axis and claim that the transform (all the coefficients) 

should be same. This is because we are trying to find transformation 

due to constant motion between frames, meaning the transform 

coefficients should only depend on the motion velocity. We set the 

coordinate axis of S overlapping with S’: x-x’ overlaps and along 

direction of motion; the y overlaps with y’, z with z’. When I rotate 

the x axis, I do not change the expression of v. 

b) . A similar rotation around x(x’) axes 180 

degree will leave x,t unchanged, y to –y, z to –z and y’ to –y’. This 

will give us  are 0. With our choice of coordinates as shown in 

the figure, the x-z plane always overlaps with x’-z’. So any event 

happens in the x-z plane in S frame would be observed as in x’-z’ 

plane in s’ frame. This just means the y=0 (x-z plane) would transform 

to y’=0 for any z. Using this fact, then for 
22 23y a y a z′ = +   then

23a

should be 0, so that . From relativity principle, the coefficient 

has to be same independent of which frame you are in, i.e. If Adam 

observes Bob’s rod getting smaller or larger; Bob has equal right to 

claim same thing to Adam’s rod. This means  (the 

rejection of  is obvious, it has to reduce to Galileo transform 

11 14x a x a t′ = +

21 22 23 24y a x a y a z a t′ = + + +

21 24,a a

22

y
y

a

′
=

22 22

22

1
1a a

a
= → =

22 1a = −
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at low velocity). So we have  and similarly . This is a 

proof of vertical distance is unaltered where I argued with relativity 

principle before. 

c) . Similar arguments as above, rotating the x 

(x’) axes only alters y and z so that their coefficients (or combination) 

are 0. So  

Now the 16 coefficient above are reduced to 4 unknowns: 

   (12-1) 

There are quite a few ways to work out their expressions. The basic 

method is to pick out some events such as the events chosen in KK (table 

11.1). Since we have already worked out some fundamental effect from 

the postulates directly, we can apply those here to find out the coefficients, 

i.e. the toil we spent there makes this derivation easier. (The events 

chosen below to derive the Lorentz Transform is not unique, you may 

choose other events deriving the same thing.) 

A) The origin of the S’ (x’=0) in the S frame is moving with velocity v to 

the right and this will give us: 

 

B) Using length contraction, for a proper length x’ is S’, if we measure its 

length we have to do it simultaneously, i.e. t=0 and then . From 

y y′ = z z′ =

41 42 43 44t a x a y a z a t′ = + + +

41 44t a x a t′ = +

11 14

41 44

   

x a x a t

t a x a t

y y z z

′ = +

′ = +

′ ′= =

11( )x a x vt′ = −

x
x

γ
′

=
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the above relation, this leads to: 

 

C) Using time dilation, for a proper time in S, i.e. time interval t at x=0, 

we have , and this leads to: 

 

D) Now only one coefficient to be evaluated
41a . I shall use the relativity 

principle on the time dilation, i.e. a proper time t’ is S’ (x’=0) would 

be: 

 

The x needs to be replaced by x’ with , 

, for the proper time in S’, x’=0, then: 

, so compare with , 

 

Now we have all the coefficients and the transform is: 

   (12-2) 

This is the famous Lorentz Transform, once again it relates the space-time 

coordinate of same event in different inertial frames that is moving with 

v relative to each other. Actually it is intervals of space-time coordinate 

(above the event 1 is taken as the overlap of the two origins 

11a γ=

t tγ′ =

44a γ=
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x x vt x vtγ
γ
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−
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), so for any two events when viewed from S and S’, 

their space-time intervals are related by:  

   (12-3) 

The form is not quite symmetrical between x and t, this is because we are 

using units in which . If we use unit c=1 (i.e. distance is measured 

by light-second while time is still second) or using ct and ct’ (they will be 

in dimension of distance), the transform will be more symmetrical: 

   (12-4) 

If we ask knowing the x’,t’ of events in S’, what are the x,t in S? The 

relation should be same from relativity principle, only the v changes to –

v: 

 or  or   (12-5) 

 

12.2 Fundamental Effects from LT 

In this section, I will show that we can get the fundamental effects, i.e. 

time dilation, length contraction and relative simultaneity, from Lorentz 

' 0, ' 0t t x x= = = =

2

( )

,   

( )

x x v t

y y z z

v
t t x

c

γ

γ

′∆ = ∆ − ∆

′ ′∆ = ∆ ∆ = ∆

′∆ = ∆ − ∆

1c ≠

( ( )) ( )

( )

v
x x ct x ct

c

ct ct x

γ γ γβ

γ γβ

′ = − = −

′ = −

2

( )

,   

( )

x x vt

y y z z

v
t t x

c

γ

γ

′ ′= +

′ ′= =

′ ′= +
2

( )

,   

( )

x x v t

y y z z

v
t t x

c

γ

γ

′ ′∆ = ∆ + ∆

′ ′∆ = ∆ ∆ = ∆

′ ′∆ = ∆ + ∆

( )

( )

x x ct

ct ct x

γ γβ
γ γβ

′ ′= +

′ ′= +



 445

Transform. Of course during the derivation I already used some of these, 

it may appear like arguing in circle. The fact is that the LT can be derived 

without invoking the effects directly from relativity principle and 

constant c. This will provide an easier and nice way to remember those 

effects.  

(1) Time dilation 

The proper time in S is the events happened at same place with time 

interval, this means: , then from (12-2) or (12-3): 

 

This is the formula for time dilation effect we talked before. If the proper 

time is in S’, then you work out the result. 

(2) Length Contraction 

For a measurement of proper length in S’, i.e.  (it is stationary in 

S’), we have to measure it at the same time in S, i.e. , (12-3) will 

give us: 

 

This is the length contraction result before. Notice that I have explicitly 

specified events in the time dilation and length contraction to avoid 

confusion. For the measurement of proper length in S, you figure it out 

yourself.  

(3) Relative Simultaneity 

0,x t τ∆ = ∆ =

t γτ′∆ =

px l′∆ =

0t∆ =

p

p

x l x l

l
l

γ γ

γ

′∆ = = ∆ =

=
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For a simultaneous events in S’, say all the clock on the train all point to 

12 on the train, . The readings of the clock on the ground (S) will 

be different depending on its position, from (12-3): 

 

This is the (11-13) that I worked out with more effort before. As always, I 

will ask you to figure out for simultaneous events in S (ground clock all 

point to one reading for the ground observer), what are the clocks on the 

train viewed by the ground observers?  

Mathematically, starting from LT and work out the effects are simplest, 

however the reason I goes other way around is that I hope you will 

appreciate the physical reasoning from the points of postulates more. 

 

12.3 Space-Time Interval: an Invariant under LT 

The LT above clearly shows the relations between the space-time 

coordinates of events viewed by different inertial observers. The spatial 

distance, the time interval between events will appear differently for 

different observers, it seems like the slang: nobody agrees on nothing. 

But there is something invariant, means unchanged, upon transformation. 

We shall see what this will be.  

Actually the constant c offers a clue on the expression of the invariant: 

0t′∆ =

2

2

0 ( )
v

t x
c

v
t x

c

γ= ∆ − ∆

∆ = ∆
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Suppose a light goes off, a photon flies with same c in all frames, this 

means the relations: 

 in S and in S’ we also have c t r′ ′∆ = ∆ ,we find that the value: 

 will have same value in 

all frames (of course you plug in the coordinates measured in the frames), 

it is always 0 for the light in all frames. This should provoke you to think 

that besides light, for any other events, do we have a similar invariant 

property of the above relation? i.e. for any events when viewed in 

different frames, such as a particle flies across space between staring 

point A and end point B. The space interval and time interval measured 

by different observers in different frame will be different, but do we have: 

 (12-5) 

It may not be nice value 0 as for light, but its value is unchanged upon LT. 

Indeed the (12-5) is true and the proof is direct from LT (I won’t consider 

y and z below for obvious reason): 

 

 

QED. 

Sometimes we may drop the symbol if the starting event is the overlap 
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between origins defined before, the (12-5) will be: 

   (12-6) 

The invariant value  deserves a unique 

name, the space-time interval, : 

  (12-7) 

Note that it’s a bookmark to write space-time interval as , it is not 

some squared number, so its value could be positive or negative 

corresponding to time-like ( >0), space-like ( <0) or light-like ( =0) 

events when we talk about causality. 

The relation (12-7) states that the space-time interval defined is an 

invariant upon transformation. The analogy is the magnitude (length) of a 

vector upon rotation. There as the coordinate system rotates, the same 

vector will have different coordinates but its magnitude is same for all. 

(12-7) is not for some length in 3-D or 4-D in the Euclid space, which 

will be defined as summation of squares instead of time squared minus 

the space squared.  The time and space are intertwined in Lorentz 

transform (change of x’ depend on both x an t and vice versa), i.e. time 

and space are related but not exactly equivalent. The feature of invariant 

space-time interval and its analogy to 3-D vector length will fully be 

exploited in the 4-vector formalism later, and that is a beautiful theory (an 

advertisement here).   

Since  is same for all observers, what is its expression for the 

2 2 2 2 2 2 2 2( ) ( )ct x y z ct x y z′ ′ ′ ′− − − = − − −

2 2 2 2 2( ) ( ) ( ) ( )c t x y z∆ − ∆ − ∆ − ∆

2s

2 2 2 2 2 2 2 2 2( ) ( )s ct x y z ct x y z′ ′ ′ ′≡ − − − = − − −

2s

2s 2s 2s
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observer travels with the particle? Here, the particle appear stationary, 

always stays at same location in such frame, and the time interval is the 

previously defined proper time! So we have equation: 

   (12-8) 

Different observers in different cars when observe something happened 

on a moving train, their results of measurement are not same numbers. 

But if we ask the question another way, what happened using the data 

measured by different observers in the car and infers from those to the 

measurement conducted on the train, the data should give the same results. 

Put it more plainly that Bob may measure muon’s lifetime one value, 

Adam in a different car will measure the lifetime to be some other value, 

but if we ask to Bob and Adam, what is the muon’s lifetime in muon’s 

frame, they all agree that it is . That is what (12-8) tells us.  

 

12.4 Minkowski Diagram  

This is a geometric representation of the Lorentz Transform and gives 

you a sort of ‘direct picture’ of the transform. The inertial frames are still 

same as before as in the figure below: 

2 2 2s c τ=

2 sµ
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For any event E with space-time coordinate given by (t, x, y, z), the event 

can be represented by a point in space-time diagram, the Minkowski diag.  

 

For a single event E, it is space-time coordinate in one inertial frame is 

indicated by the dashed lines in the figure and the coordinate ( ). 

Noticed that it is conventional to choose ct be the vertical
134

 axis in the 

diagram, this makes the H-V axes with same dimension (both in length). 

So any event will be represented by points in this diagram and a sequence 

of events, such as particle flying through space over time tracing out a 

trajectory, will be represented as curves or lines (as the blue one in the 

figures). Such line representing a sequence of event is called world line, 

the blue vertical one in the right figure represents particle E is motionless 

in this frame: as time passes, no change of position.  

For the Lorentz Transform: 

                                                        

134 To avoid unnecessary confusion, I shall use V (vertical) for the y axis in Cartesian, it represents ct in the 

diagram. The horizontal axis (H) represents space position (1-D along the motion, usually choose to be x). 
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The world line  is S’ frame, and  (these are the H-V axes in 

S’) in the S frame are: 

 

 

The red lines representing the axis (the world line x’=0 in the S’, the 

object is not moving in S’ would appear moving with  viewed in S) 

and the x’ axis (events at different location happened at same time t’=0, a 

simultaneous events in S’ would not be so in S) are shown in the figure 

above. They symmetrically span an angle  with respect the ct and x 

axes, and: 

   (12-9) 

Comment: The tilted axes of S’ are the how events been observed in S, 

this does not mean that in S’ coordinate system, the x’ axis of the 

Cartesian coordinate have an angle with x axes of S. They are 

overlapping as shown in the first figure of this section.  
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Our next question is how an event is represented by (x’, ct’), i.e. how to 

read the space-time coordinate of an event in S’? For the events happened 

simultaneously in S’,  or  will exactly trace out a line 

parallel to that of x’ axes (line of t’=0); and for events happened at same 

location in S’, i.e.  or  will exactly trace out a line 

parallel to ct’ axis (line of x’=0). So the space-time coordinate of an event 

happened at  in S is  in S’ and the graphic 

representation is: 

 

The space-time coordinate of event E is read off by drawing 

parallelogram with respect to ct’ and x’ axis.  

There is one important catch in this diagram, in the figure above the unit 

length is S’ are different from unit length in S! This is best illustrated with 

Lorentz Transform or the invariant space-time interval . First using 

Lorentz transform, for unit length along the x’ axis, that is (x’=1, t’=0) in 

S’. In the S frame, using: 
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This gives ,  

 

The unit length (1’,0) measured in S’ is not unit anymore to S, it is: 

   (12-10) 

Similarly the argument would apply to the time unit (0,1’) in S’ 

corresponds to ( , ) in S and we have a same expression for time unit 

in S’.  

These could also be viewed from invariant , this number is same for 

both S and S’. For the  world line (all events satisfying this 

condition along the line), the curve in the S frame is a hyperbola: 

 

This curve will intersect the x axis (t=0) to give unit length in x, (1,0) for 

S. But  could also be expressed as space-time coordinates in S’, i.e. 

the same hyperbola curve when viewed in S’, represents events satisfying: 

 

This will intersect at x’ axis (t’=0) to give unit length in x’ (which is 

different than that in x). acts as a calibration curve for the unit 
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length in both frames.  

Combined all this, we have a complete Minkowski diagram: 

 

The above is to choose the S frame orthogonal in Minkowski diagram, we 

certainly can choose S’ as orthogonal and let S be moving towards –x’ 

direction. The diagram would be: 

 

I have told you all the basics on Minkowski diagram, let’s now put it in 

use to see some examples: 

Example 1: Light propagation 
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The figure above left represents a light signal generated at the origin and 

time=0. Its world line is a 45 degree line in the S, like a time-path of a 

particle moving with speed 1 ( ); viewed in S’, the light signal 

also travels with speed 1, i.e. the light line also has same angle with 

respect to x’ and ct’ axes (the angle is just ). The light bisects all 

the inertial frames. As the relative speed v between the S and S’ increases, 

the S’ axes will be tilted more approaching the light line, but since , 

the ct’ and x’ axes never flips across the light line, the following cannot 

happen: 

 

The figure on the right is an event that light signal goes off at certain 

space-time coordinate E (arbitrary), the light propagates along the +x(x’) 

(+45 world line) and –x (x’) (-45 world line) direction. The time taking 

the light to be seen (in mundane sense) by the observers staying at the 

origin of the S and S’ are the intersects at the ct and ct’ axes. This is 
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clearly different from the event when it is happened, i.e. recording 

coordinates of events is different from seeing in mundane sense, a point I 

talked a couple time already, here is the direct picture.  

Of course if I asked a question, a fire cracker explodes at E, (1 ls (light 

second), 2 sec;) according to S, and v=0.8c between frames; calculate the 

time when the light signal really seen by observers at origin of S and S’. 

You can use the diagram directly read off the result (if you draw the 

diagram and place the event correctly), but in this course I believe most 

of you will calculate it from the LT transform which is probably faster 

than drawing the diagram. I trust that you can work out this one by 

yourself, do it yourself and check the answer (The diagram is shown 

below): observer at S origin will see light at time=2+1=3 sec, observer at 

S’ origin will see light at time=2+1=3 sec too in this special case. If the 

event happens at (1ls, 1s) in S instead, than for light to reach S: 

time=1+1=2s; and for S’, time=1/3+1/3=2/3 s. Though you may not use 

the diagram in the calculation, a sketch of it at least acts as a check for 

reasonableness of the answer.  
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Example 2: Time Dilation 

 

For a proper time interval measured in S, represented by the double head 

arrow OB at x=0, it has time interval . This will be measured in S’ by the 

length OA (or t’). You already notice the time dilation from the sketch but 

let me show the detail calculation. It is a straightforward geometry to 

show relation between OB ( ) and OA (t’) when expressed in unit of S: 

 

You notice that it is different from the familiar , this is 

because the unit is not corrected yet in the above derivation, that is put in 

the unit of S, it should be calibrated to that of S’, i.e. (12-10) 

, t’ put in this unit will give: 

 exactly as expected. 
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Comment: Noticed that this computation (solving geometric problem) 

may be more complicated than the algebra method with LT, the advantage 

of the diagram is its illustrating power, that it helps you to ‘visualize’ the 

time dilation (just like the regular algebra and geometry, prove two lines 

are perpendicular may be easily done by a dot product using vector 

algebra rather than prove it geometrically, but a drawing of perpendicular 

lines does help us understanding it)  

For the case of proper time in S’, it is left for you to ‘visualize’ it using 

the above diagram.  

 

Example 3: Length Contraction 

 

The figure on the left represents a rod rest in S’, the world lines of its two 

end trace out two straight lines, one is just ct’ axis, the other is the red 

dotted one. (the rod is stationary in S’ but moving with v in S). When S 

observer tries to measure its length, he has to do it simultaneously 

according to him, so OA is the result (he measured the head and tail of the 

rod at t=0 in his clock, of course he could choose other time t=2 etc., 

x

x′

ct ct′

x

x′

ct ct′

O A

B
l′

O C

D



 459

same result). Geometry leads: 

 

OB is unit of S’ is , since we like to know the length measured in S, so 

better express it in unit of S, i.e.: 

,  similar calculation as example 2 will give us: 

 

For the measurement of a proper length in S (the rod is stationary in S), 

its end trace out world lines parallel to ct axis. S’ has to measure it 

simultaneously according to him and the computation is left for you to 

finish.  

Example 4: Simultaneity 

 

The two graphs I hope clearly demonstrate the simultaneity is a relative 

thing. The figure on the left shows the simultaneous situation in S’: The 

light signal emitting from the middle of train, reach the head and tail 

simultaneously. So for S’ the two events A’, B’ happened as same time 

which is also nicely shown that the A’B’ line parallel with the x’ axis (all 
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the events happened along this line is at the same time in S’). But the A’, 

B’ in point of view of S is clearly not simultaneous, A’ occurs before B’ 

(the tail-end happens first, ahead of the head-end). The calculation using 

geometry to show that the time delay in S is the one given in (11-13), i.e.: 

 is left for you to prove.  

The figure on the right shows you the simultaneous event in S, A,B when 

viewed by S’, are not simultaneous anymore. The tail end B (AB is 

moving to the left for S’) happened first, earlier than the head-end A.  

The time delay in S’ can be easily found out using LT, and if interested, 

please calculate it using the geometric of the diagram.  

We have discussed the basics on Lorentz Transform and in the following 

sections, we shall apply the stuffs we learned so far to see some 

implications and applications. 

 

12.5 Cause-Effect (Causality) and Speed Limit on Particles and 

Signals 

Using the invariant space-time interval  (12-7), we can divide the 

Minkowski diagram into different zones: 
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The light divides the space-time into light cones. The one in which 

 is called time-like zone; the  is called space-like zone and 

 lines are light-like.  

(1)  time like zone 

The time orders of events in this zone never changes. The event1 is 

always chosen as origin (if it is not , always can shift the origin to 

overlap), say another event happed some time later at some place 

within the time like zone, i.e. If the (x,t) are the coordinates of the 

second event: . Viewed in another frame 

that is moving with v and overlapping origins, the event happens at: 

 

Because , so what is in the parenthesis will always be 

positive, will always have same sign as t, i.e. the time order of 

events in the time-like zone never changes. What happens later will be 
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later for all inertial observers, what happened before will be before for 

all observers. That is why the top-cone in the time-like zone is called 

absolute future, because any event happened there will be future to all 

observers at origins in different frames; the bottom half is called 

absolute past for the same reason. This can also be directly shown 

with Minkowski diagram: 

 

An event E happened at the future to O, E will be future (t, t’, t” all >0) 

for all inertial observer in S, S’ and S”. Actually for a certain observer 

(the S’ in the figure) the event E and O happens at the same place but 

later time. This is the name time-like comes from: you can choose a 

frame so that the two events (O and E here) happened at the same 

place with time interval.  

What does this to do with cause-effect? Well cause-effect is just a 

sequence of related events, the event O (call it cause) is related to 
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event E (call it effect), and the time order between them cannot change 

no matter which frame you view them! This time order requirement is 

called Causality Principle, it is common sense. For example, cause: a 

bullet is fired; Effect: I was killed. You can watch this show boarding 

on different trains with different high velocities, but all you will agree 

that the bullet was fired first (at earlier time) and I was killed later. It 

is going to be absurd if for some viewers I was killed first for no 

obvious reason and later a bullet was fired (this also applies to 

ancestor-descendant joke or it is impossible to have scenes like that in 

the movie Terminator). If the Causality Principle could be violated, i.e. 

the time order between related events could be changed, the world will 

go crazy. But fortunately the SR tells you that the events happened in 

the time-like zones will never change the order of time, so if two 

related events happened, they are within this zone (say the cause is O, 

the effect event E has to be inside the light cone). I do not claim all 

events inside this zone are related, but could be in principle if I choose 

to. For some observers in a frame the two events could happen at same 

place and different time, so the earlier event is possible to be the cause 

of later event.  

Rephrase myself again as summary on this part: The Casualty 

principle requires the time order of related events never flips, the 

time-like zone satisfies this. The related events have to happen in this 
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zone. (Of course I have to prove yet that the space-like zone do not 

satisfy this, that is coming right away) 

(2) space-like zone 

Similar setup for events O, E as above: for event E happened at (x,t) in 

space-like zone: 

 

Viewed in another frame: 

 

Now because of , though v<c, it is possible that  in 

this case. So the time order of events can be flipped (O before E for S 

observer but E before O for S’). This could also neatly shown using 

the Minkowski diagram: 
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As shown in the figure, the O, E happened at different place and time 

for S (O before E); but for S’ the two events happened at same time 

but different places; for S”, the E happened before O. Noticed that we 

can choose an inertial frame to make the events happened in this zone 

simultaneously with the origin, i.e. no time interval only space 

separation and that is the name space-like zone comes from. 

The event O and any event E in this zone cannot be related due to the 

flips of time order and requirement of Causality principle. This zone 

thus is also called absolute elsewhere or absolute alibi, because in 

some frame a murder happened in New York simultaneously to I am 

writing this lecture here in Tsinghua, I could not possibly be the cause 

thus the suspect of the murder.  

A relaxing example: Suppose you propose to two girls to marry you 

(you sleazy grifter), A is Alice, B is Brenda (for the feminist, do 

switch the name and sex). Event O is you called the poor girls (well 

you cannot call them same time, so let your twin brother be 

accomplice, or you send messages through cellular), the event A and B 

are the two girls accept your proposal (in your dream). This is 

depicted in the diagram below: 
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The A,B are inside your (O) light cone and you (the cause) propose and 

A,B accepted (the effect). Could A,B tell that they have been cheated as 

events A,B happened? They cannot, because the B is outside of the light 

cone of A. This tells you when and where to pick the opportunity to make 

the proposal. If you call A too early, then by the time you call B, she 

already learned you proposed to A. That is one advantage using 

Minkowski diagram ☺. But be warned, you cannot expect cheat could 

last: suppose Alice and Brenda do not move (they won’t meet probably 

because of you) so their world lines are red vertical ones. Alice could 

send a radio signal and Brenda will receive it sometime later as indicated 

in the figure, and the con shall be exposed.    

(3) Speed Limit to Particles and Signals 

We have seen that the event in the space-like zone (absolute alibi) 

cannot be related to some event at origin. Now suppose we have a 

travelling particle or signal (signal will be made of some particles), 

whose speed is larger than c. Clearly the world line of this particle will 

A

B

O
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be cause-effect related. It is just the time-path of this particle, I shall 

call it bullet fired by somebody. If the speed is larger than c, where the 

world line of this particle will end? The answer is in the space-like 

zone: 

 

If the particle travels with velocity greater than c, the world line is the 

red one in the figure. Notice that the way we setup the axes, the 

smaller slope means higher speed. This bullet will end in the 

space-like zone, and it is cause-effect related to the origin (the firing 

of the gun), but we have seen that this will violate Causality principle, 

that the order of events can be flipped in such zone. This means in 

accordance with the Causality principle, no particle and signal can 

travel faster than c, the c is the speed limit imposed by the nature 

according to SR. So this becomes a popular test for the correctness of 

the SR. Till now, no violation had been observed or confirmed. A 

educational purpose movie “Ultimate Speed” shows the speed of 

accelerated electron will approach but never exceed the limit
135

.  

You may have heard of some of superluminal phenomena, such as two 
                                                        

135 The film “Ultimate Speed” by Bertozzi can be found on internet. The description is in: Bertozzi Am. J. Phys. 

32, 551 (1964).  
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rockets fly apart and each with 0.8 c to the ground observer. For the 

ground observer, one rocket flies 0.8c to right and the other 0.8 c to 

left. From the point of view of the ground observer, the two rockets 

are separating extremely fast, the relative speed according to ground is 

1.6c. This is just apparent speed which you cannot to use to transmit 

signal to change the world, and we will see that the real speed for one 

rocket relative to another never exceeds c. Another example is later we 

shall see that the phase velocity of light could exceed c but that 

velocity also has no way to be applied in transmitting the signal.  

 

12.6 Interesting “Paradox” 

There are many interesting “paradox” in SR. The reason I put them in 

quotation is because these are not real paradox. It arises mostly from our 

old habit of thinking (inertia of mind) or sloppy description causes 

misunderstanding. I shall study a few typical ones in this section, they are 

fun and they are pedagogical (means good for education) and I hope by 

studying them, it helps your understanding on SR.  

Example 1. The garage and car (or barn-yard) paradox  
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As the figure shows (it shows the barn-yard as in KK’s problem 12.10, 

but I shall use garage and car all the values will be same as in the 

problem), a farmer has a garage with length 3/4 L0, he also owns a car 

whose length is L0. So the car does not fit in the garage. One day the old 

farmer read something about relativity, and it occurred to him that he can 

use length contraction to fit the car inside the garage. He asked his son to 

drive the car to speed of , thus the car would be measured as L0/2 in 

the farmer’s (on ground) frame and will be fit into the garage. He will 

slam the door closed right at the moment that the tail-end of the car 

passes the door and trap the car inside. His son on the other hand, also 

knows something about SR, and he argued that it could not be done. 

Because if he drives the car and from his point of view, the garage will be 

measured shorter, contracted to 3/8 L0, and won’t fit the car even worse. 

The question is who is correct? And if indeed such thing is carried out, 

what will be the result? Maybe you would like to ponder on these 

questions (closed this notes) before read on.  

The answer to the first question is that they are both correct. How could 

that be? You exclaim, the car is either fit or not fit in the garage. Yes 

3

2
c
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within one frame the car is either fit or not, but in different frames the 

observation can be different! This is not a true paradox as someone is 

killed or not, but an observation depending on your point of view just 

analogous to stone falling from the sail of the boat, the boat observer will 

see a free fall and bank observer will see a projectile. More details will 

follow to illustrate this better. 

 

The father’s and son’s point of view is illustrated by sketch above. To the 

father the tail-end of the car at the door and the head-end at some point 

inside the garage are simultaneous events. But we have learned that 

simultaneity is relative so it is not surprise that the son does not agree. To 

the son, the simultaneous event with the head-end inside garage (at 

certain location inside the garage) is the tail is way out side of the garage. 

Or the simultaneous event with tail at the door is the head already outside 

of the garage wall. These are examples of simultaneous event for the son, 

the head and end tail both inside the garage cannot be simultaneous from 

son’s view, while it is simultaneous in father’s. 

Instead of raise the clock and argue the simultaneity as we did before in 

chapter 11, we now can use LT to solve the puzzle.  

'father s

'son s
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The key is which event happened first: 

event 1: tail-end at the door, event 2: head-end hits the wall.  

For the father event 1 happened before event 2; for the son event 2 

happened before event 1. LT will predict exactly this. 

In the father’s frame the event 1 can be defined as (0,0), then the event 

will happen at 3/4L0, at a time of: 

 

The difference between the events are: , now use 

the LT to see how the son measures this difference, we only care about 

time order here, so: 

 

Indeed the event 2 happened before event 1 from son’s point of view. 

Here the event 1 and event 2 are not related. If the event 1 is the head-end 

passes the door and event 2 is head-end hits the wall the two events are 

related, here is different, so no problem for flip of time order.  

You may further argue if the head-end hits the wall first in son’s point of 

view, how can the car still pushing forward so that the tail-end passes the 

door? Though the two observers will not agree the time order of the event 

1 (the tail passes the door), they all agree that the tail passes door at some 

time. Will this be a contradiction? This is related to the second question 

of when the farmer slams the door closed at event 1, what is the result, i.e. 
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he opened the door later what he will see? From father’s point of view, 

there is no problem for tail passes the door since it happened first. When 

he slams the door, he wants the car to be stopped.  As the car stops, its 

length increases measured by the farmer, and it will hit the wall and if the 

wall is made of paper, the car will poke through and if the wall made of 

steel, the car will be crashed, so either the car or the garage will be 

damaged.  

From the son’s point of view, the head will hit the wall first and if it is 

made of paper, the head will poke through it while the tail passes the door. 

If the wall is made of steel, the head of the car will be stopped, however 

this interaction needs time to propagate through the car to the tail to slow 

down the motion there (no real rigid body in SR, all interactions takes 

time). So before this interaction reaches the tail, the tail will still push 

forward passing the door though the head was stopped by the wall. The 

son probably will be severely hurt while was cursing his old fool. You see 

that either the car or the garage will be damaged in son’s point of view as 

well.  

Example 2. Star War paradox 

Two spaceships each with proper length L and approach each other with a 

slight shift in vertical to avoid collision, the relative velocity is v.  
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They plan a war exercise. The plan is when the tail of ship S’, the B’ end 

overlaps with the head (A) end of ship S, the captain on ship S fires a 

photon torpedo from its end (B) simultaneously. From Captain S’s view, 

it is harmless, the torpedo will miss the ship S’ because due to length 

contraction, the S’ will be shortened as shown in the middle sketch. But 

the captain S’ objects this plan, he argued that from his point of view it is 

the S ship got shortened and if the S fires torpedo simultaneous when the 

B’ and A end meets, his ship (S’) will be hit as bottom sketch shows. 

What is going on? Whose description is correct and will the ship S’ get 

hit or not? 

The catch is the middle sketch and bottom sketch are describing different 

sets of event. The middle one is a pair of simultaneous events according 

to S; while the bottom one is a pair of simultaneous events according to 

S’, they are not the same. If the war plan is carried out by the middle one, 

no ship will be hit, period.  So there is no need for the fuss by the 

captain S’. Let’s do the problem more quantitatively. It is easy to 

understand no hit from S point of view, the ship is hit by torpedo will be 

A B

A′B′
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an event (if happened) that has to be agreed upon by observers in all 

frames, so if the observer in one frame (S) did not see the hit, then hit 

never happens. The S’ has to reconcile with this fact instead of using the 

wrong intuitive picture (the bottom sketch) where the simultaneity is in S’ 

not in S. Let’s work out these using point of view of S’.  

First need to define events: 

Event 1: A,A’ meet. This is x=0, t=0 and x’=0,t’=0 

Event 2: A,B’ meet.  

Event 3: torpedo fired at B  

We shall work out the coordinates of events in S then LT to get them in 

S’.  

In S, the event 2 happened at x2=0, with a time ; event 3 

happened at same time as event 2 but at the tail of S, so .  

In S’, the event 2 happens at: 

 this is exactly expected 

 also expected from S’ point of view. 

Event 3 happens at: 

 

 

This means the torpedo will fire before event 2, and it fires ahead of the 
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head-end of the S’ ship.  If the war plan were carried out, the S’ will 

observe that the S ship fires a torpedo from its end B before the head A 

meets tail of S’, and will miss his ship. There is no paradox here only a 

misunderstanding of the war plans. 

 

Example 3. Twins Paradox revisited 

Same as before: Adam and Bob are twins. Bob took a trip travelling with 

spaceship v=0.8c ( )to a star E which is 8 ly away from earth. The 

round trip take 20 years in Adam’s time and only 12 years in Bob’s, so 

Bob is 8 years younger when he is back. The above conclusion is drawn 

from Adam’s point of view as shown before. We shall investigate this 

here from Bob’s point of view: 

Actually all the calculation using SR had been summarized in the 

diagram and only a brief explanation will be necessary. For astronaut Bob, 

Event 1 is taking off from earth, event 2 is reaching star E. This will take 

6 years (indicated as 6’ in the figure) according to Bob’s watch, the time 
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elapse on earth would appear only 3.6 years (  a measurement of earth 

clock by one of observers in S’ simultaneous with event 2: Bob reaches 

E). This is just time dilation effect from point of view of S’, so Bob 

would think only 3.6 years passed on earth looking the record of his 

network of observers. Then event 3 happened: Bob quickly go through 

deceleration and acceleration and end up in the spaceship traveling back 

with same speed. Something peculiar happened here, the measurement of 

earth clock by one of observers in S” simultaneous with event 3 will see 

16.4 years on earth clock while all clocks in S” point to 6 years (assuming 

acceleration turn-around time is negligible). This means that if Bob 

checks the record data of his network of observers he would notice that 

before the turn-around the earth clock points to 3.6 and after turn around 

the earth clock points to 16.4, a time jump of 12.8 years in earth’s time. 

This jump of time could be explained by the synchronization difference 

between the frames (change from S’ to S”, if both clocks in S’ and S” are 

set to 6 years when they meet at event 3, while the clocks of S and S’ are 

set to zero at the event 1, there will be a time difference in S when you 

switch the frames from S’ to S”). However to fully understand this 12.8 

years jump (the physics behind) we will have to talk about time dilatation 

effect due to gravity. After turn-around, it takes another 6 years in S” (6” 

in the figure) to be back to earth, that is another 3.6 years on earth time. 

So total time elapse on earth from Bob’s point of view who deduce it 

6
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from the record data of the observers is 3.6 (trip to E)+12.8 (jump at 

turn-around)+3.6 (return trip)=20 years. It is same as Adam’s.  

Now back to the mysterious time jump during the turn-around, it is due to 

the gravitational red shift (or time dilation) whose formula is derived in 

KK’s pg 370 and 482: 

 

In the accelerated frame (or equivalently in a gravitational field that 

points downward, in the reversed direction to acceleration), the times 

elapsed at the high end (C) and low end (D) are related by: 

 

In the case of our problem, the earth is at the high end (with large 

gravitational potential due to the acceleration frame), the time TD is the 

time elapsed at low end, where Bob is making turn-around from velocity 

0.8c to -0.8c, so: 
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Assume the turn-around takes little time (a is huge) and this means the 

time elapsed on earth during the turn-around is approximately: 

 

This is exactly the time jump observed by Bob during the turn-around and 

I showed you here that it is essentially caused by acceleration (or 

equivalently by gravitation). 

 

12.7 Doppler Effect 

 

Doppler shift is the frequency (or wavelength) change when there is 

relative motion between the wave source and observer. It is easy to 

understand with the figure above. The star is a wave source, it generates 

light indicated as dashed vertical lines: The line indicate the peak (or 

valley) of the cosine wave and is called a wave front, or just treat it like 

the star sends out flash light pulses periodically, the lines are those light 

pulses. If the star and the observer are stationary as in the top sketch, the 
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time interval between the pulses, the period, is T0, and the frequency and 

wavelength can be calculated from the period.  

If there is relative motion between the source and observer, the time 

interval between the pulses detected by the observer will be different 

from T0. If the source and observer are approaching each other, it will 

take less time to detect the adjacent pulses and thus less T (T<T0), (T is 

the time interval of detecting the adjacent pulses in the observer’s frame) 

larger frequency  and shorter wavelength , this is called ‘blue’ 

Doppler shift (since blue light has shorter wavelength in visible light 

spectrum); If the source and the observer are separating apart, moving 

away from each other, it will take more time to detect the adjacent light 

pulses and thus longer T, smaller frequency  and longer wavelength . 

This is called ‘red’ Doppler shift.  

Doppler shift of light finds wide applications in spectroscopy (Doppler 

broadening of spectral lines), it is a very important tool in Astronomy 

(detect the motion of stars by the shift, the expanding Universe and 

discovery of celestial bodies that do not emit light are found this way), 

and it is also used in our daily life, such as Doppler radar detecting the 

speed of a car.  

The relation that we are looking for is the change of frequency (or 

wavelength) due to the relative motion v. The relevant events here are 

detection of light by a single observer, such as you really see the light 

υ λ

υ λ



 480

with your eyes and count the time interval of received light pulses. As I 

mentioned before here is a case we really see the events in mundane 

sense, and we shall find that Doppler effect of light comes from two 

factors: a) Relativity effect due to motion; and b)Difference in time for the 

light signal to be received due to the motion.  

(1)  1-D Doppler shift (Longitudal)  

 

The formula between frequency and velocity can be derived many 

different ways (we shall see another using energy-momentum 

conservation later), I will work out this in two ways: from the 

perspective of the observer and the source, it serves as example to 

apply what we have learned so far.  

First from the perspective of the observer: I shall only consider the 

case that the source and observer are approaching (blue shift). From 

the observer’s perspective, it is the source that is moving with v 

towards him. The time interval between the detection of pulse 1 and 2 

is just: 
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The calculation of L needs to take those factors a), b) into account. As 

the figure shows, the interval that light is emitted by the source when 

viewed in this frame (light source is moving) isτ , during the emission 

period τ , the light source traveled and the distance between the pulses 

is: ( )L c v τ= −  (this is factor b, the motion of source shorten the 

arrival times of the pulses, like a chasing problem in classical 

mechanics). There is another factor, the time dilation effect of SR: in 

the frame of source, the light is emitted during the period of proper 

time 
0 0Tτ =  (the period observed by a stationary observer relative to 

the source, this is proper time because…you reason it please). So 

observed τ with the light source is moving (just like measuring the 

light clock on a train) is related to
0 0Tτ = : 

0τ γτ= . (this is factor a) Put 

all these together, we have: 
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This is the blue shift formula, and if the source is moving away from 

the observer, then the red shift formula will be (just change the –v to 
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v): 
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At low speed limit, i.e. 1β << , the above formula will reduce to: 
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Define the frequency shift as: 
0υ υ υ∆ ≡ − , then above equation is: 
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For the red shift case: 
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(12-13) and (12-14) are popular in the application to estimate the 

Doppler shift, you seldom invoke (12-12) at low speed cases. Of 

course under high speed limit, such as light emitted by a high energy 

particle, then you have to use the exact formula.   

Sometimes (especially for astronomer) people use wavelength shift:  

0λ λ λ∆ = −  

When the shift is small ( 1β << ), we can use approximation from: 

0c
υ λ

υλ λ υ υ λ
υ λ
∆ ∆

= → ∆ + ∆ = → = − , and (12-13) or (12-14) can 

also apply to the wavelength shift.  

Derivation of (12-12) from perspective of source: 

Now the source is stationary, and emit out light at period of 
0 0Tτ = , 

and the observer is moving with –v towards source: 
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Event 1 is when pulse 1 hits the observer, say at (
1 1,x t ) in frame of 

source S.  

Event 2 is when pulse 2 hits the observer at 
2 2( , )x t . The time interval 

and space interval between events 1 and 2 in S can be easily 

computed: 

2 1 2 1

0

,  

( )

x x x v t t t t

c v t cτ

∆ = − = − ∆ ∆ = −

+ ∆ =
 

This gives: 

0 0
;   

c vc
t x

c v c v
τ τ

−
∆ = ∆ =

+ +
 

These events when viewed in the S’ frame in which the observer is 

stationary (we only care about time interval here): 

2 2 2

0 0 0 02 2

1
( ) ( ) (1 )

( ) ( ) 1

v c v c c v
t t x

c c v c c v c c v

β
γ γτ γτ γτ β τ

β
− −′∆ = ∆ + ∆ = − = = − =

+ + + +

Or you may use the fact that in this case t′∆ is the proper time and

t tγ ′∆ = ∆ to get the same result quickly.   

t′∆  is the T that we want, the time interval of detecting the adjacent 

two pulses by the observer in his own frame, and this will lead us 

exactly to (12-12). 

(2) 2-D Doppler shift 

1 c

T
υ

λ
= =

v←
12

0cτ c⇒
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The more general case of relative motion between source and observer 

is depicted in the figure below: Here I shall choose the frame that the 

observer is stationary (the solution by choosing source as stationary 

will be delayed after we learned velocity transformation). The 

direction of motion of the source and forms an angleθ  with respect to 

the source-observer line (once again I stress that this angle is 

measured in frame S, observer is not moving) 

  

The derivation of Doppler shift here is essentially same as above 

(from perspective of the observer, method 1 above): 

The time interval between detection of adjacent pulses in O is: 

L
t

c
∆ =  

( cos )L c v θ τ= −  (factor b), and 
0τ γτ=  (factor a) 

0

cosc v
T t

c

θ
γτ

−
= ∆ =  

01

(1 cos )T

υ
υ

β θ γ
= =

−
   (12-15) 

Notice that this will reduce to 1-D formula if 0θ =  for blue shift and 

θ π=  for red shift. It is also interesting to see that when
2

π
θ = , which 



 485

is called transverse Doppler effect, in this case: 

20
0

1
(1 )

2

υ
υ υ β

γ
= ≈ −    (12-16) 

It is a much smaller effect than the longitudal one which is first order 

in v/c; It is also interesting to see that (12-16) is just another way of 

writing the time dilation 
0t γτ∆ =  because in this case, only factor a 

(the SR effect) plays a role while factor b (time difference in receiving 

signals due to relative motion) does not.  

 

12.8 Velocity Transformation 

The basic question here is if the velocity of a particle in one frame (S) is u 

and if viewed by another observer in a moving frame (S’) whose velocity 

is v relative to S, what is the particle’s velocity u’. Noticed I shall use v to 

specify the velocity between moving frames and u for velocity of 

particles within one frame. Some examples are for a ground observer, two 

particles travel head-to-head, each with velocity 0.8c w.r.t. the ground 

observer. Then what is the relative velocity between the particles? A 

bullet is fired from the gun on a moving train, then what is velocity of the 

bullet to the ground observer? These are the basic problems we are going 

to deal with here.  

A reminder for the symbols, because we have two kinds of velocities 

involved, the one specifying the velocity between frames and the velocity 
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of particles within one frame. The ,γ β  are reserved for the v, the speed 

between frames; 
2

1
/ ,

1
u u

u

u c β γ
β

≡ ≡
−

 are for speed of particles. 

For the velocity of a particle within one frame, its definition is same as in 

mechanics: 

;  
x y

dx dy
u u

dt dt
≡ ≡  

Its form in another frame will be: 

;  
x y

dx dy
u u

dt dt

′ ′
′ ′≡ ≡

′ ′
 

The basic question is what are the relations between these velocities, i.e. 

if we know the velocity in one frame, and what is the velocity in another 

frame that is traveling with v relative to the original one? Suppose we 

know the velocity in S, as the figure shows; 

 

We use Lorentz Transform and definition of velocity: 

2

2

( ) /

( / ) 1
1 1 x

x x
x

x u

dx dx vdt dx dt v u v u v
u

v dx vudt dt vdx c

c cdt c

γ
γ ββ

′ − − − −
′ ≡ = = = =

′ − −− −
 (12-17) 

2

//

( / ) 1
(1 ) x

y

y

u

udy dy dy dt
u

v dxdt dt vdx c

c cdt

γ

γ ββγ

′
′ ≡ = = =

′ − −−
   (12-18) 

If the question is reversed that knowing the velocity in S’, the u’, then the 

y

y′

S
x' 0, ' 0t t x x= = = =

'S

v→

u
�
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velocity in S is: 

1
1 x

x x
x

x u

u v u v
u

v u

c c

ββ ′

′ ′+ +
= =

′ ++
   (12-19) 

/ /

1
1 x

y y

y
x u

u u
u

v u

c c

γ γ

ββ ′

′ ′
= =′ ++

   (12-20) 

 

Comments: 1) The formula will reduce to the familiar simple velocity 

addition of Galileo Transform if both v and u << c, i.e. no high speed is 

involved. 2) The x and y components are different. Even though there is 

no change of the vertical positions upon transform, but the change in time 

during the transformation shows its effect in the vertical velocity 

components. 

The derivations are simple enough, and let’s do some examples. 

Example 1: 

  

What is the relative speed between A and B? 

Let’s choose A to be our S’ frame, i.e. v=0.8c relative to ground. The 

particle B’s velocity is 0.8xu c= −  in S. In S’, the A is stationary, and B’s 

velocity is: 

0.8 0.8 1.6
0.976

0.8 0.8 1 0.64
1 ( )

Bx

c c c
u c

c c

c c

− − −
′ = = = −

− +−
 

The speed of B relative to A is less than c.  

0.8c→ 0.8c←
A

B
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Example 2: Bullet-Gun model for light emission. The light is emitted by a 

high velocity particle (v relative to ground). If it emits a light along the x 

direction, what is the velocity of light observed on the ground? If it emits 

light towards direction perpendicular to the motion of particle, what is the 

velocity observed on ground? 

Let S’ to be the particle frame, and 
xu c′ =  in the first case, and 

yu c′ =  

in the second.  

(1) 

1 1
x

c v c v
u c

v c v

c c c

+ +
= = =

+ +
, 0yu =  

The light still travels with same velocity c for ground observer. If the light 

is –c (travel in reversed direction in S’), you will find it will be –c too in 

S. Actually as long as one of the velocity (v or ux, the two are really 

symmetrical in the formula) equals c, the result will be c. 

(2) , 0,y xu c u′ ′= =  

0

1 0
x

v
u v

β
+

= =
+

 

/

1
y

c c
u

γ
γ

= =  

2
2 2 2 2 2 2

2
(1 )x y

v
u u u v c c

c
= + = + − =  

So the total speed will be c too for ground observer, but the there will be 

an angle change for the direction of propagation of light, and we shall see 

it again in explaining the stellar aberration. For the more general case that 
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the light is propagating along θ ′  direction is S’, the x and y component 

for ground observer will be left for you to calculate and you will see the 

total speed will be c too.  

 

Example 3 Explanation on Fizeau Experiment: 

We had discussed in Chap.11 the result of Fizeau experiment: 

 

The observed fringe shift of the interference pattern is: 

 

This is different from the result of simple addition of light velocity in the 

flowing water. Now we can compute the velocity of light in th eflowing 

water with velocity formula derived from LT: 

The velocity of light travelling along the water in the frame S is: (c/n is 

the velocity of light in the water frame, i.e. water is stationary in S’) 

2/

1
along

c n v c ncv
u

v nc v

nc

+ +
= =

++
 

If v<<c, the above can be approxiamted as: 

2

2

4 1
   (1 )

n l
N fv f

c nλ
= = −
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2

2 2

/ 1
( )(1 ) (1 )

1
along

c n v c v c v v c
u v v v

v n nc n n nc n n

nc

+
= ≈ + − = + − − ≈ + −

+
 

The velocity is not simply c/n+v. 

For the light traveling against water flow: 

2/

1 /
against

c n v c ncv
u

v nc nc v

− −
= =

− −
 

The phase difference bewteen the two paths are: 

2 c
t t

π
φ ω

λ
∆ = ∆ = ∆  

Number of fringes are: 

2 2
2

2 2 2 2 2

2 2 2
( ) ( )

2 ( ) ( )

2 2 2 4 1 4
   ( ) ( ) ( 1)

1

against along

c c L L Lc nc v nc v
N t

u u c c nv c c nv

L n cv vc Lv n Lv
n

c n v c n c

φ
π λ λ λ

λ λ β λ

∆ − +
= = ∆ = − = −

− +

− −
= = ≈ −

− −

 

Same as the Fizeau’s observation.  

 

Example 4. Velocity direction in S and S’ and stellar aberation 

For a particle travels with velocity u
�

 in one frame (S), it has angle with 

x-axis θ . Then the | | cos , | | sinx yu u u uθ θ= =  (refer to figure on pg 

480). What is the particle’s direction of travel (direction of velicity) when 

viewed by S’? 

This is straightforward, let’s call the angle with x’axis in S’is θ ′ : 
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/

1 / | | sin
tan

(| | cos )

1

x

x

y

uy y

xx x

u

u

u u u

u vu u v u v

γ
ββ γ θ

θ
γ θ

ββ

′ −
′ = = = =

−′ − −
−

   (12-21) 

Reversely, i.e. knowing the direction of velocity of a particle in S’ and its 

direction viewed in S is (you can use velocity formula but just from 

symmetrical point of view, repalce v with –v): 

/ | | sin
tan

(| | cos )

y y

x x

u u u

u u v u v

γ θ
θ

γ θ

′ ′ ′
= = =

′ ′ ′+ +
   (12-22) 

For the special case of light, I shall choose the source as S’ frame, and 

ground to be S frame for consistency of symbols in the following 

discussions (of course there is nothing sacred of which is called S or S’). 

For light the total speed |u| or |u’| is always c (you should verify this as 

exercise in example 2 above, and of course this has to be from the 

postulate), so if light propagate along θ  in S: 

( cos ) / cos
cos

1 cos 1 cos

xu c v c

c

θ θ β
θ

β θ β θ
′ − −′ = = =

− −
   (12-23) 

sin
sin

(1 cos )

y
u

c

θ
θ

γ β θ

′
′ = =

−
 

sin
tan

(cos )

θ
θ

γ θ β
′ =

−
   (12-24) 

For reverse relations: 

cos
cos

1 cos

θ β
θ

β θ
′ +

=
′+
   (12-25) 

sin
tan

(cos )

θ
θ

γ θ β
′

=
′ +

   (12-26) 
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With the above relations, we can explain the stellar aberation with SR. In 

the S’ frame (star is not moving), the light emitted by the star is 

approxiamted by a plane wave (dashed line represent wave front), with 

angle 
2

π
θ ′ = − . Viewed by the ground observer (S’ is moving with v), the 

angle of incoming light is given by (12-26): 

sin 1
tan

(cos )

θ
θ

γ θ β γβ
′

= = −
′ +

 

The aberation angle α  is: 

tan cot
v

c
α θ γβ β= = − ≈ − = −  

This is the aberation angle in chapter 11.  

Another interesting result of (12-25), (12-26) is the search light effect for 

light emitted by particles travelling with high speed. For example the 

light is emitted by particle isotropically in its own frame S’, but viewed in 

S, if the 1β → , γ  will be large, from (12-25) or (12-26), it is 

straightforward to see that cos 1, tanθ θ→ small for different θ ′ . This 

means viewd in lab frame S, the light emitted would be strongly 

v←

v→

α

θ
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concentrated along the direction of the particles motion: 

 

This is observed in sychrotron where laser light is generated by fast 

moving particles in a circular accelerator, and speed of particle can reach 

0.9999c and the light emitted by it will be highly concentrated into 

forward direction in lab frame. (Please do some computation for 

v=0.9999c case and choose some θ ′  to see what are the θ , use Matlab 

if possible) 

 

Example 4, Prove 2-D Doppler shift from perspective of source: 

  

The events viewed in the S’frame (the light source is stationary, the 

observer is moving) is shown in the sketch. Event 1 is when the wave 

front 1 meets the observer (Smily), at ceratin (
1 1,x t′ ′ ), event 2 happens, the 

wave front 2 meets Smily after certain interval: 

1

2

θ ′

1

2
v←

0cτ

 particle frame
 Lab frame
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x v t′ ′∆ = − ∆  

0cosc t v t cθ τ′ ′ ′∆ + ∆ =  

So: 0 0,
cos cos

c vc
t x

c v c v

τ τ
θ θ

′ ′∆ = ∆ = −
′ ′+ +

 

These intervals will give us the time interval of the events in frame S, 

which is what we wanted: 

2 2 2

0 0
02

2

0
0

( )
cos ( cos ) ( cos )

1 1
    

1 cos 1 cos

v c v c v
t t x

c c v c c v c c v

γ τ γ τ
γ γτ

θ θ θ

β τ
γτ

β θ γ β θ

−′ ′∆ = ∆ + ∆ = − =
′ ′ ′+ + +

−
= =

′ ′+ +

 

0

1
(1 cos )

t
υ γυ β θ ′= = +

∆
 

This formular compared with (12-15), you will notice the difference. This 

is of course just because the above euqation is expressed in terms of angle 

in S’ frame, while (12-15) is viewed from angle in S, apply the relation 

(12-23), change the θ ′  into θ : 

2

0
0 0 0

cos 1
(1 cos ) (1 )

1 cos 1 cos (1 cos )

θ β β υ
υ γυ β θ γυ β γυ

β θ β θ γ β θ
− −′= + = + = =

− − −

This is exactly (12-15) expressed in angle from observer’s perspective.  

 

Example 5 One universal velocity 

In SR, we state that the speed of light is a universal one, same in all 

frames. In this example we shall see that SR only has room for ONE 

universal velocity. Let’s formulate problem like this: Suppose we have 

another speed d besides c which is universal same in all frames, what will 
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happen? 

Using the velocity formula, say in one frame S, c is c, d is d. In another 

frame S’ moving with v, we have seen that c’=c in S’, what is d’? 

2

2

( )

1 d

d v c d v
d

c vdββ
− −′ = =

− −
 

Since d’=d if it is universal, then: 

2
2 2 2 2 2 2

2

( )
| | | |

c d v
d c d c v c d vd vc vd c d

c vd

−
= → − = − → = → =

−
  

So this d has to be same value as c. The fundamental postulate of SR 

requires one universal velocity, and this velocity is that of light had be 

tested to be right by numerous experiemnts.  

 

Chapter 13 Energy and Momentum and 4-Vectors 

In this chapter we are going to study the dynamical process in SR. Instead 

of working on equation of motion (relation between force and 

acceleration), I shall adopt conservation as working horse because this is 

the easiest approach. First then I need to define what are momentum and 

energy in relativity sense, what are their formulas expressed by terms 

already defined? Another important issue is for the momentum and 

energy defined in such way, do they satisfy the relativity principle, i.e. If 

the energy and momentum is conserved in one frame, do they conserve in 

other frames too? And also the correspondence principle, i.e. at low speed 
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limit, do the relativistic energy and momentum defined reduce to old 

friends in Newtonian mechanics? 

Actually these important questions (relativity principle and 

correspondence principle) will be my guideline in the first ad hoc 

approach to the energy-momentum, starting from assumptions that their 

forms take some similarity with classical ones and find out what their 

relativistic formula are. Then we shall work some dynamical examples to 

get familiar with these relativistic formulas for energy and momentum. 

Finally, a powerful concept and definition of vector in 4-D space-time, 

called 4-vectors will be introduced, and we shall see that the SR can be 

formulated quite elegantly out of this approach. Both Lorentz Transform 

and relativistic energy-momentum shall be re-derived from this. 

 

13.1 Momentum 

 

Let’s consider a special elastic collision in Newtonian mechanics (in the 

A

B

xiu

xiu

yi
u

yi
u

B A

yf
u

xf
u xf

u

yf
u

B B A

A

xv u→ =
yAi

u′

xBiu′
yBi

u′
xBf

u′
yBf

u′
yAf

u′
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special relativity, all collisions are energy conserved, so here elastic 

means the kinetic energy is conserved). One simple one is illustrated by 

the sketch: | | | | | | | | ;| | | | | | | |
i ixAi xB xAf xBf x yAi yB yAf yBf yu u u u u u u u u u= = = = = = = =  

in lab frame S. (
yAiu  means y component of velocity of particle A initially 

before the collision), A and B have same mass. The collision is a glancing 

type, where the x-component of velocity does not change after collision 

while the y component of velocities flipped between A and B. This simple 

collision is certainly possible in classical mechanics and satisfies both 

momentum and energy conservation.  

Now we know SR, and we know relativity principle. So naturally if I 

asked what happened if I view this collision in another frame, say the 

frame S’ that move along x-direction with A, so 
xv u= . In this frame the 

momentum conservation (as well as energy conservation, we shall focus 

on momentum first) should also hold. But we shall see that if we take the 

classical form of momentum p=mv, the momentum will not be conserved 

in S’ though it does in S. This suggests the classical form of momentum is 

not appropriate in SR, it is a low speed limit of the correct formula (since 

it works fine in Newtonian-mechanics at low speed). Our job in this 

section is to find the correct formula of momentum in SR.   

First thing is first, so let me show you the classical definition is not 

appropriate. The strategy is I shall use p=mv and show that if momentum 

of this type is conserved in S (top sketch), it is not in S’ (bottom sketch). 
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The setup clearly shows the total momentum is zero before and after 

collision in S. In S’, I shall only focus along y’ direction (for simple 

computation). Using the velocity formula derived last chapter, it is 

straightforward to express the u’ in terms of u: 

2 2

/ /

1 1 /
xAi

y y

yAi

u x

u u
u

u c

γ γ

ββ
′ = =

− −
 

2 2

/ /

1 1 /
xBi

y y

yBi

u x

u u
u

u c

γ γ

ββ

−
′ = = −

− +
 

2 2 2 2

1 1
( ) 0
1 / 1 /

y

yi yAi yBi

x x

mu
p mu mu

u c u cγ
′ ′ ′= + = − >

− +
 

2 2

/ /

1 1 /
xAf

y y

yAf

u x

u u
u

u c

γ γ

ββ

−
′ = = −

− −
 

2 2

/ /

1 1 /
xBf

y y

yBf

u x

u u
u

u c

γ γ

ββ
′ = =

− +
 

2 2 2 2

1 1
( ) 0
1 / 1 /

y

yf yAf yBf

x x

mu
p mu mu

u c u cγ
′ ′ ′= + = − <

+ −
 

The momentum defined classically as mv is not conserved in S’.  

What we need is finding a formula of momentum which will be 

conserved in all inertial frames, i.e. if the total momentum is conserved in 

one frame, it is also conserved in other inertial frames in accordance to 

relativity principle.  

Comment: Conserved is not same as invariant. Total momentum of a 

closed system is conserved, say during the collision process, before and 

after the collision, the total momentum is A in one frame. Observing the 

process in another frame, the total momentum could be B, it is still 
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conserved if before and after the collision the value is B (which could be 

different from A). Invariant value is unchanged upon change of frames, 

such as space-time interval of an event.  Conserved physical property 

and invariant value are both important because they offer powerful tools 

in analysis of physical processes.  

In order to find the correct formula for momentum, we start from the 

requirement that the total momentum needs to be conserved in all inertial 

frame. There is another clue from correspondence principle that the 

momentum is mv at low speed limit. So we shall assume the correct 

formula for momentum is still p=mv, but m is not a constant as in 

classical mechanics, m here may be a function depending on v. Strictly 

speaking, I should write m(v) or f(v)m , but I shall keep this in mind and 

just using m in the following arguments.  

Let’s consider a case of collision between particles in one dimension for 

simplicity. The total momentum is 0 (this is not as specific as it seems, we 

can actually choose an inertial frame in which the total momentum is zero) 

in frame S: 

1 1 2 2 0P m u m u= + =  

m, u are mass (not a constant number here) and velocity of individual 

particles. We can define the total mass (an assumption that relativistic 

mass is additive): 

1 2M m m= +  and like the center of mass frame in classical mechanics, 
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we can call this frame S as our center of mass frame in SR in which total 

momentum is zero.  

P MV=  and V=0 in C.M frame. This is like putting a “black box” over 

the two particles (or observing the two-particle system from far way so 

that we cannot tell the detail), the total momentum of the system is 

equivalent to that of the “black box”. 

Now let’s view the collision process from a frame (S’) that is moving 

with v w.r.t. the S. The mass and velocity of particles are: 
1 2 1 2, , ,m m u u′ ′ ′ ′ , 

and total mass is: 
1 2M m m′ ′ ′= + , the total momentum need to be 

conserved too in S’ and it should be same as M’ traveling with –v viewing 

in S’, i.e. 

1 1 2 2 1 2 1 1 2 2

1 2

2 1

( )P M v m u m u m m v m u m u

m v u

m v u

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = + → − + = +

′ ′+
= −

′ ′+

  

From the velocity transformation: 

1 2
1 22 2

1 2

;
1 / 1 /

u v u v
u u

u v c u v c

− −′ ′= =
− −

 

2 2

2 2

2 22

1 2 2 1 1 12
2 2 2 2

1 12 1 1 2 2 2
2

1

/

1 / 1 /1 /

/ 1 / 1 /

1 /

v u v c u v

m v u u u v c m u v cu v c

v u v c u vm v u u u v c m u v c

u v c

− + −
′ ′+ − −−
= − = − = − =

′ ′ − + −+ − −
−

 

I used 
1 1 2 2 0P m u m u= + =  above. 

2

1 1 1

2

2 2 2

/ 1 /

/ 1 /

m m u v c

m m u v c

′ −
=

′ −
 

We appear stuck with this relation, and I shall use a ‘trick’ (the reason I 
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know this is because I sort of cheated since I know the final answer) and 

derive a useful relation: 

2 2 2/ , 1 / 1 ; / , 1 / 1 ; / , 1 / 1u u u u u uv c u c u cβ γ β β γ β β γ β′ ′ ′′≡ ≡ − ≡ ≡ − ≡ ≡ −

what are the relation between them?, the v, u, u’ are related by the 

velocity transformation.  

2 2 2 2 2 2
2

2 2

1

1 2 2 (1 )(1 )
1

(1 ) (1 )

u
u

u

u u u u u
u

u u

u

c

β β
β

β β

β β β β β β β β β β
β

β β β β

′

′

′ −
≡ =

−

+ − − − + − −
− = =

− −

 

(1 )u u uγ γγ β β′ = −    (13-1) 

(13-1) is a very useful relation, it will pay off if you remember it in this 

chapter. 

Then: 

1 1 1 1

2 2 2 2

2

1 1 1

2

2 2 2

/ // 1 /

/ 1 / / /

u u u u

u u u u

m m u v c

m m u v c

γ γ γ γ γ

γ γ γ γ γ
′ ′

′ ′

′ −
= = =

′ −
 

The masses have to satisfy this relationship in order to have momentum 

conserved in all frames. If we have: 

u

u

m

m

γ
γ

′′
= , this will satisfy the above requirement

136
. If the u=0, the mass 

of the stationary particle is called rest mass, and is assigned to symbol m0, 

and for the particle under motion we have: 

                                                        

136 Actually m’/m could only be proportional to the ratio of gammas. We can use correspondence requirement that 

the mass are reduced to classical form at low speed limit to see that the proportional coefficients is 1. The whole 

purpose of these argument to get the correct formula of momentum in SR is not a water tight proof and I do not 

intend to. It served to show you the physical reasoning why the momentum in SR has to be in the formula (13-3), a 

better and more elegant proof (or definition of momentum) will be given in 4-vector section.  
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0( ) um u mγ=    (13-2) 

The momentum of the moving particle with velocity u is: 

0up m uγ=    (13-3) 

The mass in (13-2) is called relativistic mass, while the mass we used in 

Newtonian mechanics is the rest mass (the low speed limit). I shall adopt 

the convention that uses m0 as much as possible and include the SR in the 

uγ , this way when speaking of mass, it only means rest mass because the 

relativity mass has another equivalent term for it that we shall see later (it 

is energy), and I shall use m0 as reminder. However in case I get sloppy 

and careless, and use m(u) in the formula and relativity mass in statement, 

please forgive me.  

The (13-3) comes from argument in 1-D. It can be extended to higher 

dimension straight forward: 

0 2 2 2 2 2 2

1 1
,   

1 / 1 ( ) /
u u

x y z

p m u
u c u u u c

γ γ= = =
− − + +

� �
   (13-4) 

Once again I shall stress that the usefulness to express momentum as 

(13-3) or (13-4) is this definition will have momentum conservation in all 

frames. To build up your confidence, may be you try these formula for 

momentum and rework the example in the beginning (elastic collision 

between identical particles) example to see that if the momentum is 

conserved in S, it is conserved in S’ too, it not a bad practice.  

Example: Rocket velocity in relativity: 

We have worked rocket velocity in classical mechanics using 
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conservation of momentum before (chap. 5). There for a rocket with mass 

M, and dm fuel is ejected with velocity u0 relative to the rocket during 

some time interval, we have: 

0Mdu u dM= −  and 0 ln i
f

f

M
u u

M
=  all M are rest masses.  

In SR, I will choose the rocket as an instantaneous inertial frame S’. i.e. 

viewed from ground, the rocket will travel at certain speed u at an instant. 

In this S’ the rocket will start from 0 velocity and increases speed, and we 

have (classical result applies to the S’): 

0M du u dM′ ′ ′= −  M’ equals the rest mass (since in S’, the initial u’=0) , u0 

is the thrust velocity of fuel and du’ is the increase of speed, all in S’. For 

the ground observer the velocity of the rocket will become: 

2 2

2
( )(1 / )

1 /

u du
u du u du udu c u du du

udu c
β

′+
′ ′ ′ ′+ = ≈ + − = + −

′+
 

(the higher order of small term is neglected above) 

2(1 )du duβ ′= − , put this into the mass-speed change relation: 

0

dM
du u

M

′
′ = −

′∫ ∫   

Note it is not legitimate to integrate this as it is, because the S’ is an 

instantaneous rest frame, you cannot do the integration within S’, there 

will be many S’s in the processes with different instant speed u. However 

we can do the integral in the ground frame: 

02 2

0
1 /

f f

i

u M

M

du dM
u

u c M

′
= −

′−∫ ∫  
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0

1 /
ln ln

2 1 /

f i

f f

u cc M
u

u c M

+
=

−
   (13-5) 

uf is the final speed viewed from ground, u0 is the fuel speed relative to 

rocket, and M’s are rest masses. This is the formula for rocket speed in 

SR. If we want to have higher final velocity, we need to have large u0 and 

huge load of fuel (bigger mass ratio). We cannot accelerate the rocket to 

speed of c, that would require final mass down to null. Also the most 

efficient way to propel rocket is with photons because this will give us 

biggest thrust speed 
0u c= .   

 

13.2 Energy  

We shall not consider the gravity in SR and start from kinetic energy of 

motion. I will adopt an ad hoc approach here (making assumptions rooted 

from Newtonian mechanics to get the formula for energy) for now and 

leave the elegant method (4-vectors) for later. In classical mechanics, 

kinetic energy is introduced by work-energy theorem:

K Work F dr∆ = = ∫
� �
i  In SR, the relation between force and motion is no 

longer F=ma, but let’s assume that it is in the form of: 

dP
F

dt
=

�
�

   (13-6) 

This cannot be proved like the 2
nd

 law and will be treated as definition of 
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force
137

 in relativity. With the force defined as above and relativistic 

momentum in last section, we can now find out energy using 

work-energy theorem (assume it still applies). I will write the 

work-energy theorem with differential form (with assumption that m0 

does not change over time): 

dP
dK F dr dr dP u

dt
= ⋅ = ⋅ = ⋅

�
� �� � �

   (13-7) 

0 0 0( )dP u d m u u m du u m u udγ γ γ⋅ = ⋅ = ⋅ + ⋅
� � � � � � � �

 

2 2 2 2 2

2 2

1

1 /
c u c

u c
γ γ γ= → − =

−
 take differentials on both sides: 

2 2 2

2 2 2

2 ( ) 0

2 2 2 0

c d d u u u ud

c d u du u ud c d u du u ud

γ γ γ γ

γ γ γ γ γ γ γ γ

− ⋅ − ⋅ =

− ⋅ − ⋅ = → = ⋅ + ⋅

� � � �

� � � � � � � �  

This is just what the expression on the R.H.S. in equation (13-7): 

2 2

0 0( )dK m c d d m cγ γ= =    (13-8) 

Following our convention so far, I should use the symbol 
uγ  above and I 

will do that in the following formula. If we start from u=0, stationary 

(where kinetic energy is 0 by convention) and reach certain u finally, the 

kinetic energy change of the process is: 

2 2 2

0 0 0

0

( )

f u

u u

i

K dK d m c m c m cγ γ∆ = = = −∫ ∫    (13-9)  

If we do not start from 0 but u1 to u2, then the kinetic energy change is: 
                                                        

137 I realized that I may contradict my own statement in chapter 4 that F=dP/dt does not define the force. What I 

mean here is that the momentum change tells us there will be interaction which we will call force, and change of 

momentum can be a measure of how big such interaction (force) is. It cannot reveal the nature of the interaction 

(due to gravitation, electro-magnetic, or strong interaction of nuclear force?) which has to be investigated 

separately. So the better statement should be the dp/dt is a measure of force, but I am a little sloppy here and as in 

many other books. For example, refer to Goldstein’s Classical Mechanics (2nd edition) section 7-6. 
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1 2

2 2

0 0u uK m c m cγ γ∆ = −  

First thing is that at low speed limit the above relation will just reduce to 

the 1/2mu
2
 in Newtonian mechanics (prove yourself from 13-9 by 

expansion of 
uγ ). More important the above relation suggests we can 

express the general energy term: 

2 2

0u uE m c m cγ= =    (13-10) 

The kinetic energy is just the energy difference between the two states of 

motion. 
um  is the relativistic mass defined in (13-2). 

13.2-1 Equivalence between energy and mass 

The famous equation (13-10) clearly shows the equivalence between 

energy and mass. The relativistic mass is related with energy just by a 

constant factor c
2
, knowing one is equivalent to knowing the other. That 

is why I stated earlier that I shall use mass referring to the rest mass as 

much as possible in this course, and relativistic mass is just energy.  

The energy in form of (13-10) includes all forms of energy, kinetic, heat, 

nuclear etc. The conservation of energy in relativity will be conservation 

of total energy of a closed system and is same as relativistic mass 

conservation. For example in a complete inelastic collision between two 

particles, two particles collide to from one particle. In previous 

Newtonian treatment of this kind inelastic collision, the mechanical 

energy is not conserved. In SR, the kinetic energy is still not conserved, 
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but the total energy is conserved (if the system is closed), so the E in form 

of (13-10) is conserved.  

I shall rewrite (13-9) in form of: 

2 2 2

0 0 0um c K m c E K m cγ = + → = +  (13-11) 

This tells us the total energy of a moving particle can be seen consisting 

of two parts: kinetic energy related to the motion and internal energy 

(heat, internal potential etc) of the particle. The internal energy 2

0m c is just 

the total energy of a motionless particle and thus is called rest energy, and 

this rest energy is equivalent to rest mass in the same sense as total 

energy is equivalent to relativistic mass.  

In the example of inelastic collision above, the loss of kinetic energy will 

change into other energy forms, such as heat and/or internal potential 

increase, such as electron being excited to higher energy states, and this 

will be equivalent to increase of rest mass of the final particle. More 

drastic examples will be creation of new particles through collision 

between high energy particles in accelerator. When two high energy 

particles collide, their energy can be transformed into new particles with 

different rest mass, a famous example will be collision of γ  photons 

with other particles (a nuclei or another photon) to create 

electron-positron pair. (we will see some of example in following 

sections).  

Another example will be increase (or decrease) of rest mass of a 
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stationary object when change its internal energy (rest mass and internal 

energy is equivalent). If you heat up an object and you weigh the object 

on balance, its rest mass will increase (of course the object needs to be 

isolated after heating). In practice, such energy change is so small 

comparing to the original 2

0m c  because of large factor c
2
. The object 

need to be heated to absurdly high (which will probably melt everything 

it touches) to noticeable difference. Another example is formation of 

hydrogen atom by proton (rest mass=930MeV)
138

 with an electron (rest 

mass 0.5MeV), during the process 13.6 eV energy will be lost. So the 

final rest mass of hydrogen will be slightly smaller than the sum of rest 

mass of electron and proton but the difference ratio is on the order of 10
-8

. 

An opposite example is nuclear weapons in which during the nuclear 

fission (atomic bomb) or fusion (hydrogen bomb), the fraction of mass 

change during the reaction will release humongous amount of energy: 

 

                                                        

138 In relativity, the mass is usually expressed in terms of energy. So a rest mass of electron is 500keV=0.5Mev 

and proton mass is about 1800 times electron, which is about 900MeV. Muon is about 200 times that of electron. 

You should be able to compute this from conventional units, with c2 factor and 1ev=1.6X10-19J 
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This is a chain reaction in Sun of hydrogen fusion
139

, the last step is two 

Helium3 combined to from Helium4 and 2 protons: 

3 3 4

2 2 2 2 12.9He He He p MeV++ → + +  

The released energy (the 12.9MeV ) can be estimated from rest masses: 

1 931au MeV=  (atomic unit of mass) 

3 43.0160293 ; 4.002602 ; 1.007276
He He p

M au M au M au+= = =
 

Though only a small percent of mass changes after the nuclear reaction, 

the energy released is larger than the chemical reactions (Mev comparing 

to eV)  

The first experimental demonstration of relativistic mass is by Bucherer 

in 1909
140

. It is essentially a measurement of charge/mass ratio of 

electrons. The electrons with certain speed are selected and pass through 

a magnetic field perpendicular to the electron’s motion. The magnetic 

Lorentz force will bend the electron and by measuring the radius of this 

bending, the e/m ratio can be determined (it is a standard high school 

practice, but with modification on the mass; the detail of the motion in SR 

can be derived after learning chap. 14, here only gives the result): 

2

0

0

/u

u u

e e u
euB m u R

m m RB
γ

γ
= → = =  

At different speed u the e/m ratio can be computed from meausred R,B, 

and it is not a constant as in Newtonian mechanics, and the plotted ratio 

                                                        

139 Taken from Wiki under “nuclear fusion”. 

140 A.H. Bucherer, Ann. Physik 28, 513 (1909) 
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m/m0 does show 2 21/ 1 /u u cγ = − : 

 

Comment: this experimental proof of relativistic mass is based on one 

assumption that the charge is invariant upon motion. This is reasonable 

considering the otherwise situation if charge is dependent on the motion 

then the neutrality of matter will depend on motion. In one frame an atom 

may appear neutral while in another moving frame, the atom may be 

charged then this will violate the relativity principle (conservation of 

charge due to gauge symmetry in EM) .  

One experimental demonstration of the (13-9) is the ‘ultimate speed’ by 

Bertozzi mentioned before: 
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The electron under different acceleration will approach speed limit c but 

cannot exceed it. Though the increase of speed is small (only a few 

percent between the last two points in the figure), the increase of kinetic 

energy is tripled. This can be understood due to increase of relativistic 

mass. This kind of experiment proved the energy form (13-10) and also 

demonstrated that for massive particles (rest mass >0), it cannot reach 

speed limit c, because this will make its relativistic mass to infinity, 

equivalent to infinite amount of energy.  

13.2-2 Relation between Energy and Momentum and Massless Particle 

In Newtonian mechanics, we have K=2P
2
/m. Now in SR, the relation is 

between total energy and momentum. This can be derived from the 

formula for momentum and energy: 

0

2

0

u

u

P m u

E m c

γ

γ

=

=
  

uγ is also related to u, and we can get rid off u from the above equations: 
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2 2
2 2 2 2 2 2 2 2 2 2 2

0 02 2 2 2 2

0

1

1 /

P c
P m u P c P u m u c u

u c P m c
= → − = → =

− +
 

2 2 4 2 2 2 2 2 6

0 02 2

1

1 /
E m c E c E u m c

u c
= → − =

−
 

2 2 2 4
2 2 2 2 60

02 2 2 2 2 2

0 0

( )
P c m c

E c E m c
P m c P m c

− = =
+ +

 

2 2 2 2 4

0E P c m c= +    (13-12) 

The importance of (13-12) lies in two aspects: 

(1) Invariant upon LT 

Let me rewrite it in forms of: 

2
2 2 2

02

E
P m c

c
− =  

The RHS is a scalar that is independent of LT. While the momentum 

and energy do depend on the motion speed u, thus is frame 

dependent, a combination like above however is invariant. Put it 

more plainly, different observers in different frames will see the 

particle travels at different speed thus has different energy and 

momentum, but the above combination (observer 1 put in the values 

measured in his frame and observer 2 put in his) always comes out 

same for all observers. This is strikingly similar to the space-time 

interval s
2
 we talked about before, and this is no coincidence as we 

shall see later in 4-vetcor.  

(2) Works for massless particle 

The massless particle is referring to particles whose rest mass m0=0. It 
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appears their momentum and energy will be zero according to the 

formula, unless the speed of the particle reaches c, then γ →∞ , and 

the particle will have momentum and energy.  We apply (13-12) to 

such massless particle, we get the relation between E and P: 

| | /P E c=  for massless  (13-13) 

Such massless particle will travel with speed c (and as we discussed 

that since it requires infinite energy for massive particle to reach 

speed limit c, so the massless particles are the only ones that can 

reach c, they are the Ferrari in physics) and they travel at c only, 

because if the speed is less than c, their energy and momentum will 

be zero, which means they will disappear (being absorbed or 

annihilated) in the process.  

The known detectable massless particle is photon, the question of 

whether the photon travels with speed limit is same as asking 

whether the rest mass of photon is indeed zero. The test of this is 

through vacuum dispersion of light, i.e. light with different 

frequencies travel in vacuum, there should be no dispersion 

(dependence of travelling speed on frequency), all frequency of light 

will have same speed in vacuum. 

For the general particle differentiate (13-12) with respect to P: 

2 22 2
dE P

EdE Pc dP c
dP E

= → =  

From definition of momentum and energy: 
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0

2 2

0

u

u

P m u u

E m c c

γ
γ

= =    (13-14) 

dE
u

dP
=    (13-15) 

The relation dE/dP is called dispersion relation
141

. For the massive 

particles, it could be any speed, but for massless particle, (13-13) tells 

that it could only be c. The measurement of vacuum dispersion set 

the high limit of photon mass to be less than 10
-40

kg, which says if the 

photon has mass, it is going to be less than this value (Details in KK 

example 13.9 and 13.10). Other candidates for massless particles are 

possibly the graviton (the particle responsible for interaction in 

gravity) which is not detected in lab yet; and neutrino which may 

have a very tiny mass and travels very close to speed c.  

You probably heard of the quantization of photon energy, the famous 

relation: 

2

h
E hυ ω ω

π
= = = ℏ    (13-16) 

Put this into E/c=P: 

2h h
P k

c

υ π
λ λ

= = = =ℏ ℏ

   (13-17) 

This is the famous de Broglie relation. Indeed de Broglie started from 

this and made hypotheses that it applies to all other particles, not 

                                                        

141 This is equivalent to the conventional form /d dkω  for wave once we learned the relation between the 

frequency and energy, and wave vector with momentum.  
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limited to light. We shall see this in quantum again.  

 

13.3 Examples Applying Energy and Momentum in SR   

We have so far worked out the formula for energy and momentum in SR 

using a ad hoc method, i.e. starting from limit of Newtonian mechanics 

(correspondence principle) and make certain assumptions, such as 

momentum is still in form of mv and work-energy theorem works for 

kinetic energy etc. The usefulness we express the momentum and energy 

in those formula relies on the fact that they shall be conserved in all 

inertial frames, satisfying relativity principle. I had started from this to 

get the formula of momentum and the fact that energy by (13-10) will be 

conserved in all frames will be left for next section to prove. This ad hoc 

method though less satisfactory from theoretical point of view, it does 

clearly show the evolution and bond from Newtonian to SR. Before 

starting the elegant approach in SR, I shall work out some examples with 

the knowledge we learned so far. For convenience, I list the formula 

below first: 

2

0 0 0;   ;   u u uP m u E m c m mγ γ γ= = =
 

2 2 2 2 4

0E P c m c= + ; E Pc=  for massless particle 

2 2

0 0 0;  ( 1)uE K m c K E E m c γ= + = − = −  

2/ / ;   /P E u c dE dP u= =  
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These are all the formula (some are redundant) we shall use and with the 

conservation of momentum and energy, we will work out the following 

examples.  

Example 1: Inelastic collision 

 

This is a fairly simple one, I used it basically to show that indeed the 

energy is conserved in different frames (since we know this is true for 

momentum already) and the rest mass is not conserved in the process. 

The two identical particles travel with same speed and stick together to 

form one particle finally.  

In frame S (the lab frame, particles are moving), the M will be stationary 

with u=0, which is easy to see from conservation of momentum (total 

momentum before and after collision are both 0). The mass M can be 

computed from energy conservation (though inelastic, only kinetic energy 

is not conserved but the total energy is still conserved): 

2 2 22 ,   =1/ 1 /iE mc v cγ γ= −  

2 2

f uE Mc Mcγ= =  in S (only have rest energy) 

2M mγ=  

The final mass is larger than 2m by factorγ , this is because kinetic 

energy is transformed into internal energy.  

,m v ,m v

M
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Now work the problem in S’ frame, in which the left particle m is 

stationary, the final M will travel with velocity u v′ = −  in this frame. 

The other m will travel with velocity: 

2 2

2 2 2 2

2 1 /
,   (1 )

1 / 1 /m m mm u u u

v v c
u

v c v c
γ γγ ββ′

− +′ = = − =
+ −

 

I used the trick (13-1) to get the
muγ ′ , surely you can also work this out by 

definition. For the momentum: 

2 2
2

2 2 2 2

1 / 2
0 2

1 / 1 /mi u m

v c v
P mu m mv

v c v c
γ γ′

+ −′= + = = −
− +

 

( )
Mf u MP Mu M vγ γ′ ′= = −   

2i fP P M mγ= → =  same as above, which should be since the M is rest 

mass.  

Take a look at energy: 

2
2 2 2 2 2

2

1
(1 ) 2

1mi uE mc mc mc mc
β

γ γ
β′

+
= + = + =

−
 

2 2 22
Mf uE Mc mcγ γ′= =  

The energy indeed is also conserved in S’. 

 

Example 2: Emission of photon by a moving particle: 

 

The particle (an atom or molecule) is at rest at beginning, with electron at 

higher energy level (upstairs), then the electron is relaxed to the lower 

energy state (downstairs) and a photon is emitted. The question is what is 

u←
photon

0E Q∆ =
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the photon’s energy? Is it Q0? 

The answer is not exactly, the photon’s energy will be slightly different 

from that of Q0. This is because the recoil of the particle after emission, it 

starts moving in the opposite direction of the photon due to conservation 

of momentum, thus the energy Q0 will be sum of the two. We’d better 

work it out in detail from conservation laws: 

Initial: 2

00,P E M c= =  

Final: For photon: , /p p pE P E c= ; For particle: 2 2 2 2 4,P E P c M c′ ′ ′ ′= +  

Note the final rest mass will be different than the initial one because of 

the internal energy change (the final state will have less internal energy 

and thus less rest mass), actually we have: 

2 2

0 0Q M c M c′≡ −  

Conservation of P: 

0pP P′ + =  

Conservation of energy: 

2

0pE E M c′ + =  

Ep is what we wanted, and we can get it using the energy-momentum 

relation. (Noticed that generally if we are not asked to calculate the 

velocity, we do not want to put velocity in the equations since thoseγ ’s a 

little bit messy to work with. We will use energy-momentum relation 

instead) 
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2 2 4 2 2

0 0

2 2 2 4 2 4 2 2

0 0

2

2 ,  | | | | /

p p

p p p p

E M c E E M c

P c M c M c E E M c P P E c

′ = + −

′ ′ ′+ = + − = =
 

2 2 4 2 4 2 2

0 0

2 2 2 4 2

0 0 0 0

2 2 2

0 0 0 0

0
0 2

0

2

( ) 2

2 2

(1 )
2

p p p

p

p

p

E M c M c E E M c

M c Q M c E M c

Q M c Q E M c

Q
E Q

M c

′+ = + −

− = −

− = −

= −

 

If we use the quantum relation between frequency and energy for photon 

pE hυ= , and define 
0 OQ hυ= , then the emitted light frequency by a 

stationary particle is: 

0

2

0

(1 )
2

p O

Q

M c
υ υ= −    (13-18) 

It is slightly different from that of internal energy difference Q0, but in 

many cases (light in atomic physics, Q0 is on order of eV, M0c
2
 is on 

order of GeV) the difference is small that we neglect it say that the 

photons energy is same as internal energy difference. However in case of 

high energy photon resulting from larger internal energy change (such as 

nuclear reaction, large Q0 give rise to gamma rays) the recoil effect 

cannot be neglected. One special case is the Mossbauer effect in gamma 

radiation, where the whole lattice of crystal acting like a giant molecule 

(billions of atoms) and the M0 is huge, than the recoil effect is completely 

negligible and this is used in the famous experiment by Pound et al to test 

the gravitational red shift of light.  

 



 520

Example 3: Doppler Shift from conservation laws.  

 

I choose the lab frame to do the calculation (all angles are w.r.t. this 

frame). 

Initial: 2

0 0;  i u i uP m u E m cγ γ= =  

Final: ,P E′ ′  for particle and ,p pP E  for photon. 

cos cosi pP P Pϕ θ′= + , and sin sinpP Pϕ θ′ =  We do not need particle 

angle so we cancel it out by: 

2 2 22 cosi i p pP P PP Pθ′ = − +  

Considering energy: 

i pE E E′= +  

2 2 2 2 2 2

0

2 2 2 2 2 2 2 2 2

0

2 2 2 2

0 0

( ) ( )

2 ( ) 2 cos

( ) ( ) 2( cos )

i p

i p i p i i p p

i p i p

E E E P c m c

E E E E m c P c c PP P c

m c m c E E cPE

θ

θ

′ ′ ′= − = +

′+ − − = − +

′− = −

 

Ep is the one we wanted (related to frequency byhυ ) 

The R.H.S of the equation is: 

2 2 2

0 0 02( cos ) 2 ( cos ) 2 (1 cos )i p i p p u u u u p uE E cPE E m c m c m c Eθ γ γ β θ γ β θ− = − = −

The L.H.S. of the equation is: 

2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

2 20
0 0 0 02

0

( ) ( ) ( ) ( ) 2

2 [ (1 )] 2
2

m c m c m c m c Q m c Q Q

Q
m c Q m c h

m c
υ

′− = − − = −

= − =
 

θ
ϕ

u

0m
0m′ P′

p
P
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I used fact in the previous example that the frequency of light emitted by 

stationary particle (
0 ,hυ it is the υ  in the last example) is the term in 

bracket.  

2 2

0 0 02 (1 cos ) 2u p um c E m c hγ β θ υ− =  

0

(1 cos )u u

h
h

υ
υ

γ β θ
=

−
 This is same as before.  

Another very similar example would be the Compton’s effect, scattering 

between photon and electrons: 

 

In which the electron can be approximated as stationary at beginning, and 

a photon with certain frequency (energy) comes in, interact with electron 

and both particles are scattered afterwards, there will be a frequency (or 

equivalently wavelength) shift of the scattered photon depending on the 

scattering angle. This is called Compton’s effect after Arthur Compton 

who carried out the experiment in 1920’s to test the particle nature of 

photon. The dependence of frequency shift on angle will be left as an 

exercise for you to work out (this is exactly similar to the worked 

example here, and the answer can be found in standard textbooks).    

 

Example 4 Pair production 



 522

 

A high energy gamma ray (photon) is the incoming particle, could it 

produce a pair of particle and antiparticle, such as the electro-positron 

pair?  

The answer is NO. The charge is conserved, both the electron and 

positron have same mass, so it may appear if the gamma photon is 

energetic enough (say > 2mc
2
, which is about 1MeV), this process is 

possible. But following the detailed analysis from conservation, we shall 

see that it is impossible to satisfy both momentum and energy 

conservation for this simple process! 

pP P P− += +
� � �

 

pE E E− += +  

2 2 2 2 2 2 2 2 2 2

0 0( ) , ( )E P c m c E P c m c− − + += + = +  

2 2 2 2( ) 2p p pE E E E E E E− + + += − = + −  

2 2 2 2 2

2 2 2 2 2 2 2 2 2

( ) 2

2 2 | |

p p p

p p p p

P P c E P c E E

P c P c P P c P c P c P cE

+ + +

+ + + +

− = + −

+ − ⋅ = + −

� �

� �  

This will give us the energy of positron is: 

| |
| |

p

p

P P
E c P c

P

+
+ +

⋅
= <

� �

 

But this is not correct, because it violates the energy-momentum relation. 

This contradictory exists because the conservation of energy and 

e−

e+
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momentum cannot be satisfied both. So a single photon cannot produce a 

pair of particle+antiparticle. It requires a 4
th
 party (such as another photon 

or nuclei) to make the process possible.  

Another quicker method is choosing the total zero momentum frame for 

the product (assume the process is possible and the frame chosen is the 

total momentum of positron and electron is zero), so in such frame the 

final momentum is zero, but the initial momentum is not in the single 

photon case, which means our assumption that the process is possible is 

wrong.  

 

Example 5: General Inelastic collision 

Like in the example 1, we here consider the general case where the two 

particles may have different mass and speed, say initially, the two 

particles are: , ,a a am v P  and , ,b b bm v P , what is the final object’s mass and 

velocity? 

a b fP P P+ =  and 
a b fE E E+ =  

2 2 2 2 2 2 2 2 2 2 2 22 ( ) ( 2 ) ( )f a b a b f f a b a b fE E E E E M c P c P P P P c M c= + + = + = + + ⋅ +

2 2 2 2 2 2 2 2 2

2 4 2 4 2 2 2

( ) ( ) 2 2 ( )

2 2 ( )

a a b b a b a b f

a b a b a b f

E P c E P c E E P P c M c

M c M c E E P P c M c

− + − + − ⋅ =

+ + − ⋅ =

� �

� �
 

Given the initial conditions, such as , ,a am v , ,b bm v  the energy and 

momentum of a, b will be known, and the final mass M can be computed. 

The velocity will be just: 
2/ /f f fu c P E= .  
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Example 6: Particle creation from collision 

 

Considering the process of the figure above, a particle a collides with a 

stationary particle (in lab frame) b, and 4 particles are created, this 

process happens such as p p p p p p+ → + + + , 2 protons collide to 

from 3 protons and 1 anti-proton. What is the minimum energy 

requirement for the moving particle a? (the particles here all have same 

rest mass m0) 

First I need to answer what is the possible minimum energy of the 

products. Then from energy conservation, that will give us the minimum 

required initial energy. The 4 product particles (for simplicity, I just use 

proton) can moves with respect to each other or stick together like a 

snowball. The smallest energy is when they stick together and moves like 

a snowball (this is the case of inelastic collision considered above). In old 

days, we learned Konig theorem (still remember) that the energy of 

multi-particles are sum of energy of CM and energy relative to CM. If the 

protons move like snowball, then there will be no kinetic energy in C.M. 

frame and the energy will be smallest. In SR, the analogous of Konig 

theorem will be derived when we learned 4-vector theorem, and it tells us 

for multi-particles: 2 2 2

total totalE P c−  will be invariant to LT. The CM frame 

a b
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is defined as a frame that 0totalP = . So in our case the lab frame: 

2 2 2 2 2 2 2

(  ) ( ) (  )total total total in CM total inCM total in CME P c E P c E− = − = . The minimum 

energy in CM is just the rest energy (the snowball case), and 
totalP is some 

conserved value, this will lead to the possible minimum energy in lab 

frame too.  

The initial condition: 2

00,b bP E m c= = ; ,a aP E  unknown 

Final condition: 
04 , ,f f fM m P E=  unknown but would be irrelevant.  

Since this is just like the inelastic collision of previous example, I just 

skip the derivation and use the result above directly: 

2 2 2 2 2 2 2

2 2 4 2 2 2 2 4

0 0 0

2 2 4 2 2 2 2 4

0 0 0

2

0

2 ( 2 ) ( )

2 16

2 15 ( ) 14

7

a b a b a b a b f

a a a

a a a

a

E E E E P P P P c M c

E m c m c E P c m c

m c E m c E P c m c

E m c

+ + = + + ⋅ +

+ + = +

= − − =

=

 

From this you can calculate the γ factor and the velocity of a. The energy 

required is considerably larger than the 4m0c
2
 as the naïve thinking would 

give. This is because in this setup, the final snowball is moving and 

having kinetic energy so that part of the input is wasted for this (useless 

from particle creation point of view). The more efficient way to create 

new particles would be head-head collision with particles traveling 

against each other with opposite momentum.  

Alternatively you can work out the above example in the CM frame, and 

find out the energy for particle a in CM (
2

( ) 02a CME m c′ = , this part is easy), 

then transform back to the lab frame to get the answer, this would require 
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knowledge of how energy and momentum transform with change of 

frames. That is the topic of next section.  

 

13.4 Transform of Energy and Momentum in Different Frames 

The basic question is a particle with certain momentum and energy, 

viewed by different observers in different frames, say Adam in S, and 

Bob in S’, there is relative v between S and S’. The energy-momentum 

measured by Adam is E and P, and E’,P’ by Bob. Then what is the 

relation between (E,P) and (E’,P’)? Just like Lorentz transform exists 

between space-time coordinate of event, there is also a relation between 

energy-momentum, and we shall find out (very strikingly) that this 

relation is same as that space-time coordinates, or the same Lorentz 

transform exists between energy-momentum too.  

For single particle with mass m0, it moves in S with velocity u, then the 

energy and momentum is just: 

2

0 0,u uE m c P m uγ γ= =  

In S’ that moves with velocity v to the S, the velocity of the particle 

would be u’, and energy, momentum in S’ are: 

2

0 0,u uE m c P m uγ γ′ ′′ ′= =  

For the simplicity of calculation, I shall choose a special case where v and 

u are parallel, only has x component. i.e. u=(u,0,0); v=(v,0,0). In the more 
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general case, where v=(v,0,0), u=(ux,uy,uz), where 2 2 2

x y zu u u u= + +  the 

calculation would be more involving but will give same conclusion and 

you are encouraged to derive it as exercise
142

. 

We already learned the relation between u,u’ (only x component here): 

1 u

u v
u

β β
−

′ =
−

 

0, 0y y z zP P P P′ ′= = = =  

The troublemaker is
uγ ′ and fortunately I already work it out in (13-1): 

(1 )u u uγ γγ β β′ = −  

Now it is straightforward to find relation between (E’, P’x) and (E,Px) 

2 2

0 0 0(1 ) ( ) ( )u u u u xE m c m c c m u E cPγγ β β γ γ β γ γ β′ = − = − = −  

0 0 0 2
(1 ) ( ) ( )

1
x u u u u x

u

u v v
P m m u m v P E

c
γγ β β γ γ γ γ

β β
−

′ = − = − = −
−  

You already see the striking similarity in the transform, where E is 

transforms analogous to t and Px is analogous to x. I shall rewrite the 

above in a more symmetrical way: 

/ ( / )xE c E c Pγ β′ = −  

( / )x xP P E cγ β′ = −    (13-19) 

This is important, we see that the (E/c, Px, Py, Pz) just transform same as 

(ct, x, y, z) between frames, obey Lorentz Transform. Just as space-time 

interval 
2 2 2( )s ct r= − is invariant upon LT, we see that 

2 2( / )E c P−  

would be also invariant upon LT. In one special frame this combination is 

                                                        

142 Or read it in other textbooks, e.g. French’s “Special Relativity”.  
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easiest to compute and that is the rest frame of the particle, in which P=0, 

and E=m0c
2
. Since this combination has same value in all frames, you see 

we derived the famous energy-momentum relation from this invariance 

point of view. 

The analogous between energy-momentum and space-time is no 

coincidence, we will see starting from next section an elegant formalism 

of SR, and the energy-momentum defined there have same formula as we 

are using here. Both space-time and energy-momentum are physical 

quantity that is called 4-vector, whose transformation between inertial 

frames obeys LT.   

 

13.5 4-Vectors and Lorentz Transform as Hyper-rotation143 

We have seen the similarity between the transformations (LT) from one 

frame to anther of variables (ct, x, y, z) and (E/c, Px, Py, Pz). We shall call 

such combination 4-vectors in analogous to the 3-D vector we defined 

before. 

Define:  

0 1 2 3( , , , ) ( , , , ) ( ), 0,1,2,3 ( , )X ct x y z x x x x x ct rµ µ≡ ≡ ≡ = ≡
�

�    (13-20) 

I used the symbol as in KK’s book: an arrow below the character for 

                                                        

143 A review on Chapter 3 on vectors and its transformation under rotation would be helpful, please read it again if 

you need it. I hope by the time we reach here, your liner algebra course already taught you the basics on 

transformation.  
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4-vector, and the arrow above character is reserved for the ordinary 3-D 

vectors. The xµ are the components of the 4-vectors, and the convention I 

adopt is to write the time component as 0
th
 component. There is another 

convention (like that in KK) to express time as 4
th
 component. Such 

choices of convention is not important as long as we stick to one 

convention consistently (it is more like a habit rather than necessity), and 

the results would be same in all cases. The reason I used the superscript 

for label is the convention in tensor analysis
144

. An immediate question is 

that are any 4 components listed as above can be called 4-vectors? The 

answer is NO. Same as definition of vector under rotational 

transformation, the 4-vectors has to satisfy the Lorentz Transformation 

from one inertial frame to another. For example: ( , )c v
�

is not a 4-vector 

because we know that velocities do not transform as LT. Since I had 

proved that the (ct, x, y, z) satisfy this and that is why I say here it is a 

4-vector. Similarly for the displacement 4-vectors: 

( , , , ) ( , )X c t x y z c t r∆ ≡ ∆ ∆ ∆ ∆ ≡ ∆ ∆
�

�  and the energy-momentum 4-vector. 

Now we could understand the meaning of the golden combination that is 

invariant under LT (I shall use the displacement 4-vector as model for 

4-vector, same as the 3-D displacement vector is the prefect of vector in 

3-D): 

2 2 2( ) ( ) ( )s c t r∆ = ∆ − ∆  is same in all frames. It is analogous to a 3-D 

                                                        

144 These components are called contravariant components (another jargon).  



 530

vector’s module (it is also called norm or length) which is invariant upon 

unitary transformation. But here the “length” of the 4-vector is not in 

Pythagoras form. The square of time component has to have different 

sign with respect to the spatial components. Mathematically, this is 

because the LT is not a generalized rotational transform in 4-D (but a 

hyper one as we shall see later); the physical meaning of this is that 

though the space-time are related in relativity, time and space are not 

equivalent with reason unclear at present. Below I shall only use 2-D (y,z 

are not changed so only consider transform of ct and x) 

R(XY→→→→X’Y’)=

  (transformation matrix in 2-D rotation) 

While the LT matrix is (from 12-4): 

ct ct

x x

γ γβ
γβ γ

′ −     
=     ′ −     

 

LT
γ γβ
γβ γ

− 
=  − 

   (13-21) 

It is similar but different from rotational matrix, notably it is (the 

determinant of matrix): 

2 2 2 2( ) (1 ) 1γ γβ γ β− − = − =  instead of summation equals 1. There is no 

way you can express the matrix element in LT to some cosine/sine terms, 

so to express the LT matrix as some rotation matrix.  It is just this 

2 2 2 2( ) (1 ) 1γ γβ γ β− − = − =  demands that the subtraction of square 

instead of summation in the space-time interval.  

Above I used the worked out formula of LT to show the difference and 

cos     sin

sin   cos

θ θ
θ θ

 
 − 
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similarity between LT and rotation. Actually it is illustrative to derive the 

LT from linear transformation with requirement of 
2 2 2( ) ( ) ( )s c t r∆ = ∆ − ∆

is invariant. I shall work this out in detailed steps below (again only 

consider the simplified version in 2-D, only involves t,x). 

To avoid introducing metric tensor in defining the inner product of 

4-vectors, I shall adopt the trick to represent either x or t as a pure 

complex number (of course the time and space we measured are real 

numbers, here is the mathematical trick to express one as complex so that 

we can apply some powerful tools in math). The convention is to choose t 

as complex, though this will give us x
2
-(ct)

2
 as module but it does not 

matter. This mathematical complex time, real position space is called 

Minkowski Space. To state the problem in matrix language, I shall use 

column matrix representing vector (in Minkowski Sapce): 

ict

x

 
 
 

 for input and 

ict

x

′ 
 ′ 

 as output. The ‘length’ (norm, module) of the 

vector is defined as inner product (dot product) between themselves as 

usual which is reason we use complex(in matrix language is A
T
A): 

2 2 2[   ] ( )
ict

s X X ict x x ct
x

µ
µ

 
= ⋅ = = − 

 
� � 145

 

This trick will make the length is still defined as the sum of square of 

components like in regular vector, i.e. the Pythagoras theorem works in 
                                                        

145 Noticed here there is a digression from usual linear algebra language, where the conjugate for regular column 

vectors (like that of 3-D case) with complex number will be a row vector which is transposed and complex 

conjugate (C.C)of the original column. Here only transposed but no C.C. This will apply to the matrix operation 

too, see below. 



 532

Minkowski space. We are looking for a transformation: 

ict a b ict

x c d x

′     
=     ′     

 which will keep the length defined above 

unchanged (a,b,c,d are generally complex numbers) Let’s write out the 

matrix expression explicitly: 

( ) ( )

( ) ( )

ict a ict b x

x c ict d x

′ = +

′ = +  

So we see that if a, d are pure real number and b,c are pure imaginary 

number the above can be satisfied (t,x are all real numbers of course), so I 

shall write the transform as: 

a ib
L

ic d

 
=  
 

  (here a,b,c,d are real numbers) 

To keep the length invariant tells us this L transformation is a Unitary 

Transformation (refer to section 3.5 for details ) where 
1 TL L− = : 

T
a ic

L
ib d

 
=  
 

 

1 1 1

det( )

d ib d ib
L

ic a ic aL da bc

− − −   
= =   − −+   

146
 

The Unitary Transformation requirement will put restrictions to the 

matrix elements: 

det( ) 1L ad bc= + =  

,a d b c= = −  

So the matrix for LT is: 

                                                        

146 For those unfamiliar with inverse matrix formula, just try matrix production of L-1 with L to see whether you 

will get identity matrix. 
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a ib
L

ib a

 
=  − 

 with 
2 2 1a b− =  (while a

2
+b

2
=1 for regular rotation) 

Actually there is a function form satisfies this which is called 

hyper-sinusoidal functions which is defined as: 

cosh( )
2

sinh( )
2

e e

e e

θ θ

θ θ

θ

θ

−

−

+
=

−
=

 

These hyper-sinusoidal functions are usually called just hyperbolic 

functions. They have many similar properties as their cousins of 

sinusoidal functions (I would not list them, please check math handbooks 

or Wiki them if this is your first time seeing them, actually these 

functions can be worked out from Euler formula by allowing imaginary 

angles). The property we need these function here is: 

2 2cosh sinh 1θ θ− =  

With the hyperbolic function, the matrix can be expressed with only one 

undetermined parameter: 

cosh sinh

sinh cosh

a ib i
L

ib a i

θ θ
θ θ

   
= =   − −   

 

Summarizing above, I have derived from point of view of unitary 

transformation that the linear transform above will guarantee the 

invariance of space-time interval. 

Now I do not want those imaginary symbol i dangling around anymore (I 

want to switch back from imaginary Minkowski space to real 

time-space): 
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cosh ( ) sinh ( ) cosh ( ) sinh ( )

sinh ( ) cosh ( ) sinh ( ) cosh ( )

ict ict i x ct ct x

x i ict x x ct x

θ θ θ θ
θ θ θ θ

′ ′= + → = +

′ ′= − + → = +  or just: 

cosh    sinh

sinh    cosh

ct ct

x x

θ θ
θ θ

′     
=     ′       

The one parameterθcan be determined by the motion between frames: S’ 

is moving with velocity v relative to S: 

(x’=0 is moving with v viewed by S) 

0 sinh ( ) cosh ( )

sinh( )
tanh( )

cosh( )

ct x

x v

ct c

θ θ
θ

θ β
θ

= +

≡ = − = − ≡ −  

(Throw in another jargon that this angle is also called rapidity in SR) 

Knowing the tanh and finding out cosh and sinh is exactly similar to the 

sinusoidal case: 

2 2

2 2

2

sinh cosh

cosh sinh 1

1
cosh

1

cosh ,sinh

θ β θ

θ θ

θ γ
β

θ γ θ γβ

= −

− =

= ≡
−

= = −

   (13-22)
147

 

The final LT between (ct’, x’) and (ct,x) will be exactly same as (13-21), 

but this has been derived from quite different (more mathematical, 

requiring “length invariant” and Unitary transformation) point of view. To 

put all in matrix form, the LT between 4-vectors is: 

                                                        

147 The reason that the cosh only takes the positive gamma is we want the transformation reduces to Galileo under 

low speed limit where gamma=1. (Correspondence principle) 
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   ..........

   ...........

...............1......

.......................1

ct ct

x x

y y

z z

γ γβ
γβ γ

′ −     
     ′ −     =
′     

     ′     

   (13-23) (0 in place of …) 

We have thus finished proof of LT using unitary transformation and now 

back to the business of 4-vectors. The 4-vectors are defined to satisfy the 

transformation in (13-23) between different frames
148

, and their ‘length’ 

defined as: 

0 2 1 2 2 2 3 2( ) ( ) ( ) ( )x x x x− − −    (13-24)
149

 

This is invariant upon LT.  

Important properties of 4-vector (in analogous to 3-D vector) 

1) Linear Combination: Any linear combination of 4-vectors will give us 

another 4-vector, i.e. if A, B are 4-vectors: 

aA bB+� �  will be also a 4-vector (a,b are constant, they are invariant 

upon transform, so they are scalars).  

This is the most important property and can be easily proved because 

the LT is a linear transformation. We shall see that we can generate 

more 4-vectors from our prefect displacement 4 vectors! (this is 

exactly analogous to common 3-vector) 

                                                        

148 Actually I could throw in the 3-D rotational matrix (by extension to 4-D with time unaltered upon regular 

rotation) to make the transformation also include the rotation with messier final matrix. But here I shall only 

concentrate on the so called boost transformation (another jargon for the transformation between translational 

moving frames).  

149 Sorry for the awkward symbol, I trust you can distinguish what is the indices label for components and what is 

the power (squared). 
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2) If a physical equation between 4-vectors in one frame, it will be true 

in all frames. e.g.: 

A B=� �  in S, then in the S’ frame we still have: A B′ ′=� � . 

This is also related to the LT is a linear transform: 

Proof: 0,A B− =� �  0 is a null matrix which is same in all frames: 

ˆ ˆ ˆ( ) 0 0L A B LA LB A B′ ′− = → − = → =� � � � � �  

We have seen that the (E/c, P) (E,P in SR formula)satisfy the LT 

transform and is a 4-vector, so if the energy conservation and 

momentum conservation is true in one inertial frame (which is 

nothing but equivalence between 4-vectors), it will be true for all 

inertial frames, I just proved this. (Of course what I mean the two 

4-vectors are same means their components are same)  

One extension of this will be if the physical laws relating the 4-vectors 

are true in one frame, they will be true in all frames, provided the 

coefficients on the 4-vectors are tensors (scalar is the 0
th

 rank tensor). 

Actually since vector is just another special case in tensor (1
st

 order), I 

should say that in order for physical laws to be same in all frames 

(relativity principle), the laws need to be expressed in tensors. I won’t 

push this too far since tensor analysis is required for higher order 

tensors. (we do not need much here in this course is because most 

laws here only involves scalars and vectors (0, or 1
st

 order tensors) 
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except a few occasions such as inertia tensor in rotation
150

) 

3) Inner product between 4-vetcors is defined as: 

0 0 1 1 2 2 3 3A B A B A B A B A B⋅ ≡ − − −� �    (13-25) 

Notes: the 0,1,2,3 are just indices of components. This inner product 

is a scalar meaning invariant upon transformation. 

Proof: We have seen the length is invariant (a scalar) which is nothing 

but just: 
2| |A A A≡ ⋅� � , and A+B will be also a 4-vector from property 1: 

( ) ( )

2

A B A B scalar

A A B B A B scalar

+ ⋅ + =

⋅ + ⋅ + ⋅ =
� � � �

� � � � � �
 

Because the lengths are scalars (a requirement in defining the 

transformation), then the inner product between any 4-vectors is a 

scalar too (meaning same in all frames).  

 

13.6 Velocity 4-Vector and Momentum 4-Vector 

We have defined what 4-vector is and used displacement 4-vector as 

example working out the LT transform, and all that in chapter 12 can 

follow from this. So the special relativity can be developed out of this 

4-vector formalism. In this section, I will use the displacement vector as 

prefect to find out the formula for some more 4-vectors, especially 

                                                        

150 For the interested students who wants to learn more on tensors and its analysis, I recommend a classical 

textbook: Borisenko and Tarapov (translated by Silverman) “Vector and Tensor Analysis with Applications” 

(Dover, 1955). We can elude tensors in SR (and many other courses, even QM) but have to resort to it in GR or 

field theory.  
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4-velocity and 4-momentum and what we had discussed in the first half 

of this chapter can be developed out of this.  

In 3-D, the velocity is 
dr

v
dt

=
�

�

, a naïve way to get velocity vector from 

displacement 4-vector would be 
dX

V
dt

= �
� . But this won’t work, the 

quantity defined like this is not a 4-vector, it is ( , )c v
�

 and it does not 

transform obeying LT. The problem is that dt is not a scalar anymore in 

SR, it changes from frame to frame. From property 1) above, a 4-vector 

multiplied (or divided by) a scalar will be another 4-vector, this is not 

satisfied by dividing dt. For a particle flying with velocity u across 

space-time, the time elapse dt is frame dependent, however we have seen 

that there is a time that is not changing, i.e. upon which all observers 

agree, it is a scalar. That time is proper time, measured in the rest frame 

of the particle. This is because since the 
2 2 2( ) ( ) ( )s c t r∆ = ∆ − ∆ is a scalar, 

in the rest frame of particle where 0r∆ = , 
2 2 2( ) ( )s c τ∆ = ∆ , thus the 

proper time τ∆  is a scalar too. With this proper time interval, we can 

proceed constructing 4-vectors out of displacement 4-vector. 

(1) 4-Velocity 

dX
V

dτ
≡ �
�    (13-26) 

Above is the definition of 4-velocity, to work out the detailed formula, 

especially we want to see the relation between it with regular 

velocities (dx/dt defined in each frame). We need relation between 
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proper time and time, but this is just time dilation: 

/ ud dtτ γ=  

In a frame that the particle is moving with velocity u, its time interval 

dt is related to the proper time by above relation.   

( , ) ( , )
u u u

dX cdt dr
V c u

d dt dt
γ γ γ

τ
≡ = =

�
��

�    (13-27) 

From this and transform property of 4-vector (LT), I hope you can 

work out the velocity transform relations that I had derived before in 

chapter 12. (It is straightforward and a bit tedious, so I left it as an 

exercise for you to finish) 

Comment: In the real lab measurement what we measured is of 

course the regular 3-D velocity, and we can construct 4-velocity out of 

this by (13-27) which has the advantage that transforms obeying LT.  

In computation, using the 4-velocity or the velocity transform formula 

will be equivalent and about same amount of work.  

The length of the 4-velocity: 

2 2 2 2 2| | ( ) | |u uV c u cγ γ= − =
�

   (13-28) 

It can be proved by throwing the definition of gamma but most easily 

by the invariance of its value, and find it in the rest frame where u=0 

and gamma=1.  

The 4-velocity is not very useful in real practice, its purpose is an 

intermediate to find more 4-vectors out of it. 
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(2) 4-Momentum 

Let’s temporarily forget about the relativistic formula for energy and 

momentum and see how those arise from the construction of 

4-momentum.  

We have constructed 4-velocity above, and we know that rest mass is 

a scalar (it depends on internal energy but independent of motion), 

so we can construct a 4-momentum from 4-velocity: 

0 0 0( , )u uP m V m c m uγ γ≡ =
�

� �    (13-29) 

The spatial component is 0um uγ
�

, and we can expand this as power 

series of u/c: 

2

0 0

1
(1 ...)

2
um u m uγ β= + +
� �

 

We see that the 0
th

 order term is just m0u, which is the momentum in 

Newtonian mechanics at low speed limit, higher orders would be 

relativity correction. Most important, since it is part of 4-vector, if this 

quantity is conserved in one frame, it will be conserved in other 

frames too. The 0um uγ
�

satisfies the correspondence and relativity 

principle and it is justified to define this term as relativistic 

momentum, which is exactly the same formula I derived before.  

If I expand the time component (0
th

 component ): 

2
2

0 0 0 02

1 1 1
(1 ...) ....

2 2
u

u
m c m c m c m u

c c
γ = + + = + +  

The second term is obviously related to Newtonian kinetic energy, so 
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this term is related to energy, a dimensional analysis tells us it is E/c. 

Since this term is also part of 4-vector and c is an universal constant, 

this means if this quantity is conserved in one frame, it is conserved 

in all frames too. Similar argument suggests it is justified to define 

this term as E/c, or 
2

0uE m cγ=  which is our familiar relativistic 

energy formula. We have derived the formula for relativistic energy 

and momentum from 4-vector point of view.  

So the energy and momentum are closely related in special relativity 

as time and space. The old argument in Newtonian mechanics 

centuries ago about whether the energy or the momentum is more 

fundamental now has a clear and more profound answer. They are 

equally important and are related to time and space, as I have 

mentioned at the very beginning of this course, that the energy 

conservation will be a result of time translational symmetry and 

momentum conservation is the result of space translational symmetry. 

The 4-momentum vector for a particle is also called 

energy-momentum vector for obvious reason, but sometimes when I 

am sloppy, I just call it momentum 

Because 4-Momentum is a 4-vector, it transforms obeying LT, and we 

have seen this explicitly in 13.4. The length of this vector is: 

2 2 2| | ( ) | |
E

P P
c

= −
�

�  and is a scalar. Its value is easily evaluated by 

choosing a frame in which the particle is at rest, so that u=0 (and 
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2

00,P E m c= =
�

in such frame)and this will gives the value: 

2 2 2 2 2

0
| | ( ) | |

E
P P m c

c
= − =

�

�
   (13-30)

 

This is the energy momentum relation derived before.  

 

I shall rework some of the examples in section 13.3 explicitly using 

4-vectors, so that you may have a feel for this method. (I will not draw 

the figures and please refer to section 13.3 if necessary) 

Example 1: Photon emission by a stationary atom/molecule in lab frame. 

The initial momentum (4-vector): cP� , 

Final momentum: aP� for recoiled atom, bP�  for photon (only consider 

1-D, along x direction) 

Energy and momentum conservation can be expressed with one equation: 

c a bP P P= +� � �  

In order to apply for the invariant value, I direct product both side with Pc 

(equivalent to square both sides): 

2 2 2| | | | | | 2c a b a bP P P P P= + + ⋅� � � � �  

All these values are scalars and I can choose the most convenient frames 

for their values, and clearly: 

2 2 2 2 2 2 2| | ;| | ;| | 0c c a a bP m c P m c P= = =� � �  

To evaluate the cross terms, I shall just use lab frame, in which: 

( / , )

( / , / ,0,0)

a a a

b b b

P E c P

P E c E c

=

=

�

�

�
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Using momentum (3-D) conservation: 

/ ( / , / ,0,0)a b a a bP E c P E c E c= − → = −
�

�  

2

2 2
( )( )a b b b a b b

a b

E E E E E E E
P P

c c c c

+
⋅ = − − =� �   

Put all these back into squares of 4-momentum conservation: 

2
2 2 2 2

2
2 a b b

a c

E E E
m c m c

c

+
+ =  

There are still two unknowns Ea, Eb (ma is related with mc by 

Q0=mcc
2
-mac

2
), but we still have energy component conservation: 

2

a c b c bE E E m c E= − = −  

2 2
2 2 2 2 2 2 4 2 4 2 4 2 2

02

( )
2 2 ( )c b b b

a c c b c a c c

m c E E E
m c m c m c E m c m c m c m c Q

c

− +
+ = → = − = − −

0
0 2

0

(1 )
2

b

Q
E Q

M c
= −  

This is same as the result of example 2 in 13.3. (Above procedure may 

not be the quickest way to get answer, can you find a better alternative?)  

When I apply the scalar property of inner product of vectors, I chose Pc 

(4-vector), you may try other inner product, say direct product to both 

sides of 4-vector conservation equation with Pa and you will get same 

answers (try it yourself) using this slight different method. 

 

Example 2 Total inelastic collision 

Particle A and B collide to form one particle C, if we know the initial 

velocity of A, B and their rest masses mA,mB, find C’s mass and velocity. 
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With the initial conditions, we can compute the initial momentum and 

energy from m, u, but I try to avoid as much as possible by using 

4-vector’s property(I cannot avoid it completely of course): 

2 2 2| | | | 2 | |

A B C

A B A B C

P P P

P P P P P

+ =

+ + ⋅ =

� � �

� � � � �
 

2 2 2 2 2 2 2 2 2| | ;| | ;| |A A B B C CP m c P m c P m c= = =� � �  

In the lab frame: 

( / , ); ( / , )A A A B B BP E c P P E c P= =
� �

� �  

2

A B
A B A B

E E
P P P P

c
⋅ = − ⋅

� �

� �  

Put all these into equation: 

2 2 2 2 2 2

2
2 2A B

A B A B C

E E
m c m c P P m c

c
+ + − ⋅ =

� �

 

This is exactly same as the result in example 5 in section 13.3. With the 

mass of C computed, we can further find its velocity using conservation 

laws. 

 

Example 3: This is example 6 in 13.3 

p p p p p p+ → + + +   

The minimum energy of the moving proton hitting a target of rest proton 

and create 4 particles is what we need to compute.  

The minimum energy is when the output’s total energy is minimum. For 

the multi-particle system, I stated without proof that the 
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2 2 2 2

(  )total total total in CME P c E− =
. Now I can prove this easily from 4-vectors: 

The total energy-momentum vector is also a 4-vector: 

( / , )total i total total

i

P P E c P= =∑
�

� �  

Its length is also a scalar invariant upon transformation between frame: 

2
2

2

( )
| | | |total

total total

E
P P

c
= −

�

�  

Its value relates to the total energy in the C.M. frame of which is defined 

as total momentum (3-D) is zero: 

2
( )2 2

2

( )
| | | | ( )

total CMtotal
total total

EE
P P

c c
= − =

�

�  

The minimum energy in CM frame is when all particles are at rest with 

total energy 4mc
2
. In other frames, 

2| |totalP
�

is some conserved value and 

this will give the minimum energy of Etotal in that frame. The rest would 

be similar as before: 

2 2 2| | | | 2 | |

A B C

A B A B C

P P P

P P P P P

+ =

+ + ⋅ =

� � �

� � � � �
 

2 2 2 2 2 2 2| | | | ,| | 16A B CP P m c P m c= = =� � �  

( / , ), ( ,0) in lab frameA A A BP E c P P mc= =� �  

2 2 2 2 2 2 22 16 7A Am c m c mE m c E mc+ + = → =  

Solving problems with conservation laws, you can either use the 

conservation laws separately as I did before or apply the 4-vector with the 

property of invariant inner products like what I just showed you here. The 

two methods are equivalent (as demonstrated by the examples I worked 

out) and which one you choose is somewhat personal taste. The 4-vector 



 546

is generally more compact while the separate conservation laws are 

probably more familiar.  

 

Chapter14 Acceleration and Force in Special Relativity 

We have learned most of the basics of special relativity. This chapter is 

included mostly for the completion of story. Though in SR the force and 

acceleration lost their central positions in description of motion as in the 

Newtonian mechanics, we need to see why it is such.  

The reason we hold dear on the old F=ma is because it is simple (and is 

correct under low speed limit). As I discussed at the very beginning of 

this course in chapter 1, the force and acceleration allow us to compute a 

complete trajectory of the particle, instead of counting the position and 

velocity of the particle at many different times. Knowing the form of the 

force and its distribution, we can solve the trajectory by solving 2
nd

 order 

differential equations, or 1
st
 order equations for velocity. All this made the 

designation of a physical quantity of interaction as force very useful. 

However, we will see that the simple relation F=ma is not correct at high 

speed (SR), force and acceleration when transformed between moving 

frames do not satisfy LT and are not 4-vectors, so as we discussed in the 

last chapter, F=ma cannot satisfy relativity principle. There is still a 

relation (called equation of motion as usual) between acceleration and 
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force in SR, but the form is more complicated than its Newtonian 

counterpart. The calculation of trajectory is far more difficult in SR. 

Knowing the complete trajectory (or history) of the particle would be nice, 

but fortunately never necessary for a understanding of physical systems. 

We have seen in this course that we can get the properties of system, 

velocity, momentum, energy, angular momentum without knowing the 

detailed trajectory. In microscopic world (quantum theory), knowing the 

trajectory is impossible because of the uncertainty relations. Modern 

physics is largely based upon measurement of momentum, energy and 

angular momentum and their conservation laws rather than trajectory.  

So it is a pity but not the end of the world if we cannot have a complete 

trajectory or history of the motion, we are just less god-like and his 

almighty maybe the only one knowing exactly where a particle came and 

where it will go☺. 

Though the cherished simple equation of motion is no longer correct in 

SR, and force –acceleration becomes less important and knowing the 

complete trajectory is not essential in understanding the physical 

properties of a system, they do hold the central role in the first half of the 

course and they deserve a place of discussion here in SR.  

The strategy in the following discussions will be similar as before: I shall 

discuss the acceleration and force without the help of 4-vector; then I 

shall invoke the 4-vector and show you how to construct 4-acceleraton 
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and 4-force; their relation to the 3-D force and acceleration, and that the 

two formalisms are equivalent.  

 

14.1 Acceleration 

The acceleration is still defined as derivative of velocity over time, of 

course the time and velocity are measured in an inertial frame, i.e.  

( )

( )

( )

S

S

S

du
a

dt
=
�

�

 

The subscript (S) is there just to show the dependence on frame explicitly, 

it is redundant as long as you do not forget such dependence. 

(1) Transform formula of acceleration 

Here we study the relation between the acceleration of same particle 

viewed in different frames, say S and S’, S’ is moving velocity v w.r.t. 

S as usual.  

We have learned the relations between the velocity u, u’ of the motion 

and time t, t’, and starting from there we can find out relation between 

a and a’. 

Let’s first consider the x component of the acceleration vector (3-D), 

and x is the direction of motion between frames v: 

/

/

x x
x

du du dt
a

dt dt dt

′ ′
′ ≡ =

′ ′  

2
( )

v
dt dt dx

c
γ′ = −  
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21 /

x
x

x

u v
u

vu c

−′ =
−  

2
2 22

2 2 2 2 2 2 2

(1 / ) / ( ) /
(1 / )

(1 / ) (1 / ) (1 / )

x x x x
x x x

x x x

v
vu c du dt u v du dt

du v c a ac

dt vu c vu c vu cγ

− + −′ −
= = =

− − −

2 2
/ (1 ) (1 )x

v dx vu
dt dt

c dt c
γ γ′ = − = −  

3 2 3

/

/ (1 / )

x x x
x

x

du du dt a
a

dt dt dt vu cγ
′ ′

′ ≡ = =
′ ′ −    (14-1) 

Same straightforward strategy and messy calculation will give: 

2 2 2 2 2 3 2

2 2 2 2 2 3 2

1

(1 / ) (1 / )

1

(1 / ) (1 / )

y y

y x

x x

z z
z x

x x

a u v
a a

vu c vu c c

a u v
a a

vu c vu c c

γ γ

γ γ

′ = +
− −

′ = +
− −

   (14-2) 

The transformation is quite messy and not LT. The reverse 

transformation (expressing a in terms of a’) is just change the sign of v.  

The relation is even more complicated by looking carefully to the 

coefficients, the coupling coefficient are not constant of motion. The 

ux, uy will change especially under acceleration, that means the 

coefficients are also changing.  

(2) 4-Accelerator 

Just like how we construct the 4-Velocity vector with space-time 

4-vector divided by proper time, we can construct a 4-Accelerator 

similarly with 4-Velocity divided by proper time interval: 

( , )
u u

u u

dV d c u
A

d dt

γ γ
γ

τ
≡ =

�
�

�
   (14-3) 
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This is the 4-accelerator in one frame that the particle is moving with 

velocity u. Further expand the differentials: 

( , ) ( , )u u u u
u u u u u

d d du d d
A c u c u a

dt dt dt dt dt

γ γ γ γ
γ γ γ γ= + = +

�
� � �

�
 

32 2 1/2 2 3

2
2 2 2

(1 / ) 1 1 ( )
( )(1 )

2

u ud d u c u d u u
u a

dt dt c c dt c

γ γ− −− − ⋅
= = − − = ⋅

� �
� �

   (14-4) 

Put these into the 4-Accelerator and we finally see the connection 

between this 4-accelerator with regular 3-D accelerator: 

3 3

2
( , ( ) )u u

u u uA u a u a u a
c c

γ γ
γ γ= ⋅ ⋅ +

� � � � � �
�

   (14-5) 

Or write out each component explicitly: 

4
0

4 4 4
1 2 2 2 3 2

2 2 2
( ) ; ( ) ; ( )

u

u u u
x u x y u y z u z

A u a
c

A u a u a A u a u a A u a u a
c c c

γ

γ γ γ
γ γ γ

= ⋅

= ⋅ + = ⋅ + = ⋅ +

� �

� � � � � �

 

And it is this 4-acceleration that will transform obeying LT, and we 

will see that the equation of motion can be expressed with this 

4-acceleration. However its relation with regular acceleration is 

complicated, say suppose you know the Ai (i=0-3), solving for x(t) are 

a bunch of coupled differential equations. 

The transform of regular acceleration (14-1,2) can also be derived 

from 4-acceleration and its transform (LT) between frames, and it is a 

straightforward and tedious computation and won’t be presented here 

(you are encouraged to prove it yourself). So the two formalism on 

acceleration are equivalent, and we will see that the equation of 
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motion when expressed with 4-acceleartion is much simpler.  

Like all 4-vectors, its length is a scalar, the length for 4-accelerator 

expressed in terms of u, a is: (I skipped details and only copy the 

result) 

63
2 0 2 2 4 2 2

2
1

| | ( ) ( ) ( )i u
u u

i

A A A a u a
c

γ
γ

=

= − = − − ⋅∑ � �
�

   (14-6) 

This value is easiest to evaluate at what is called instantaneous rest 

frame of particle, i.e. a co-moving frame that travels with same 

velocity as particle at one moment, and since the velocity of particle 

under acceleration is changing, the frames will change accordingly 

from time to time (The lab observer is one frame S, and particle frame 

is S’, while S’ is changing from time to time). In such S’ 

(instantaneous rest frame), the particle is stationary (u’=0, gamma 

(u’)=1) and we see that: 

2 2| |uA α= −�    (14-7) 

α is the acceleration in the instantaneous frame, which is called proper 

acceleration.  

We see that the transform relations between regular acceleration in 

different frames will be the simplest if one of the frame is the 

instantaneous frame S’ (in which u’=0), also the relation between 4- 

and 3-acceleration is also simplest in such instantaneous frame (the 

relations involving instantaneous frame will be left for you to write 

out as a practice). This suggests the usefulness of using such frames in 
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calculation involving acceleration in SR. However, keep in mind that 

the S’ is instantaneous, meaning its velocity w.r.t. S (the lab frame) is 

changing continuously, i.e. terms involving u and gamma(u) are not 

constant. We shall see a simple example of solving the accelerated 

motion after we discuss the force in SR. 

 

14.2 Force and 4-Force 

(1) Definition of force and equation of motion in SR 

First let’s see the relation between force and energy and momentum. I 

had used force once before in the derivation of relativistic energy from 

work-energy theorem. There the force is defined as: 

/f dP dt=
� �

   (14-8) 

This is the definition of force in SR (in a sense as discussed in 

footnote 137). We had seen that the energy coming out this satisfies 

the relativity (conserved in all frames) and correspondence principles, 

which justifies the (14-8) for force.  

The work-energy theorem is: 

dK f dr= ⋅
� �

, K is kinetic energy (K=E-m0c
2
) 

dK
f u

dt
= ⋅
� �

   (14-9) 

Put in the total energy, and in the situation when the rest mass is a 

constant (no internal energy change of the particle): 
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2

0( )dK d E m c dE
f u

dt dt dt

−
= = = ⋅

� �

   (14-10) 

The (14-9) and (14-10) are clearly the analogy of power theorem in 

mechanics.  These are relation between force and momentum-energy 

which is not completely new here, and what we learned in mechanics 

on impulse theorem and work-energy theorem can be applied in SR as 

well. 

Now the question is what is the relation between force defined in 

(14-8) with acceleration? Do we still have F=ma?  

Put the definition of momentum into (14-8): 

0 0
0 0 0

( ) ( )
u u u

u u

d m u d m du d
f u m m u m a

dt dt dt dt

γ γ γ
γ γ= = + = +

� �� � � �

 

Above I used assumption that the m0, the rest mass of particle is a 

constant. We have seen in (14-4): 

3

2

u ud
u a

dt c

γ γ
= ⋅

� �

 

3

0 0 2
( )u

uf m a m u a u
c

γ
γ= + ⋅

� � � � �

   (14-11) 

This is the relation between force and acceleration in SR, 

corresponding to the equation of motion F=ma in mechanics, and 

indeed we can see that at low speed limit, u<<c, the equation reduce to 

f=m0a. However, generally the relation is more complicated in SR. 

Noticed that the acceleration a is not necessarily parallel with velocity 

u, in most cases, they are not along same direction. This means the 
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force and acceleration are not necessarily along same direction as 

shown in (14-11).  

For example in 2-D for simplicity, if the particle with initial velocity 

(ux0,uy0), and the force is along x direction only f=(fx,0). The particle 

will have acceleration ax along x direction and its ux will increase. 

Consider the momentum along y direction which should be conserved 

for there is no force along this direction (14-8). 0y u yP m uγ= . As the ux 

increases, the 
2 2 2

x yu u u= +  will increase and so will the 

2 21/ 1 /u u cγ = − . In order to keep the momentum along y to be 

conserved, the velocity along y, uy has to decrease. So we see that 

though there is only force along x direction, the particle will have 

acceleration (deceleration in this case) along y too! This is quite 

different from that in Newtonian mechanics but in accordance with 

(14-11). Just rewrite the (14-11) to express explicitly from force to 

acceleration: 

0
0 0 02 2

( ) 1 1
( )u

u u u

d m du dE
f u m u m a m a f u u

dt dt c dt c

γ
γ γ γ= + = + = + ⋅

�� �� � � � � �

 

2

0

1
( )

u

f u
a f u

m cγ
⋅

= −

� ��� �

   (14-12) 

In our simple example above, there will be non-zero y acceleration: 

( ,0), ( , )x x yf f u u u= =
� �

 

2

0

1 x x
y y

u

f u
a u

m cγ
= −  

Only in some special cases, we have simple equation of motion in SR, 



 555

for example if the acceleration is always perpendicular to the velocity 

(circular motion), the second term in (14-11) will disappear. Another 

case is when we choose instantaneous rest frame of moving particle, 

the equation of motion in such frame would be just: 

0f m α′ =
� �

   (14-13) in instantaneous rest frame 

This makes perfect sense since in this inertial frame, the particle is at 

rest and the equation of motion would just be that in Newtonian 

mechanics. Unfortunately, transform the result back to lab frame 

won’t be easy
151

. 

To find how the forces transform between frames, we could adopt the 

old strategy that: 

/f dP dt′ ′ ′=  in S’ and the transform of P and t are known (they obey 

LT), and we can find how the force is transformed, it won’t surprise us 

that the force does not transform as LT (take a look at definition (14-8) 

and think why it is not LT yourself). I shall leave out the details of 

calculation here and give the transform relation after we construct 

4-force.   

(2) 4-Force 

The force defined above is what we measured in lab but it does not 

transform obeying LT because it is momentum divided by dt, which is 

                                                        

151 The situation is a bit similar to the free rotation of rigid body we discussed before. Choosing the principle axes 

as coordinate axes will simplify the equation of motion but the coordinate system is changing with time there. 

There is just no free lunch .  
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not a scalar upon transformation (same reason that the regular 

acceleration and velocity are not 4-vectors). Following the same 

procedure as constructing the 4-velcocity and 4-acceleration that have 

certain relations to the measurable quantities (the regular velocity and 

acceleration, such measurable physical quantity is also called 

observable) but transform as LT, we can construct 4-force that is 

relating to the observable force f and satisfies LT. 

dP
F

dτ
≡ �
�    (14-14) 

This is the 4-Force which is a 4-vector. Its relation to the observables 

can be directly worked out from formulas for 4-momentum and proper 

time: 

( / , ), / uP E c P d dtτ γ= =
�

�  

1
( , )u

dP dE dP
F

d c dt dt
γ

τ
≡ =

�

�
�  

We can see from the above that the relation between the component of 

4-vectors with physical observables: Its time component is related to 

the energy change over time; and its spatial components are related to 

regular force (so the 4-force is also called power-force vector) and 

writing out the component explicitly(for the case of constant m0): 

0

, ,

u u

i x y z

u i

dE
F f u

c dt c

F f

γ γ

γ=

= = ⋅

=

� �

   (14-15) 

From this construction of 4-force and its relation with observables, we 

can find the transform formula among regular force (which I left out in 
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previous section): 

The two frames S, S’ (relative v between them is along x direction) 

and forces measured by are f, f’: 

The relation between the 4-Force are already known (just LT): 

0 0 1

1 1 0

2 2 3 3

( )

( )

;    

F F F

F F F

F F F F

γ β

γ β

′ = −

′ = −

′ ′= =
 

Throw in the relation of each component: 

( )

( )

;    

u u
u x

u
u x u x

u y u y u z u z

f u f u f
c c

f f f u
c

f f f f

γ γ
γ βγ

γ
γ γ γ β

γ γ γ γ

′

′

′ ′

′ ′⋅ = ⋅ −

′ = − ⋅

′ ′= =

� �� �

� �

 

The relation between gammas is what we derived before: 

2
(1 )x

u u

u v

c
γ γγ′ = −    (14-16)

152
 

The first equation gives us transformation between powers and the last 

3 give us the transformation between regular force (for the constant 

m0): 

2

2

2

2

1 /

(1 / )

(1 / )

x

x

x

y

y

x

z
z

x

v
f f u

cf
u v c

f
f

u v c

f
f

u v c

γ

γ

− ⋅
′ =

−

′ =
−

′ =
−

� �

   (14-17) 

You see that the regular force do not transform as LT.  

                                                        

152 Which is proved in (13-1) for 1-D case; for general case here where u has components along x,y, z. The proof 

would be similar to that of (13-1) or using the transform property of 4-velocity, its temporal (0th) component 

equation will lead directly to this relation, please try it yourself.  
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The equation of motion (relation between force and acceleration) can 

be written using 4-vectors in a very simple and familiar form: 

0F m A=� �    (14-18) 

The force and acceleration in the formula are 4-vectors, their relation 

to the observables are given by (14-15) and (14-5), throw these into 

(14-18), it is a practice for you to show that (14-18) indeed will give 

us relation between regular force and acceleration exactly as (14-11) 

Generally the equation of motion as (14-18) or (14-11) are a bunch of 

coupled differential equations, knowing the force and initial 

conditions, solving the acceleration ,velocity and trajectory of the 

particle is not an easy task (most cases, you may not get an analytical 

answer), far more difficult than the Newtonian case. We shall take a 

look of a couple simple cases to have a taste of this where we may 

apply the instantaneous rest frame of the particle and simpler relations 

between force and acceleration in such frame.   

 

Example1 Particle subject to a constant force 

A particle is at rest initially, then a force field is turned on at t=0. The 

force will be constant and its direction is chosen as x-axis, i.e. 

0( ,0,0)f f=
�

 and the rest mass is m0 for particle. After time t, what is the 

velocity and the distance travelled by the particle? 

If it does not ask for acceleration, usually it is easier to work from 
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momentum-force relation (14-8, impulse theorem): 

Method 1:  

/f dP dt=
� �

 

Py,Pz would be constant and since initially the particle is at rest these will 

be zero at all time, and so will be the uy, uz. The particle will only move 

along x direction. 

0 0

2 2
2 2 2 2 2 2 20 0

0 0 0 0 022 2

0

2 2
0 0

2 2

0

/ ( )

( ) ( ) (1 / ) ( )
1 /

1

1

x x

x
x x x

x

x

dP dt f P t f t

m u f t
f t m u f t u c m u f t

cu c

f t
u

m f t

m c

= → =

= → = − → + =
−

=

+

 

Once we know the velocity, we can find distance by integration over time, 

which is straightforward but may need integration table for the job.  

Take a look at velocity over time, clearly at low velocity when time is 

small, the velocity reduces to Newtonian result, u=at, a=f/m. At longer 

time, the second term is not negligible, and at long enough time, the u 

will approach that of c. This makes perfect sense. 

Method 2: I will also work this out using relation between 

force-acceleration.  

Even when the force is constant, in lab frame the acceleration is not a 

constant (14-11 or 14-12): 

2

0

1
( )

u

f u
a f u

m cγ
⋅

= −

� ��� �

 

Initially u=0 and this will just give us a=f/m, the classical result. As 
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velocity increases, the acceleration will decrease due to the increase of 

gamma and second term. Actually it is easy to see that as u approaches c, 

acceleration will be zero.  

In our simple example, we can integrate above to find the ux(t): 

2
2 2 0 0

2

0 0

1 / ( )x x
x x

du f f u
a u c

dt m m c
= = − −  

This is a nonlinear 1
st
 order ODE and certainly you can tackle it directly 

but here I can easily solve it by separation of variable: 

2 2 2 2 2 2 3/20 0

0 0

1 / (1 / ) (1 / )x x x x

f f
a u c u c u c

m m
= − − = −  

0 0

2 2 3/2 2 2 3/2

0 00
(1 / ) (1 / )

xu

x x

x x

du f du f
dt t

u c m u c m
= → =

− −∫  

The integration on the LHS can be found from integration table: 

0

2 2 1/2

0( )

x

x

cu f
t

c u m
=

−  and ux can be solved which will be same as I worked 

with momentum. 

It is also interesting to work the second method from another point of 

view, using the instantaneous rest frame of particle. In this frame (I shall 

denote it S’, it is moving with ux relative to lab frame), u’=0 in such 

frame. The relation of transformation between force and acceleration in S 

and S’ is simple: 

x xf f′ =  (easy to prove from 14-17)
153

 

                                                        

153 You may try directly from (14-17) but it is more easy to work from the reverse transformation, i.e. express fx in 

terms of f’, the relation would be similar to (14-17) only change the sign involving v and switch label u to u’. 

Similar procedure applies to the transformation of acceleration too. 
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3 2 2 2 2, 1/ 1 / 1/ 1 /x x xa a v c u cα γ γ′ ≡ = = − = −  (easy to prove from 14-1) 

In the rest frame S’, the relation between force and acceleration is just the 

classical mechanics one: 

0

0 0

xf f

m m
α

′
= =  and in such instantaneous frame the constant force will give 

us constant acceleration. But we cannot do the integral in this 

instantaneous frame, because it is changing over time, we have to 

transform back to lab frame: 

3 0

2 2 3/2

0(1 / )

x
x

x

du f
a dt

u c m
γ α= → =

−  this will give us exactly same integration 

as before so same answer. I hope I have shown you enough methods to 

treat this simple dynamical problem. 

 

Example2: Particle with uy subject to constant force (consider only in 2-D 

x-y). 

Similar situation as above, but the particle has initial velocity along y. i.e. 

initial velocity is (0,u0), the force is along x direction (f0,0). What is the 

velocity of the particle at later time? 

We have seen that it is easier to work with impulse theorem: 

0 0
0 0

2 2 2 2 2

0

0

0
2 2 2

1
,

1 / 1 ( ) /

1 ( ) /

y u y y u

x y

y

y

x y

m u
P m u P const

u c u u c

m u
P

u u c

γ γ= = = = =
− − +

=
− +

 

For the x component: 
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0 0

0
0

2 2 21 ( ) /

x x

x

x y

dP f dt P f t

m u
f t

u u c

= → =

=
− +

 

There are two unknowns with two equations, and luckily here the two 

equations can be squared, thus the two unknowns to be ux
2
 and uy

2
, and 

this becomes a couple of linear equation which can be solved with 

standard method. In the following calculation I shall choose the unit so 

that c=1; X= ux
2
; Y= uy

2
: 

2 2 2 2 2 2

0 0 0 0 0(1 ) ( )yo y y ym Y P X Y P X m P Y P= − − → + + =  

2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0(1 ) ( )m X f t X Y m f t X f t Y f t= − − → + + =  

2 2

0 02 2

2 2 2 2 2 2 2 2 2

0 0 0 0 0 0

y y

y

y y

P P
Y u c

m f t P m c f t P
= → =

+ + + +  

The last step is from dimensional analysis to put the c back into relation 

(of course if you never set c=1, you do not need worry about this step, 

however in complicated calculation, it is usually time saving to set c=1 at 

beginning and put it back through dimension analysis afterwards, like 

what I did here) 

Similarly: 

2 2
2 20

2 2 2 2 2

0 0 0

x

y

f t
u c

m c f t P
=

+ +  

From the results, it is easy to see that as time goes on, the x component of 

velocity will increase (but never exceed c) and the y component will 

decrease as we discussed earlier, there is deceleration along y though 

force only has x component, as you can see also from relation: 
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2

0

1
( )

u

f u
a f u

m cγ
⋅

= −

� ��� �

. 

You may also try to solve the problem by using the force-acceleration 

relation above, and this will be left for you to explore. After finding the 

velocities, the trajectory can be worked out in a straightforward (but 

maybe nasty) integration, and I will not do that here.  

 

Example 3 1-D harmonic oscillator 

For a particle subject to a force f=-kx and the force can be written also in 

convention of 
2f m xω= − , the amplitude of the oscillation is A, what is 

the period of this oscillator?  

Suppose m is initially at A, so u=0, x=A initially. The time for m travel 

from A to 0 is: 

0

0

A

dx
t

u
= ∫ , the period will be 4t0. The problem then will be 

find the relation between velocity and position u(x).  

Starting from impulse or acceleration (which is derived from the impulse) 

would be equivalent here, so I shall use: 

2

0

1
( )

u

f u
a f u

m cγ
⋅

= −

� ��� �

 

2 2

2 3

1
( )x

u u

du fu x
a f

dt m c

ω
γ γ

−
= = − =  

This result could also worked out from acceleration in instantaneous rest 

frame as in last example 
3 2

xa xγ α ω= = − . We need to find u(x) so I 

rewrite the relation above as: 
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2

3

3 2

u

u

du du dx du x
u

dt dx dt dx

udu xdx

ω
γ

γ ω

−
= = =

= −
 

Doing integration on both side will give us u(x) and thus the period. The 

integral on the LHS is a bit nasty if doing it directly. Fortunately, we 

know (in the derivation of 14-11): 

3 3

2 2

u u u
u

d
u a d udu

dt c c

γ γ γ
γ= ⋅ → =

� �

 in this 

case.  

2 21 2
2 22

d xdx x const
u u

c c

ω ωγ γ= − → = − +  

The constant can be found from initial condition, x=A, u=0, gamma=1 

2
2

2

1
1

2
const A

c

ω
= +  

2 2 2
2 2 2 2

2 2 2

1 1 1
1 1 ( )

2 2 2
u A x A x

c c c

ω ω ωγ = + − = + −  

From this we can find out u directly from definition of gamma u: 

2 1c
u

γ
γ
−

= −  (taking minus sign because of our initial condition) 

The period can be found out from integral: 

0

0

4 4

A
dx

T t
u

= = ∫  It is generally quite a nasty integration and I shall leave the 

formula as it is, and also from u(x), we can find x(t) through another 

nasty integration, so simple harmonic oscillation in classical mechanics is 

not so simple in SR.  
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Supplementary Materials on Math Needed in Mechanics 

by Shuo Jiang 

 

Preface 

One difficulty (obstacle) for freshman physics is the math needed by the 

students. It requires Calculus (both single and multivariable versions) and 

some basics on solving ordinary differential equations, as well as Linear 

Algebra. The materials in the math are generally not required in high 

schools in this country, and will be taught simultaneous with physics in 

the first semester in college. While we are not going to encounter serious 

Linear Algebra in the first half of physics course, and I hope by the time I 

need LA at the second half of the semester, you will have learnt enough 

from the math course. However, the calculus and ordinary differential 

equations will be needed from the beginning of the physics course, 

especially calculus. I shall arrange the physical course that needed single 

variable calculus first, then multivariable (those partial derivatives etc.) 

calculus and then ordinary differential equation. I write this math 

supplementary accordingly in these three parts, hoping as a guidance or 

crutch that helps you understanding some basics and be able to use them 

in physics. This is not intending to replace the math textbook of course.  
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Supplementary I 

Highlights of Differentiation and Integration 

This is a short and crash course on part of calculus, dealing with 

differentiation (derivative of function) and integration (integral of 

function). Within this supplementary, I shall list some of the highlights of 

calculus (single-variable) and their applications in physics. There will be 

a few examples and not many rigorous proofs (you have to refer to math 

textbooks on calculus for the proof and more examples)
154

.  

Calculus is about the relation between functions. You have two 

functions which are related, each is a function of some variables 

explicitly or implicitly. Say function 1 is the distance traveled over time 

and function 2 is the velocity over time. So function 2 is the change rate 

of function 1 over the variable. i.e. function 2 express the change of 

function 1 as the variable changes. From function 1 you can calculate 

function 2, the function of rate of change, this is called differentiation. 

From function 2 (the rate of change), you can calculate the function 1, 

this is integration.  

1. Differentiation of a function 

This is also called derivative of a function. This will give you another 

                                                        

154 A widely-used textbook (in US) on basic calculus for freshman is Thomas “Calculus”. It has hundreds of 

examples and thousands of exercises, but it is almost 1600 pgs. That is why I decide to write this supplementary. 
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function which represents the rate of change of the initial function. To 

give a rigorous derivation on derivatives, you will need definitions 

regarding to functions, limits and continuity. All these would be too 

mathematical to present here for this supplementary, so I will dive into 

derivative directly.  

The functions here we considered are what are called single variable 

functions, i.e. with only one input variable that changes. For the general 

case of multi-variable functions, I will leave that part to another 

supplementary on partial derivatives later.  

1-1. Geometric and physical interpretation of derivatives 

Given a function of some single variable, say ( )y f x= , where x is the 

variable (the input), and y is the output, f is a function represents their 

relations, i.e. knowing x you can calculate y. As the input x changes, the 

output y will also change. If the x is changed to some other value, say 

x x+ ∆ , the y will change from ( )f x  to ( )f x x+ ∆ . The rate of change 

is defined as: 

( ) ( )y f x x f x

x x

∆ + ∆ −
=

∆ ∆
    (1)

155
 

This is also called average rate of change, and is represented by the 

secant line in the graph below, the average rate of change is the slope of 

the secant line connection the two points P,Q.  

                                                        

155 In the following discussion, sometimes I may mix f with y, they are the same anyway. y and f are just the 

symbols representing the same function. So in later notations, , ' ', / /y f y f dy dx df dx≡ ≡ ≡  
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However, in many situations, the average rate of change may not be 

enough. We need the instantaneous rate of change. i.e. the average speed 

of a car between 2 second and 5 second may not provide enough 

information, we need the speed of the car right at the 2 second. This 

corresponds to making the Q approaching P in the above figure, and the 

x∆  becomes smaller, approaching 0. Under this limit, we calculate the 

rate of change. That is the instantaneous rate of change of function f(x) at 

certain point, say x1. This instantaneous rate of change is the physical 

interpretation of derivatives. The notation of derivatives of ( )y f x=  has 

a few commonly used forms:  

( )
dy d

y f x Dy
dx dx

′ ≡ ≡ ≡       (2) 

y′ is the Newton notation; 
dy

dx
is the Leibniz notation; Dy is the operator 

notation which D represents the differentiation operator 
d

dx
. The basic 

math definition of derivative is: 

0

( ) ( )
( ) lim

x

d f x x f x
f x

dx x∆ →

+ ∆ −
=

∆
   (3) 



 572

The derivative is also a function of the same variables. For example, if f(t) 

is the distance, the ( )
d

f t
dt

 is the instantaneous velocity at time t, v(t). 

For the derivative over time, physicists also often use notation fɺ . If T(x) 

is a temperature distribution, then ( )
d

T x
dx

 is the temperature gradient 

g(x). If the Q(t) is the number of charge at one location, then ( )
d

Q Q t
dt

=ɺ  

is the current at that location, I(t).  

The geometric interpretation is also clear from the figure above. As the Q 

approaches P, the secant line will become the tangent line at position P. 

So the derivative at 1x  is the slope of the tangent line of the original 

function passing 1x . (also refer to the figure below) 

  

                         

1-2. Derivatives of basic functions 

Here I only listed derivatives of some basic functions without proof.  
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(1) Derivatives of Polynomial functions 

1n nd
x nx

dx

−= , n is any integer    (4) 

1r rd
x rx

dx

−= , x>0, r is any real number   (5) 

(2) Derivatives of trigonometric functions 

sin cos
d

x x
dx

=       (6) 

cos sin
d

x x
dx

= −       (7) 

(3) Derivatives of exponential functions 

x xd
e e

dx
=       (8) 

1
ln

d
x

dx x
=       (9) 

(ln )x xd
a a a

dx
= , a>0   (10) 

The xe  is the natural exponential, (8) can be a definition of the natural 

exponential. From that, it can be represented in the polynomial forms as: 

2 3

0

1 ... ...
2 3 2 ! !

n n
x

n

x x x x
e x

n n

∞

=

= + + + + + + =
× ∑    (11)  or 

lim(1 )x N

N

x
e

N→∞
= +       (12)

156
 

When you put x=1 in the (11) or (12), you will get the numerical 

expression for e. 
                                                        

156 These relations (including the proof of the relations (4), (6), (7)) are fundamental in derivatives. Please do 

check math book for their derivations! (for example, Thomas  “Calculus”, or the calculus textbook in use by you 

at present) 
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Of course you may check the math books for more formulas on 

derivatives of other functions. But generally given a function, you can 

calculate its derivative knowing only the derivatives of some basic 

functions (the relations (4), (6), (7) and (8) listed above). This is because 

we have some general rules of derivatives.  

1-3. General rules for derivative 

The f(x) and g(x) are some functions of variable x. f’(x) and g’(x) are 

their derivatives over x. Then: 

Rules of linearity: 

( )
d df dg

f g
dx dx dx

+ = +       (13) 

( ( ))
d df

cf x c
dx dx

= , c is constant   (14) 

Production Rule: 

( )
d df dg

fg g f
dx dx dx

= +       (15) 

Quotient Rule: 

2
( )

d f f g fg

dx g g

′ ′−
=       (16) 

For composite functions (implicit dependence), i.e. f(u) a function of 

variable u, but the variable is also a function of x, u(x), then what is the 

derivative of f with respect to x? We have the powerful (probably the 

most useful rule in derivatives) chain rule: 

[ ( )]
d df du

f u
dx du dx

=       (17) 
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I did not give the proof of these rules from the definition of derivatives 

(relation (3)), please do it yourself or look for them in calculus textbooks.  

With the derivatives of basic functions and these general rules, the 

derivative of some general functions can be calculated. 

Example 1: 
sin

( ) tan
cos

x
f x x

x
= = , what is its derivative over x? 

Ans.:
2 2

cos cos sin ( sin ) 1
(tan )

cos cos

d x x x x
x

dx x x

− −
= =  

(using quotient rule) 

Example 2: ( ) xf x a= , a>0, its derivative (relation 10) 

Ans.: 

ln ln, ;  ln

ln ln

a x x a

u
x u u x

a e a e let u x a

d d de du
a e e a a a

dx dx du dx

= = =

= = = =
 

(using chain rule) 

Example3: 
1

( ) tan( )f x
x

= , what is its derivative? 

Ans.: 
2 2 2 2

1 tan 1 1
 ,  tan

cos cos (1 / )

d d u du
let u u

x dx du dx x u x x

− −
= = = =  

 

Useful techniques in calculating derivatives 

Implicit derivative. 

Sometimes the functional relation between the y and x are not explicitly 

given. For example, in the expression of an ellipse, the relation of y and x 

are given by the equation
2 2

2 2
1

x y

a b
+ = , then what is the derivative of 

dy/dx? 
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This kind of problems can be solved by two methods. 

Method 1: parametric functions.  

The y and x are some functions of a parametric variable t. In the elliptical 

function above, we can introduce the parametric variable t, so that: 

sin

cos

y b t

x a t

=

=
 

Then cos , sin
dy dx

b t a t
dt dt
= = −  

To calculate the dy/dx, it is possible to prove from the definition of 

derivatives, that: 

/

/

dy dy dt

dx dx dt
=    (18)  provided all derivatives exist. 

Form 18, dy/dx for ellipse is: 

2

2

cos
cot( )

sin

dy b t b b x
t

dx a t a a y
= − = − = −   

 

Method 2: Implicit derivative. 

Take derivative of the equation over x. (the equations just express the 

equality of two functions, so you can take derivatives on both sides, since 

the functions on two sides always equal, the derivatives should be equal 

too) i.e. 
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2 2

2 2

2 2

2

2

( ) (1)

2 2
0

d x y d

dx a b dx

x yy

a b

dy b x
y

dx a y

+ =

′
+ =

′= = −

 

This is same as the parametric method. Of course, if you want to get 

explicit expression of dy/dx as function of x, you will need explicit 

function form of y(x). 

 

(1) Derivatives of inverse functions 

This can be treated as a special case as implicit derivative. Sometimes the 

function form is the unfamiliar inverse function type, the example would 

be 1sin arcsiny x x−= = . For these kinds of functions, we can get its 

derivative using the implicit method. 

Example: arctany x= , what is the derivative dy/dx? 

Ans.: 
2

2

2

tan

(tan ) 1

tan 1
(tan )

cos

1
cos

1

y x

d
y

dx

d d y dy dy
y

dx dy dx y dx

dy
y

dx x

=

=

= =

= =
+

 

The last relation is best easily seen from geometric graph below: 
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The above calculation can also be treated directly from the point of view 

of inverse function. i.e. y=f(x); x=f
-1

(y).  

1 1 1
( ( ))

/ ( ) /

dx d
f y

dy dy dy dx df x dx

−= = =    (19) 

In relation 18, 19, the derivatives are treated like conventional quotients, 

this is true in most cases, since the derivative from definition just the 

quotient of two small numbers, 
y

x

∆
∆

 as denominator goes to 0. This is 

very useful and easy to remember, and that is why Leibniz notation is 

preferred over Newton’s 

 

(2) Logarithmic method 

This is just another special case for implicit derivative. Sometimes 

(especially involve exponentials) it is more easy to take logarithm on both 

side and use implicit method to find out the derivative. 

Example 1: Prove that ,ry x= x>0 and r is any real number (rational or 

irrational), the derivative is that in forms given by relation (5). 

y 

x 

1 
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Ans.: 

1

ln ln

ln ln

1

r r

y r x

d d
y r x

dx dx

dy r

y dx x

dy r r
y x rx

dx x x

−

=

=

=

= = =

 

Example 2: xy x= , x>0, what is dy/dx? 

Ans.: 

ln ln

1 ln
( ln ) ln ln 1

(ln 1) (ln 1) x

y x x

dy d d x
x x x x x

y dx dx dx

dy
x y x x

dx

=

= = + = +

= + = +

 

 

1-4. Higher order derivatives 

From the original function, you can calculate its derivative now, which is 

also a function, representing the rate of change of the original one. Now 

we can also calculate the derivative of this function (the derivative of the 

derivative), which is the change rate of the rate of change. The process 

will go on forever, leads to higher orders derivatives of the original 

function. The most useful in physics is the second order derivative of the 

original function.  

Given a function ( )y f x= , its second order derivative is: 

2
2

2
" ( )

d dy d y
y D y

dx dx dx
≡ ≡ ≡     (20) 

The above definition listed some mostly used notations, noted that the 2x  

there has nothing to do with the usual square of x, just a bookkeeping. To 
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calculate the second derivative from the original function is proceeding as 

the definition suggest: First calculate the first order derivative 'f (x) (a 

function of x), then calculate the derivative of the first derivative to get 

second order derivative "( )f x . 

Examples in physics are relations between distance x(t), velocity v(t) and 

acceleration a(t): 

2

2

( )
( )

( ) ( )
( ) ( )

dx t
v t

dt

dv t d dx t d x
a t

dt dt dt dt

=

= = =

 

Geometrically, the second order derivative is obviously the slope of the 

first derivative. But what is its relation to the original function? The 

second order derivative shows the curvature (or the ‘bent’) of the original 

function.  

  

In the figure above, the left one with negative second order derivative, 

2 2/ 0d y dx < , the curve is bending downward, is also usually called 

‘convex’ curve. The curve representing the function at right with 

2 2/ 0d y dx > , it is bending upward, also called ‘concave’ curve.  



 581

 

For the curve here, when x>0, 2 2/ 0d y dx > , its ‘concave’; for x<0, 

2 2/ 0d y dx < , it is ‘convex’. At x=0, 2 2/ 0d y dx = , this point is called 

the Inflection Point. 

It is also illustrating showing the curve with positive and negative first 

order derivative. The positive and negative derivative is related to the 

increasing or decreasing function over variables. 

 

What happens if the / 0dy dx = ? That is the local extreme points we 

shall discuss next.  

 

1-5. Some applications of derivatrives 
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The most important application of derivatives is to evaluate the 

differentials of function, i.e. the samll change of the function as the 

variable has a samll change. That will be discussed in next section under 

differentials. Here only list out two other applications you will encounter 

quite often in physics. 

(1) Finding the local extreme points (often related to finding the 

maximum and minimum values of the function) 

As stated in the last section, when / 0dy dx = , the points satisfy this 

relation are some special points on the curve of origianl function y=f(x). 

These points are called critical points and they can be a local minimum 

and local maximum or inflection points. These will be quite clear from 

the figure below. 

 

In the figure, C2 and C3 are local maximum and minimum repectively. 

C1 and C5 are inflection points. The / 0dy dx =  at these points. To 

further distinguish which is local-max, or local-min, etc. You need to 

evaluate second order derivative at those critical points. 

At the critical points ( / 0dy dx = ), if 2 2/ 0d y dx >  (a bending up 
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concave curve), you will have a local-minimum. If 2 2/ 0d y dx < (a 

bending down convex curve), you will have a local-maximum. If 

2 2/ 0d y dx =  too, that is an inflection point.  

To find out the absolute extremes, such as absolute maximum or 

minimum, you have to also check the points at discontinuity and points 

where derivatives are undefined (refer to the figure) and compare them 

with the value at local-extremes founded from derivatives. For 

local-extremes, maybe more easy to remember from the figure below: 

 

So derivatives would be useful in problems of optimization process (such 

as which would be the path taking the least time…). 
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(2) L’Hopital’s Rule
157

 

This rule will allow us using derivatives to evaluate values of functions 

when direct calculation is impossible. Such as the sinc function at x=0, i.e. 

sin
?

x

x
=  at x=0.  

Instead of writing down the rule myself, I just copy the rules from 

Thomas’s Calculus. 

 

 

 

 

 

                                                        

157 Pronounced as (lou pi ta) 
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1-6. Differentials and first order approximation (linear approximation) 

of a function change. 

From the definition of derivatives, dy/dx, is just the ratio between two 

infinitesimal changes, dx is an infinitesimal change of the variable, and 

dy is the corresponding change of the function output. So sometimes the 

derivative is also called infinitesimal quotient (that is exactly how Leibniz 

treat it) 

Differential is just the difference, the difference of what? The difference 

of functions ( ) ( )y f x x f x∆ = + ∆ −  as variable changes an amount of 

x∆ . Of course if x∆  approaches zero (infinitesimal small), the 

differential will be just nothing but rewriting derivative as: 

'
dy

dy dx y dx
dx

= =  

In real applications the step took by the variable x may not be 

infinitesimal small as in derivative, but with limited-size steps of the 

general form x∆ , then is it true the ( ) ( ) '( )y f x x f x f x x∆ = + ∆ − = ∆ ? 

Where f’(x) is the derivative over x at x.  

It can be proved that the general form the change of functions due to x∆  

would be in forms of: 

' ( )y y x o x∆ = ∆ + ∆    (21) 

y’ is just the first order derivative, ( )o x∆  is a higher order term of x∆ , 

such as 2 3( ) ( ) ...a x b x∆ + ∆ + , the more strict definition would be: 
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0

( )
lim 0
x

o x

x∆ →

∆
=

∆
.   

The first order approximation of the differential: 

0 0 0( ) ( ) '( )y f x x f x f x x∆ = + ∆ − = ∆   small x∆    (22) 

 Or put it in another form which is just rearranging the order of (22): 

0 0 0( ) ( ) '( )( )f x f x f x x x= + −    x~x0           (23)    

This expresses that we can evaluate the function in the proximity of 

certain initial point (x0, f(x0)), this is what I used to get motion of a little 

time later knowing the initial state (position and velocity). The relation 22 

and 23 is equivalent to use a simple tangent line passing through the 

initial point to approximate the actual curve, which may be more 

complicated (see the figure below) 

Such approximation would be valid if the step of 
0x x x∆ ≡ −  is 

sufficiently small, (if infinitesimal small, it would be strictly equal) so 

that higher order terms of x∆  can safely neglected. This is called linear 

approximation, since the dependence on x∆  is linear. This 

approximation is used widely in various branches of sciences. We always 

start from linear approximation, and make corrections if necessary 

regarding to the higher order terms.  

The above ideas are clearly illustrated in the figure below.  
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Example: (1 )Ny x= + . If the x changes from 0 to a small value x, i.e. 

0x x x∆ = − = , what is the value of y then? 

0

(0) 1

( ) 1 |x

y

dy
y y x x

dx
=

=

∆ = − =
 

0|x
dy

dx
=  means the derivative evaluated at point x=0.  

1

0

(1 ) (1 )

|

( ) 1

 ( ) (0) 1

N N

x

dy d
x N x

dx dx

dy
N

dx

y y x Nx

or y x y Nx Nx

−

=

= + = +

=

∆ = − =

= + = +

 

This gives a good formula to calculate y(x) when x is a small number.  

So in the relations in special relativity, we come across the expression: 

2 2

1

1 /v c
γ =

−
 quite frequently, and if v<<c, then the expression may 
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be simplified as: 
1 2

2 2 2
2

1
(1 / ) 1

2

v
v c

c
γ

−
= − ≈ +  

Other useful linear approximations we often use are (prove it yourself): 

sin    ( 0)

cos 1   ( 0)

1    ( 0)

ln(1 )    ( 0)

x

x x x

x x

e x x

x x x

≈

≈

≈ +

+ ≈

∼

∼

∼

∼

   (24) 

These simplification would be very useful in the evaluation of functions, 

it replace the original complicated (sort of) function with simpler ones 

(the polynomial). You will get pretty good answers for values 0.01ln1.01;e  

without using any electronic help.  

I should also mention that in a lot of cases, we shall set x0=0 (can always 

achieve this by shifting the origin of coordinate), then the formula 23 will 

become: 

( ) (0) '(0)f x f f x= +   when x~0.   (25) 

In cases that linear approximation is not good enough, most likely due to 

larger x∆ , we can use quadratic approximation which involves 2
nd

 order 

derivative: 

2

0 0 0 0 0

1
( ) ( ) '( )( ) "( )( )

2
f x f x f x x x f x x x= + − + −   x~x0   (26) 

Or: 

21
( ) (0) '(0) "(0)

2
f x f f x f x= + +  for x~0   (27) 

You are encouraged to calculate the forms of relations in 24 above, when 

take quadratic term into consideration.  



 589

While the linear approximation is using a line to simulate the original 

curve, you see the quadratic approximation improved the simulation by 

using parabola. The reason of there is 1/2 in front of the quadratic term 

can be understood by:  Suppose we approximate the original function by 

some quadratic forms, the most general one would be: 

2( )f x a bx cx= + +  (set x0=0) We can find the expressions of the 

coefficients by: 

(0)

'(0)

1
"(0)

2

a f

b f

c f

=

=

=

 

So 1/2 simply comes from the derivative of the power series of x. (can 

you guess what will be the term if we include cubic terms, i.e. x
3
, what is 

its coefficient in terms of derivatives? You will see I am approaching 

Taylor expansion) 

 

1-7. Power series and Taylor Expansion  

Power series is just an extension of polynomials, which are relatively 

speaking, simple functions, especially in differentiation and integration. 

Polynomials are: 

2

0 1 2( ) ... n

n nP x c c x c x c x= + + + +    (28) 

If n goes to infinity, we have a power series. 

0

( )
n

n

n

P x c x
∞

=

=∑       (29) 
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As the series go to infinity, there is a danger of divergence for certain x, 

i.e. the series may explode to infinity or underdetermined value if x gets 

too big. In such cases, the series will be useless, because we cannot 

handle it. However, it can be proved, the series will converge (loosely 

speaking, approaches to a fixed value as n approaches infinity) if |x|<R. R 

is a real positive number, which is called radius of convergence for the 

power series. Clearly the R will depend on the c’s (the coefficients of the 

power series). We generally do not worry too much about the relation of 

R with c’s in physics, because either the R may be quite obvious or the 

range of x that can change will be small enough to satisfy |x|<R. So we 

can only work with power series within the radius of convergence.  

In physics, the power series is very useful in terms of Taylor expansion. 

That is to say we express the original function (may be complicated, with 

strange or unfamiliar form) into power series. i.e. the original function 

can be written as a power series: 

1

( )
n

n

n

f x c x
∞

=

=∑    (30) 

This seems very much the same as (29). While (29) is a definition of 

power series, here the (30) states that an arbitrary function
158

 can be 

expressed as power series. Of course, it requires that x should be within 

the convergence radius, i.e. |x|<R. This is an amazing fact that will 

                                                        

158 Well, not too arbitrary, mathematician can think of functions that violate this, but all functions encountered in 

real world (physical problems) can be expressed in power series. 
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simplify the way we handle complicated functions because power series 

are relatively easy.  

Then the question is: what are the expansion coefficients c? Knowing the 

original function (also called generating function of the Taylor series), the 

c’s can be calculated straightforward.  From (30), it is easy to see the 

following: 

0

2

1 2 3 1

2 3 2

3 4 3

(0)

'( ) 2 3 ... '(0)

"( ) 2 3 2 ... "(0) 2

'''( ) 3 2 4 3 2 ... '''(0) 3 2

( ) ! ( 1)! ... (0) !
n n

n n

f c

f x c c x c x f c

f x c c x f c

f x c c x f c

f x n c n x f n c

=

= + + → =

= + × + → =

= × + × × + → = ×

= + + + → =

 

So the coefficients can be calculated by taking derivatives of original 

function and evaluated at x=0, and the (30) becomes: 

0

(0)
( )

!

n
n

n

f
f x x

n

∞

=

=∑    (31) 

This is called Taylor expansion of function f(x), it is an expansion 

centered around x=0. There is another useful and more general way to 

make the expansion around a fixed x=x0, then the formula will be: 

0
0

0

( )
( ) ( )

!

n
n

n

f x
f x x x

n

∞

=

= −∑    (32) 

The x would be centered at x0, and the coefficients are also the 

derivatives evaluated at x0.  

Some comments on Taylor expansion: 

(1) The range of x needs to be within the convergence radius of the power 

series. 



 592

(2) In order to make expansion, the f(x) has to be differentiable around x0, 

you cannot expect the expansion will work if the function is 

discontinuous at x0, or the derivatives do not exist. Even if the original 

function has discontinuity, but if our center of expansion is away from 

those ‘bad points’, locally (around x0, in an interval that does not 

contains the bad points and within the convergence radius) Taylor 

expansion works fine. 

(3) There is an issue of how accurate the expansion can replicate the 

original function, i.e. whether the power series on the right hand side 

of (31) or (32) will converge (by taking enough n) to the original 

function or not. If condition 1 and 2 are satisfied, it turned out for all 

functions in physics, the convergence can be achieved.  

The most famous examples are (you should check below using (31)): 

(a) Geometrics series: 

21
1 ... ...   (| | 1)

1

nx x x x
x
= + + + + + <

−
   (33) 

2 31
1 ...( 1) ...  (|x|<1)

1

n nx x x x
x
= − + − + −

+
   (34) 

(b) Exponentials and sinx, cosx: 

2 3

1 ... ...  (| | )
2 3! !

n
x x x x

e x x
n

= + + + + + < ∞    (35) 

2 4 2

cos 1 ... ( 1) ..  (| | )
2! 4! (2 )!

n
nx x x

x x
n

= − + + + − < ∞    (36) 
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3 5 2 1

sin ... ( 1) ..  (| | )
3! 5! (2 1)!

n
nx x x

x x x
n

+

= − + + + − < ∞
+

   (37) 

Noticed that the even function cosx only has the even function in power 

series, and odd function sinx only has odd components. 

A very interesting and important fact is that we can now use power series 

to define something may appear strange at first look, such as ixe , where x 

is real, i is the imaginary unit, i
2
=-1. It seems meaningless from the 

definition of exponentials, which is multiplication of numbers, A
2
=AA. 

What does this pure imaginary number do at the power of the e? From the 

power series (Taylor expansion), this expression makes sense: 

2 3 4 5

2 4 6 3 5

( ) ( ) ( ) ( ) ( )
1 ... ...  

2 3! 4! 5! !

     =(1 ...) ( ...)
2 4! 6! 3! 5!

n
ix ix ix ix ix ix

e ix
n

x x x x x
i x

= + + + + + +

− + − + − +

 

This may be impressive, but more striking fact lies by comparing it with 

(36) and (37), it won’t require a genius to notice the relation between the 

above expansion of ixe  and those of sine and cosine. But it does take a 

genius to put ix into the exponential and find the connection. That is one 

of the great findings of Euler. So we proved the famous Euler formula: 

cos sinie iθ θ θ= +    (38) 

Here just replace x which is a dummy variable anyway with the symbol 

usually used for angle. It is easy to see that 1ie π = − . It is the most 

beautiful relation in mathematics, relating the 4(probably the most) 

important numbers (e in calculus, 1 for real and i for imaginary number, 
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π in geometry) in one simple form. We shall see the extensive usage of 

Euler formula in oscillation and waves in physics. 

Another important application of Taylor expansion in physics lies in the 

fact that we always try to neglect higher orders (large n’s) terms of the 

power series in physics. This is justified in the region where x (or x-x0) is 

small! In this case, the first order term (x) will give a pretty good 

approximation of the original function, we are talking about linear 

approximation of the last section. In case the first order is not good 

enough, we can include the second order (the x
2
) term, and we have 

quadratic approximation. Seldom we go to higher orders (if necessary, we 

could), and this greatly simplify the calculation of complicated functions.  

In relativity, we will often deal with terms like
2

2

1
1 ,  and 

1
β

β
−

−
, 

where 
v

c
β = . If v<<c, 1β << . Then the two expressions can be 

simplified. Do them yourself up to the second order. 
159

 

 

2. Integration of a Function 

As stated as the beginning of this supplementary, the differentiation is 

starting from an original function, finding its instantaneous changing rate. 

i.e. Knowing a function F(x), we can calculate its derivative f(x), where 

                                                        

159 Answer: It is more easy to set 2 , and obviously 1x xβ = << . 

2 2 4

1 1 ... 1 ...
2 8 2 8

x x
x

β β
− = − − + = − −    

23 32 4
1 / 1 1 1

2 8 2 8

x
x x

β
β− = + + = + +  
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F’(x)=dF(x)/dx=f(x). Now we will ask the question reversely, if we know 

a function f(x) is the derivative of some original function, then can we 

find the original function F(x)? The physical example is that derivative is 

from the distance function to get velocity function; integration is from 

velocity function to get distance function.  

This process (from derivative to original function) is called integration. 

You probably have heard of indefinite integrals and definite integrals. We 

shall discuss these below. They are different but closely related.  

 

2-1. Antiderivative and Indefinite Integral 

Antiderivative of a function f(x) is defined as: 

If ( ) '( ) ( )
dy d

F x F x f x
dx dx
≡ ≡ =    (39) 

then y=F(x) is the antiderivative of the function f(x), i.e. F(x) is the 

original function in the derivative section. The definition of this 

antiderivative can also be looked as a differential equation (1
st
 order, 

because only involves 1
st
 order derivative), the problem is from f(x), 

finding the F(x). The above equation can also be rewritten in differential 

forms: 

( ) ( )dy dF x f x dx≡ =  

Introducing the integral symbol, the equation can be written as: 

( ) ( )F x f x dx= ∫    (40) 

(40) is just a bookkeeping, express the F(x) in terms of f(x) explicitly. It is 
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read as: the antiderivative of a function f(x) is the indefinite integral of 

the function f(x). The equation (40) is a bookkeeping of the definition 

because itself does not tell you how to calculate from f(x) to F(x).  

Actually the antiderivative is not a single but a group of functions, 

because if F(x) is an antiderivative, then F(x)+c, where c is a arbitrary 

constant independent of variables would also be an antiderivative of f(x), 

because dc/dx=0, so that d(F(x)+c)/dx=d(F(x))/dx=f(x).  So if we use 

indefinite integral to represent the whole group of antiderivative function, 

the (40) will become: 

( ) ( )F x c f x dx+ = ∫    (41) 

This is the usual definition of indefinite integral.  

Finding the antiderivative (or doing the indefinite integral) is much harder 

than finding the derivatives, though it is the reversed process of derivative. 

The basic rule from the definition is “guessing”. This is to say if we have 

a function f(x), we will guess what function form of F(x) would be so that 

its derivative will be f(x). This is much harder because we are short of the 

product rules and especially the chain rule in the integration, though the 

linearity still works. i.e. if F(x), G(x) are the antiderivatives of f(x), g(x), 

then the antiderivative for pf(x)+qg(x) would be pF(x)+qG(x). The 

product rules won’t work directly for integration
160

. The reason we can 

find the derivatives of many different functions lies in the chain rule and 

                                                        

160 We will discuss a technique of integration by part which is the result of product rules from derivative.  
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product rule. 

For simple function forms of f(x), its antiderivative may relatively easy to 

guess. 

Examples1. 

1

( ) 0, ( )

( ) , ( )

1
( ) , ( )

1
( ) , ( )

1
( ) sin( ), ( ) cos( )

1 1
( ) , ( ) ln | |   0

n n n

ax ax ax

f x F x c

f x c F x cdx cx

f x x F x x dx x
n

f x e F x e dx e
a

f x kx F x kx
k

f x F x dx x x
x x

+

= =

= = =

= = =

= = =

= = −

= = = ≠

∫

∫

∫

∫

 

All the F(x)’s above are subject to a shift of constant C, i.e. F(x)+C 

The absolute symbol in the last relation may need a little comment. 

Comparing with equation (9) (ln ) / 1 /d x dx x= , there is no absolute sign, 

because lnx already indicates x>0. For a function in forms of 1/x, x can 

be > 0 or < 0. So its antiderivative can be found by considering x>0 and 

<0 separately. For x>0, clearly F(x)=ln(x). For x<0, if you just write 

F(x)=ln(-x), and calculate d(ln(-x))/dx, you will get 1/x too. This is better 

illustrated using substitution: when x<0, introduce another variable u 

(u>0), and x=-u, and dx=-du. Then 

1 1 1
( ) ln ln( ) ln | |dx du du u x x

x u u
= − − = = = − =∫ ∫ ∫  

 

For some other simple function forms which are variations of the basic 
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functions, substitution method may give you quick results.  

Example 2: 

2 21 1
sin cos sin (sin ) sin

2 2

1 1 1
sin cos sin 2 sin 2 (2 ) cos(2 )

2 4 4

x xdx xd x udu u x

or x xdx xdx xd x x

= = = =

= = = −

∫ ∫ ∫

∫ ∫ ∫
 

The two methods may seem giving two different antiderivative functions, 

but they are only different by a constant (check it yourself), so both are 

acceptable.  

Example 3: 

(ln )
0, ln(| ln |)

ln ln

dx d x
x x

x x x
> = =∫ ∫  

There are more ‘tricks’ besides the simple substitution
161

, and those won’t 

be discussed here. Just remember the golden rule to get indefinite integral 

(equivalently antiderivative) is ‘guessing’, with the help of substitution. 

For complicated f(x), check the integral tables in handbook of 

mathematics for answer (at least you are allowed to do this in this 

course).  

2-2. Definite Integral and Its Geometric Interpretation 

The definite integral is to treat the problems like areas under a curve or 

volume enclosed by a surface, etc. For example, what is the area enclosed 

by a circle? The area enclosed by x axis and curves like 22 8y x= −  etc. 

If we know the density distribution, then what is the mass of the object 

                                                        

161 Even the substitution may get uglier, try this indefinite integral: ??
sin

dθ
θ
=∫  
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with certain shape? In mechanics, we will need to calculate center of 

mass for an object, and moment of inertia around certain axis, these 

calculations all involves definite integral.  

The geometric interpretation is the area ‘under’ the curve, or more 

precisely for single variable integration, the area enclosed by the curve 

and the x-axis, the sign is positive for area above the axis, negative for 

area below the axis (refer to figure below). 

 

For example, we travel with certain velocity, within a time interval it∆  

around the time it , the velocity is ( )iv t , the distance traveled within that 

time interval would be ( ) ( )i i is t v t t∆ ≈ ∆ , we can divide the whole time 

interval between [a, b] into many such small intervals, within each 

interval ( )iv t  is almost a constant. Then the total distance from form t=a 

to t=b would be a summation of all this distances: 

1

( )
N

n n

n

Total S v t t
=

∆ = ∆∑    (42) 

If we make each it∆  very small then the summation would approach the 

area under the curve of function v(t). 
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Relation (42) is also called Riemann Sum, illustrated in the figure below. 

 

For a general function, we can divide the total closed interval [a,b] into 

smaller subintervals || ||i iP x= ∆ , pick a i ix c=  within each interval, and 

use ( )i if c x∆  to approximate the area under the curve within that interval, 

then the total area between [a,b] would be approximated by Riemann 

sum: 

[ , ]

1

( )
n

a b k k

k

F f c x
=

= ∆∑    (43) 

Of course how good this approximation would depend on how you 

choose the subintervals and i ix c= . But as || ||i iP x= ∆  approaches 0, the 

choice would not matter, and the sum would approach to a fixed value 

which is the area under the curve. At this limit (|| || 0iP → ), the sum 

becomes what we called definite integral: 

[ , ]
0

1

lim ( ) ( )
k

bn

a b k k
x

k a

F f c x f x dx
∆ →

=

= ∆ =∑ ∫    (44) 

The meaning of the definite integral is summarized in the figure below: 
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There are some general properties of definite integral which are obvious 

from its definition and geometric interpretation: 

 

However, these properties and definition won’t help us too much in the 

calculation of definite integrals, it is usually hard to get definite integral 

from the limiting case of the Riemann sum. And also you should start to 
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wonder what the relation of this definite integral with the antiderivative? 

That relation is revealed by what is called fundamental theorem of 

calculus, it allows you to calculate the definite integral very easily from 

the antiderivative of the integrand function. 

 

2-3 Fundamental Theorem of Calculus and Calculation of Definite 

Integral 

The fundamental theorem states that: 

If f(x) is a continuous function for every point in interval [a,b], and F(x) 

is the antiderivative of f(x) in [a,b], then: 

( ) ( ) ( )

b

a

f x dx F b F a= −∫    (45) 

Before prove it, the relation (45) makes perfect sense. Take the example 

of the total distance traveled between during a time period. We could 

calculate the distance by integrating the velocity function over time as in 

(42), or if we know the function of location with time (which is the 

antiderivative of velocity, or velocity is the derivative of it, same thing), 

then we can simply calculate the distance between the initial and final 

time by direct subtraction. The (45) simply states the two calculations 

would be same, certainly it better be.  

I will give a prove of (45), please refer to the figure below.  
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We can define a function G(x) as the left figure suggests (we do not know 

the G(x) is the antiderivative yet, we shall prove this), G(x)=area under 

f(t) between [a,x], with the function f(t) known and initial point fixed, it is 

clearly vary as the end point x varies. So G(x) is defined as: 

( ) ( )

x

a

G x f t dt= ∫ 162
 

Clearly from this definition G(a)=0, and ( ) ( )

b

a

G b f t dt= ∫  

Let the x changes to x+h, then ( ) ( )

x h

a

G x h f x dx

+

+ = ∫  which is the area 

from a to x+h.  The change of area is approximated by the rectangle in 

the figure on the right.  In the limit of h approaches 0, we have: 

0

( ) ( ) ( )    0

( ) ( )
lim ( )
h

G x h G x f x h h

G x h G x
f x

h→

+ − = →

+ −
=

 

The above relation just states that f(x) is the derivative of the G(x) and 

G(x) is one of the antiderivatives of f(x), the general form of 

antiderivative would be ( ) ( )F x G x C≡ + , then: 

                                                        

162 Here I changed the dummy variable from x to t in the integrand, since I used x at the upper bound of integral 

sign. 
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( ) ( ) ( ) [ ( ) ] ( ) ( )

b

a

F b F a G b C G a C G b f x dx− = + − + = = ∫  Q.E.D. 

Actually from the above argument, we see that G’(x)=f(x), just write out 

explicitly, it becomes: 

( ) ( ) ( )

x

a

d d
G x f t dt f x

dx dx
= =∫    (46) 

(46) and (45) are called part 1 and 2 of the fundamental theorem of 

calculus.  

So the problem of finding any definite integral becomes a problem of 

‘guessing’ the antiderivative
163

. However to evaluate the definite integral 

involves many tricks, such as how to choose the proper variable and 

interval ( make clever ‘cut’ or ‘slice’). These should be properly 

addressed in course of Calculus. I will only mention one trick which is 

called integration by part here. 

From the product rule we know that ( ) ( ' ' )d fg f g g f dx= + , f,g are 

functions of x. Take integration on both sides: 

( ) ' '

b b b

a a a

d fg f gdx g fdx= +∫ ∫ ∫    (47) 

' | '

b b

b

a

a a

f gdx fg fg dx= − −∫ ∫  

|bafg  is a short hand for ( ) ( ) ( ) ( )f b g b f a g a− , it is not unusual that in 

many problems in physics, such value are 0 at the boundary, so this 

provides you a ‘trick’ to workout some integrals rather easily (especially 
                                                        

163 This is how human calculate the integral. The computer of course takes the algorism similar to the Riemann 

sum.  

Shuo Jiang
附注
A typo, no minus sign (-) in front of fg on the right hand side
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those involves polynomials, since g’ will reduce the order of polynomials. 

such as integrand axxe ), and such trick will also be used often in 

derivation of physical relations (such as Euler-Lagrange equation in 

theoretical mechanics). 

Finally I should mention that in this discussion of integration, I seem 

stressing the (45), that is to say whenever we need to find the definite 

integral, looking for the antiderivative of the integrand. However (46) is 

equally important, the ( ) ( )

x

a

G x f t dt= ∫  gives you one method to 

construct functions, especially the ‘unusual’ ones which are called 

transcendental functions. Starting from f(t), you can construct functions 

that may not have any analytical forms (take the examples with 

2 2( ) ,  ( ) sin( )tf t e or f t t−= = , the error functions in statistics and Fresnel 

function in diffraction are defined this way). This is an important branch 

in math, since this supplementary is mainly for the preparation in physics, 

I will not elaborate this point further.   
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Supplementary II 

Functions of Multi-Variables and Partial Derivative 

In the supplementary 1, we discussed single variable calculus, i.e. given a 

function how we calculate its derivative (differentiation) or vice versa 

(integration). That is the foundation for what we are going to discuss here, 

the functions of multi-variables.  

1. Functions of Multi-Variables 

In real applications, the function may depend on many variables, this 

is specified as ( , )f x y
164

. The geometric meaning of this is a surface in 

3-D. Let ( , )z f x y= , the plot of z w.r.t (with respect to) x and y is a 

surface in the x-y-z coordinate.  

 

The figure shows the example where 2 2( , ) 100z f x y x y= = − − . It is 

a 3-D parabolic surface (the cut with x or y fixed is a parabola). The 

                                                        

164 Here I shall only focus on two variables, the extension to more variables is straightforward.  
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circles in the figure are called level curves with ( , )z f x y c= = , it is a 

curve on which the z=f(x,y) has the fixed value c, it is the cross 

section of plane z=c cuts through the surface, as shown in the figure to 

the right. Many times, instead of drawing a 3-D surface, a 2-D contour 

plot is used to show the f(x,y). The contour plot is just a group of level 

curves at different f(x,y)=c.  The figure below shows more examples 

of 3-D surface and contour plot of some functions
165

: 

 

 

                                                        

165 Taken from Thomas ‘Calculus’ Chap.14,  figure 14.10. 
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2. Partial Derivatives 

(1) 1
st
 order Partial Derivatives 

Now we asked the question, as the variable changes, how the function 

changes? This is a question related to the differentials of the function. 

For the single variable case, we see that: 

 ( );  [ ( )] ( )
d

For y f x dy f x dx f x dx
dx

′= = =  (48) 

Where ( )f x′  is the derivative over x defined by relation (3), it is the 

rate of change of f over x; its geometric meaning is the slope of the 

tangent line of the curve y=f(x), passing through (x,f(x)).  

Here for multi-variable function f(x,y), the change of f would be 

related to changes of both x and y. The rates of changes are defined 

through the partial derivatives: 

0, 0

0 0 0 0

0

( , ) ( , )
|x y

h

f f x h y f x y
Lim

x h→

∂ + −
=

∂
   (49) 

This is called partial derivative of f over x. Noticed that from its 
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definition, it is a derivative at point (x0,y0), holding the y constant (y 

does not change) and varies the x. The geometric meaning of this is 

shown in the figure below. The 
0, 0

|x y

f

x

∂
∂

is the slope of a tangent line. 

This tangent line is tangent to a curve which is the cut of y=y0 (a 

planes parallel to x-z) plane with the f(x,y) surface, and the tangent 

line passes through (x0,y0). (in the plane of y=y0, the f(x,y) is reduced 

to f(x,y0) and it is a single variable curve, and the partial derivative 

over x is just like an ordinary derivative) 

 

Similarly the partial derivative over y can be defined as: 

0 0

0 0 0 0
,

0

( , ) ( , )
|x y

h

f f x y h f x y
Lim

y h→

∂ + −
=

∂
   (50) 

The geometric meaning is given in the figure below: 
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So from the definition, the calculation of partial derivative is 

straightforward, just like the single variable derivative. When you 

calculate the 
f

x

∂
∂

, hold y as a constant; and when calculating 
f

y

∂
∂

, 

hold the x as constant, and all the techniques we talked about in 

derivatives can be applied here to get partial derivatives. There are 

some other often used notations (bookkeeping) for partial derivative: 

constant y

constant x

| ( )

| ( )

y x

x y

f f f
f

x x x

f f f
f

y y y

∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂
∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂

      (51) 

The notation constant y|
f

x

∂
∂

 or ( ) y

f

x

∂
∂

are the best ones, it reminds you 

when taking partial derivative what is the constraint, i.e. here 

y=constant. We shall see later that if the constraint changes, the partial 

derivative can be quite different. But if you keep in mind of this 
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constraint, all the notations are fine, it does take more time to type 

those better notations�.  

(2) 2
nd

 order Partial Derivatives 

The 1
st
 order partial derivative of f(x,y) is generally a function of (x,y) 

too, so we can take the further partial derivative over the 1
st
 order 

partial derivative and this will give us 2
nd

 order partial derivatives. 

The original function z=f(x,y), its partial derivative over x would be: 

( , )
x

f
f x y

x

∂
=

∂
, when you take further partial derivative of ( , )xf x y , 

you would have: 

2

2

2

( )

( )

x
xx

x
xy

f f f
f

x x x x

f f f
f

y y x x y

∂ ∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

≡ ≡ ≡
∂ ∂ ∂ ∂ ∂

      (52) 

And similarly for ( , )yf x y : 

2

2

2

( )

( )

y

yx

y

yy

f f f
f

x x y y x

f f f
f

y y y y

∂ ∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂ ∂

      (53) 
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In the example, you will notice that  

2 2

 or xy yx

f f
f f

x y y x

∂ ∂
= =

∂ ∂ ∂ ∂
   (54) 

This is no coincidence. The relation (54) holds for regular functions 

we shall encounter in physics.
166

 The rigorous proof can be found in 

the math books, here I give you a reasoning why (54) is true: 

  

Consider a function ( , )f x y , as x, y changes the function will take 

value ( , )f x x y y+ ∆ + ∆ . The change of function f can be calculated 

                                                        

166 It requires existence and continuity of the partial derivatives , , ,f f f f
x y xy yx  in the open region where the 

partial derivatives are evaluated.  

0 0( , )x y

0 0( , )x x y y+ ∆ +∆
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through two paths as shown in the figure, and two calculation results 

must be same, since the function is single valued at each point. If we 

take the blue path first: in the horizontal part, as 

0 0 0 0( , ) ( , )x y x x y→ + ∆  

0 01 ,
|
x y

f
f x

x

∂
∆ ≈ ∆

∂
, 

0 0,
|
x y

f

x

∂
∂

is the partial derivative evaluated at 
0 0( , )x y  

In the vertical part of blue path, from
0 0 0 0( , ) ( , )x x y x x y y+ ∆ → + ∆ + ∆   

0 0 0 0 0 0 0 0 0 0

2 2

2 , , , , ,| ( | | ) | |x x y x y x y x y x y

f f f f f
f y x y y x y

y y y x y y x
+∆

∂ ∂ ∂ ∂ ∂
∆ ≈ ∆ ≈ + ∆ ∆ = ∆ + ∆ ∆

∂ ∂ ∂ ∂ ∂ ∂ ∂

The total change is of course 

0 0 0 0 1 2( , ) ( , )f f x x y y f x y f f∆ = + ∆ + ∆ − = ∆ + ∆  

The calculation along the red path would give us: 

0 01 ,' |x y

f
f y

y

∂
∆ ≈ ∆

∂
 and  

0 0 0 0

2

2 , ,' | |x y x y

f f
f x x y

x x y

∂ ∂
∆ ≈ ∆ + ∆ ∆

∂ ∂ ∂
 and 

1 2 1 2' 'f f f f∆ + ∆ = ∆ + ∆  

This will show that 
0 0 0 0

2 2

, ,| |x y x y

f f

y x x y

∂ ∂
=

∂ ∂ ∂ ∂
, since 

0 0( , )x y is arbitrary, 

we ‘proved’ the relation (54). 

 

3. Total Differentials and Linear Approximation 

The question concerned here is the change of function due to the 

change of variables. As in the single variable case, we have relations 

like (21) and (22); for multi-variable case, the similar relations are: 
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0 0 0 0

0 0 0 0 1 2

( , ) ( , )

( , ) ( , )x y

f f x x y y f x y

f f x y x f x y y x yε ε

∆ ≡ + ∆ + ∆ −

∆ = ∆ + ∆ + ∆ + ∆
   (55) 

The (55) requires 1
st
 order partial derivatives exist in the region 

include 
0 0( , )x y  and they are continuous at 

0 0( , )x y . 
1 2x yε ε∆ + ∆  

are higher order terms of x∆ , y∆ , because as 0, 0,x y∆ → ∆ →
1ε  and 

2 0ε → . The functions f satisfies the (55) is called differentiable 

functions.  

For the differentiable functions, as 0, 0x y∆ → ∆ → , we have: 

0 0 0 0( , ) ( , )x ydf f x y dx f x y dy= +    (56) 

This is to say if we have an infinitesimal change of variables from 

0 0( , )x y  to 
0 0( , )x dx y dy+ + , the change of function is given by (56). 

(56) is called total differential of the function. It is the most important 

relation in partial derivatives. If we hold y constant, i.e. dy=0, (56) 

will give us the rate of change of f due to x(with y fixed), which is the 

partial derivative fx; and similarly for fy. 

Even if the change of variables are not infinitesimal as required for 

(56), as long as they are small enough so that the higher order terms in 

(55) can be discarded, we will have linear approximation for the 

change of function due to changes of variables: 

0 0 0 0( , ) ( , )   small ,x yf f x y x f x y y x y∆ ≈ ∆ + ∆ ∆ ∆    (57) 
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In (57), we are using the tangent plane at 0 0( , )x y to approximate the 

original function surface. The tangent plane is formed by the two 

tangent lines at 0 0( , )x y that defined the partial derivatives. The exact 

change of function is of course along the surface, but forsmall ,x y∆ ∆ , 

the tangent plane is very close to the surface. All the discussions here 

are analogous to the single variable case.  

 

4. Chain Rule 

From the total differentials (56), we can have the powerful chain rule. 

Here we shall focus on the implicit dependence on variables. 

(1) ( , ), ( ) and ( )f x y x x t y y t= =  

The function only explicitly depends on x and y. However the x,y each is 

a function of some other variable t. Now the question is what is the 

derivative of the function over t. i.e. how the function changes as t varies. 
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The function changes because of x and y change, x and y change as t 

changes, so it is like a chain reaction. The change of function can be seen 

from the (56): 

x ydf f dx f dy= +  

But now ( ) ' , ( ) '
dx dy

dx dt x dt dy dt y dt
dt dt

= = = = , so: 

( ' ')x ydf f x f y dt= +  

This is the differential of f with change of dt, then: 

' 'x y

df f dx f dy
f x f y

dt x dt y dt

∂ ∂
= + = +

∂ ∂
   (58) 

This is the chain rule for this situation. Actually the product rule for 

derivative (15) can be derived from this: 

 ( ) ( )Let F f x g x

dF F df F dg df dg
g f

dx f dx g dx dx dx

=

∂ ∂
= + = +
∂ ∂

 

This is the product rule for ordinary derivatives.  

Chain rule is the most important and useful rules in derivatives, like said 

in Tolkien’s “Lord of Rings”: One rule finds them all; One rule unites 

them all; One rule rules them all☺! I trust you can extend it to functions 

involves more variables like x,y,z… 

There are cases in physics, a function not only explicitly depends on x,y, 

but also on t, and the x and y depend on t too. In such case, the derivative 

of the function over t is: 

( , , )
d f dx f dy f dt f dx f dy f

f x y t
dt x dt y dt t dt x dt y dt t

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +
∂ ∂ ∂ ∂ ∂ ∂

   (59)   
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(2) ( , ), ( , ) and ( , )f x y x x s t y y s t= =  

In such case, the x and y are themselves function of multi-variables. 

An example would be the original function depends on x and y, 

now we switch to polar coordinate with ( , )r θ , then what is the 

derivative of function f over new variables? 

Well, still starts from the total differential: 

x ydf f dx f dy= +  

;  
x x y y

dx ds dt dy ds dt
s t s t

∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂

 

Then: 

( ) ( )
f x f y f x f y

df ds dt
x s y s x t y t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   (60) 

This is the total differential expressed in the form that s,t are 

variables, and from this we can find partial derivatives of f over s 

(by let dt=0, holding t constant)or t: 

constant t

constant s

|

|

f f f x f y

s s x s y s

f f f x f y

t t x t y t

∂ ∂ ∂ ∂ ∂ ∂
≡ = +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
≡ = +

∂ ∂ ∂ ∂ ∂ ∂

   (61) 

This can be extended to more variables, such as the change from 

x-y-z to r θ ϕ− −  spherical coordinate.  

A puzzle for you: Let’s say we have a function ( , )f x y , now I 

make a substitution: ,x s y s t= = + , replace the two variable with 

other two variables. Let’s see what is /f s∂ ∂ , we have: 
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f f x f y f f

s x s y s x y

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 from the chain rule. Something 

appears strange here, since x=s, but clearly from the above: 

f f

s x

∂ ∂
≠

∂ ∂
, what is going on? 

167
In this case, it would be clearer if 

we use the notation: ( )
t

f

s

∂
∂

 and ( )
y

f

x

∂
∂

 to avoid confusion. Such 

notation would become necessary when we deal with 

non-independent variable. A lot of these are in thermodynamics, 

such as internal energy ( , , )U P V T , a function of pressure, volume 

and temperature, but the variables not independent, they may be 

related by some relations such as ideal gas equation. We will not 

meet many cases here in this course, so I will skip discussion on 

the partial derivatives for non-independent variables.  

(3) Revisit of Implicit Derivative 

In function of single variable, we discussed a technique of implicit 

derivative (section 1.4). Basically the y=f(x) is not given explicitly, 

the x,y relation are provided by an equation g(x,y)=0, and we can 

find the derivative dy/dx using implicit derivative method. Here we 

give a formula based on the partial derivatives.  

                                                        

167 Answer is that the constraint is different. One requires t constant, and since y=s+t and if s varies y has to 

change. The other requires y constant. The two really have different constraint. Or you may look it from 

geometrical point of view. The cutting plane under these two conditions are different, so the resulting curve and 

slope would be different too. Even though each curve stays on the surface specified by f, and passes through the 

same point ( , )
0 0

x y (or in the s-t, corresponding ( , )
0 0

s t ), but still you have many curves can satisfy this, given 

different constraints.  
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g(x,y)=0 means the as the x,y changes, they have to satisfy this 

constraint. So as x,y changes, the requirement g(x,y)=0 means 

g(x,y) does not change: 

( , ) 0

/

/

g g
dg x y dx dy

x y

dy g x

dx g y

∂ ∂
= + =
∂ ∂

∂ ∂
= −

∂ ∂

   (62) 

Please noticing the minus sign, it is not intuitive. You have to go 

through the derivation from total differentials to understand it. 

Please redo the example of ellipse in section 1.4 using (62).  

 

5. Gradient Vector and Directional Derivative 

The partial derivatives over x and y are rates of changes of a function 

along the two special direction, along the x-axis (or use vector symbol î , 

a unit vector along +x direction) and y-axis ĵ . We can ask the question 

what are the changing rate along other directions? There are many ways 

to cut the surface of f(x,y) at 
0 0( , )x y , such as the figure below shows. 

The plane is not 
0x x=  or 

0y y=  as before, but a plane contain the 

point 
0 0( , )x y  and a direction vector 1 2

ˆ ˆ ˆ ˆˆ cos sinu u i u j i jθ θ= + = + . θ  

is the angle between the direction of u and x-axis, i.e. ˆ ˆcos i uθ = ⋅ . Now 

if we move along the û  a small distance s, what is the change of 

function?  
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This is the meaning of directional derivative, the rate of change of 

function along any direction specified by û . It is defined as: 

0

0 1 0 2 0 0
ˆ,

0

( , ) ( , )
( )u P

s

df f x su y su f x y
Lim

ds s→

+ + −
=    (63) 

The subscript of the derivative specifies the direction and point of interest, 

the 1 2,u u  are specified above, you certainly can use cos ,sinθ θ  to 

replace them. The question now is how we calculate this directional 

derivative? Form the study of vectors, you learned that any vectors in x-y 

plane is a linear combination of base vectors ˆ ˆ,i j , can the directional 

derivative be expressed as linear combination of partial derivatives over x 

and y? The answer is positive. Below is the reasoning from a point of 

view of base transformation we discussed in chapter 3 of the notes, since 

we learned that there, I shall apply it here as a practice of transformation. 

There are other equivalent (even simpler) proofs in math books too. 

Imagine we establish a transformed coordinate system. In the new 

coordinate system, the x’-axis would be along the direction of û . This is 

X

Y

û

θ
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just a rotation of the basis we discussed in chapter 3, û  is the ˆ 'i  there. 

The directional derivative 
0ˆ ,

( )
u P

df

ds
 is now the partial derivative

'

f

x

∂
∂

 in 

the transformed basis. The relations between the new and old coordinates 

are given in relation (3-20) and (3-21): 

' cos sin

' ( sin ) cos

x x y

y x y

θ θ
θ θ

= +

= − +
 

'cos 'sin

'sin 'cos

x x y

y x y

θ θ
θ θ

= −

= +
 

With these relations the directional derivative can be expressed with the 

original coordinates by chain rule: 

0ˆ,( ) cos sin
' ' '

u P

df f f x f y f f

ds x x x y x x y
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂
≡ = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

   (64) 

This relation can also be expressed as: 

0ˆ ,
ˆ ˆ ˆ( ) ( )

'
u P

df f f f
i j u

ds x x y

∂ ∂ ∂
≡ = + ⋅
∂ ∂ ∂

   (65) 

It is very useful to introduce a new vector, the gradient vector whose 

definition is clear from (65): 

ˆ ˆf f
f i j

x y

∂ ∂
∇ ≡ +

∂ ∂
   (66)   in 2-D case 

f∇  is called gradient vector (or simply gradient) of function f. It is a 

vector constructed from partial derivatives. ∇  is called differential 

operator. Its general definition in 3-D is: 

ˆˆ ˆi j k
x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
   (67) 

This is a completely new math quantity. It is not a function or number. It 
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is an operator because it is waiting you to act it on some functions or 

numbers.
168

  

(1) Fundamental theorem of gradient 

The gradient gives a way to evaluate the change of functions along any 

direction. Let’s say along direction û , we move an infinitesimal distance 

ds, this displacement will cause the value of function changes. The 

displacement along direction û can be expressed as a vector: 

ˆds dsu=
�

 

With the gradient, the function change can be expressed as: 

df f ds= ∇ ⋅
�

   (68) 

(68) is called the fundamental theorem of gradient, it tells us that 

knowing the gradient (knowing the partial derivatives in certain basis, say 

x-y-z), the function change over a small distance along any directions can 

be evaluated. The (68) will give back the total differential relation (56) if 

we express the infinitesimal displacement vector in terms of dx and dy” 

 ˆ ˆ ˆ ˆˆ ( )cos ( )sinds dsu ds i ds j dxi dyjθ θ= = + = +
�

 

f f
df f ds dx dy

x y

∂ ∂
=∇ ⋅ = +

∂ ∂
�

 

So this fundamental theorem is a generalization of the total differential 
                                                        

168 There are actually different ways how this operator acts on functions. If it acts on a scalar function, you will get 

gradient we discussed here. It can also acts as dot product with a vector function, which is called divergence of the 

vector function; it can also act as cross product with a vector function which is called curl of the vector function. 

Both divergence and curl have important roles in the field theory, you will definitely need them in the study of 

electro-magnetic field. But in this course, we do not need them yet. The detailed discussion on gradient, divergence 

and curl are covered in the subject of ‘vector analysis’. There are many math text books on this. A short but very 

clear presentation is actually given in a physics book: D.Griffith, “Introduction to Electrodynamics”, Chap.1. 
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we discussed before. In real applications we often need to evaluate 

changes of function over a small but not infinitesimal step, the (68) will 

be expressed in such case as: 

   | s| smallf f s∆ ≈∇ ⋅∆ ∆
�

   (69) 

(2) Geometric properties of the gradient 

The fundamental theorem of gradient (68) and (69) also tells us the 

geometric property of the gradient. It is really easy to prove the following 

property: (a) The gradient is point toward the direction of fastest change 

(the steepest slope) of the function over same small change of variables. 

(b) The gradient always perpendicular to the level curve, i.e. the curve 

with f(x,y)=c.  

For the property (a), if the displace step is same for all directions, i.e. ds 

or | s∆ | is same, then: 

| || | cosdf f ds f ds α= ∇ ⋅ = ∇
�

 

Clearly at 0α = , df has the largest positive value. This is when the 

direction of change overlaps with the direction of gradient. So the 

gradient points toward the direction of fastest increase of the function.  

For property (b), if the displacement is along a level curve where f(x,y)=c. 

then clearly df=0. This means 
2

π
α =  and f∇  is perpendicular to the 

level curve. Here more comments may be needed for the perpendicular to 

the level curve f(x,y)=c. In this 2-D case, ds
�

is the tangent to the level 

curve at certain point
0 0( , )x y , perpendicular to the curve actually means 
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perpendicular to the tangent line. For the 3-D case, ( , , )f x y z c=  would 

be a surface instead of a curve, the gradient f∇  here would be 

perpendicular to the tangent plane of the level surface. So gradient is very 

useful to find the tangent line or plane of a curve (f(x,y)=c) or a surface 

(f(x,y,z)=c).  

 

6. Taylor Expansion for Function of Two Variables 

We have discussed linear approximation of functions from the total 

differential of the function, which is true for infinitesimal changes of 

variables. For limited steps of change, as long as the steps are small, we 

can use linear approximation. If we want to have higher accuracy, we 

have to include higher order of changes in variables, and Taylor 

expansion formula is just for this higher order approximation. Here I only 

give out the formula without proof, its form is quite similar to the single 

variable case in section 1-8 in supplementary 1. 

0 0 0 0

0 0 0 0 0 0

0 0 0 0 , ,

2 2 2
2 2

, , ,2 2

( , ) ( , ) | |

1
   [ | ( ) | ( ) 2 | ] ...

2

x y x y

x y x y x y

f f
f x x y y f x y x y

x y

f f f
x y x y

x y x y

∂ ∂
+ ∆ + ∆ = + ∆ + ∆ +

∂ ∂

∂ ∂ ∂
∆ + ∆ + ∆ ∆ +

∂ ∂ ∂ ∂

  (70) 

7. Line Integral, Path Independence, Conservative Field and Green 

Theorem 

This part of calculus is closely related to the conservative force and 

potential energy in physics. That is why I included this in this supplement. 
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I shall begin by introducing the general integral along a line (or curve), 

how to compute such integral. Then I will focus on a special type of line 

integral, the work by a force, and investigate under what condition the 

work done by a force is path independent, i.e. only depends on the initial 

and final position but not on the path connecting the two end points. Such 

force will be called conservative. Green theorem offers another way to 

evaluate the line integral and also gives the criteria that given a force, 

how do we know it is conservative or not.  

7.1 Line Integral 

   

The line integral is an integration, but in this integration, the x,y,z’s are 

not free to vary, they have to stay on a curve in 2-D or 3-D space. For 

example, the curve is a wire, and its density may change along the wire, 

so to get the total mass of the wire, we may need to compute the integral: 

C

( , , )M x y z dsρ= ∫  

C

∫ is the symbol for line integral along a specific curve C, ds is the 

infinitesimal arc length of the curve. The question is how we compute it? 

The general method is using parametric definition of the curve. The curve 
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is defined by parametric equations: 

( ), ( ), ( )x x t y y t z z t= = = , where t is the parameter (it may corresponds to 

physical time; but more generally just a symbol for parameter) and x,y,z 

are functions of t.  

We can visualize this by setting a position vector: 

ˆˆ ˆ( ) ( ) ( ) ( ) ( ), ( ), ( )r t x t i y t j z t k x t y t z t= + + ≡< >
�

    (71) 

As t varies, the ( )r t
�

will scan the whole curve. If we know this 

parametric equation of the curve, the line integral can be calculated as 

following: 

Take the example of only computing the arc length, we want to know 

how long the curve is: 

C

L ds= ∫    

But the length ds can be viewed as travelling distance within time interval 

dt: 

| |ds v dt=  (ds is defined as >0, so take magnitude of velocity, the speed 

in the computation) 

The “velocity”
169

 is simply: 

, ,
dr dx dy dz

v
dt dt dt dt

= =< >
�

�
   (72) 

So the arc length expressed in term of the parameter t is: 

                                                        

169 Here the velocity with quotation mark is because this is analogous to physical velocity. If the parameter is time 

t, then it is velocity in common sense. If t is some general parameter, v is just the generalized velocity. 
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1

2 2 2 2[( ) ( ) ( ) ]

t b

C t a

dx dy dz
L ds dt

dt dt dt

=

=

= = + +∫ ∫    (73) 

For other line integral of a function, such as mass or moment of inertia, 

center of mass etc, the integral will be: 

1

2 2 2 2[ ( ), ( ), ( )][( ) ( ) ( ) ]

t b

t a

dx dy dz
f x t y t z t dt

dt dt dt

=

=

+ +∫  

 

Example: arc length of ellipse, for ellipse 
2 2

2 2
1

x y

a b
+ =  

The parametric equation for such ellipse is: 

cos

sin

x a t

y b t

=

=
  (0 2t π≤ ≤ ) 

The arc length will be: 

2

2 2 2 2

0

sin cosL a t b tdt

π

= +∫  

It is not an easy integral and please forgives my laziness and ask you 

checking the integral table for the result. It is easy to see the special case 

a=b (a circle) the line integral will give 2 aπ  as expected. 

 

7.2 Work as Line Integral 

The work done by a force in physics is defined as: 

C

W F dr= ⋅∫
� �

   (74) 

F
�

 is the force vector, it may depend on position. This dependence of 

position and subsequent force distribution over space gives us a vector 



 628

field: 

ˆˆ ˆ( , , ) ( , , ) ( , , ) ( , , ) , ,F x y z M x y z i N x y z j P x y z k N M P= + + ≡< >
�

   (75) 

N,M,K are scalar functions of (x,y,z).  

dr
�

 is the infinitesimal displacement vector along the curve: 

 

It is a vector along the direction of tangent line at certain point on the 

curve, with magnitude of the arc length ds, i.e: 

ˆdr Tds=
�

   (76) 

Then the work will be: 

ˆ

C C

W F dr F Tds= ⋅ = ⋅∫ ∫
� ��

   (77) 

(77) shows that the work indeed is the line integral we defined in section 

7.1, the line is the curve of the particle trajectory, and the integrand is a 

scalar function ˆF T⋅
�

. 

In some simple cases, where the form of tangent line is simple (such as 

for the straight line, circle etc), we can use (77) directly and apply what 

we learned in 7.1 to compute the line integral. However, the following 

equivalent formula which shows clearly the dependence on components 

and parameter may be more useful. 

ˆˆ ˆdr idx jdy kdz= + +
�

   (78) 
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Combined with (75) will give us: 

C C

W F dr Mdx Ndy Pdz= ⋅ = + +∫ ∫
� �

    (79) 

Or 

C C

W F dr Mdx Ndy= ⋅ = +∫ ∫
� �

   (80)    In 2-D 

In 2-D, the curve C may be expressed as explicit functional form y=g(x), 

then the (80) can be reduced to regular integral over starting and ending 

point of x: 

( )
b

a

x

x

dy
W M N dx

dx
= +∫    (81) 

More generally, the curve is expressed as a parametric form as in (71), 

and (79) or (80) will become: 

( )

t b

t a

dx dy dz
W M N P dt

dt dt dt

=

=

= + +∫    (82) 

M,N,P are functions implicitly depend on the parameter t, and x,y,z are 

functions of t as in (71). The line integral would reduce to regular integral 

over parameter t.  

It is also interesting to see that the above can be viewed or derived from 

the velocity point of view: 

ˆˆ ˆ( ) ( )
dr dx dy dz

dr vdt dt i j k dt
dt dt dt dt

= = = + +
�

� �
   (83) 

This will give (82) from definition of work in (74). 

ˆ ds
v T

dt
=
�
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ˆdr vdt Tds= =
� �

 

This will lead to (77) 

Now we know how to compute the work by a force along certain 

trajectory: (81) for 2-D case with explicit y=g(x); (82) for the more 

general case.  

Noticed here, though in the above discussion, I assume the force is only 

depending on position as the fundamental force form does(formula (75)). 

In the calculation of line integral, this is not necessary. The force could 

also depend explicitly on time or velocity too. Parameterized integral (82) 

would work for this kind of force, such as choose the physical time t as 

parameter and line integral can be computed. However, for explicit time 

or velocity dependent force, the path integral will depend on the specific 

curve (it is not path-independent) and so cannot be conservative (I shall 

come back to this point after treatment for conservative force). That is 

why I stressed here that in the following sections where we are discussing 

conservative forces, the forces are only depending explicitly
170

 on 

position.  

 

7.3 Path Independence and Conservative Force 

Even for forces that only depend on position (no explicit dependence on 

time or velocity), the work computed from the above formula would 

                                                        

170 Because of the motion, the positions will change over time, so the force can depend implicitly on time. 
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generally depend on the path (the curve or trajectory). 

Let’s first see a simple example: 

 

From the origin (0,0) to the point 
2 2

( , )
2 2

, we take two paths. The first 

one is C1+C2 (blue path), where C2 is part of the circle with angle=
4

π
 and 

radius=1. The path 2 will be along C3 (red path). 

Let’s first evaluate Force: 1
ˆ ˆF xi yj= +  (can you draw the vector field of 

this force?)
171

: 

Along C1, whose parametric line form is ( , 0), [0,1]x t y t= = ∈ : 

1

1

1

0

1

2
C

W F dr tdt= ⋅ = =∫ ∫
� �

 

Along C2, whose parametric form would be cos , sinx t y t= = , [0, ]
4

t
π

∈  

2

4

2 1

0

cos sin
cos ( ) sin ( ) 0

C

d t d t
W F dr t t dt

dt dt

π

= ⋅ = + =∫ ∫
� �

 

1 2

1

2
W W W= + =  

                                                        

171 It is a force field always point radially and its magnitude increase as radius increases. 

(1,0)1C

2C3C

2 2
( , )

2 2
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For path 2, it is along C3, the parametric equation is x=y=t, 
2

[0, ]
2

t∈  

3

2

2

3 1

0

1
( )

2
C

W F dr t t dt= ⋅ = + =∫ ∫
� �

 

So the work done by the force taking the two paths are same. I used the 

parametric method strictly (use formula (82)). For this simple 

computation, you may use (81) or even (77). The (77) is very useful to 

find out W2, the work along the circular arc. Because the force given here 

is along radial direction, always perpendicular to the tangent of the arc, so 

W2 is zero.  

Now consider another force: 

2
ˆ ˆF yi xj= − +

�
 

Can you see what this force field look like
172

? Let’s see the work done: 

Along Path1, the C1: 

1

1

0

(0 0) 0W t dt= + =∫  

This can also easily seen from the fact that the force is perpendicular with 

the path C1 always. 

Along Path C2: 

2

4

2 2

0

cos sin
[( sin )( ) cos ( )]

4
C

d t d t
W F dr t t dt

dt dt

π

π
= ⋅ = − + =∫ ∫
� �

 

This could also be worked out in polar coordinate, where on the arc, 
                                                        

172 It is always perpendicular with F1, because the dot product between them is zero. So this force would point 

towards angular direction always.  
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2
ˆF θ=

�
, and ˆT̂ θ= . So the line integral of work (77) would be just the arc 

length.  

Along Path2, the C3, the work by F2: W3=0.  

You can work out the parametric formula, or directly see from the fact the 

force along the θ̂  would be perpendicular to the path. So the work done 

by F2 is different for path 1 and path 2, it is depending on the path 

connecting the starting and ending points.  

This simple example shows two kinds of force. The works done by one 

force are same for both paths; the work done by another force is 

dependent on the path. Of course in the above example, I only showed 

that F1 is path independent for the two special paths of choice. The 

important fact is that the work done by this force is path independent for 

all paths. It only depends on the starting and ending points. This is the 

meaning of path independence of line integral by a vector field. I can use 

the results of the above example, and prove that for F1 (the radial force) 

that the work will be path independent for any arbitrary path (can you do 

this?)
173

, but I prefer to look at the broader picture first to see what kind 

of forces will have this property, and you will see that F1 indeed falls into 

this category.  

Definition of Conservative Force: If the work done by a force is path 

independent for any arbitrary paths, only depends on the position of 

                                                        

173 You may refer to Example 4.8 in K&K or Feynman’s book (Vol.1) section 13.2 
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initial and final points. Such force is conservative.  

Corollary of this definition: If the work done by a force along an 

arbitrary closed curve (a loop, of which the initial and final points 

overlap) is always zero, the force is conservative.  

It is easy to derive the corollary from the path independence and the 

theorem in integration: 

b a

a b

fdt fdt= −∫ ∫  and refer to the figure below. 

 

 

7.4 Conservative Force=Gradient of Potential Function 

Instead of giving a force and telling you whether it is conservative or not, 

I want to show you first that if the force equals to a gradient of a scalar 

function, i.e. 

F f= ∇
�

   (84) 

In Cartesian, it is: 

,

( , , ) ( , , ) ( , , ) ˆˆ ˆ( , , ) ,x y z

f x y z f x y z f x y z
F x y z i j k f f f

x y z

∂ ∂ ∂
= + + ≡< >

∂ ∂ ∂

�
   (85) 

Then the force is conservative. Please refer to section 5 if you forget 

about the gradient. From the fundamental theorem of gradient (68), i.e.: 

ˆdf f dr f Tds=∇ ⋅ = ∇ ⋅
�

, we have the change of function f along direction

T̂ with step size ds is the dot product of its gradient with displacement 
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vector.  Along an arbitrary path, then: 

( ) ( )
C C C

F dr f dr df f b f a⋅ = ∇ ⋅ = = −∫ ∫ ∫
� � �

   (86) 

a, b specify the starting and ending point of the path. (86) is called 

fundamental theorem of path integral of gradient. It is just the integral 

form of the fundamental theorem of gradient (68). It shows that the path 

integral of a gradient vector only depends on the difference of values of 

function f  at the starting and ending point. The integral is thus path 

independent. So the force in forms of (84) is conservative, and the 

function f  is called potential function. Notice here the potential 

function defined is a little different from the definition in physics, there is 

a minus sign difference, i.e.:  

physicsU f

F U

≡ −

= −∇
�    (87) 

The choice of minus sign is to make the summation of kinetic energy and 

potential energy K+U a constant, instead of K-f.  

I have shown that the gradient of a potential function is a conservative 

force, i.e. gradient field is a sufficient condition for conservative force, 

but is it necessary? The answer is yes (I choose to skip the proof, it 

involves advanced calculus), a conservative force can always be 

expressed as gradient of potential function. There is a subtlety here, the 

force and the function have to be defined and differentiable everywhere in 

a domain, the domain has to be simply connected (I also choose not to 
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discuss simply connected domain, because domains we deal with in this 

class will be simply connected). 

Thus we conclude with the claim as the title: Conservative force=gradient 

of potential.  

 

7.5 Characteristic of Conservative Force and from Force to Potential 

Last section we see that if we know the potential, the conservative force 

can be computed by taking the gradient of the potential (math potential, 

for physics potential, use (87)). In this section, we study the reverse 

problem, i.e. provided a force, how do we know it is conservative? And if 

it is conservative, how can we find its potential.  

Let’s first take a look at 2-D case. Suppose the force is conservative, then: 

ˆ ˆ ˆ ˆ( , ) ( , )
f f

F M x y i N x y j i j
x y

∂ ∂
= + = +

∂ ∂

�
   (88) 

We know form partial derivatives, there is a relation between the 2
nd

 order 

partial derivatives, i.e. 
2 2f f

x y y x

∂ ∂
=

∂ ∂ ∂ ∂
. This provides the test of a force is 

conservative or not. For a conservative force, we must have: 

( , ) ( , )M x y N x y

y x

∂ ∂
=

∂ ∂
   (89) 

Or in shorthand:  My=Nx. 

So for the example given before, F1=<x,y> is conservative, since 

My=Nx=0; F2=<-y,x> is not conservative. A sharp student may sense a 

loophole in the above argument: if the force is conservative, we have (89), 
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and so if (89) is not satisfied, the force is not conservative. This is 

logically tight. But the reverse may not be true, i.e. if the force satisfies 

(89), is it necessarily conservative? This loophole will be closed when we 

talk about the Green theorem in the next section. For now we just accept 

that (89) is the sufficient and necessary condition for a conservative force.  

In 3-D, a natural extension of (89) is obvious: 

For a conservative force in 3-D: , ,F N M P f=< >= ∇
�

, we have: 

,  ,  y x z x z yM N M P N P= = =    (90) 

(89) or (90) will be the test for a force is conservative or not.  

Now let’s tackle the problem of knowing the conservative force, how to 

compute the potential. This is best illustrated by an example: 

The force is: 2 2 2, 4 8 ,3 4F M N x xy y x=< >=< + + >
�

. 

First, test whether it is conservative, it is. (you do the math) 

Then find out the potential function for this force. There are generally 

two methods.  

Method 1, from definition of potential (86), i.e.: 

( ) ( )
C C C

F dr f dr df f b f a⋅ = ∇ ⋅ = = −∫ ∫ ∫
� � �

 

Because the path in the equation is arbitrary, we shall choose the easiest 

path to do the integral. Here, let suppose we start from (0,0) and end with 

(x,y), the easiest path would be (0,0) ( ,0) ( , )x x y→ → (please draw the 

path yourself) 

From (0,0) ( ,0)x→ , y=0 and dy=0, so the line integral is just: 
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2 2 3

0 0 0

4
(4 8 ) 4

3

x x x

Mdx x xy dx x dx x= + = =∫ ∫ ∫  

From ( ,0) ( , )x x y→ , x is fixed, dx=0, line integral along this segment: 

2 2 3 2

0 0

(3 4 ) 4

y y

Ndy y x dy y x y= + = +∫ ∫  

So the total line integral from (0,0) to (x,y) is: 

1 2

3 2 34
( , ) (0,0) 4

3
c C C

f x y f Mdx Ndy Mdx Ndy x x y y− = + = + = + +∫ ∫ ∫  

The potential energy is defined within a constant f(0,0), usually we will 

set the f(0,0)=0 (or the potential energy at other reference point), because 

only the potential difference has physical significance. 

Method 2: from the force is gradient of a potential: 

( , )
( , )

( , )
( , )

f x y
M x y

x

f x y
N x y

y

∂
=

∂
∂

=
∂

 

From 24 8
f

x xy
x

∂
+ =

∂
, we have (guess work): 

3 24
( , ) 4 ( )

3
f x y x x y g y C= + + +  

g(y) is a function of y only, C is a constant. g(y) can be determined by the 

second relation: 
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2 2 3 2 2

2

3

( , )
( , )

4 ( )
3 4 ( 4 ( ) ) 4

3

( )
3

( )

f x y
N x y

y

g y
y x x x y g y C x

y y

g y
y

y

g y y

∂
=

∂

∂ ∂
+ = + + + = +

∂ ∂

∂
=

∂

=

 

Then 3 2 34
( , ) 4

3
f x y x x y y C= + + + , same as method 1, with f(0,0) 

replaced by C.  

 

7.6 Green Theorem of line integral 

I have shown that if the force is gradient of a potential function, the work 

will be path independent, and is determined by the value of potential at 

the starting and ending points. Could we prove the conservative force 

from point of view of its corollary? i.e. showing first that the work done 

by a force along any close curve (loop) is zero, then it is path independent. 

i.e. we want to prove that, for any loop c: 

0
c

F dr⋅ =∫
� �

�  

c

∫� is the symbol for line integral along a loop c, and positive direction of 

the path is chosen counterclockwise (right hand rule), as shown in the 

figure below. 
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Green Theorem states that if the vector field F
�

(any vector filed, 

conservative or not)is defined and differentiable (its partial derivatives are 

also defined) everywhere in the domain enclosed by the loop (note this 

constraint is wider than the line integral which only requires vector field 

is defined and differentiable along the curve, thus this put the limit on the 

applicability of Green Theorem, or you play the trick by cutting holes to 

exclude the singularity points in the domain, then the loop will be a little 

complicated), then the loop line integral equals to an area integral (double 

integral over the enclosed area by the loop): 

In 2-D: ˆ ˆ( , ) ( , )F M x y i N x y j= +
�

 

( ) ( )
x y

c R R

N M
F dr dxdy N M dxdy

x y

∂ ∂
⋅ = − ≡ −

∂ ∂∫ ∫∫ ∫∫
� �

�    (91) 

R is the area enclose by the loop c. 

The proof of this Green Theorem is given in K&K’s section 5.6. Actually 

(91) is only one type of Green Theorem in 2-D, it is called tangential 

form of Green theorem, because it deals with the line integral of the dot 
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product with the tangent vector of the curve
174

. It offers another way to 

evaluate the line integral of closed loop, sometimes the computation on 

the right hand side of eqn.(91) may be easier. 

The 
x yN M−  on the R.H.S of 91 also defines a physical quantity of the 

vector field in 2-D, it is called curl of the field: 

( ) x ycurl F N M≡ −
�

   (92) 

And (91) is often written in terms of curl as: 

( ) ( )x y

c R R

F dr N M dxdy curl F dA⋅ = − ≡∫ ∫∫ ∫∫
� ��

�    (93) 

Now let’s look for the special case of conservative force. From (93), we 

see that if 
x yN M= , then 

c

F dr⋅∫
� �

� =0 for any loops in the domain. This 

is the condition we are looking for as stated at the beginning of this 

section. So that for a vector field in 2-D, if 
x yN M= or equivalently 

curl(F)=0, then the force is conservative, this closed the loophole in the 

argument of last section.  

Gradient theorem allows us to show that the work will be path 

independent if the force is gradient of potential function. Now Green 

theorem shows that if the curl of the force is zero, work done along a loop 

will be zero. The condition for the curl(F)=0 is exactly 
x yN M= , which 

is relation (89) or (90) in the previous section! 

                                                        

174 There is another Green theorem (Normal form) which deals with the line integral of the dot product of a vector 

field with the normal direction of the curve. Such line integral is related to the flux in physical problem. We do not 

discuss this here, you will certainly learn it in the study of electro-magnetic field 
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In 3-D case, the Green theorem in 2-D is extended to: 

ˆˆ ˆ( , , ) ( , , ) ( , , ) , .F M x y z i N x y z j P x y z k M N P= + + ≡< >
�

 

ˆ ˆ( ) ( )
c S S

F dr curl F ndA F ndA⋅ = ⋅ = ∇× ⋅∫ ∫∫ ∫∫
� � ��

�    (94) 

This is called Stokes theorem. S is any surface enclosed by the loop c in 

3-D, n̂ is the unit normal vector of an area element, its positive direction 

is defined using right hand rule. (the definition positive direction of n̂  is 

related to how you travel along the c) 

 

The curl of the vector field in 3-D is defined as: 

( )curl F F≡ ∇×
� �

   (95) 

∇  is the differential operator given in (67) ˆˆ ˆi j k
x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
 in 

Cartesian. Using the rule of cross product, we have: 

               

ˆˆ ˆ      ( ) ( ) ( )

         

y z z x x y

i j k

F P N i M P j N M k
x y z

M N P

∂ ∂ ∂
∇× = = − + − + −

∂ ∂ ∂

�
   (96) 

So the 2-D curl is just a special case of this definition (P is always zero in 

2-D, and M,N independent of z). From the Stokes theorem, if F∇×
�

=0, 

then the loop integral will be zero and the force is conservative. The 
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condition for F∇×
�

=0 is exactly the condition (90) from the gradient 

point of view. 

Now we can make a summary for conservative force, the following 

statements are equivalent for the conservative force (Don’t forget that the 

premise is that the force only explicitly depends on position): 

1) The work done is path independent 

2) The work done through a loop is zero 

3) The force is a gradient of a potential function 

4) The curl of the force is zero. 

1 And 2 are definitions and corollary of conservative force, they are 

equivalent. The previous sections show that 3 will lead to 1 and 4 will 

lead to 2. So naturally you will conclude that 3 and 4 will be equivalent 

too. Indeed, we can show that: 

0f∇×∇ =    (97) 

It is a famous equation in vector analysis. Please prove this yourself; it is 

just two lines using (90) and (96).  

 

Comments on Time Dependent Force 

(1)  Time Dependent Force is not Conservative 

If the force has explicit dependence on time: 

( , , , ) ( , , , ), ( , , , ), ( , , , )F x y z t M x y z t N x y z t P x y z t=< >
�

 

Then the work done by this force can be computed using (82), doing the 
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line integral with time as parameter. The problem here is this line integral 

will depend on the path of choice.  

The reasoning (not a rigorous math proof) is following: Consider a closed 

loop line integral: 

[ ( , , , ) ( , , , ) ( , , , ) ]
C C

dx dy dz
F dr M x y z t N x y z t P x y z t dt

dt dt dt
⋅ = + +∫ ∫
� �

� �  (98) 

The integral can be evaluated knowing the path and its dependence on 

time (the trajectory). However in this case, the starting point and ending 

point even for a spatially closed loop is not same, the time is different. 

The particle comes back to the original position but at later time. So the 

result of the above integral will generally be: 

2 1( ) ( )C C

C

F dr f t f t⋅ = −∫
� �

�  

Cf  means that the function form may depend on the path C too. There is 

no guarantee that this value will be zero for arbitrary closed loop as 

required by the path independence. Because you may choose arbitrary 

loop, so the time delay (t2-t1) could be any value, If 
2 1( ) ( )C Cf t f t− is 

always 0 for any time delay, this is only possible that the 
Cf  must be a 

constant, that means it is not dependent on time at all! That is only 

possible if the force does not explicitly depend on time. So for the time 

dependent force, the work done for a closed loop will not be zero for 

arbitrary loops, this is same as saying the work will be path dependent. 

The force is not conservative.  
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(2) Dose Time Dependent Associated to a Potential 

Previously we proved that for conservative force (which is only 

depending explicitly on position), it is a gradient of potential function 

Uc(x,y,z) ,the subscript c here stands for conservative.  

c cF U f= −∇ =∇
�

  (relation 87) 

Now for the force that explicitly depends on time, it is possible to define 

a potential function like the above, as long as the spatial dependence of F 

satisfies similar relations as in (89) or (90), or equivalently treating time 

as an independent variable, if 0F∇× =
�

, then the force could also be 

written as: 

( , , , ) ˆˆ ˆ( , , , ) ( , , , ) [ ]
U x y z t U U

F x y z t U x y z t i j k
x y z

∂ ∂ ∂
= −∇ = − + +

∂ ∂ ∂

�
  (99) 

This is valid math manipulation, so even for time-dependent force, we 

can define a potential. However I have to stress that the potential defined 

this way, their difference does not equals to the path integral in (98). The 

path integral would be path dependent and no potential function can be 

derived there. The difference in math is a bit subtle, the (x,y,z,t) in the 

path integral are not really independent variables, the x,y,z depends on 

time there. While the (99) treat the x,y,z,t as completely independent 

variables.  

The important fact that we can relate the potential of conservative force 

with path integral is because we shall have mechanical energy 

conservation. So for the conservative force, we have mechanical energy 
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conservation from work-energy theorem. For time dependent force and 

potential defined above, we do not have mechanical energy conservation! 

The common derivation to show that the mechanical energy (T+U) is not 

conserved, i.e. it changes with time is from Lagrangian formalism
175

of 

mechanics. That is why the time dependent potential defined in (99) is 

best termed non-conservative potential to distinguish from the 

conservative potential..  

Basically: 

21

2

( )

T mv

dT dv U dx U dy U dz
mv F v

dt dt x dt y dt Z dt

=

∂ ∂ ∂
= ⋅ = ⋅ = − + +

∂ ∂ ∂

�
�� �

 

( , , , )dU x y z t U dx U dy U dz U

dt x dt y dt z dt t

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

 

So: 
( )d T U U

dt t

+ ∂
=
∂

 is not zero in general. The mechanical energy is not 

conserved, and the mechanical energy is converted into other energy, lost 

to the outside world. Here please remember our discussion in chapter1, 

the reason that we have time dependent force is that our system is not 

closed, so the energy will flow in and out of our mechanical system
176

. 

 

As a final example, I will show you the form of gradient vector in polar 

coordinate. This example will use almost all the technique we learned so 

                                                        

175 See for example, Landau and Lifshitz “Mechanics”, chapter 2. 

176 Please read Taylor’s “classical mechanics”, section 4.5 for more discussion and example.  
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far. I will only work the two dimensional case from Cartesian to Polar. 

The definition of a gradient vector in Cartesian is (66), i.e.: 

ˆ ˆf f
f i j

x y

∂ ∂
∇ ≡ +

∂ ∂
 

Then what this vector’s expression in polar coordinate? i.e. everything 

expressed in terms of ˆˆ, , ,r rθ θ . 

We know the relations between the base vectors and coordinates: 

2 2 ; tan

cos ; sin

ˆˆ ˆcos sin

ˆˆ ˆsin cos

y
r x y

x

x r y r

i r

j r

θ

θ θ

θ θ θ

θ θ θ

= + =

= =

= −

= +

 

Then ˆ ˆ,i j can be expressed in terms of ˆˆ,r θ , what about the ,
f f

x y

∂ ∂
∂ ∂

? 

f f r f

x r x x

f f r f

y r y y

θ
θ

θ
θ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

  (chain rule) 

2 2
cos

sin

r x

x x y

r

y

θ

θ

∂
= =

∂ +

∂
=

∂

 

To calculate 
x

θ∂
∂

,
y

θ∂
∂

, I will use implicit method and total differential: 
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2 2

2

2

2

(tan ) ( ) ( )

1

cos

sin
cos

cos cos

y y
d dx dy

x x y x

d y
dx dy

x x

y

x x r

y x r

θ

θ
θ

θ θ
θ

θ θ θ

∂ ∂
= +
∂ ∂

= − +

∂
= − = −

∂
∂

= =
∂

 

Now we throw all above and relation of ˆ ˆ,i j with ˆˆ,r θ  into

ˆ ˆf f
f i j

x y

∂ ∂
∇ ≡ +

∂ ∂
: 

The procedure is too long to type, final result is: 

1 ˆˆ
f f

f r
r r

θ
θ

∂ ∂
∇ = +

∂ ∂
   (100) 

The differential operator in polar coordinate is in form: 

1ˆr̂
r r

θ
θ

∂ ∂
∇ = +

∂ ∂
   (101)  

This is a pretty long calculation, but I do not use any trick and stick to 

what we learned so far. It is the ‘stupidest’ method but the ‘bread-butter’ 

one, which I can derive without referring to books after many years. 

There are simpler derivations based on the theory of coordinate 

transformation, but won’t be covered here
177

. You may work out the 

formula of the gradient and curl in Cylindrical or Spherical coordinate, in 

3-D, similarly like what I did here (it is just more time consuming). The 

results of these in non-Cartesian are generally listed in the standard 

textbook, so no need to memorize them, except the forms in Cartesian, 
                                                        

177 You may refer to Greiner’s book Chap. 10, 11 for some details.  
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you have to know them by heart.  
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Supplementary III 

Ordinary Differential Equation (ODE) 

In this supplementary, I shall give a brief introduction on subject of 

solving ordinary differential equations
178

. Solving ODE is not an easy 

task and not all types of ODE have analytical solutions (In fact majority 

of them will not have). I shall focus on some special forms of ODE which 

have analytical solutions and outline how we get them. The ODE will be 

either 1
st
 order (means only contains first order derivative) or 2

nd
 order 

(the highest order of derivative will be 2), these are the common cases 

you will meet in physics.  

The general strategy solving differential equations always involves 

process of “guess” work, i.e. guess what the solution should look alike 

with some undetermined parameters and solve for the parameters, thus 

reducing the differential equations to algebraic equations.  

1. First Order ODE 

1.1 Easy Ones with Methods of Separation of Variables 

(1) Indefinite Integral, General and Specific Solution Initial Value 

The simplest 1
st
 order ODE that I can think of is: 

( )
dy

f x
dx
=    (1) 

                                                        

178 As usual, you may refer to a math textbook for details. Such as ‘Elementary Differential Equations’ 6th edition 

by C. Edwards and D. Penney.  
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Its general solution will be just the indefinite integral (antiderivative): 

( )y f x dx C= +∫    (2) 

This is the general solution for y, i.e. all solutions of (1) will satisfy 

this form. C is the integration constant. To get a specific solution, we 

need to fix the C. This is achieved by knowing the initial value, and 

get the specific solution is also called initial value problems (IVP) or 

boundary value problems. The conventional initial value will be in 

form of: 
00, (0)x y y= =  and C can be determined from (2) by 

inserting the initial value.  

Example: velocity of a car changes with time v=2t, find its position 

over time, with t=0, x=2. 

0, 2
2 22 2;  2

t xdx
t x t C C x t

dt

= =

= → = + → = = +  

Another important model (both in physics and other science) is 

exponential decay or growth: 

/dx dt kx=  

ln ktdx
kdt x kt C x Ae

x
= → = + → =  

(k>0 for population growth, money interest etc. k<0 for nuclear decay, 

temperature loss etc.) 

(2) Separation of Variables 

The next simplest form would be: 

( , )
dy

f x y
dx
=  with f(x,y) in some specific form: 
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( )
( , ) ( ) '( )

( )

g x
f x y g x h y

h y
= =  

Then we can separate variables: 

( ) ( )h y dy g x dx=    (3) 

Integral on both side: 

( ) ( )H y G x C= +    (4) 

C need to be determined from initial conditions for specific solution. 

Generally what you get is an equation between y and x from (4), and 

explicit function y=F(x) may not be possible.   

You have /would have seen quite a few examples in the physics notes 

(orbit function of planetary motion etc.). Simple as this separation of 

variables is, it is the ‘bread-butter’ in solving differential equations for 

this course.  

Sometimes, it may require tricks of substitution to get the ODE in 

forms of (3) as the example below illustrate. 

Example: 

 

Suppose there is a lighthouse shines a beam of light (the read beam) 

on a little boat. The boat will always try to travel along a direction that 

has 45�with respect to the light beam, and the light beam at the same 

45�

45�

β
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time follow the boat, then what is the trajectory of the boat, i.e. its 

y(x).  

If the boat at (x,y), the light beam will along direction: 

tan
y

x
β =  

The direction of boat’s velocity is: 

/
tan tan(45 )

/

dy dt dy

dx dt dx
α β= + = =  

tan tan 45 / 1

1 tan tan 45 1 /

dy y x

dx y x

β
β
+ +

= =
− −

 

This is the differential equation need to be solved to get y(x), and it 

may appear that we cannot use separation of variables. The trick is use 

substitution, by introduce new variable: 

, , ' '
y

z y zx y z xz
x

= = = +   ( ' /y dy dx≡ ) 

21 1
' '

1 1

z z
xz z xz

z z

+ +
+ = → =

− −
 now we can separate variables: 

2

1

1

z dx
dz

z x

−
=

+
 

The left hand is a nasty integral, but I can check the table: 

1 2

1 2 2 2

1
tan ln(1 ) ln

2

tan ln 1 ln

z z x C

z x z C x y C

−

−

− + = +

= + + = + +

 

In polar coordinate above equation is: 

ln r C r Aeθθ = + → =  
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1.2 Linear 1
st
 Order ODE and Integration Factor 

The linear equation is in the form of: 

( ) ' ( ) ( ) 0a x y b x y c x+ + =    (5) 

This is linear because if y1,y2 are solutions, their linear combination 

uy1+vy2 is a solution for the equation with c1+2(x)=uc1+vc2 (c=0 is a 

special case which is called homogeneous). In engineering, the c(x) is 

called input, the y(x) solution is called response. Linear here means the 

response has a linear relation with the input.  Equation (5) is often 

reorganized into standard form of linear ODE: 

' ( ) ( )y P x y Q x+ =    (6) 

The integration factor is a function of x, say ( )xρ , and it is multiplied to 

both ends of the equation (6), and make the left hand side a total 

differential (this is the guess work that such integration factor exists), i.e.: 

( ) ' ( ) ( ) ( ) ( )x y x P x y x Q xρ ρ ρ+ =  

( ) ' ( ) ( ) ( ( ) ) /x y x P x y d x y dxρ ρ ρ+ =    (7) 

( ( ) ) / ( ) ( )

( ) ( ) ( )

d x y dx x Q x

x y x Q x dx C

ρ ρ

ρ ρ

=

= +∫
 

1( ) ( ( ) ( ) )y x x Q x dx Cρ ρ−= +∫    (8) 

To find out the integration factor ( )xρ , we can use the requirement of (7): 

( ( ) ) / ' ' 'd x y dx y y y Pyρ ρ ρ ρ ρ= + = +  

' ( )

( )

P x

d
P x dx

ρ ρ
ρ
ρ

=

=
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ln

Pdx

Pdx

e

ρ

ρ

=

∫=

∫
   (9) 

So the integration factor can be computed (at least in principle) from (9), 

and then put it back to (8) will give the general solution for y: 

( ( ) )
Pdx Pdx

y e e Q x dx C
−∫ ∫= +∫    (10) 

Example 1: RL circuit 

 

The voltage drop across resistor R is: iR  (current x resistance) 

The voltage drop across inductor: 
di

L
dt

 

di
L iR V

dt
+ = , out it in standard form: 

' ,   ,
R V

i Pi Q P Q
L L

+ = = =  (actually this problem can be solved by 

separation of variables, but I shall use integration factor) 

Pdt Pte eρ ∫= =  

Pt Pt PtQ V
Qdt Q e dt e e

P R
ρ = = =∫ ∫  

( )
R

t
Pt Pt L

V V
i e e C Ce

R R

−−= + = +  

Let the initial condition is: 0, 0t i= = , thus 
V

C
R

= −  
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( ) (1 )
R

t
L

V
i t e

R

−
= −  

 

The current will reach to its steady value V/R over time, how fast it is 

going to reach depends on L/R. This is the effect that the inductor ‘fights’ 

against current change.  

Example 2: Falling object subject to air resistance: 

air resistance: F kv= − , gravity: mg 

'

dv
m mg kv

dt

k
v v g

m

= −

+ =
 

Similar to the above and at t=0, v=0: 

(1 )
k

t
m

mg
v e

k

−
= −  

You may try to find the position change over time from there.  

What happened if the air resistance is in forms of 2F kv= − ? The 

equation will not be linear, and the integration factor method will fail. 

However, you may still apply the separation of variables here. The details 

will be left for you to explore.  

2. 2
nd

 Order Linear ODE 

The linear 2
nd

 order ODE is generally in forms of: 
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( ) " ( ) ' ( ) ( ) 0A x y B x y C x y D x+ + + =  

If the D(x)=0, it is called homogeneous equation. This homogeneous 

linear equation (2
nd

 order) has very important features (theorems) 

(1) Superposition principle of solution for homogeneous equation 

If 
1 2,y y are solutions for the homogeneous equation, then their linear 

combination is a solution too: i.e. 
1 2ay by+  is also a solution.  

(2) Completeness of solution: 

If 
1 2,y y are solutions and they are independent (means 

1 2ay by+ =0 

only when a=0,b=0; another way saying it is 
1 2,y y  are not a constant 

multiplier of each other), then the general solution for the 

homogeneous equation(2
nd

 order here) will be in form of: 

1 1 2 2y c y c y= +    (12) 

1 2,c c are arbitrary constant for the general solution, and can be 

determined to give specific solution provided with initial values, such 

as (0), '(0)y y .  

The proofs of the theorems will not be our focus here (the 1
st
 one is easy 

to prove; the 2
nd

 one is a bit headache but not so hard
179

). We shall focus 

on how to find the independent solutions 
1 2,y y , given the homogeneous 

equation first; then see how to handle the inhomogeneous ones (i.e. D(x) 

is not zero). Unfortunately, with coefficients varies with x, as the equation 

above ( A, B,C are functions of x), there is no general methods to get 

                                                        

179 See for example: chap.2 of the book in footnote 25.  
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solutions. The one we can get simple answers are the special class of 

equations called constant coefficients where A,B,C are constants. That is 

what we shall study below. 

2.1 Constant Coefficients 2
nd

 Order Homogeneous Linear ODE 

The long title tells that we are dealing with a very special class of ODE.  

The standard form is: 

" ' 0ay by cy+ + =    (13) 

Let’s take a guess of what the form of function y(x) may look like. The 

functions after taking derivative will generally changes to another 

function except for the exponential ones xeλ (λ  a constant which can be 

either real or complex). So let’s take the xeλ for 
1 2,y y (the two 

independent solutions in (12)) as a trial. Put xeλ in (13), we get: 

2( ) 0xe a b cλ λ λ+ + =  

2 0a b cλ λ+ + =    (14) 

This (14) is called characteristic equation of the ODE (13). There could 

be 3 cases for its roots: 

(1) 2 4 0b ac− >  

There will be two real roots for (14): 

2 2

1 2

4 4
,

2 2

b b ac b b ac

a a
λ λ

− + − − − −
= =  

1 2

1 2,
x x

y e y e
λ λ= =  are two independent solutions and the general solution 

to equation (13) will be: 

1 2

1 2

x x
y c e c e

λ λ= +    (15) 
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The constants 
1 2,c c shall be determined provides with initial conditions 

(such as y(0) and y’(0)). 

(2) 2 4 0b ac− <  

There will still be two roots but are complex: 

2 2

1 2

1 2

4 4
,

2 2

  complex conjugate with each other

b i ac b b ac b
i i

a a
λ α β λ α β

λ λ∗

− + − − − −
= = + = = −

=

  

The two solutions 1 2

1 2,
x x

y e y e
λ λ= = will still be independent, so the 

general solution can be written as: 

1 2

1 2

x x
y c e c e

λ λ= +ɶ ɶ    (16) 

1 2,c cɶ ɶ  are two complex constants. The form (16) is ok for the solutions 

that include complex functions. But in some applications, such as the 

oscillations in mechanics, the solutions should be real functions, this is 

also able to be satisfied by (16), it just put a requirement on 
1 2,c cɶ ɶ . Since 

1 2λ λ∗=  , if 1 2c c∗=ɶ ɶ  are complex conjugate with each other, then the (16) 

will be a real function.  

1 2,c u iv c u iv= + = −ɶ ɶ  

1 2(cos sin ),  (cos sin )
x xx i x x xe e e e x i x e e x i x

λ λα β α αβ β β β= = + = −  

Euler formula (38) is used here.  

Put these into (16): 

1 2(2 cos 2 sin ) ( cos sin )x xy e u x v x e c x c xα αβ β β β= − = +    (17) 

Note 
1 2,c c  are real constants, they are not 

1 2,c cɶ ɶ but are related to their 

real and imaginary parts.  
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Of course (17) can also be proved by other methods, because any 

combination of 
1 2ay by+  is also a solution to (13), so we can set: 

1 2 1 2
1 2

cos ;  sin
2 2

ax xy y y y
y e x y e x

i

αβ β
+ −

′ ′= = = =  as two independent 

real solutions to (13), and the general solution can be written as: 

1 1 2 2y c y c y′ ′= +  which is (17) we derived above.  

There is also another very useful variation of (17), and we shall derive it 

from (16), this also offers a good practice on Euler expression for 

complex numbers and introduces the important “vector” representation of 

complex number
180

.  

1 2,c u iv c u iv= + = −ɶ ɶ , let’s express it into Euler form: 

1

ic Ae φ=ɶ    (18) 

2 2 ,  tan ;

cos , sin

v
A u v

u

u A v A

φ

φ φ

= + =

= =
   (19)  

(19) expressed the module A and phase angleφ . The meaning of (18) and 

(19) is extremely clear from the geometric representation of complex 

numbers. They are quite analogous to Cartesian and Polar representation 

of vectors: 

                                                        

180 The reason I put quotation mark around vector is because generally the physical vectors we encounter in 

mechanics live in real space. Here for complex numbers, we have to go to complex space. You can think this as 

extrapolation of vector to complex space. 
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The above figure use a “vector” like arrow represents the complex 

number
1c u iv= +ɶ , with length and phase angle given by (19). This 

“vector” representation is usually called phasor, and they do add up as 

vectors do (as complex numbers do). This phasor will be very useful for 

computations involving complex numbers, when we discuss general wave 

theory in later courses.  

With the 1

ic Ae φ=ɶ , 2 1

ic c Ae φ∗ −= =ɶ ɶ , equation (16) can be written as: 

( ) ( )[ ] 2 cos( ) cos( )x i x i x x xy Ae e e Ae x e c xα β φ β φ α αβ φ β φ+ − += + = + = +  (20) 

(20) and (17) are equivalent expressions for the general solutions, though 

on the surface they look slightly different. This difference can be set aside 

by the trigonometric relation: 

2 2

cos sin cos( )

,   tan

a b c

b
c a b

a

θ θ θ ϕ

ϕ

+ = −

= + =
   (21)

181
  

Apply this to (17): 

2 2 2 2

1 2 1 2

1 1 12

1

cos sin cos( ) 2 cos( ) 2 cos( )

tan tan ( ) tan

c x c x c c x u v x A x

c v v

c u u

β β β φ β φ β φ

φ φ− − −

′ ′ ′+ = + − = + − = −

′ = = − = − = −

                                                        

181 Please prove this useful relation yourself. Hint: cosine expansion will work; or think about dot product of 

vectors and its geometric meaning; or try to apply Euler formula…. Many ways to prove this 

real

Im

u

v

A

φ
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So indeed (17) and (20) are equivalent. In (17) the constants
1 2,c c , and in 

(20) constants ,A φ  can be determined with the initial conditions.  

(3) 2 4 0b ac− =  

Here we have degenerate roots: 

1 2
2

b

a
λ λ

−
= =  

There is only one independent 1

xy eλ= which is an incomplete base for 

the general solution of the 2
nd

 order ODE. We have to find another 

independent solution. This is done by variation technique: 

Suppose another solution in forms of: 2 ( ) xy u x eλ= , ( )u x is a polynomial 

of x, and we need to find this ( )u x  and it is better be not a number: 

2

2 2

2 2

x x

x x x x x x x

y u e ue

y u e u e u e ue u e u e ue

λ λ

λ λ λ λ λ λ λ

λ

λ λ λ λ λ

′ ′= +

′′ ′′ ′ ′ ′′ ′= + + + = + +
 

2

2 2 2 0 ( ) ( 2 ) 0x xay by cy ue a b c e au a u buλ λλ λ λ′′ ′ ′′ ′ ′+ + = → + + + + + =  

Because 2 0a b cλ λ+ + = ,
2

b

a
λ = − , we have from above: 

0 ( )u u x px q′′ = → = +  

The simplest form of ( )u x (which is not a number) is just ( )u x x=  (here 

we only want one solution that is independent of
1y , so we choose the 

simplest form satisfying this). 

2

xy xeλ=  will satisfy the ODE and is independent of
1y , the general 

solution for the ODE with double degenerate roots: 

1 2 1 2( )x x xy c e c xe c c x eλ λ λ= + = +    (22) 

Noticed that to get the 0 ( )u u x px q′′ = → = + , we need to use the fact of 
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double degeneracy, i.e. 
1 2

2

b

a
λ λ

−
= = , so (22) only applies to this 

condition (this is why in case 1 and 2 where 2 4 0b ac− ≠ , solutions 

cannot be expressed with single exponential) 

The examples will be the harmonic oscillators discussed in chapter 10 of 

the physics notes: 

 

(1) Free Oscillators without damping 

We have seen many such oscillators in physics, be it the mass-spring on 

the left, or the simple pendulum or the right, or the physical pendulum we 

discussed in chapter 7 on rotation. You will see more such models in 

other physical applications, such as RCL circuit, molecular vibration etc.  

The reason of such wide applicability of Harmonic Oscillator model 

comes from the fact mentioned awhile ago: The potential energy curve 

around the equilibrium point (i.e. U is minimum, the force are restoring 

force pointing towards minimum) can be approximated by a harmonic 

potential, i.e. 2U x∝ , where x is the displacement from the equilibrium. 

The restoring force will be thus in forms of 
dU

F x
dx

∝ − ∝ − . The 
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equation of motion can be written as: 

mx kx= −ɺɺ    (23)
182

 

Equation (23) can be applied to all the harmonic oscillators, be it 

mass-spring or pendulum. For mass-spring m is mass, x is displacement 

from equilibrium, -kx is Hook’s law; For pendulum, m is related to 

moment of inertia, x is angular displacement, -kx is related to torque. All 

these different harmonic models can be expressed to the form in (23). 

Here free means no other driving force besides the restoring force; no 

damping is neglecting the effect of friction etc.  

(23) is usually written in another form: 

2

0 0x xω+ =ɺɺ    (24) 

0 /k mω =    (25) 

Solving (24) with the standard method of 2
nd

 ODE: 

1 2,x x  will be in forms of teλ , and 

2 2

0 1 0 2 00 ;i iλ ω λ ω λ ω+ = → = = −  

From the discussion in case (2) above, the general solution of (24) is: 

0 0

1 2( )
i t i t

x t c e c e
ω ω−= +ɶ ɶ  

The displacement function is obviously a real function, so: 

1 0 2 0 0( ) cos sin cos( )x t c t c t A tω ω ω φ= + = +    (26) 

This is the general solutions for the free oscillator with no damping. The 

                                                        

182 Here we study the change over time. The independent variable is time t (i.e. x=t), and dependent variable is x 

(i.e. y=x). The temporal derivative is usually expressed as ,x xɺ ɺɺ . 
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choice of cosine instead of sine and φ+  instead of φ′−  is a convention 

rather than necessity.  

(2) Free oscillators with damping 

 

Suppose we introduce the damping as shown explicitly in the figure. The 

damping force will be always against the direction of motion, i.e. against 

the velocity, and magnitude is proportional to speed: 

df bv= −  

The equation of motion will be: 

k b
x x x

m m
= − −ɺɺ ɺ  

Usually write it as: 

2

0 0x x xγ ω+ + =ɺɺ ɺ    (27) 

0/ ; /b m k mγ ω= =  

Characteristic equation is: 

2 2

0 0λ γλ ω+ + =    (28) 

2 2 2
20

1,2 0

4

2 2 4

γ γ ω γ γ
λ ω

− ± −
= = − ± −  

Case A: 
2

2

0 0
4

γ
ω− > , strong damping 

1 2,λ λ  are real numbers, general solution: 
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1 2

1 2( )
t t

x t c e c e
λ λ= +  

Note 
1 2,λ λ  are negative numbers, so the x(t) will decay to almost 0 at 

long run
183

.  

 

Case B: 
2

2

0 0
4

γ
ω− = , critical damping 

1,2
2

γ
λ = −  

The general solution would be: 

2
1 2( ) ( )

t

x t c c t e
γ
−

= +  

It approaches to zero at longer t. It actually approaches zero faster than 

case A. This is called critical damping, 
2

2

0 0
4

γ
ω− = is the critical 

damping condition. This has wide applications in situations where 

oscillation is not wanted, such as stabilization system in automobile; 
                                                        

183 Figure is taken from ‘Elementary Differential Equations’ 6th edition by C. Edwards and D. Penney. 
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oscillation isolators for optical tables etc.  

 

Case C： 
2

2

0 0
4

γ
ω− <  weak damping: 

Introduce: 

2
2

0
4

γ
ω ω′ = −    (29) 

1,2
2

i
γ

λ ω′= − ±  

General solution is: 

2 2
1 2( ) ( cos ' sin ' ) cos( ' )

t t

x t e c t c t e A t
γ γ

ω ω ω φ
− −

= + = +    (30) 

When the damp is very weak, 
0ω γ>> , the solution is like a oscillator 

with a slow decaying amplitude, as figure below shows.  

 

This concludes our strict solutions to free oscillators.  
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2.2 Constant Coefficients 2
nd

 Order Inhomogeneous Linear ODE 

Here ( ) 0D x ≠  anymore, and the ODE is usually written as: 

" ' ( )ay by cy f x+ + =    (31) 

( )f x  is called driving force or input of the system, the solution y is 

called the response or the output of the system.  

The fundamental theorem for this kind of inhomogeneous equation is the 

following, the general solution of (31) can be expressed as: 

p cy y y= +    (32) 

py  is one (anyone) particular solution to (31) and need to be 

independent to
cy ; 

cy  is called complementary solution, which is the 

general solution to the associated homogeneous equation, i.e. 
cy is the 

general solution of " ' 0ay by cy+ + = , same a, b, c in (31). 

This theorem is not hard to prove. First if 
py is a solution to (31), 
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p cy y+  is also a solution. It is just like adding a 0 to the RHS of (31) and 

applies the linearity of the ODE. Next we need to prove all solutions to 

(31) can be expressed as (32). Suppose besides
py , we have another 

solution to (31) which is 
py′ . Then using linearity, 

p py y′ −  would be a 

solution to the complementary homogeneous equation. But the general 

solution of this is expressed as 
cy , i.e. 

p p cy y y′ − = . Q.E.D. 

The focus of the inhomogeneous ODE will be on how we get the 

particular solution. The solution of it will heavily depend on the detailed 

function form of ( )f x . There are only a few simple forms of ( )f x  that 

we can get simple answers for particular solutions.  

(1) ( )f x is a polynomial of x 

The general method will be undetermined coefficients, illustrated as 

example here: 

34 4y y x′′ + =  

The ‘guess’ is that the particular solution would be also a polynomial with 

same order, i.e.: 

3 2

py Ax Bx Cx D= + + +  

23 2py Ax Bx C′ = + +  

6 2py Ax B′′ = +  

Throw them in the equation: 

3 2 34 4 4 (6 4 ) (2 ) 4y y Ax Bx A C x B D x′′ + = + + + + + =  

Equate the coefficients of each order of x, clearly: 
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3
1; , 0;

2
A B D C= = = −  

3 3

2
py x x= −  

The complementary solution is: cos(2 )cy A t φ= + , 
py is independent to 

cy . So 
3 3

cos(2 )
2

y x x A t φ= − + + .  

(2) ( ) tf x eα=  (this also includes cos ,sint tα α  cases) 

" ' xay by cy eα+ + =   (33) 

In this case, you probably can guess the particular solution to (33) is in 

form of: (this is also the method of undetermined coefficients)  

x

py Aeα=    (34) 

Substitute this into (33) to determine the coefficient: 

2( )x xAe a b c eα αα α+ + =  

2

1
A

a b cα α
=

+ +
    

2

x

p

e
y

a b c

α

α α
=

+ +
    (35) 

There is a subtlety here, in order to get (35) 2 0a b cα α+ + ≠ , i.e. α is 

not a root for the characteristic equation. If theα is a root, that is if α  

equals to 
1 2orλ λ , the particular solution 

py will be same as one of the 

complementary solution 
cy . We need to investigate this. 

(a) 2 0a b cα α+ + ≠ , i.e. 1,2
α λ≠ , (35) applies 

(b) 
1 2α λ λ= ≠ , i.e. α  equals to one of the roots and the roots are not 

degenerate.  



 671

1 2

1 2

x x

cy c e c e
λ λ= +  

The particular solution need to be independent with
cy , so the guess of 

x

py Aeα= won’t work now. Instead, let’s guess: 

x

py Axeα= , 2 0a b cα α+ + =  

x x

py Ae Axeα αα′ = +  

2 2x x

py Axe Aeα αα α′′ = +  

2" ' ( ) (2 )x x xay by cy Axe a b c Ae a b eα α αα α α+ + = + + + + =  

1

2
A

a bα
=

+
 

1

2

x

p
y xe

a b

α

α
=

+
   (36) 

(c) 
1 2α λ λ= = ,α  equals to double degenerate roots 

1 2( ) x

cy c c x eλ= + , x

py Axeα= will be same as one of the 
2y in

cy , so it 

is not a valid independent solution anymore. We need to take: 

2 x

py Ax eα= , 2 0a b cα α+ + = , 
2

b

a
α = −  

Similar procedure will give us: 

1

2
A

a
=  

21

2

x

p
y x e

a

α=    (37) 

Let’s look at an example: Driven Oscillator 

The oscillator with natural frequency and damping coefficient is driven 

by an external force 
0 cos( )F F tω=  

The 2
nd

 ODE is: 



 672

0 cos( )mx kx bx F tω= − − +ɺɺ ɺ  

Express it in the standard form: 

2 0
0

cos( )
F

x x x t
m

γ ω ω+ + =ɺɺ ɺ    (38) 

The complementary solution of the associated homogeneous equation had 

been worked out before: for weak damping, 
0γ ω<<  

2 2
1 2( cos ' sin ' ) cos( ' )

t t

cx e c t c t e A t
γ γ

ω ω ω φ
− −

= + = + , 
2

2

0
4

γ
ω ω′ = −  

The question is the particular solution. The force is in forms of cosine 

function not the exponential we treated above. One method is to use Euler 

formula 
1

cos ( )
2

i t i tt e eω ωω −= + , where iα ω=  and iα ω= − . We can 

use the results above and linearity of the equation to solve for the 

particular solution, i.e. 
1 2p p px x x= + , 

1px corresponds to iα ω=  and 

2 px corresponds to iα ω= − . This method is left for you to carry out. 

Here I shall use another method.  

Let me introduce a supplementary function y , which satisfies: 

2 0
0

sin( )
F

y y y t
m

γ ω ω+ + =ɺɺ ɺ , then 

2 0
0

sin( )
F

iy iy iy i t
m

γ ω ω+ + =ɺɺ ɺ  

Introduce complex function: 

z x iy= +ɶ    (39) 

2 0
0

i tF
z z z e

m

ωγ ω+ + =ɺɺ ɺɶ ɶ ɶ    (40) 
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Solving 
pzɶ , and its real part will be the particular solution of 

px .  

0 0

2 2 2 2

0 0( )

i t i t

p

F e F e
z

m i i m i

ω ω

ω γω ω ω ω γω
= =

+ + − +
ɶ  

The denominator is a complex and I will write it as phasor: 

2 2

0

2 2 2 2 1

0 2 2

0

( ) ( ) ,   tan ( )

ii Ae

A

φω ω γω

γω
ω ω γω φ

ω ω

′

−

− + =

′= − + =
−

   (41) 

( ) ( )

0 0

2 2 2 2

0( ) ( )

i t i t

p

F e F e
z

m A m

ω φ ω φ

ω ω γω

′ ′− −

= =
− +

ɶ  

The real part is: 

0

2 2 2 2

0

cos( )

( ) ( )
p

F t
x

m

ω φ

ω ω γω

′−
=

− +
   (42) 

Sometimes it is also expressed as (depends on our convention): 

0

2 2 2 2

0

1

2 2

0

cos( )

( ) ( )

tan ( )

p

F t
x

m

ω φ

ω ω γω

γω
φ φ

ω ω
−

+
=

− +

′= − =
−

   (43) 

The complete solution of (38) will be: 

( ) p cx t x x= +  

2 2
1 2( cos ' sin ' ) cos( ' )

t t

cx e c t c t e A t
γ γ

ω ω ω φ
− −

= + = +  will die out due to the 

damping after awhile. So it is called transient solution. The particular 

solution on the other hand is due to the driven force and it will last as 

long as there is driven force. So
px is called steady state solution.  

 

All above the technique is called undetermined coefficients, because we 
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guess the answer for the particular solution and throw it back in the 

equation to find out the coefficient. There is another ‘trick’ called 

variation of parameters which is a standard tool to solve for the particular 

solution. I will introduce it below but this is not required for the course 

since we are not going to use it for the problems of physics in this class.  

(3) Variation of Parameters 

" ' ( )ay by cy f x+ + =  

The complementary solution is: 
1 1 2 2cy c y c y= + , the guess for the 

particular solution would be: 

1 1 2 2( ) ( )py v x y v x y= +    (44) 

1 2( ), ( )v x v x are functions need to be determined. The only way to 

determine them is throwing (44) back to the ODE: 

Notices: 1,2 1,2 1,2
0ay by cy′′ ′+ + =  because they are solutions to the 

homogeneous equation. Differentiate (44): 

1 1 2 2 1 1 2 2( )py v y v y v y v y′ ′ ′ ′ ′= + + +  

If we keep differentiate this to 2
nd

 order, we will get 2
nd

 order terms in 

1 2,v v′′ ′′ , these will not help us because we get another 2
nd

 order ODE for the 

parameters, unless the things in the parenthesis go to zero, i.e.:  

1 1 2 2 0v y v y′ ′+ =    (45) 

This is the extra condition that we want to have parameters to satisfy. 

Then, the substitution into ODE will get another equation: 

1 1 2 2 ( ) /v y v y f x a′ ′ ′ ′+ =    (46) 
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The two equation (45), (46) are linear equations for 
1 2,v v′ ′ , and they may 

be solved to get 
1 2,v v′ ′ , then through integration, 

1 2,v v can be determined.  

Example: tany y x′′ + =  

This is not solvable for the undetermined coefficients method, we will try 

the variation of parameters: 

1 2cos sincy c x c x= + , 
1 2cos ; siny x y x= =   (from 0y y′′ + = ) 

1 2( )cos ( )sinpy v x x v x x= +  

(45) will lead to: 

1 2cos sin 0v x v x′ ′+ =  

(46) will lead to: 

1 2( sin ) cos tanv x v x x′ ′− + =  

Solve the pair linear equations (using matrix method, Gauss elimination 

or use the formula with inverse matrix): 

1

2

cos    sin 0

sin  cos tan

vx x

x x v x

′    
=    ′−    

 

2

1

2

sin

cos

sin

x
v

x

v x

−′ =

′ =
 

2

1

sin
( ) ln | sec tan | sin

cos

check
tablex

v x dx x x x
x

−
= = − + +∫  

2 ( ) cosv x x= −  

(We do not worry about integration factors above, because we only need 

to find one particular solution) The 
py  is determined and the general 

solutions can be written out. 
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All these methods could only handle a small class of function forms of

( )f x . The most general treatment for arbitrary function ( )f x would be 

the task of Fourier Transform and Laplace Transform, which will not be 

covered here. Also recall that we only treat constant coefficients a, b, c 

here, for the more general case a, b, c may be functions of x. In such case, 

we shall either need power series technique or have no analytical 

solutions. The power series technique will not be covered here, if 

interested you can find it in the textbook on ODE. Finally if the a, b, c are 

functions of y, the ODE may not be linear anymore, there is generally no 

analytical solution for y(x).     

 

2.3 Coupled Differential Equations
184

 

2.3-1 1
st
 Order Coupled Equations 

There are many applications where not one dependent variable but a few 

dependent variables that their changes are coupled. In this kind of 

problems, usually the independent variable is taken as time t, the 

dependent variables are x,y (or other symbols), both are functions of time. 

Let’s look at an armament race scenario: x is the military budget of 

Russia and y is that of US. The change of budget (a government decision) 

will not only depend on how much money already invested (a kind of 

wasted in arm race case; but this model is also applied to education fund, 

                                                        

184 This is extra meat I throw in, not required for this course.  
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company competition etc) by our side, but also depend on how much 

invested by the enemy.  

x ax by

y cx dy

= +

= +

ɺ

ɺ
   (47) 

In the armament race scenario, a, d are negative number (we already 

spend too much money), b, c are positive (in response to the enemy’s 

increase of budget, here x=money already invested−normal budget). For 

other models,0 they can be any numbers.  

The more general form of linearly coupled systems (1
st
 order) will be: 

1

2

( )

( )

x ax by r t

y cx dy r t

= + +

= + +

ɺ

ɺ
   (48) 

I shall only treat the (47) case, which is called homogenous coupled 

equations. 

(1) Direct substitution 

Example: 

1 1 2

2 1 2

2 2

2 5

x x x

x x x

= − +

= −

ɺ

ɺ
 

Then by elimination, first: 

1 1
2

2

2

x x
x

+
=
ɺ

 from the first equation, substitute this into second: 

1 1 1 1
1

2 2
2 5

2 2

x x x x
x

+ +
= −

ɺɺ ɺ ɺ
 

1 1 17 6 0x x x+ + =ɺɺ ɺ  this is a 2
nd

 order homo. ODE: 

6

1 1 2

t tx c e c e− −= +  
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61 1
2 1 2

2 1
2

2 2

t tx x
x c e c e− −+
= = −
ɺ

 

From initial values 
1 2(0), (0)x x , 

1 2,c c can be determined. 

(2) Matrix Method 

This is more powerful and elegant than the simple substitution, and also it 

has wider application, such as in solving the inhomogeneous coupled 

equations, and it is another example of eigenvalue and eigenvector of 

matrix, so I will show you the details below. 

For the homogeneous couple equations: 

Introduce column vector representation of the dependent variables: 

1 1

2 2

;
x x

x x
x x

   
≡ ≡   
   

ɺ� �ɺ

ɺ
, this is just the usual bookkeeping for vector in column 

matrix. The coupled ODE will be: 

x Ax=
� �ɺ    (49) 

A is the matrix of coefficients: 

   

   

a b
A

c d

 
=  
 

 

(49) is just a shorthand for the equations: 

1 1

2 2

   

   

x xa b

x c d x

    
=     
    

ɺ

ɺ
   (50) 

The solution for the coupled equation will be reduced to solving the 

eigenvalues and eigenvectors of matrix A: 

Assume the appropriate solutions are in forms of: 

1 1 2 2,t tx a e x a eλ λ= = , 
1 2,a a  are coefficients need to be determined.  In 
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matrix, it is: 

1 1

2 2

t
x a

e
x a

λ   
=   

   
 

1 1

2 2

t
x a

e
x a

λλ
   

=   
   

ɺ

ɺ
 

Put above into (50): 

1 1

2 2

   

   

t t
a aa b

e e
a c d a

λ λλ
    

=     
    

 

1 1

2 2

   

   

a aa b

c d a a
λ

    
=     

     
   (51) 

This equation is exactly the eigenvalue-eigenvector equation for matrix A. 

Its eigenvalues 
1 2,λ λ , and their associated eigenvectors 

1

1

2

a

a
α

 
=  
 

�
 and 

1

2

2

a

a
α

′ 
=  ′ 

�
 can also be determined (at least within a constant factor, if we 

require they are normalized, this ambiguity is removed).  

Then the general solution of (50) would be in form of: 

1 2 1 2
1 1 1

1 1 2 2 1 2

2 2 2

t t t t
x a a

c e c e c e c e
x a a

λ λ λ λα α
′     

= + = +     ′     

� �
   (52) 

 

Example 1: same problem above but worked with matrix method 

1 1 2

2 1 2

2 2

2 5

x x x

x x x

= − +

= −

ɺ

ɺ
 

2   2

2   5
A

− 
=  − 

 

Aα λα=
� �

 is the eigenvalue-eigenvector equation 
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( ) 0A Iλ α− =
�

   (53)
185

 

The eigenvalues are computed from 

| | 0A Iλ− =  

2
2    2

0 7 6 0
2   5

λ
λ λ

λ
− −

= → + + =
− −

 

This is exactly the characteristic equation for the 2
nd

 ODE in substitution 

method before.  

1 21, 6λ λ= − = −  

For 
1 1λ = − , eigenvector can be solved from (53): 

1 1

2 2

1   2 1   2
0 0

2   4 0     0

a a

a a

− −      
= → =      −      

 

Let 
1 22, 1a a= = , so 1

2

1
α

 
=  
 

�
 is the eigenvector. (I do not normalize it 

to 
21

15

 
 
 

, because it is not necessary here, the constant here will be 

absorbed in the general solution constant 
1c ) 

For 
2 6λ = − : 

1 1

2 2

4   2 4   2
0 0

2   1 0   0

a a

a a

      
= → =      

      
 

1 21, 2a a= = − , 2

1

2
α

 
=  − 

�
. 

1 6

1 2

2

2 1

1 2

t t
x

c e c e
x

− −     
= +     −    

 

This is exactly same as the substitution method. (except that the constant 

                                                        

185 Note -A λ is meaningless, since A is a matrix, and λ is a number. I is the identity matrix, it comes from the fact 

Iλα λ α=
� �

. 
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1c here is half of the constant there) 

 

Example 2: In case of ‘good’ degeneracy in eigenvalues: 

1 1 2 3

2 1 2 3

3 1 2 3

2

2

2

x x x x

x x x x

x x x x

= − + +

= − +

= + −

ɺ

ɺ

ɺ

 

2   1   1

1   2  1

1    1  2

A

− 
 = − 
 − 

 

2

2    1   1

| | 1   2   1 ( 3) 0

1    1  2

A I

λ
λ λ λ λ

λ

− −

− = − − = + =

− −

 

1 0λ = , 2,3
3λ = −  double degeneracy 

For 
1 0λ = , through Gauss elimination: 

1 1 1

2 2 2

3 3 3

2   1   1 2   1      1 2   1      1

1   2  1 0 0 1.5   1.5 0 0 1.5   1.5 0

1    1  2 0    1.5 1.5 0    0        0

a a a

a a a

a a a

− − −          
          − = → − = → − =          

          − −          

The nontrivial one (the a’s are not all 0) is let free variable
186

 
3 1a = , then 

2 1 1a a= =  

So 1

1

1

1

α
 
 =  
 
 

�
. 

For 2,3
3λ = − : 

                                                        

186 This means this variable has a free choice of values.  
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1 1

2 2

3 3

1   1   1 1  1  1

1   1   1 0 0  0  0 0

1   1   1 0  0  0

a a

a a

a a

      
      = → =      

      
      

 

There are two free variables
2 3,a a . Let’s first choose

2 31, 0a a= = , then

1 1a = − ; Next set 
2 30, 1a a= =  (guarantee independence from the first 

choice), then
1 1a = − . So 2

1

1

0

α
− 
 =  
 
 

�
; 3

1

0

1

α
− 
 =  
 
 

�
. These two are 

independent vectors associated with 2,3
3λ = − 187

. 

0 3 3

1 1 2 2 3 3

t t tx c e c e c eα α α− −= + +
� � ��

 

This degenerate case is what’s called ‘good’ degeneracy, because we still 

can find enough independent eigenvectors. 

 

A hindsight: The 2
nd

 order ODE we discussed before can be treated as 2 

coupled 1
st
 order equations. It is like the reversed process of substitution 

method in solving the two-coupled 1
st
 order equation will result in one 2

nd
 

order ODE. For a 2
nd

 order ODE (homogeneous for simplicity): 

0ax bx c+ + =ɺɺ ɺ  Previously we solve it with characteristic equations, now 

play a ‘trick’, by introducing a second dependent variable y: 

x y=ɺ  

Now we see that the 2
nd

 ODE is equivalent to couple 1
st
 order ODEs: 

                                                        

187 They will automatically independent of the eigenvector associated with 
1
λ from the theory of linear algebra. 

Actually it is easy for you to see that they are orthogonal to 
1
α
�

, because the matrix here is symmetric (symmetric 

means with respect to the diagonal, or TA A= . 
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b c
y y x

a a

x y

= − −

=

ɺ

ɺ

 

Solving this coupled equations will give answers to the 2
nd

 order ODE, so 

Linear Algebra find its application in ODE. 

 

2.3-2 2
nd

 Order Couple Equations and Normal Modes 

Besides coupled 1
st
 order ODE, we also encounter many coupled 2

nd
 

order ODE, such as coupled oscillators in mechanics (though this part is 

not required for the course)
188

, as the figure below shows: 

 

In this section, I shall only introduce the simplest case in coupled 2
nd

 

order ODE, i.e. homogeneous (no external driving force) and no damping 

(no velocity dependent force). The inclusion of those factors will 

complicate problems and may render them insolvable analytically.  

The equations for the above figure are: 

1 1 1 1 2 1 2 1 2 1 2 2

2 2 2 2 1 3 2 3 2 1 2 3 2 3 3

3 3 3 3 2 4 3 3 2 3 4 3

( ) ( )

( ) ( ) ( )

( ) ( )

m x k x k x x k k x k x

m x k x x k x x k x k k x k x

m x k x x k x k x k k x

= − − − = − + +

= − − − − = − + +

= − − − = − +

ɺɺ

ɺ

ɺɺ

 

Expressed above with matrix: 

Mx Kx=
� �ɺɺ    (54) 

                                                        

188 If you are interested, please read chapter 5 in ’vibration and waves’ by A.P. French.  
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1 1 1 2 2

2 2 2 2 3 3

3 3 3 3 4

   0   0 ( )       0

, 0      0 ,    ( )  

0   0   0      ( )

x m k k k

x x M m K k k k k

x m k k k

− +    
    = = = − +    

     − +     

�
 

Usually (54) is rewritten in the standard form: 

1,   x Ax A M K−= =
� �ɺɺ    (55) 

The method of solving this is undetermined coefficients we should be 

familiar with by now: 

Guess the solution in form of: 

1

2

3

,   t

a

x e a

a

λα α
 
 = =  
 
 

� ��
 the coefficients need to be determined along with the 

λ . Put this trial solution into (55): 

2Aα λ α=
� �

   (56) 

This is just eigenvalue problem all over again, we can compute the 

eigenvalue and get the value of 1,2,...λ λ= ±  and associated eigenvectors 

of 
iλ . The general solutions would be: 

1 1 2 2

1 1 1 1 2 2 2 2 ...
t t t t

x c e c e c e c e
λ λ λ λα α α α− −′ ′= + + + +

� � � ��
   (56) 

For the oscillation case, the eigenvalues will be generally a negative 

number: 

2

i iλ ω= −  

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1( ) ( cos sin )

require
real

t t i t i tc e c e c e c e a t b t
λ λ ω ωα α α α ω ω− −′ ′+ = + → +

� � � �
ɶ ɶ  

1 1 1 1 1 2 2 2 2 2( cos sin ) ( cos sin ) ...x a t b t a t b tω ω α ω ω α= + + + +
� ��

   (57) 

Let’s workout an example: 
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Mass 
1 22 , 1m kg m kg= = , 

1 2100, 50k k= =  ISU. What is the motion of 

the system? 

The equation of motion is: 

1 1

2 2

2  0 150   50

0  1 50    50

x x

x x

−      
=      −      

ɺɺ

ɺɺ
 

1 1

2 2

75   25

50   -50

x x

x x

−    
=    
    

ɺɺ

ɺɺ
 

Solve for eigenvalues for A: 

1 2

75    25
| | 0 25, 100

50   50
A I

λ
λ λ λ

λ
− −

− = = → = − = −
− −

 

Or 2

1 25, 10ω λ ω ω− = → = =  

For 
1 25λ = − : 

1 1

1

2 2

50   25 1
0

50   25 2

a a

a a
α

−       
= → = =      −      

�
 

For 
2 100λ = − : 

1 1

2

2 2

25   25 1
0

50   50 1

a a

a a
α

      
= → = =      −      

�
 

The general solution would be: 

1

1 1 2 2

2

1 1
( cos5 sin5 ) ( cos10 sin10 )

2 1

x
a t b t a t b t

x

     
= + + +     −    

 

The constants can be determined from initial conditions.  

There seem having two harmonic motions with frequency 5 and 10 
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(determined by the eigenvalues of A). This is no coincidence; these two 

are the frequencies of the Normal Mode, which I shall prove. The goal is 

to decouple the coupled equation, i.e. we need to find a combination of 

1 2,x x , for example:  

1 1 2 2 1 2;y ax bx y cx dx= + = +    (58) 

so that the differential equation of 
1yɺɺ  will only involve 

1y ; 
2yɺɺ ’s will 

only involves
2y . Then the coupled 2

nd
 order ODE will be reduced two 

decoupled ODE and can be solved individually.  

1 1 2 2 1 2;y ax bx y cx dx= + = +  satisfy this is called normal mode of the 

system. 

You may try to start form (58) and see what condition a, b, c, d would 

decouple the equations. But linear algebra already tells us the answer (i.e. 

what a, b, c, d should be). The goal is to make matrix A diagonal, it is not 

under 
1 2,x x  bases. But under the basis of eigenvectors of the matrix, it 

will be a diagonal form: 
1

2

   0

0   
eigenbasisA

λ

λ
 

=  
 

. The transform matrix is the 

matrix formed by eigenvectors
189

: 

[ ]1 2   S α α=
� �

   (59) 

This means the first column of matrix S is the eigenvector associated with 

1
st
 eigenvalue, etc. 

1   or  y S x x Sy−= =
� � � �

   (60) 

                                                        

189 This will require the matrix A is a matrix with independent columns (A in this problem certainly satisfies this, 

it actually comes from a symmetric matrix K) which almost all physical matrix satisfy.. 
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This will give the combination of 
1 2,x x  that decouple the equations 

(make A diagonal). Proof: 

1 1 1  y S x S Ax S AS y− − −= = =
� � � �ɺɺ ɺɺ  

1  a  matrixS AS diagonal− = Λ 190
 

Then 1 1 1 2 2 2;  ...y y y y y yλ λ= Λ → = =
� �ɺɺ ɺɺ ɺɺ  

Let’ use the above example to illustrate this: 

We have solved the eigenvectors: 

[ ] 1

1 2

1   1 1   1 1   11 1
     

2 1 2     1 2 13 3
S Sα α − − −     
= = = − =     − − −     

� �
 

In this special example 1,S S − happens to have same form, but this is not 

general at all.  

1 11

2 2

1   11

2 13

y x
y S x

y x

−    
= = =    −    

� �
 

The common factor 1/3 does not play any roles and can be neglected: 

1 1 2

2 1 22

y x x

y x x

= +

= −
 

Now you differentiate these y’s, it is straightforward to show that: 

1 1

2 2

25

100

y y

y y

= −

= −

ɺɺ

ɺɺ
 

The above combination is also very clear from the general solution we 

solved for
1 2,x x , such combination will only leave one frequency 

component.  

Though I only discussed a special class of systems (homogeneous, no 

                                                        

190 I used results from linear algebra here, where the matrix A can be written as: 
1

A S S
−

= Λ   
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damping), these systems are important in many applications. The above 

analysis is the basics for analyzing complicated coupled oscillations, such 

as molecular vibration. For instance, the benzene molecule (C6H6) has 12 

atoms, and will have 3N-6=36-6=30 degree of freedom in vibration (the 6 

degree are 3 translational motions of C.M., 3 rotational motions of the 

whole molecule, and what is left are vibrations). These corresponds to 30 

decoupled normal modes of vibration, each is a combination of certain 

motions of carbon and hydrogen atoms. The procedure will be same as I 

illustrated above, just the dimension of matrix gets bigger.  

 

 


